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Abstract: This work presents the first RFI detection and mitigation algorithm for the interferometric
radiometers that will be implemented in its correlator unit. The algorithm operates in the time
and frequency domains, applying polarimetric and statistical tests in both domains, and exhibiting
a tunable and arbitrary low probability of false alarm. It is scalable to a configurable number of
receivers, and it is optimized in terms of quantization bits and the implementation of the cross-
correlations in the time or frequency domains for hardware resource saving. New features of this
algorithm are the computation of the Stokes parameters per frequency bin in the Short-Time Fourier
Transform and a new parameter called Polarimetric Kurtosis. If RFI is detected in one domain or
in both, it is removed using the calculated blanking masks. The optimum algorithm parameters
are computed, such as length of the FFTs, the threshold selection for a given probability of false
alarm, and the selection of the blanking masks. Last, an important result refers to the application of
Parseval’s theorem for the computation of the cross-correlations in the frequency domain, instead of
in the time domain, which is more efficient and leads to smaller errors even when using moderate
quantization levels. The algorithm has been developed in the framework of the ESA’s technology
preparation for a potential L-band radiometer mission beyond SMOS. However, it is also applicable
to (polarimetric) real aperture radiometers, and its performance would improve if more than one bit
is used in the signal quantization.

Keywords: radio frequency interference; detection; mitigation; temporal; spectral; polarimetric;
kurtosis; correlation; blanking

1. Introduction

Radio Frequency Interference (RFI) signals are undesired electromagnetic emissions
that can degrade the performance of any receiver. Nowadays, the concern about the RFI
phenomenon is increasing due to the high number of RFI occurrences detected, and this
problem is expected to grow even more in the future because of the pervasive use and
abuse of wireless technologies around the world (Figure 1). RFI signals are either those
illegally emitted at bands reserved for passive observations (in-band effect) or those that
are legally emitted in adjacent bands; however, a fraction of their power leaks into the
bandwidth of the radiometer (near-band effect) or even a harmonic emission at a much
lower frequency band. The origins of these RFI signals can be of very different natures:
they can be lower harmonics, inter-modulation products, out-of-band emissions, or even
intentional emissions designed to override a particular frequency band. According to [1],
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the allocated bands provide a statutory protection, with no guarantee against interference
occurrences from accidental out-of-band emissions or intentional jamming. Therefore, RFI
has become a dangerous threat for passive remote sensing and, in particular, for Microwave
Radiometry (MWR) as microwave radiometers have high sensitivity requirements, of the
order of a Kelvin, or less [2].
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Figure 1. Characterization of the different RFI opportunities identified for present and future technolo-
gies. Modified from: “The Dimensions of RFI, and how ngVLA is Being Designed to Accommodate
Them”, RFI 2019 [3].

In Ref [4], a comprehensive literature review on RFI detection and mitigation (D/M)
techniques in Earth observation by means of the passive microwave (i.e., radiometry and
GNSS-R) is presented. Existing D/M techniques can be classified as parametric (designed
to mitigate a particular type RFI signal, e.g., a CW signal) or non-parametric (RFI-type ag-
nostic). These techniques can also be classified according to their domain of operation: time
domain, frequency domain, statistical domain, polarimetry domain, or space domain (e.g.,
direction of arrival followed by beamforming or null-steering antennas). The performance
of each technique is highly dependent on the RFI scenario, and the RFI D/M algorithms
may combine techniques from several domains to be more effective [5], e.g., time-statistical
domains [6], time-frequency domains [7], frequency-statistical domains [8], time-scale
domains and Wavelet Packet Decomposition (WPD) [9], signal sub-spaces decomposition
(Karhunen–Loève Transform or KLT) [10], Principal Component Analysis or PCA [11],
Independent Component Analysis or ICA [12], multi-lag correlations [13], and time-space
domains (e.g., adaptive beamforming/null-steering) [14,15].

There are two types of microwave radiometers: real and synthetic aperture ones. They
can be single or dual polarization or fully polarimetric if they measure the full Stokes
vector [16]. Real aperture radiometers have a single antenna whose beam(s) determines the
spatial resolution, and the image is formed by scanning the beam(s). Synthetic aperture
radiometers have multiple small antennas, and the complex cross-correlation of the signals
collected by each pair of antennas provides a sample of the so-called “visibility function”,
which corresponds to a spectral component of the apparent brightness temperature. The
image is then formed by Fourier synthesis techniques. Because of the large number of
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receivers, the complex cross-correlations are typically implemented using very few bits or
even just one bit and two-level correlators.

The principles of operation of synthetic aperture radiometers are described in Section
“4.6.2.1.2 Synthetic Aperture Radiometers” of [17]. The impact of hard quantization schemes
is described in Section “4.6.3.1.3 Sampling Considerations” or in [18], and in the case of
ideal error-free 1-bit comparators, an arcsin transfer function must be applied to transform
the normalized digital correlation into a normalized analog one, as shown by [19]. This is
an important effect that needs to be taken into consideration in the algorithm optimization

In synthetic aperture radiometers, a cooperative RFI detection approach may be
considered assuming that the same RFI signal will likely be collected by all antenna
elements, as they are physically close. However, although cooperative RFI mitigation
may be applied in the simplest time, frequency, and statistical domain algorithms, it is
not feasible in other approaches, or in a multi-domain approach. The analysis of RFI in
synthetic aperture radiometers was first studied in [20], and it was found that it could be
very severe. Therefore, the RFI mitigation must be applied to the signals received from
each single antenna element before they are cross-correlated. It is important to note that the
dynamic range of the RFI signals that can be mitigated is strongly related to the number of
bits used in the quantization process, and the use (or not) of an Automatic Gain Control
(AGC) stage. For example, if the number of bits is low and there is a strong RFI, the noise
signal to be correlated will be totally masked by the RFI and either the correlation is that
of the RFI signal or—if cleaned—the cross-correlation will be zero as the noise signal is
under the quantization noise. Moreover, the performance of RFI mitigation techniques
after correlation is limited as some of such filtering techniques only allow the removal of
abnormally high brightness temperature spots with accurate geo-localization of the RFI
source (e.g., [14,21,22]).

