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Abstract

In this paper, we present a method that we call on-surface convolution which extends
the classical notion of a 2D digital filter to the case of digital surfaces (following
the cuberille model). We also define an averaging mask with local support which,
when applied with the iterated convolution operator, behaves like an averaging
with large support. The interesting property of the latter averaging is the way the
resulting weights are distributed: given a digital surface obtained by discretization
of a differentiable surface of R3, the masks isocurves are close to the Riemannian
isodistance ciurves from the center of the mask. We eventually use the iterated
averaging followed by convolutions with differentiation masks to estimate partial
derivatives and then normal vectors over a surface. The number of iterations required
to achieve a good estimate is determined experimentally on digitized spheres and
tori. The precision of the normal estimation is also investigated according to the
digitization step.
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1 Introduction

Estimation of geometrical and differential properties and quantities of objects
known through their digitizations is an important goal of discrete geometry.
One of the classical problems is simply to measure the length of a curve (or
a perimeter) in the digital plane [5,3]. One may also quote the estimation of
tangents or normals to a curve [12], normal vectors over a surface [13], or area
of a digital surface [2,9,20].

In 2D, a whole set of methods rely on the digital straight segments recognition
algorithm [4] used to find maximal line segments in a curve, which may in
turn be used to estimate the curve’s length or its tangent vectors [12]. These
methods have been extended to the 3D case with digital plane recognition to
estimate the area of the surface of a 3D digital object [18]. Directional tangent
estimation based on straight segments recognition was used in [19] to compute
normal vectors on a digital surface and later in [11] for the nD case. A first
remark about this set of methods is that they are sensitive to noise.

In the case of digital surfaces, another method was introduced by Papier and
Françon ([17,16]) to estimate the normal vector field. It is based on a weighted
averaging of the canonical normals in a neighborhood of each surfel. Their
method generalizes to large neighborhoods the approach proposed by Chen et
al. in [1] and is very close to the one we propose here, although it differs in at
least two points: Umbrellas in Papier’s method grow following a breadth-first
traversal of the surfels v-adjacency graph, whereas our method may be seen as
the result of an averaging process using masks which grow in a more geodesic
and isotropic way (see section 4.2). Also, their averaging process applies on
canonical normal vectors whereas our method relies on the averaging of the
surfel centers. Furthermore, very few tests have been conducted by Papier to
determine the optimal size of the neighborhood taken into account by the
averaging process.

The normal estimation method introduced here (Section 4.1) is based on the
notion of on-surface convolution (Section 3) which extends to digital surfaces
the classical 2D filters used in image processing. Using an averaging mask
defined locally, we apply an iterated convolution operation on the centers
of the surfels. Then, we use two orthogonal differentiation operators on the
resulting centers to estimate partial derivatives, and by a cross product we
obtain normal vectors. We will study in section 4.3 the optimal number of
convolution iterations for the normal estimation on two basic shapes: a sphere
and a torus.

Some conclusions and perspectives are presented, including the problem of
higher order dirivatives and curvature estimation.
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2 Digital voxel objects and digital surfaces

In this paper, we simply call a digital object a subset of Z3, the classical
three dimensional grid. Such an object is seen as a set of unit cubes called
object voxels centered on points with integer coordinates. Background voxels
are voxels that do not belong to the object.

The surface of a digital object can be defined as a set of surfels, provided
with relevant adjacency graphs. Surfels are unit squares that are shared by
two 6-adjacent voxels. There are exactly six types of surfels according to the
direction of their normal vectors. Thus, a surfel can be uniquely defined by the
data of its center’s coordinates and its orientation. In the sequel, a surfel is a
pair (p, ~n) where p ∈ R3 (the center) and ~n ∈ {(±1, 0, 0), (0,±1, 0), (0, 0,±1)}
(the normal vector). A digital surface is a set of surfels which is the set of all
the surfels of a digital object.

We will use in the sequel the two functions σ and ν which associate to a surfel
s = (p, ~n), respectively, its center σ(s) = p and its normal vector ν(s) = ~n.

We can define two adjacency relations between surfels: the e-adjacency and
the v-adjacency relations. See [15] for further details.

A relation of e−adjacency (see Figure 1(b)) and v−adjacency (Figure 1(c)) can
be defined between some surfels that share and edge. Note that the considered
adjacency reslation (6, 18) on the set of voxels must be taken into account when
defining the e−adjaceny and v−adjacency relations ([8]). In this way, a surfel
has exactly 4 e−neighbors, but has a variable number of v−neighbors.

