43 research outputs found

    A review of RFI mitigation techniques in microwave radiometry

    Get PDF
    Radio frequency interference (RFI) is a well-known problem in microwave radiometry (MWR). Any undesired signal overlapping the MWR protected frequency bands introduces a bias in the measurements, which can corrupt the retrieved geophysical parameters. This paper presents a literature review of RFI detection and mitigation techniques for microwave radiometry from space. The reviewed techniques are divided between real aperture and aperture synthesis. A discussion and assessment of the application of RFI mitigation techniques is presented for each type of radiometer.Peer ReviewedPostprint (published version

    Performance assessment of time–frequency RFI mitigation techniques in microwave radiometry

    Get PDF
    ©2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.Radio–frequency interference (RFI) signals are a well-known threat for microwave radiometry (MWR) applications. In order to alleviate this problem, different approaches for RFI detection and mitigation are currently under development. Since RFI signals are man made, they tend to have their power more concentrated in the time–frequency (TF) space as compared to naturally emitted noise. The aim of this paper is to perform an assessment of different TF RFI mitigation techniques in terms of probability of detection, resolution loss (RL), and mitigation performance. In this assessment, six different kinds of RFI signals have been considered: a glitch, a burst of pulses, a wide-band chirp, a narrow-band chirp, a continuous wave, and a wide-band modulation. The results show that the best performance occurs when the transform basis has a similar shape as compared to the RFI signal. For the best case performance, the maximum residual RFI temperature is 14.8 K, and the worst RL is 8.4%. Moreover, the multiresolution Fourier transform technique appears as a good tradeoff solution among all other techniques since it can mitigate all RFI signals under evaluation with a maximum residual RFI temperature of 21 K, and a worst RL of 26.3%. Although the obtained results are still far from an acceptable bias Misplaced < 1 K for MWR applications, there is still work to do in a combined test using the information gathered simultaneously by all mitigation techniques, which could improve the overall performance of RFI mitigation.Peer ReviewedPostprint (author's final draft

    Radio frequency interference in microwave radiometry: statistical analysis and study of techniques for detection and mitigation

    Get PDF
    Microwave radiometry field has been increasing its performance with higher accuracy measurements, leading to a more presence in the remote sensing field. Several space-borne, air-borne and ground-based radiometers have been developed to perform measurement campaigns; however, the actual sensitivity of a radiometer is often limited by man-made radio emissions such as radars, broadcasting emissions, wireless communications and many other communication systems based on electromagnetic waves, limiting the improvement in the radiometers¿ performance. Consequently, in order to maintain the accuracy in the radiometric measurements, it has been researched in the Radio Frequency Interference (RFI) detection and mitigation systems and algorithms for the microwave radiometry field. The scope of this doctoral thesis is the development and testing of RFI detection and mitigation algorithms in order to enhance radiometric measurements performed by the Multifequency Experimental Radiometer with Interference Tracking for Experiments over Land and Littoral (MERITXELL). The MERITXELL has been developed during this thesis with the idea studying the RFI present in several radiometric bands and the way to mitigate it, as well as to obtain data from diverse frequency bands and devices in only one measurement campaign

    Impact of signal quantization on the performance of RFI mitigation algorithms

    Get PDF
    Radio Frequency Interference (RFI) is currently a major problem in Communications and Earth Observation, but it is even more dramatic in Microwave Radiometry because of the low power levels of the received signals. Its impact has been attested in several Earth Observation missions. On-board mitigation systems are becoming a requirement to detect and remove affected measurements, increasing thus radiometric accuracy and spatial coverage. However, RFI mitigation methods have not been tested yet in the context of some particular radiometer topologies, which rely on the use of coarsely quantized streams of data. In this study, the impact of quantization and sampling in the performance of several known RFI mitigation algorithms is studied under different conditions. It will be demonstrated that in the presence of clipping, quantization changes fundamentally the time-frequency properties of the contaminated signal, strongly impairing the performance of most mitigation methods. Important design considerations are derived from this analysis that must be taken into account when defining the architecture of future instruments. In particular, the use of Automatic Gain Control (AGC) systems is proposed, and its limitations are discussedPeer ReviewedPostprint (published version

    MERITXELL: the Multifrequency Experimental Radiometer with Interference Tracking for Experiments over Land and Littoral—instrument description, calibration and performance