In this study, an RFI detection and mitigation algorithm is presented as part of the
technology developments towards an SMOS follow-on mission. The algorithm has been
conceived to operate on 1-bit quantized signals only, as provided by the receivers connected
to each dual-polarization antenna in the interferometric array, but it can also be imple-
mented if softer (i.e., with more bits) quantization schemes are used. The 1-bit quantization
is the one that produces the strongest clipping of the amplitude signal and the largest
spectrum spread, and it affects the signal auto-correlation, the cross-correlation of two
1-bit quantized signals, the Fourier transform of the cross-correlation function, and the
variance of the measurements (i.e., effective integration time smaller than the integration
time) [19,23]. As the amplitude information is lost, the instantaneous power information is
also lost. Even though the 1-bit quantization makes the RFI mitigation task more difficult
and less performant, some alternatives can be applied. In particular, two new RFI mitiga-
tion approaches are proposed in this study: the calculation of the Stokes parameters per
frequency bin in the Short-Time Fourier Transform (STFT) and the Polarimetric Kurtosis,
which are explained in the next section.

2. Materials and Methods

The proposed inputs for the new RFI detection and mitigation algorithm correspond to
the outputs of the new receivers conceived for the SMOS follow-on mission. These include:

• XIn, XQn, YIn, YQn: four 1-bit data streams per receiver element n (from n = 1...Nreceivers)
at 57.69375 MHz, X/Y being the polarization, and I/Q the in-phase/quadrature
components;

• XPn, YPn: two multi-bit Power Measurement System (PMS) streams per receiver
element n (from n = 1...Nreceivers) and per polarization at ~28 kS/s.

The proposed algorithm is fully tunable, even while in orbit, and some configurable
parameters are:

• N is the number of samples per integration period. In this study, N = 11,538,432,
corresponding to an integration time of ~200 ms at the clock sampling frequency.



Remote Sens. 2022, 14, 4672 4 of 22

• K is the number of points of the Fourier transform or the number of points in the
spectrum. K is an optimization parameter that can be reduced to a smaller power-
of-two number during the implementation phase, if needed for Field-Programmable
Gate Array (FPGA) resource utilization optimization.

• M is the number of time segments of the Short-Time Fourier Transform (STFT) in
which the signal is divided. It is defined as M = γ·N/K, where γ is the windowing
factor. As will be shown in the next section, γ = 2, which is the minimum windowing
factor necessary to apply a non-rectangular window function.

• Rtot is the total number of receivers of the system.
• Ravg is the number of receivers that are averaged in the RFI detection process. It will

be assumed that Ravg = Rtot. In the case of a real aperture radiometer, Ravg = Rtot = 1.
• αth is the detection threshold for statistical and polarimetry metrics to determine

whether an RFI signal is present or not, and it controls the probability of detection
and the probability of false alarm. The parameter αth may take three different specific

values: αtime
th for temporal moments, α

f req
th for spectral moments, and αall

th for all-signal
moments.

• βth is the maximum blanking threshold. The RFI mitigation is based on the excision of
the contaminated samples out of the set of all transformed samples. The RFI mitigation
operates efficiently if a reduced number of samples contain the largest fraction of the
RFI power.

2.1. RFI Detection and Mitigation Algorithm Description

Figure 2 shows the overall block diagram of the proposed RFI mitigation algorithm.
After an initial windowing to reduce the Gibbs effect associated with the truncation of
the data streams, the signal spectrum is computed (FFT). Calibration measurements are
acquired in RFI-free conditions and allow the inferring of the receiver’s chain frequency
response, which will have to be compensated in subsequent measurements. Equalization
is performed during normal acquisitions, which may or may not be affected by RFI, to
compensate for the receiver’s frequency response. Once the incoming signal’s spectrum has
been whitened (i.e., “flattened” to look like Additive White Gaussian Noise—AWGN—in
RFI-free conditions), statistical and polarimetric tests are applied in both the time and the
frequency domains to detect the presence of RFI. When RFI is detected in one of these
domains using any of the techniques, a blanking mask is calculated for either the time or
frequency domains.

The outputs of this RFI mitigation algorithm contain both the final and the intermediate
products in the form of the averaged unmitigated and mitigated PMS measurements and
the computed blanking masks that will be used to mitigate the RFI prior to the correlator.

In the following subsections, each of the blocks is described.

2.1.1. Windowing

The resolutions in the temporal domain σt and in the frequency domain σ f are related
and constrained by the so-called Gabor limit [24].

σt·σ f ≥
1

4π
(1)

The selection of the window coefficients determines the amount of spectral leakage in
the Fourier transform output. The square root Hamming window function (Equation (2))
has been selected for this application because it provides a good trade-off between frequency
resolution and side-lobe rejection, and it can fulfil the squared perfect reconstruction
condition of Equation (3). The window function is defined as:

w[k] =

√
1
2

[
1− 1− β

β
cos
(

2πk
K

)]
, β =

25
46

, 0 ≤ k < K, (2)
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In order to reconstruct the signal properly, the signal has to be windowed at least
every K/2 samples. This makes the windowing factor γ, mentioned in the previous section,
equal to 2. Setting this value larger than 2 may be helpful for the signal reconstruction in
some cases, at the expense of increasing the required computational resources. However,
the square root Hamming window function fulfills the following condition:

w2[k] + w2
[

k− K
2

]
= 1, (3)

therefore, windowing the input signal every K/2 sample is enough to reconstruct the signal
back to the time domain.
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2.1.2. Spectral Computation

The Short-Time Fourier Transform (STFT) is the most used technique for RFI excision.
The signal is filtered in the time-frequency space in order to remove the RFI components
before being transformed back to the time domain (Figure 3, left).
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2.1.3. Calibration and Equalization

Calibration and equalization are two stages needed to compensate for the effects of
the non-flat frequency response of the receiver when applying some of the RFI mitigation
techniques considered in this algorithm, such as cross-spectrum kurtosis or polarimetry.
The calibration frequency responses of Zcal

r [k], with Z = X or Y and r being the receiver
number, are calculated as:

Zcal
r [k] =

√√√√ 1
M

M−1

∑
m=0
|Zr[m, k]|2 (4)

where M is the number of STFTs being averaged, and the equalized frequency responses
Zeq

r [k] are:

Zeq
r [m, k] =

Zr[m, k]
Zcal

r [k]
. (5)

Note that the normalization is performed in the complex values instead of a power in
order to keep the power balance among the different polarizations and receivers. Note also
that the spectral calibration is particular for each receiver and polarization as the receiving
channels are different. The calibration and equalization results are illustrated graphically
in Figure 3, right, for a sample receiver.