Next, we define a loop in a digital surface Σ as an e-connected component of
the set of the surfels of Σ which share a given vertex w. For example, if Σ is the
surface of the object depicted in Figure 1(a) (which is made of three voxels),
then the vertex w defines two loops: one that contains the six gray surfels,
and another one in the back with three surfels. Two voxels are v-adjacent iff
they belong to a common loop of Σ.

w

(a) A loop
of surfels (in
gray)

x

(b) The e-neighborhood
of x

x

(c) The v-neighbor-
hood of x

Fig. 1. Loops and neighborhoods on a digital surface.
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3 On-surface convolution

The work presented in the next sections illustrates the use of on-surface con-
volution, which we introduce here. In the sequel of the paper, Σ is a digital
surface and S is a vector space over R. We define the space of digital surface
filters over Σ as the set of functions from Σ × Σ to R.

Definition 1 (Generalized convolution operator) For f : Σ −→ S and
F : Σ × Σ −→ R, we define the operator Ψ as follows:

Ψf,F : Σ −→ S

x 7−→
∑
y∈Σ

F (x, y) · f(y)

Intuitively, Ψ acts like a convolution of the values of f on the surface with
a convolution kernel whose values should depend on the relative positions of
two surfels. We also define the iterated operator Ψ(n).

Definition 2 (Iterated convolution operator) The iterated convolution
operator is defined for n ∈ N by:Ψ

(0)
f,F = f

Ψ
(n)
f,F = Ψ

Ψ
(n−1)
f,F

,F
if n > 0.

Next, we define an averaging and two derivative filters which we will use in
section 4.1 to estimate the normal field on a digital surface.

3.1 The averaging filter

In order to define convolution filters on an arbitrary digital surface, we define
some local masks, and then obtain larger masks by iteration. We define a local
averaging mask Wavg : Σ×Σ 7→ R. This mask should be seen as a wrapping of
the 2D classical mask (Figure 2(a)) which follows the local shape of the digital
surface. The choice of this mask is a heuristics. We tried several masks but
this one appears to give particularly good results relating to the Riemannian
metrics (see Section 4.2). Intuitively, we define this mask as a generalization of
the 2D local mask (and indeed they coincide on a planar surface). The weights
are the same as in 2D for the e−neighbors, but for the strict v−neighbors (i.e.
v−neighbord which are not e−neighbors) the weight of what would be a unique
pixel in 2D is split and distributed over the several strict v−neighbors of the
loop. The global mass of the mask remains unchanged.
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More precisely, let x and y be two surfels of Σ such that y ∈ Nv(x). If y
is v-adjacent but not e-adjacent to x then there is a single loop L of Σ that
contains both x and y. In this case, we define δx(y) = card(L)−3. The number
δx(y) is used to take into account the number of surfels in a loop containing
x which are not e-adjacent or equal to x. Within a loop, all these surfels will
end up with a total contribution of 1

16
.

If there are no such surfels, the weight 1
16

is spread among the two e-neighbors
of x in the loop. Thus, if y is e-adjacent to x, then y has exactly two e-neighbors
in Nv(x), say s and t. We define γx(y) as the number of surfels in {s, t} which
are e-adjacent to x.

Now, let x be a surfel of Σ. For any surfel y ∈ Σ we define the weight Wavg(x, y)
as follows:

Wavg(x, y) =



1
4

if y = x,
1
8

+ γx(y)
32

if y ∈ Ne(x),
1

16·δx(y)
if y ∈ Nv(x) \ Ne(x),

0 if y /∈ Nv(x).

One can check that for all x ∈ Σ, we have
∑
y∈Σ

Wavg(x, y) = 1. This may be done

by writing the sum when all the loops that contain x have strict v-neighbors
to x, so that γx(y) = 0 for all y ∈ Ne(x). Next, observe that the sum is left
unchanged when one or more loops have only three surfels.

See Figure 2(b) for an example of a v-neighborhood and the associated values
of Wavg.

1

1 1

12

2
22 4

(a) A 2D mask.