    Get PDF
    MERITXELL is a ground-based multisensor instrument that includes a multiband dual-polarization radiometer, a GNSS reflectometer, and several optical sensors. Its main goals are twofold: to test data fusion techniques, and to develop Radio-Frequency Interference (RFI) detection, localization and mitigation techniques. The former is necessary to retrieve complementary data useful to develop geophysical models with improved accuracy, whereas the latter aims at solving one of the most important problems of microwave radiometry. This paper describes the hardware design, the instrument control architecture, the calibration of the radiometer, and several captures of RFI signals taken with MERITXELL in urban environment. The multiband radiometer has a dual linear polarization total-power radiometer topology, and it covers the L-, S-, C-, X-, K-, Ka-, and W-band. Its back-end stage is based on a spectrum analyzer structure which allows to perform real-time signal processing, while the rest of the sensors are controlled by a host computer where the off-line processing takes place. The calibration of the radiometer is performed using the hot-cold load procedure, together with the tipping curves technique in the case of the five upper frequency bands. Finally, some captures of RFI signals are shown for most of the radiometric bands under analysis, which evidence the problem of RFI in microwave radiometry, and the limitations they impose in external calibration.Peer ReviewedPostprint (published version

    Characteristics of the Global Radio Frequency Interference in the Protected Portion of L-Band

    Get PDF
    The National Aeronautics and Space Administration’s (NASA’s) Soil Moisture Active–Passive (SMAP) radiometer has been providing geolocated power moments measured within a 24 MHz band in the protected portion of L-band, i.e., 1400–1424 MHz, with 1.2 ms and 1.5 MHz time and frequency resolutions, as its Level 1A data. This paper presents important spectral and temporal properties of the radio frequency interference (RFI) in the protected portion of L-band using SMAP Level 1A data. Maximum and average bandwidth and duration of RFI signals, average RFI-free spectrum availability, and variations in such properties between ascending and descending satellite orbits have been reported across the world. The average bandwidth and duration of individual RFI sources have been found to be usually less than 4.5 MHz and 4.8 ms; and the average RFI-free spectrum is larger than 20 MHz in most regions with exceptions over the Middle East and Central and Eastern Asia. It has also been shown that, the bandwidth and duration of RFI signals can vary as much as 10 MHz and 10 ms, respectively, between ascending and descending orbits over certain locations. Furthermore, to identify frequencies susceptible to RFI contamination in the protected portion of L-band, observed RFI signals have been assigned to individual 1.5 MHz SMAP channels according to their frequencies. It has been demonstrated that, contrary to common perception, the center of the protected portion can be as RFI contaminated as its edges. Finally, there have been no significant correlations noted among different RFI properties such as amplitude, bandwidth, and duration within the 1400–1424 MHz ban

    Analysis of RFI Identification and Mitigation in CAROLS Radiometer Data Using a Hardware Spectrum Analyser

    Get PDF
    A method to identify and mitigate radio frequency interference (RFI) in microwave radiometry based on the use of a spectrum analyzer has been developed. This method has been tested with CAROLS L-band airborne radiometer data that are strongly corrupted by RFI. RFI is a major limiting factor in passive microwave remote sensing interpretation. Although the 1.400–1.427 GHz bandwidth is protected, RFI sources close to these frequencies are still capable of corrupting radiometric measurements. In order to reduce the detrimental effects of RFI on brightness temperature measurements, a new spectrum analyzer has been added to the CAROLS radiometer system. A post processing algorithm is proposed, based on selective filters within the useful bandwidth divided into sub-bands. Two discriminant analyses based on the computation of kurtosis and Euclidian distances have been compared evaluated and validated in order to accurately separate the RF interference from natural signals

    A pre-correlation RFI mitigation algorithm for L-band interferometric radiometers

    Get PDF
    Radio Frequency Interference (RFI) is a major concern for both real and synthetic aperture radiometers. After the lessons learnt from SMOS, ESA is preparing the next generation of L-band interferometric radiometers with RFI mitigation integrated into the cross-correlators. This work presents a preliminary design and results of a pre-correlation RFI mitigation algorithm tailored for interferometric radiometers. The results show that the correlation error introduced by the RFI is reduced on average to the half, with peaks of 20 dB of mitigation.Peer ReviewedPostprint (author's final draft

    Radio frequency interference detection and mitigation techniques for navigation and Earth observation