Time and frequency decomposition, calibration, and equalization must be performed
for each received signal. However, under some assumptions, such as that the RFI pulses
are received in the same samples at each receiver (determined by the array size and the
off-boresight direction of arrival) or that the frequencies or frequency band of the RFI
signals at each receiver are equal, the number of STFTs to be performed may be reduced,
even down to 1 in the most extreme case.

2.1.4. Statistic and Polarimetry Tests

The proposed RFI detection algorithm is based on the calculation of some statistical and
polarimetric moments over the aggregated time-frequency bins of the different receivers of
the system.

• Stokes Parameters
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The definition of the modified Stokes parameters for microwave radiometry can be
combined with the multi-receiver approach, obtaining an averaged squared Stokes vector
S’[m,k] per each bin of the STFT, as follows:

S′[m, k] =


s2

1[m, k]
s2

2[m, k]
s2

3[m, k]
s2

4[m, k]

 =
1

Ravg

Ravg

∑
r=1



∣∣∣Xeq
r [m, k]

∣∣∣4∣∣∣Yeq
r [m, k]

∣∣∣4
4
(

Re
{

Xeq
r [m, k]·

(
Yeq

r [m, k]
)∗})2

4
(

Im
{

Xeq
r [m, k]·

(
Yeq

r [m, k]
)∗})2


(6)

where [m,k] are the time and frequency indices of the bin under evaluation, (s1, s2, s3, s4)
are the first, second, third, and fourth multi-receiver squared Stokes parameters, respec-
tively, and Ravg is the number of receivers whose outputs are averaged.

• Kurtosis and Polarimetric Kurtosis

Kurtosis is the best statistical-based RFI detection algorithm for almost all kinds
of interfering signals, although it is known that it has a blind spot for sinusoidal and
chirp interfering signals of the 50% duty cycle, which can be overcome using e.g., the
Anderson-Darling technique [25]. When combined with the Fourier transform, it is usually
called spectral kurtosis because the statistical test is applied per frequency bin. It can be
mathematically computed as the ratio between the fourth central moment of a random
variable and the square of its variance (second central moment). However, in practice,
as thermal noise is zero-mean, and the hardware has a calibrated DC offset, non-central
moments are equivalent and used for the calculation of the kurtosis.

At this time, the new “Polarimetric Kurtosis” observable can be introduced as:


kall

1
kall

2
kall

3
kall

4

 =
1
M
· 1
K

M−1

∑
m=0

K−1

∑
k=0


s2

1[m, k]/
(

pall
1

)2

s2
2[m, k]/

(
pall

2

)2

s2
3[m, k]/

(
pall

1 ·pall
2

)
s2

4[m, k]/
(

pall
1 ·pall

2

)

, (7)

where
pall

1,2 =
1

Ravg
· 1
M
· 1
K ∑Ravg

r=1 ∑M−1
m=0 ∑K−1

k=0 s2
1,2 r[m, k] (8)

the first and second components (kall
1,2) are the conventional complex sample kurtosis for the

X and Y polarization, respectively, and the third and fourth components (kall
3,4) are obtained

as the ratio between the square of the third and fourth multi-receiver Stokes parameters
and the product of the second moments at the X and Y polarizations (Equation (8)). Note
that Equation (7) expresses the Polarimetric Kurtosis parameters for the bins within the
integration time in both domains.

• Time-Frequency Moments

Once the Polarimetric Kurtosis parameters are defined for “all” bins, it is straight-
forward to define the same metrics along the time and frequency domains. Instead of
averaging all the bins of the STFT together, the integration may be performed in only one
of the STFT matrix dimensions, either time or frequency.
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If the averaging is performed across the cross-frequency bins, the result can be named
as the Temporal Polarimetric Kurtosis:

ktime
1 [m]

ktime
2 [m]

ktime
3 [m]

ktime
4 [m]

 =
1
K

K−1

∑
k=0


s2

1[m, k]/
(

ptime
1 [m]

)2

s2
2[m, k]/

(
ptime

2 [m]
)2

s2
3[m, k]/

(
ptime

1 [m]·ptime
2 [m]

)
s2

4[m, k]/
(

ptime
1 [m]·ptime

2 [m]
)
, (9)

where
ptime

1,2 [m] =
1

Ravg
· 1
K ∑Ravg

r=1 ∑K−1
k=0 s2

1,2 r[m, k]. (10)

If the averaging is performed across the temporal bins, the result can be named as the
Spectral Polarimetric Kurtosis:


k f req

1 [k]
k f req

2 [k]
k f req

3 [k]
k f req

4 [k]

 =
1
M

M−1

∑
m=0


s2

1[m, k]/
(

p f req
1 [k]

)2

s2
2[m, k]/

(
p f req

2 [k]
)2

s2
3[m, k]/

(
p f req

1 [k]·p f req
2 [k]

)
s2

4[m, k]/
(

p f req
1 [k]·p f req

2 [k]
)

, (11)

where

p f req
1,2 [k] =

1
Ravg
· 1
M

Ravg

∑
r=1

M−1

∑
m=0

s2
1,2 r[m, k]. (12)

2.1.5. Computation of the OR/AND Masks

There are two approaches to constructing the blanking masks:

• the OR approach is computed by a tensor-logical OR operation between the vector
results of the time and frequency RFI detector, denoted as ∨, whereas

• the AND approach is computed analogously using a tensor-logical AND operation,
and it is denoted as ∧.

The OR and AND blanking masks are defined for every Polarimetric Kurtosis metric
as:

BOR
kp

[m, k] = btime
p [m] ∨ b f req

p [k] (13)

BAND
kp

[m, k] = btime
p [m] ∧ b f req

p [k] (14)

with p = 1 . . . 4, and: 
btime

1 [m]
btime

2 [m]
btime

3 [m]
btime

4 [m]

 =


∣∣∣∣∣∣∣∣


ktime
1 [m]

ktime
2 [m]

ktime
3 [m]

ktime
4 [m]

− 2

∣∣∣∣∣∣∣∣ < αtime
th

 (15)


b f req

1 [k]
b f req

2 [k]
b f req

3 [k]
b f req

4 [k]

 =



∣∣∣∣∣∣∣∣∣∣


k f req

1 [k]
k f req

2 [k]
k f req

3 [k]
k f req

4 [k]

− 2

∣∣∣∣∣∣∣∣∣∣
< α

f req
th

 (16)