2.5

2.5

1

2

2

4
0.5

0.5

0.5

0.5

(b) A surfel x (in gray)
and the values of 16 ·
Wavg(x, y) for the surfels
y of Nv(x) ∪ {x}.

s

0 13
2

3

1

E1(s)
2

0

(c) Ordering of vertices and
edges for a given surfel s.

Fig. 2. Illustrations of the masks definition.

3.2 The first order derivative filters

We introduce here two directional derivative masks which may be used with
the convolution operator to obtain two orthogonal differentiation operators.

For each surfel s of Σ we define a numbering of the surfel vertices and edges
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as illustrated by Figure 2(c), following the coherent orientation around the
outward normal. We denote by Ei(s) the e-neighbor of s that shares with s
its ith edge. Then, we define the derivative masks Du(x, y) and Dv(x, y) for
x, y ∈ Σ as follows:

Du(x, y) =


1
2

if y = N0(x),

−1
2

if y = N2(x),

0 otherwise.

Dv(x, y) =


1
2

if y = N1(x),

−1
2

if y = N3(x),

0 otherwise.

Given the derivative masks Du and Dv, we may define two derivative operators
Ψf,Du and Ψf,Dv which act on a function f defined on Σ.

4 Normal estimation

In this section, we address the problem of estimating the normal vectors on the
surface of a digital object. This estimation is achieved using iterated convolu-
tions of the surfel centers with the averaging mask Wavg, followed by a step of
differentiation using the derivative filters Du and Dv defined in section 3.2.

4.1 Surface normal estimation

For different purposes, such as shading methods for visualization or for area
estimation, it is interesting to compute normal vectors on the surface of a
obtained by digitization of a differentiable surface embedded in R3. In so
doing, our goal is that the computed normals will be as close as possible
to the normals on the surface of the underlying differentiable surface. More
precisely, the difference between the normals estimated from the digital surface
and the normal to the underlying differentiable surface should get smaller
when the digitization resolution decreases. Roughly speaking, this property is
what is called multigrid convergence in the literature. Several surface normal
estimation methods have been proposed, among which we may cite [13,19,11],
but no method has been proved to be convergent in that sense so far.

Here, we show that the normal vectors of a digital surface can also be estimated
by first averaging the positions of the surfel centers using the iterated convo-
lution operator, then computing approximations of two partial derivatives to
obtain vectors in the tangent space to the surface, and finally computing a
normal vector by a simple cross product of the tangent vectors.

More formally, using the iterated convolution operator Ψ, the averaging mask
Wavg, and the derivative masks Du and Dv we define a function Γ(n) : Σ −→ R3
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for n ∈ Z such that Γ(n)(s) is the estimated normal vector of Σ at the center
of s (after n on-surface convolutions). We define the function Γ(n) for n ∈ Z
by:

Γ(n)(s) =
∆(n)

u (s) ∧ ∆(n)
v (s)

‖∆(n)
u (s) ∧ ∆

(n)
v (s)‖

with ∆(n)
u = Ψ

Ψ
(n)
σ,Wavg

,Du
(resp. for ∆(n)

v ) (1)

where ∧ denotes the cross product of two vectors. As the initial averaging
process is iterated, the size of the neighborhood taken into account grows
accordingly and the precision of the estimate increases as we get closer to the
optimal number of iterations. (This number is discussed in section 4.3.)

From the definition of the operator Ψ(n), we see that Γ(n)(s) is the result of a
computation which involves all the surfels of Σ whose distance to s is at most
n in the v-adjacency graph of Σ. In fact, the size of the neighborhood taken
into account when computing Γ(n)(s) grows with n but the weights tend to
follow a geodesic distance which does not coincide with the distance in the
v-adjacency graph. This point, which we claim is a good point, is discussed
in the next section. (The way the weights are distributed when the number
of iterations increases is illustrated by Figures 4 and 3(b).) We will present in
section 4.3 the results of some experiments.

4.2 Comparison with Papier’s averaging process

In [17,16], Papier et al. define averaging weights on possibly large neigh-
borhoods obtained using a breadth-first visiting algorithm of the surfels v-
adjacency graph. Their approach generalizes the one of [1] who used only the
e-neighborhood to estimate the normals by averaging the elementary normals
(among the six possible ones). Both methods are based on the averaging of
the canonical normals ν(s) of the surfels to estimate the exact normals. This
point slightly differs from our method since we are not averaging the normal
vectors but simply the surfel centers.