    Get PDF
    Radio-Frequency Interference (RFI) signals are undesired signals that degrade or disrupt the performance of a wireless receiver. RFI signals can be troublesome for any receiver, but they are especially threatening for applications that use very low power signals. This is the case of applications that rely on the Global Navigation Satellite Systems (GNSS), or passive microwave remote sensing applications such as Microwave Radiometry (MWR) and GNSS-Reflectometry (GNSS-R). In order to solve the problem of RFI, RFI-countermeasures are under development. This PhD thesis is devoted to the design, implementation and test of innovative RFI-countermeasures in the fields of MWR and GNSS. In the part devoted to RFI-countermeasures for MWR applications, first, this PhD thesis completes the development of the MERITXELL instrument. The MERITXELL is a multi-frequency total-power radiometer conceived to be an outstanding platform to perform detection, characterization, and localization of RFI signals at the most common MWR imaging bands up to 92 GHz. Moreover, a novel RFI mitigation technique is proposed for MWR: the Multiresolution Fourier Transform (MFT). An assessment of the performance of the MFT has been carried out by comparison with other time-frequency mitigation techniques. According to the results, the MFT technique is a good trade-off solution among all other techniques since it can mitigate efficiently all kinds of RFI signals under evaluation. In the part devoted to RFI-countermeasures for GNSS and GNSS-R applications, first, a system for RFI detection and localization at GNSS bands is proposed. This system is able to detect RFI signals at the L1 band with a sensitivity of -108 dBm at full-band, and of -135 dBm for continuous wave and chirp-like signals when using the averaged spectrum technique. Besides, the Generalized Spectral Separation Coefficient (GSSC) is proposed as a figure of merit to evaluate the Signal-to-Noise Ratio (SNR) degradation in the Delay-Doppler Maps (DDMs) due to the external RFI effect. Furthermore, the FENIX system has been conceived as an innovative system for RFI detection and mitigation and anti-jamming for GNSS and GNSS-R applications. FENIX uses the MFT blanking as a pre-correlation excision tool to perform the mitigation. In addition, FENIX has been designed to be cross-GNSS compatible and RFI-independent. The principles of operation of the MFT blanking algorithm are assessed and compared with other techniques for GNSS signals. Its performance as a mitigation tool is proven using GNSS-R data samples from a real airborne campaign. After that, the main building blocks of the patented architecture of FENIX have been described. The FENIX architecture has been implemented in three real-time prototypes. Moreover, a simulator named FENIX-Sim allows for testing its performance under different jamming scenarios. The real-time performance of FENIX prototype has been tested using different setups. First, a customized VNA has been built in order to measure the transfer function of FENIX in the presence of several representative RFI/jamming signals. The results show how the power transfer function adapts itself to mitigate the RFI/jamming signal. Moreover, several real-time tests with GNSS receivers have been performed using GPS L1 C/A, GPS L2C, and Galileo E1OS. The results show that FENIX provides an extra resilience against RFI and jamming signals up to 30 dB. Furthermore, FENIX is tested using a real GNSS timing setup. Under nominal conditions, when no RFI/jamming signal is present, a small additional jitter on the order of 2-4 ns is introduced in the system. Besides, a maximum bias of 45 ns has been measured under strong jamming conditions (-30 dBm), which is acceptable for current timing systems requiring accuracy levels of 100 ns. Finally, the design of a backup system for GNSS in tracking applications that require high reliability against RFI and jamming attacks is proposed.Les interferències de radiofreqüència (RFI) són senyals no desitjades que degraden o interrompen el funcionament dels receptors sense fils. Les RFI poden suposar un problema per qualsevol receptor, però són especialment amenaçadores per les a aplicacions que fan servir senyals de molt baixa potència. Aquest és el cas de les aplicacions que depenen dels sistemes mundials de navegació per satèl·lit (GNSS) o de les aplicacions de teledetecció passiva de microones, com la radiometria de microones (MWR) i la reflectometria GNSS (GNSS-R). Per combatre aquest problema, sistemes anti-RFI s'estan desenvolupament actualment. Aquesta tesi doctoral està dedicada al disseny, la implementació i el test de sistemes anti-RFI innovadors en els camps de MWR i GNSS. A la part dedicada als sistemes anti-RFI en MWR, aquesta tesi doctoral completa el desenvolupament de l'instrument MERITXELL. El MERITXELL és un radiòmetre multifreqüència concebut com una plataforma excepcional per la detecció, caracterització i localització de RFI a les bandes de MWR més utilitzades per sota dels 92 GHz. A més a més, es proposa una nova tècnica de mitigació de RFI per MWR: la Transformada de Fourier amb Multiresolució (MFT). El funcionament de la MFT s'ha comparat amb el d'altres tècniques de mitigació en els dominis del temps i la freqüència. D'acord amb els resultats obtinguts, la MFT és una bona solució de compromís entre les altres tècniques, ja que pot mitigar de manera eficient tots els tipus de senyals RFI considerats. A la part dedicada als sistemes anti-RFI en GNSS i GNSS-R, primer es proposa un sistema per a la detecció i localització de RFI a les bandes GNSS. Aquest sistema és capaç de detectar senyals RFI a la banda L1 amb una sensibilitat de -108 dBm a tota la banda, i de -135 dBm per a senyals d'ona contínua i chirp fen un mitjana de l'espectre. A més a més, el Coeficient de Separació Espectral Generalitzada (GSSC) es proposa com una mesura per avaluar la degradació de la relació senyal a soroll (SNR) en els Mapes de Delay-Doppler (DDM) a causa del impacte de les RFI. La major contribució d'aquesta tesi doctoral és el sistema FENIX. FENIX és un sistema innovador de detecció i mitigació de RFI i inhibidors de freqüència per aplicacions GNSS i GNSS-R. FENIX utilitza la MFT per eliminar la interferència abans del procés de correlació amb el codi GNSS independentment del tipus de RFI. L'algoritme de mitigació de FENIX s'ha avaluat i comparat amb altres tècniques i els principals components de la seva arquitectura patentada es descriuen. Finalment, un simulador anomenat FENIX-Sim permet avaluar el seu rendiment en diferents escenaris d'interferència. El funcionament en temps real del prototip FENIX ha estat provat utilitzant diferents mètodes. En primer lloc, s'ha creat un analitzador de xarxes per a mesurar la funció de transferència del FENIX en presència de diverses RFI representatives. Els resultats mostren com la funció de transferència s'adapta per mitigar el senyal interferent. A més a més, s'han realitzat diferents proves en temps real amb receptors GNSS compatibles amb els senyals GPS L1 C/A, GPS L2C i Galileo E1OS. Els resultats mostren que FENIX proporciona una resistència addicional contra les RFI i els senyals dels inhibidors de freqüència de fins a 30 dB. A més a més, FENIX s'ha provat amb un sistema comercial de temporització basat en GNSS. En condicions nominals, sense RFI, FENIX introdueix un petit error addicional de tan sols 2-4 ns. Per contra, el biaix màxim mesurat en condicions d'alta interferència (-30 dBm) és de 45 ns, el qual és acceptable per als sistemes de temporització actuals que requereixen nivells de precisió d'uns 100 ns. Finalment, es proposa el disseny d'un sistema robust de seguiment, complementari als GNSS, per a aplicacions que requereixen alta fiabilitat contra RFI.Postprint (published version