In the proposed implementation, a simplification of BOR/AND
k3,4

[m, k] (Equations (13)
and (14)) for the 3rd and 4th Stokes parameters is used, which consists of flagging an RFI in
the polarimetric channels if it is either in the 3rd or in the 4th Stokes parameter, as follows:

BOR
pol [m, k] = BOR

k3
[m, k] ∩ BOR

k4
[m, k] (17)
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BAND
pol [m, k] = BAND

k3
[m, k] ∩ BAND

k4
[m, k] (18)

The final OR and AND blanking masks are computed by intersecting the statistical
and polarimetric masks as:

BOR
1,2 [m, k] = BOR

k1,2
[m, k] ∩ BOR

pol [m, k] (19)

BAND
1,2 [m, k] = BAND

k1,2
[m, k] ∩ BAND

pol [m, k] (20)

2.1.6. RFI Mitigation

• Signal Blanking

Before applying the blanking mask, either the AND or the OR masks must be selected.
While the OR approach maximizes the remaining radiometric signal at the same time as
it mitigates the RFI power, the AND one may perform better when the RFI signal is faint
in both the time and frequency domains, but it may also excise a significant part of the
desired signal. An intermediate metric has to be defined to choose between the AND or the
OR approaches in real time. To do so, the fraction of the bins to be mitigated by the OR
mask is calculated as:

β1,2 =
1
M
· 1
K ∑M−1

m=0 ∑K−1
k=0 BAND

1,2 [m, k] (21)

consequently, the mitigated STFT can be defined as:

Zmit
r [m, k] =

{(
Zr ◦ BOR

z
)
[m, k] i f βz ≥ βth(

Zr ◦ BAND
z

)
[m, k] otherwise

(22)

where the input Zr (Zr = Xr or Yr) is the OR blanking mask if βz is larger than a threshold
value βth or the AND blanking mask otherwise.

• PMS RFI Mitigation

The mitigation of the power measurements is performed by means of a pulse blanking
approach in the time domain. However, as the sensibility of the PMS to detect RFI signals
is much worse than for the STFT, instead of using just the instantaneous power value from
the PMS to infer the presence or not of RFI, the signal blanking mask is calculated directly
from the temporal moments of the Polarimetric Kurtosis (b1,2[m]). In the proposed system,
as the samples of the PMS are at ~28 kHz, they must first be resampled at the same rate as
that of the temporal bins of the STFT.

The RFI mitigation power factors (γzr , with Z = X or Y) are calculated for each receiver
representing the ratio between the power of the bins after mitigation and before, as follows:

γzr =
∑M−1

m=0 ∑K−1
k=0

∣∣Zmit
r [m, k]

∣∣2
∑M−1

m=0 ∑K−1
k=0 |Zr[m, k]|2

, (23)

and after the mitigation of the corrupted PMS, the sum of the PMS samples that have not
been discarded has to be normalized by the gamma factor in order to estimate properly the
power in each channel/polarization:

Pmit
zr = γzr ·∑M−1

m=0 Pzr [m]·btime
zr [m] (24)

• RFI Detection Flag
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The proposed RFI detection flag is computed as the logical OR between the ‘all-bin’
Polarimetric Kurtosis metrics and the first and second Stokes parameter AND blanking
matrices, and it can be expressed as

dRFI = ∨


∣∣∣∣∣∣∣∣


kall
1 [m]

kall
2 [m]

kall
3 [m]

kall
4 [m]

− 2

∣∣∣∣∣∣∣∣ > αall
th

 ∨ ∨∀m,kBAND
1 [m, k] ∨ ∨∀m,kBAND

2 [m, k] (25)

where
∨⋂

is a logical vector or operator applied over all the elements of a vector or matrix.
The first element of the logical OR in Equation (25) represents the fact that an RFI

signal is detected within the dataset if any part of the Polarimetric Kurtosis deviates more
than ±αall

th from the theoretical value of 2. The value of αall
th is selected to set the Constant

False Alarm Rate or CFAR (PFA = constant):

PFA = 1− er f

(
αth

4
N

)
(26)

where N is the number of samples.

3. Results

An extensive battery of simulations covering a wide range of parameters, and long
enough to be statistically representative, is needed in order to select the optimize the
algorithm performance. The following parameters must be optimized:

• K is the number of points of FFT. The initial value of K was 4096, but it was proposed
to run simulations with K = 16,384, 4096, 2048, 1024, and 256 and then to select the
best K for the default CFAR and βth.

• αth is the RFI detection threshold for the statistical and polarimetry metrics: temporal,
spectral, and all-bin moments. αth(PFA) is obtained mathematically for each value of
the CFAR.

• The following CFAR values were simulated for the selected value of K: 10−8, 10−6,
10−4, 10−2, 0.1, and 0.5.

• βth is the maximum blanking threshold from 100% to 50%.

Simulations with 1200 realizations containing standard RFI intensity distributions,
as provided by Zenithal Blue Technologies (ZBT) and based on SMOS-detected RFI, have
been used. Figure 4 shows the actual RFI probability and cumulative density functions for
SMOS as measured in 2013 and 2020, as well as the simulated ones.

3.1. Sensitivity Performance as a Function of the Number of Averages

An important consideration is the assessment of the sensitivity performance as a
function of the number of averaged receivers, assuming, that is, that each receiver has a
system to compute the RFI mask and that the input observables are averaged as described
before. Figure 5 shows the “reduction of the variance” (ε) with respect to Ravg. As can
be appreciated in Figure 4, for very low SNR values the variance reduction with respect
to Ravg becomes 1/Ravg, but as the SNR increases, the improvement (i.e., the slope) de-
creases because of the signal correlation. For typical SMOS values, the typical SNR is
SNRtyp = 10·log10(|V|max/TR) ≈ 10·log10(10 K/210 K) ≈ −13 dB, |V|max being the maxi-
mum value of the visibility samples or cross-correlation in units of Kelvin, and therefore,
the 1/Ravg approximation holds. Note that the use of 1 bit (Figure 5b) instead of multi-bits
(Figure 5a) leads to a smaller variance reduction factor, i.e., it is even less sensitive to the SNR.
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Figure 5. Multi-receiver kurtosis variance reduction as a function of the number of receivers averaged
(Ravg) and SNR for a (a) multi-bit and (b) 1-bit quantization. SNR is the power relation between the
correlated divided by the uncorrelated noise power.