Furthermore, when considering a large neighborhood in an averaging process,
one should expect that the mask’s isocurves should be close to the isodistance
curves from the center of the mask for the Riemannian metrics of the under-
lying differentiable surface. We call this property the Riemannian isotropy of
the mask.

As depicted in Figure 4(a) on a digitized plane with normal vector (1, 1, 1),
as well as in Figure 3(c) on a digitized paraboloid, neighborhoods obtained
by a breadth-first traversal of the surfels graph do not share the former prop-
erty. Therefore, we think that the neighborhoods used by Papier et al. are
not optimal when they become large. Our experiments will show that the
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neighborhoods should indeed extend when the resolution increases.

(a) (b) (c)

Fig. 3. (a) View of a paraboloid shaded using normals estimated with our method.
(b) Response of the iterated averaging filter over the paraboloid compared with a
breadth-first traversal (c). (The volume size is 150 × 150 × 150 and has 104, 926
surfels.)

In our case, the neighborhood taken into account by the averaging process
grows after iterations of convolutions with a local mask, designed to adapt
itself to the local geometry of the surface (Section 3.1). Although the actual
size of the masks resulting of iterated convolutions also follow the v-adjacency
graph, we observe that the weights in these masks have good Riemannian
isotropy properties. In order to illustrate how the averaging mask grows, we
use a diffusion process: with S = R we choose a surfel s0 ∈ Σ and define the
function δs0 : Σ −→ R such that δs0(s0) = 1030 and δs0(s) = 0 for s ∈ Σ\{s0}.
Then, we compute Ψ

(n)
δs0 ,Wavg

for a given n. Results of this diffusion process

that we call an impulse response of the averaging filter Ψ
(n)
f,Wavg

are depicted
in Figure 4 for the same plane as mentioned previously. Another example is
given on the paraboloid depicted in Figure 3(b) with the surfel s0 at the saddle
point, where one can get convinced that the impulse response of our iterated
convolution mask behaves as if following a geodesic distance function on the
surface.

4.3 Experiments

We have evaluated the precision of the estimation that can be achieved with
our method. For this purpose, we have used digitized spheres and tori with
several radii and measured the average angular error between the estimated
and the exact normal vectors for all surfels. Note that since the estimator relies
on an averaging process, we cannot expect it to be precise in the neighborhood
of discontinuities of the normal field (edges) or in areas with high curvature.
Therefore, it is not suitable for polyhedral shapes, reason why we do not use
such shapes in our experiments.
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(a) Breadth-first traversal (left) and iterated convolution response
(right) over a digitized plane x + y + z = 0.

(b) Plane x + 2y + 3z = 0. (c) Plane 4x + 6.5y + z = 0.

Fig. 4. Breadth-first traversal of the surfels graph (a) and iterated convolution re-
sponses (b,c,d).

In the case of 1D functions, a theoretical result is given in [14, Th. 1] which
specifies which size should be used for the convolution mask depending on
the pixel size or digitization step. The given mask size, or number of convo-
lution iterations, guarantees a convergence rate of h

2
3 for the first derivative

estimate, where h is the pixel’s width. However, in our case, no such result
has been stated yet. Thus, we address experimentally the problem of finding
what convergence speed may be obtained and for which choice of iterations
numbers.

In a first series of tests we have measured experimentally the number of con-
volution iterations that yield the smallest average angular error in the esti-
mation of normal vectors on digitized spheres. The result of this experiment
is presented in Figure 5(a). This figure clearly shows an almost linear relation
between the radius of the sphere and the optimal number of convolution iter-
ations that yield the smallest average angular error of the normal estimation.
We thus conjecture that the optimal size for the averaging kernel is in fact
linked to the maximal curvature found on the surface.

On the other hand, Figure 5(b) shows, on a logarithmic scale, the evolution of
the optimal average angular error in degree when the sphere radius increases.
As expected, it appears that the method actually achieves a better estimation
when the digitization step decreases. This tends to indicate that our estimator
is multigrid convergent.
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Optimal iteration number
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(a) Optimal number of convolution it-
erations depending on the sphere ra-
dius in voxels.

 0.01

 0.1

 1

 10

 0  20  40  60  80  100  120  140  160  180  200

Average error
Std. dev.

(b) Optimal average angular error
and standard deviation depending on
the sphere radius in voxels.

Fig. 5. Normal estimation on digitized spheres.