    RFI detection and mitigation for advanced correlators in interferometric radiometers

    Get PDF
    This work presents the first RFI detection and mitigation algorithm for the interferometric radiometers that will be implemented in its correlator unit. The algorithm operates in the time and frequency domains, applying polarimetric and statistical tests in both domains, and exhibiting a tunable and arbitrary low probability of false alarm. It is scalable to a configurable number of receivers, and it is optimized in terms of quantization bits and the implementation of the cross-correlations in the time or frequency domains for hardware resource saving. New features of this algorithm are the computation of the Stokes parameters per frequency bin in the Short-Time Fourier Transform and a new parameter called Polarimetric Kurtosis. If RFI is detected in one domain or in both, it is removed using the calculated blanking masks. The optimum algorithm parameters are computed, such as length of the FFTs, the threshold selection for a given probability of false alarm, and the selection of the blanking masks. Last, an important result refers to the application of Parseval’s theorem for the computation of the cross-correlations in the frequency domain, instead of in the time domain, which is more efficient and leads to smaller errors even when using moderate quantization levels. The algorithm has been developed in the framework of the ESA’s technology preparation for a potential L-band radiometer mission beyond SMOS. However, it is also applicable to (polarimetric) real aperture radiometers, and its performance would improve if more than one bit is used in the signal quantization.This research was funded by ESA, grant number ITT AO9359, by project SPOT: Sensing with Pioneering Opportunistic Techniques grant RTI2018-099008-B-C21/AEI/10.13039/501100011033, and the grant for recruitment of early stage research staff of the Agència de Gestió d’Ajuts Universitaris i de Recerca (AGAUR) Generalitat de Catalunya, Spain (FISDUR2020/105).Peer ReviewedPostprint (published version
    corecore