Figure 6 shows the Probability of Detection (PD) of RFI vs. the Interference-to-Noise
Ratio (INR). It shows a sudden increase above an INR value, which increases with in-
creasing values of ε. As compared to the multi-bit case (Figure 6a), in the case of 1-bit
quantization (Figure 6b), the plots are shifted ~2 dB towards the right due to larger noise
(10·log10

(√
2.46

)
≈ 1.95 dB). Note that the 2.46 factor is the ratio of the integration time

and the effective integration time for the case of 1-bit/2 level correlators [19]. As shown in
Figure 7, these ~2 dB are nearly constant as a function of the number of receivers averaged.
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Table 1. Algorithm performance metrics for K = 4096 and variable CFAR and βth. 

K-FFT 

4096 

β
th

 100% β
th

 90% β
th

 75% β
th

 50% 

All 

#1200  

Mitigating 

(<0) 

Degrading 

(>0) 

All 

#1200  

Mitigating 

(<0) 

Degrading 

(>0) 

All 

#1200  

Mitigating 

(<0) 

Degrading 

(>0) 

All 

#1200  

Mitigating 

(<0) 

Degrading 

(>0) 

CFAR 

10−8 

M: −2.31dB 

σ: 3.73 dB 

%. It. 59.3% 

M: −4.04 dB 

%. It. 7.35% 

M: 1.14 dB 

M: −2.58 dB 

σ: 5.05 dB 

%. It. 56.2% 

M: −5.48 dB 

%. It. 10.4% 

M: 4.80 dB 

M: −2.58 dB 

σ: 5.05 dB 

%. It. 56.2% 

M: −5.48 dB 

%. It. 10.4% 

M: 4.80 dB 

M: −2.58 dB 

σ: 5.05 dB 

%. It. 56.2% 

M: −5.48 dB 

%. It. 10.4% 

M: 4.80 dB 

CFAR 

10
−6

 

M: −2.33 dB 

σ: 3.75 dB 

%. It. 60.8% 

M: −3.97 dB 

%. It. 7.65% 

M: 1.10 dB 

M: −2.56 dB 

σ: 5.11 dB 

%. It. 57.5% 

M: −5.41 dB 

%. It. 11.0% 

M: 4.98 dB 

M: −2.56 dB 

σ: 5.12 dB 

%. It. 57.5% 

M: −5.41 dB 

%. It. 11.0% 

M: 4.98 dB 

M: −2.56 dB 

σ: 5.12 dB 

%. It. 57,5% 

M: −5,41 dB 

%. It. 11,0% 

M: 4,98 dB 

CFAR 

10
−4

 

M: −2,35 dB 

σ: 3,82 dB 

%. It. 62,2% 

M: −3,92 dB 

%. It. 7,94% 

M: 1,10 dB 

M: −2,52 dB 

σ: 5,24 dB 

%. It. 58,2% 

M: −5,39 dB 

%. It. 11,9% 

M: 5,24 dB 

M: −2,52 dB 

σ: 5,24 dB 

%. It. 58,2% 

M: −5,39 dB 

%. It. 11,9% 

M: 5,24 dB 

M: −2,52 dB 

σ: 5,24 dB 

%. It. 58,2% 

M: −5,39 dB 

%. It. 11,9% 

M: 5,24 dB 

CFAR 

10
−2

 

M: 5.88 dB 

σ: 27.8 dB 

%. It. 69.0% 

M: −3.28 dB 

%. It. 28.9% 

M: 28.16 dB 

M: 6.24 dB 

σ: 29.3 dB 

%. It. 63.5% 

M: −4.98 dB 

%. It. 34.4% 

M: 27.3 dB 

M: 6.24 dB 

σ: 29.3 dB 

%. It. 63.5% 

M: −4.98 dB 

%. It. 34.4% 

M: 27.3 dB 

M: 6.24 dB 

σ: 29.3 dB 

%. It. 63.5% 

M: −4.98 dB 

%. It. 34.4% 

M: 27.3 dB 

CFAR 

10
−1

 

M: 6.35 dB 

σ: 28.3 dB 

%. It. 73.6% 

M: −2.86 dB 

%. It. 26.4% 

M: 32.0 dB 

M: 12.0 dB 

σ: 33.0 dB 

%. It. 41.3% 

M: −5.04 dB 

%. It. 58.7% 

M: 23.9 dB 

M: 12.0 dB 

σ: 33.0 dB 

%. It. 41.3% 

M: −5.04 dB 

%. It. 58.7% 

M: 23.9 dB 

M: 12.0 dB 

σ: 33.0 dB 

%. It. 41.3% 

M: −5.04 dB 

%. It. 58.7% 

M: 23.9 dB 

Table 2. Algorithm performance metrics for K = 2048 and variable CFAR and βth. 

K-FFT 

2048 

β
th

 100% β
th

 90% β
th

 75% β
th

 50% 

All 

#1200  

Mitigating 

(<0) 

Degrading 

(>0) 

All 

#1200  

Mitigating 

(<0) 

Degrading 

(>0) 

All 

#1200  

Mitigating 

(<0) 

Degrading 

(>0) 

All 

#1200  

Mitigating 

(<0) 

Degrading 

(>0) 

CFAR 

10−8 

M: −2.21 dB 

σ: 3.72 dB 

%. It. 57.3% 

M: −4.02 dB 

%. It. 7.31% 

M: 1.26 dB 

M: −2.20 dB 

σ: 5.20 dB 

%. It. 56.2% 

M: −5.46 dB 

%. It. 12.0% 

M: 5.57 dB 

M: −2.20 dB 

σ: 5.20 dB 

%. It. 56.2% 

M: −5.46 dB 

%. It. 12.0% 

M: 5.57 dB 

M: −2.20 dB 

σ: 5.20 dB 

%. It. 56.2% 

M: −5.46 dB 

%. It. 12.0% 

M: 5.57 dB 

CFAR 

10
−6

 