As a comparison, tests conducted on spheres by Papier in [16] do not clearly
show an improvement of the precision when the radius of the sphere increases.
Furthermore, they only used umbrellas of order 1 to 5. It is however obvious
that the size of the mask should be set according to the resolution, as shown
by the measures reported in Figure 5(a). With the approach mentioned in the
introduction, the best result given by Lachaud and Vialard in [11] is obtained
on a sphere with radius 100 and an average error of 1.51◦ (std. dev. 2.34),
when the average error of our method is 0.38◦ (std. dev. 0.17). On a sphere
with radius 50, they obtain 2.19◦ (std. dev. 3.46) when we have 0.62◦ (std.
dev. 0.26). The earlier paper by Tellier and Debled-Rennesson [19] reports the
best average error of 2.84◦ (std. dev. 2.24) for a sphere with radius 25, when
our method obtains 1.55◦ (std. dev. 0.71). These results are summarized in
Table 1. Figures reported for our method have been obtained using optimal
mask sizes.

Radius Papier99 Lachaud03 Tellier99 Our method

θ σ θ σ θ σ θ σ

25 0.96◦ 0.56◦ – – 2.84◦ 2.24◦ 1.55◦ 0.71◦

50 – – 2.19◦ 3.46◦ – – 0.62◦ 0.26◦

100 – – 1.51◦ 2.34◦ – – 0.38◦ 0.17◦

Tab. 1. Results comparison with other methods.

However, spheres are not general enough to put to the test a surface normal
estimator. This is at least because a sphere has a constant and positive Gaus-
sian curvature. Therefore, we have tested our method on several tori with
increasing radii, rotated along the three axes. Tori are nice for this test be-
cause they have both positive and negative Gaussian curvatures. The results
are depicted in Figure 6, where each torus had a small radius of half its large
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one. Again, the average angular error and its standard deviation decrease with
an increasing resolution, as show by Figure 6(b).

Figure 6(a) still shows a linear dependence between the optimal convolution
kernel size and the small radius of the torus. Again, this tends to confirm the
link between the optimal size and the maximum curvature which, in the case of
a torus, is precisely the inverse of its small radius. Indeed, a change in the ratio
between the large and the small radius of the tori has no significant influence
on the slope depicted by Figure 6(a). This point has been checked on tori
with different ratios: the result is presented in Figure 7(a) which shows that
the relation between the optimal number of iterations and the small radius is
not altered by a change of the ratio. The same remark does not apply when
considering the link with the large radius (Figure 7(b)).

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0  10  20  30  40  50  60  70  80

Optimal iteration number
Linear regression

(a) Optimal number of convolution it-
erations depending on the small ra-
dius in voxels.

 0.1

 1

 10

 0  10  20  30  40  50  60  70  80

Average error
Std. dev.

(b) Optimal average angular error
and standard deviation depending on
the small radius in voxels.

Fig. 6. Normal estimation on digitized tori.
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cording to the small radius.
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(b) Optimal number of iteration ac-
cording to the large radius.

Fig. 7. Optimal number of iterations on tori with different parameters. The ratio
between the large and the small radius of each torus is respectively 3, 2.5 and 2.
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4.4 Sensitivity to noise

Since our method is based on an averaging process that may be seen as a low-
pass filtering, it is expected to be less sensitive to noise than methods based on
the recognition of geometric primitives such as digital lines or planes. In order
to measure the sensitivity of our estimator, we have repeated the measures of
the last section but on noisy objects.

For that purpose, we used digitized spheres and tori on the surface of which
simple voxels have been added or removed. Intuitively, simple voxels are voxels
the removal or addition of which does not change the topology of a discrete
object. (See [10,6] for a definition and characterization of simple points in 3D.)
A given percentage of the simple voxels are randomly chosen to be removed
or added. This percentage will be called here the “noise level” and has been
set to 20% in our tests. The noisy counterparts of the sphere and torus of
Figure 8(a) are depicted in Figure 8(b). Note that the tori used in our tests
do not have a trivial orientation but are rotated along the three coordinate
axes.

(a) Digitized sphere and torus (b) Noisy version of the digitized
sphere and torus. (Noise level is
20%.)

Fig. 8. Spheres and tori used for the tests.