M: −2.24 dB 

σ: 3.77 dB 

%. It. 58.4% 

M: −4.01 dB 

%. It. 7.72% 

M: 1.26 dB 

M: −2.19 dB 

σ: 5.30 dB 

%. It. 57.5% 

M: −5.45 dB 

%. It. 12.6% 

M: 5.72 dB 

M: −2.19 dB 

σ: 5.30 dB 

%. It. 57.5% 

M: −5.45 dB 

%. It. 12.6% 

M: 5.72 dB 

M: −2.19 dB 

σ: 5.30 dB 

%. It. 57.5% 

M: −5.45 dB 

%. It. 12.6% 

M: 5.72 dB 

CFAR 
M: −2.20 dB 

σ: 4.72 dB 

%. It. 60.3% 

M: −3.95 dB 

%. It. 8.29% 

M: 2.09 dB 

M: −2.06 dB 

σ: 6.08 dB 

%. It. 58.2% 

M: −5.39 dB 

%. It. 14.1% 

M: 6.24 dB 

M: −2.06 dB 

σ: 6.08 dB 

%. It. 58.2% 

M: −5.39 dB 

%. It. 14.1% 

M: 6.24 dB 

M: −2.06 dB 

σ: 6.08 dB 

%. It. 58.2% 

M: −5.39 dB 

%. It. 14.1% 

M: 6.24 dB 

Figure 6. Probability of detection (PD) as a function of the INR, parameterized as a function of the
variance reduction factor (ε), for (a) multi-bit, and (b) 1-bit quantization.
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3.2. Algorithm Parameter Optimization

The numerical results are presented for the average (M) and the standard deviation (σ)
of the mitigation for each value of K (length of the FFT), CFAR, and βth. The percentages
of the mitigated RFI and degraded RFI (the result is worse than no mitigation) are also
provided, together with their mean values. In Tables 1–3, the range of values with a similar
performance, i.e., where the optimum is, is indicated in the light blue color. In Table 4, the
effect of the number of points of the FFT is clearly seen: the longer the FFT, the larger the
PD; it is between 73–76% for PFA < 1% and K = 4096; between 70–72% for PFA < 1% and K
= 2048; and ~59% for PFA < 1% and K = 1024.

From the above results, the value of K = 1024 is selected as it is a good trade-off
between the computational complexity of the FFTs and the algorithm’s performance, with
negligible PFA and reasonable probability of detection. The values of the CFAR and βth
parameters are now refined for K = 1024. The results are presented in Table 5, confirming
the optimum values of CFAR = 10−8 and βth = 100%.
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Table 1. Algorithm performance metrics for K = 4096 and variable CFAR and βth.

βth 100% βth 90% βth 75% βth 50%
K-FFT
4096

All
#1200

Mitigating
(<0)

Degrading
(>0)

All
#1200

Mitigating
(<0)

Degrading
(>0)

All
#1200

Mitigating
(<0)

Degrading
(>0)

All
#1200

Mitigating
(<0)

Degrading
(>0)

CFAR
10−8

M: −2.31dB
σ: 3.73 dB

%. It. 59.3%
M: −4.04 dB

%. It. 7.35%
M: 1.14 dB

M: −2.58 dB
σ: 5.05 dB

%. It. 56.2%
M: −5.48 dB

%. It. 10.4%
M: 4.80 dB

M: −2.58 dB
σ: 5.05 dB

%. It. 56.2%
M: −5.48 dB

%. It. 10.4%
M: 4.80 dB

M: −2.58 dB
σ: 5.05 dB

%. It. 56.2%
M: −5.48 dB

%. It. 10.4%
M: 4.80 dB

CFAR
10−6

M: −2.33 dB
σ: 3.75 dB

%. It. 60.8%
M: −3.97 dB

%. It. 7.65%
M: 1.10 dB

M: −2.56 dB
σ: 5.11 dB

%. It. 57.5%
M: −5.41 dB

%. It. 11.0%
M: 4.98 dB

M: −2.56 dB
σ: 5.12 dB

%. It. 57.5%
M: −5.41 dB

%. It. 11.0%
M: 4.98 dB

M: −2.56 dB
σ: 5.12 dB

%. It. 57.5%
M: −5.41 dB

%. It. 11.0%
M: 4.98 dB

CFAR
10−4

M: −2.35 dB
σ: 3.82 dB

%. It. 62.2%
M: −3.92 dB

%. It. 7.94%
M: 1.10 dB

M: −2.52 dB
σ: 5.24 dB

%. It. 58.2%
M: −5.39 dB

%. It. 11.9%
M: 5.24 dB

M: −2.52 dB
σ: 5.24 dB

%. It. 58.2%
M: −5.39 dB

%. It. 11.9%
M: 5.24 dB

M: −2.52 dB
σ: 5.24 dB

%. It. 58.2%
M: −5.39 dB

%. It. 11.9%
M: 5.24 dB

CFAR
10−2

M: 5.88 dB
σ: 27.8 dB

%. It. 69.0%
M: −3.28 dB

%. It. 28.9%
M: 28.16 dB

M: 6.24 dB
σ: 29.3 dB

%. It. 63.5%
M: −4.98 dB

%. It. 34.4%
M: 27.3 dB

M: 6.24 dB
σ: 29.3 dB

%. It. 63.5%
M: −4.98 dB

%. It. 34.4%
M: 27.3 dB

M: 6.24 dB
σ: 29.3 dB

%. It. 63.5%
M: −4.98 dB

%. It. 34.4%
M: 27.3 dB

CFAR
10−1

M: 6.35 dB
σ: 28.3 dB

%. It. 73.6%
M: −2.86 dB

%. It. 26.4%
M: 32.0 dB

M: 12.0 dB
σ: 33.0 dB

%. It. 41.3%
M: −5.04 dB

%. It. 58.7%
M: 23.9 dB

M: 12.0 dB
σ: 33.0 dB

%. It. 41.3%
M: −5.04 dB

%. It. 58.7%
M: 23.9 dB

M: 12.0 dB
σ: 33.0 dB

%. It. 41.3%
M: −5.04 dB

%. It. 58.7%
M: 23.9 dB

Table 2. Algorithm performance metrics for K = 2048 and variable CFAR and βth.