Results of our experiments are depicted in Figure 9. In Figure 9(a) the optimal
number of iterations for the (best) normal estimate is depicted according to
the radius of the digitized spheres. The corresponding average and standard
deviation of the angular error for each radius is given in Figure 9(b). The same
measures on tori are depicted in Figure 10.

In both cases we observe that the average angular error still decreases when
the resolution increases, while the standard deviation of the error is almost
constant: about 25◦ for the spheres and 10◦ for the tori. A closer look at the
angular error distributions shows that they are clearly localized around the
mean values but have several outliers which degrade the standard deviations.
In fact, outliers come from degenerated surfel centers configurations that ap-
pear after smoothing in regions with high curvature, i.e. at the scale of a few
voxels. In these regions, the vector products used to compute the estimated
normal vectors take into account very small vectors whose directions are not
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representative, hence we get a very poor result for the normal. Furthermore,
the noise level being a constant percentage of the size of the surface, the
amount of degenerated configuration tends to follow the total number of sur-
fels, hence we observe the stability of the standard deviation: the more surfels
there are, the more outliers there are too.
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(a) Optimal number of convolution it-
erations depending on the sphere ra-
dius.
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(b) Optimal average angular error
and standard deviation according to
the sphere radius.

Fig. 9. Normal estimation on noisy digitized spheres.
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(a) Optimal number of convolution it-
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(b) Optimal average angular error
and standard deviation according to
the small radius.

Fig. 10. Normal estimation on noisy digitized tori. The large radius of the tori is
twice the small one.

4.5 Computation times

The complexity of our normal estimator is O(m.n) where m is the number
of surfels of the surface and n is the number of iterations of the averaging
process. In order to give an idea of the effective cost of the method, we provide
in Table 2 the computation times obtained with several objects on an Intel
Core 2 Duo T5600 processor, 1.83Ghz.
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Object Volume size Surfels Iterations Time

Bunny 234 × 206 × 170 157,096 10 0.71 s

234 × 206 × 170 157,096 20 1.37 s

Large Bunny 468 × 413 × 341 634,944 10 2.87 s

468 × 413 × 341 634,944 20 5.62 s

Sphere (radius 100) 201 × 201 × 201 188,502 10 0.81 s

201 × 201 × 201 188,502 70 5.44 s

Tab. 2. Computation times on several objects.

4.6 Surface shading using estimated normals

Precise normal estimates may be used together with a lightening model to
render the surface of a 3D volume. In this kind of rendering, only three different
primitives are used since at most three kind of surfels are visible depending
on the point of view. Such renderings are depicted in Figure 11 where we used
our estimated normals (with an arbitrary iteration parameter) to compute
the diffuse reflection. A comparison with a rendering found in [11] is given by
Figure 12.

(a) The Al volume. Volume size is
150×368×400 and the surface is made
of 346,936 surfels.

(b) The Stanford bunny volume. Vol-
ume size is 468×413×341 and the sur-
face is made of 634,944 surfels.

Fig. 11. Surface shading using the normals estimated with our method.
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(a) Flat shading. (b) Shading with diffuse reflection
according to the normals at surfels
estimated with our method.

(c) Shading illustration
extracted from [11].

Fig. 12. Surface shading comparison with the normal estimate by Lachaud and
Vialard. The sphere has a radius of 30 voxels.

5 Conclusion and perspectives

We have defined an averaging operator based on a convolution over the surface
of a digital object, as well as directional derivative operators. When combined,
these operators may be used to precisely estimate the normal vectors on the
surface of a digitized object as shown by our experiments. The implemen-
tation of this method is straightforward (as compared to methods based on
arithmetical digital planes recognition of even contruction of a mesh from the
digital surface). Although we used floating point arithmetic in our implemen-
tation, the averaging filter may be defined using integers-only operations with
a delayed normalization step.

We also have estimations of partial differentials, and we can try to estimate
higher order partial differntials. Based on this idea, some estimates of Gaussian
curvature, mean curvature, and max curvature have been obtained ([7]). This
will be tackled in future works.

A link was experimentally established between the maximal curvature on an
object and the optimal size of the averaging mask that yield to the best normal
estimate. This link should be further investigated. Indeed, no way has been
given in this paper to determine the optimal number of iterations for a real-
world object.

Finally, a mathemaical proof of multigrid convergence, and eventually a com-
plete theory of differential calculus on a digital surface should be the ultimate
goal. However, this appears to be a rather difficult task.
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