βth 100% βth 90% βth 75% βth 50%
K-FFT
2048

All
#1200

Mitigating
(<0)

Degrading
(>0)

All
#1200

Mitigating
(<0)

Degrading
(>0)

All
#1200

Mitigating
(<0)

Degrading
(>0)

All
#1200

Mitigating
(<0)

Degrading
(>0)

CFAR
10−8

M: −2.21 dB
σ: 3.72 dB

%. It. 57.3%
M: −4.02 dB

%. It. 7.31%
M: 1.26 dB

M: −2.20 dB
σ: 5.20 dB

%. It. 56.2%
M: −5.46 dB

%. It. 12.0%
M: 5.57 dB

M: −2.20 dB
σ: 5.20 dB

%. It. 56.2%
M: −5.46 dB

%. It. 12.0%
M: 5.57 dB

M: −2.20 dB
σ: 5.20 dB

%. It. 56.2%
M: −5.46 dB

%. It. 12.0%
M: 5.57 dB

CFAR
10−6

M: −2.24 dB
σ: 3.77 dB

%. It. 58.4%
M: −4.01 dB

%. It. 7.72%
M: 1.26 dB

M: −2.19 dB
σ: 5.30 dB

%. It. 57.5%
M: −5.45 dB

%. It. 12.6%
M: 5.72 dB

M: −2.19 dB
σ: 5.30 dB

%. It. 57.5%
M: −5.45 dB

%. It. 12.6%
M: 5.72 dB

M: −2.19 dB
σ: 5.30 dB

%. It. 57.5%
M: −5.45 dB

%. It. 12.6%
M: 5.72 dB

CFAR
10−4

M: −2.20 dB
σ: 4.72 dB

%. It. 60.3%
M: −3.95 dB

%. It. 8.29%
M: 2.09 dB

M: −2.06 dB
σ: 6.08 dB

%. It. 58.2%
M: −5.39 dB

%. It. 14.1%
M: 6.24 dB

M: −2.06 dB
σ: 6.08 dB

%. It. 58.2%
M: −5.39 dB

%. It. 14.1%
M: 6.24 dB

M: −2.06 dB
σ: 6.08 dB

%. It. 58.2%
M: −5.39 dB

%. It. 14.1%
M: 6.24 dB

CFAR
10−2

M: 5.79 dB
σ: 26.6 dB

%. It. 66.9%
M: −2.83 dB

%. It. 30.5%
M: 25.2 dB

M: 6.52 dB
σ: 28.8 dB

%. It. 63.5%
M: −4.88 dB

%. It. 36.5%
M: 26.1 dB

M: 6.52 dB
σ: 28.8 dB

%. It. 63.5%
M: −4.88 dB

%. It. 36.5%
M: 26.1 dB

M: 6.52 dB
σ: 28.8 dB

%. It. 63.5%
M: −4.88 dB

%. It. 36.5%
M: 26.1 dB

CFAR
10−1

M: 6.50 dB
σ: 28.2 dB

%. It. 72.9%
M: −2.66 dB

%. It. 27.1%
M: 31.2 dB

M: 12.2 dB
σ: 32.9 dB

%. It. 41.3%
M: −5.02 dB

%. It. 59.8%
M: 23.8 dB

M: 12.2 dB
σ: 32.9 dB

%. It. 41.3%
M: −5.02 dB

%. It. 59.8%
M: 23.8 dB

M: 12.2 dB
σ: 32.9 dB

%. It. 41.3%
M: −5.02 dB

%. It. 59.8%
M: 23.8 dB
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Table 3. Algorithm performance metrics for K = 1024 and variable CFAR and βth.

βth 100% βth 90% βth 75% βth 50%
K-FFT
1024

All
#1200

Mitigating
(<0)

Degrading
(>0)

All
#1200

Mitigating
(<0)

Degrading
(>0)

All
#1200

Mitigating
(<0)

Degrading
(>0)

All
#1200

Mitigating
(<0)

Degrading
(>0)

CFAR
10−8

M: −1.76 dB
σ: 3.30 dB

%. It. 48.8%
M: −3.79 dB

%. It. 6.73%
M: 1.35 dB

M: −2.08 dB
σ: 4.67 dB

%. It. 46.8%
M: −5.36 dB

%. It. 8.73%
M: 4.92 dB

M: −2.08 dB
σ: 4.67 dB

%. It. 46.8%
M: −5.36 dB

%. It. 8.73%
M: 4.92 dB

M: −2.08 dB
σ: 4.67 dB

%. It. 46.8%
M: −5.36 dB

%. It. 8.73%
M: 4.92 dB

CFAR
10−6

M: −1.73 dB
σ: 3.30 dB

%. It. 50.1%
M: −3.64 dB

%. It. 7.26%
M: 1.34 dB

M: −2.06 dB
σ: 4.73 dB

%. It. 47.9%
M: −5.30 dB

%. It. 9.54%
M: 4.96 dB

M: −2.06 dB
σ: 4.73 dB

%. It. 47.9%
M: −5.30 dB

%. It. 9.54%
M: 4.96 dB

M: −2.06 dB
σ: 4.73 dB

%. It. 47.9%
M: −5.30 dB

%. It. 9.54%
M: 4.96 dB

CFAR
10−4

M: −1.08 dB
σ: 8.32 dB

%. It. 51.2%
M: −3.46 dB

%. It. 9.16%
M: 7.52 dB

M: −1.43 dB
σ: 9.05 dB

%. It. 49.1%
M: −5.21 dB

%. It. 11.2%
M: 10.1 dB

M: −1.43 dB
σ: 9.05 dB

%. It. 49.1%
M: −5.21 dB

%. It. 11.2%
M: 10.1 dB

M: −1.43 dB
σ: 9.05 dB

%. It. 49.1%
M: −5.21 dB

%. It. 11.2%
M: 10.1 dB

CFAR
10−2

M: 8.19 dB
σ: 28.5 dB

%. It. 63.9%
M: −1.86 dB

%. It. 35.7%
M: 26.2 dB

M: 8.57 dB
σ: 31.5 dB

%. It. 60.9%
M: −4.37 dB

%. It. 38.7%
M: 29.1 dB

M: 8.58 dB
σ: 31.5 dB

%. It. 60.9%
M: −4.37 dB

%. It. 38.7%
M: 29.1 dB

M: 8.58 dB
σ: 31.5 dB

%. It. 60.9%
M: −4.37 dB

%. It. 38.7%
M: 29.1 dB

CFAR
10−1

M: 8.87 dB
σ: 30.7 dB

%. It. 69.7%
M: −2.04 dB

%. It. 30.3%
M: 33.3 dB

M: 14.7 dB
σ: 35.8 dB

%. It. 37.5%
M: −4.84 dB

%. It. 62.5%
M: 26.4 dB

M: 14.7 dB
σ: 35.8 dB

%. It. 37.5%
M: −4.84 dB

%. It. 62.5%
M: 26.4 dB

M: 14.7 dB
σ: 35.8 dB

%. It. 37.5%
M: −4.84 dB

%. It. 62.5%
M: 26.4 dB

Table 4. Summary of algorithm performance in terms of PD and PFA for K = 4096, 2048, and 1024 and variable CFAR for βth =100%.

K-FFT 4096 K-FFT 2048 K-FFT 1024
CFAR PFA PD PFA PD PFA PD

10−8 <1% 73.1% <1% 69.8% <1% 59.4%
10−6 <1% 74.7% <1% 71.7% 6% 64.2%
10−4 <1% 76.2% 1% 74.5% 68% 81.8%
10−2 87% 97.1% 91% 97.1% 100% 100%
10−1 100% 100% 100% 100% 100% 100%

Table 5. Algorithm performance metrics for K = 1024 and variable CFAR and βth.

βth 100% βth 99% βth 95% βth 90%
K-FFT
1024

All
#1200

Mitigating
(<0)

Degrading
(>0)

All
#1200

Mitigating
(<0)

Degrading
(>0)

All
#1200

Mitigating
(<0)

Degrading
(>0)

All
#1200

Mitigating
(<0)

Degrading
(>0)

CFAR
10−8

M: −2.00 dB
σ: 3.69 dB

%. It. 52.0%
M: −4.03 dB

%. It. 7.65%
M: 1.16 dB

M: −2.04 dB
σ: 5.16 dB

%. It. 48.6%
M: −5.48 dB

%. It. 11.1%
M: 5.62 dB

M: −1.85 dB
σ: 5.19 dB

%. It. 47.7%
M: −5.36 dB

%. It. 11.9%
M: 5.95 dB

M: −1.85 dB
σ: 5.18 dB

%. It. 47.7%
M: −5.36 dB

%. It. 11.9%
M: 5.95 dB

CFAR
10−6

M: −2.00 dB
σ: 3.68 dB

%. It. 52.4%
M: −4.00 dB

%. It. 7.81%
M: 1.15 dB

M: −2.05 dB
σ: 5.21 dB

%. It. 48.8%
M: −5.50 dB

%. It. 11.4%
M: 5.57 dB

M: −1.85 dB
σ: 5.21 dB

%. It. 48.0%
M: −5.35 dB

%. It. 12.2%
M: 5.90 dB

M: −1.85 dB
σ: 5.21 dB

%. It. 48.0%
M: −5.35 dB

%. It. 12.2%
M: 5.90 dB

CFAR
10−4

M: −1.99 dB
σ: 3.68 dB

%. It. 52.4%
M: −3.97 dB

%. It. 8.01%
M: 1.13 dB

M: −2.04 dB
σ: 5.23 dB

%. It. 48.8%
M: −5.50 dB

%. It. 11.6%
M: 5.61 dB

M: −1.83 dB
σ: 5.23 dB

%. It. 48.0%
M: −5.35 dB

%. It. 12.4%
M: 5.93 dB

M: −1.83 dB
σ: 5.22 dB

%. It. 48.0%
M: −5.35 dB

%. It. 12.4%
M: 5.93 dB

CFAR
10−2

M: −1.98 dB
σ: 3.67 dB

%. It. 52.7%
M: −3.94 dB

%. It. 8.15%
M: 1.12 dB

M: −2.03 dB
σ: 5.26 dB

%. It. 49.1%
M: −5.50 dB

%. It. 11.8%
M: 5.65 dB

M: −1.83 dB
σ: 5.25 dB

%. It. 48.2%
M: −5.35 dB

%. It. 12.6%
M: 5.97 dB

M: −1.82 dB
σ: 5.25 dB

%. It. 48.2%
M: −5.35 dB

%. It. 12.6%
M: 5.97 dB

CFAR
10−1

M: −1.99 dB
σ: 3.69 dB

%. It. 53.3%
M: −3.92 dB

%. It. 8.22%
M: 1.16 dB

M: −2.03 dB
σ: 5.29 dB

%. It. 49.3%
M: −5.50 dB

%. It. 12.2%
M: 5.60 dB

M: −1.81 dB
σ: 5.29 dB

%. It. 48.5%
M: −5.34 dB

%. It. 13.0%
M: 5.95 dB

M: −1.81 dB
σ: 5.28 dB

%. It. 48.5%
M: −5.34 dB

%. It. 13.0%
M: 5.95 dB
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Table 6 summarizes the algorithm performance in terms of PD and PFA. Note that
the PD value is slightly higher than in Table 4 due to the finite number of realizations
conducted (1200).

Table 6. Summary of algorithm performance in terms of PD and PFA for K = 1024 and variable CFAR
for βth = 100%.

K-FFT 1024
CFAR PFA PD
10−8 <1% 63.5%

3 · 10−8 ~2% 64.1%
10−7 ~2% 64.6%

3 · 10−7 ~2% 66,2%
10−6 6% 67.7%

As a summary, the optimum parameters are:

• K = 1024, no significant improvement was found for larger Ks except a better PD (from
63 to 73%), at the expense of more hardware resources to compute the FFTs.

• CFAR = 10−8, with no significant variation up to 10−6, with a moderate PD, and a
negligible PFA (not detectable with the number of realizations performed). This offers
less radiometric degradation and no big impact on mitigation.

• βth = 100%, no significant impact down to 95%, but 100% offers the best mitigation vs.
degradation trade-off.

The RFI mitigation results are summarized in Figure 8, for both the cross-correlations
and the PMS output.
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4. Discussion

In the previous sections, the calculation of the Stokes parameters per frequency bin in
the Short Time Fourier Transform (STFT) and the Polarimetric Kurtosis were introduced
as key steps towards an efficient RFI detection and mitigation algorithm in Synthetic
Aperture Interferometric Radiometers, using 1-bit quantization, as in for the planned SMOS
follow-on missions.

After RFI mitigation, the signals are in the frequency domain; so, their complex
correlation can be computed by transforming them back to either the time domain or the
frequency domain, thanks to the Parseval’s theorem:

N−1

∑
n=0

xr[n]·y∗r [n] =
M−1

∑
m=0

K−1

∑
k=0

Xr[m, k]·Y∗r [m, k] (27)

On the other hand, implementing the correlations with multipliers with a large number
of bits is very resource-consuming. Two alternatives are discussed here:

• Quantize the signals in the frequency domain and perform the products with a reduced
number of bits (1 to 5) so that multipliers can be more easily implemented using look-
up tables (LUT).

• Transform the signals back to the time domain, quantize the signals in the time domain,
and perform the products with a reduced number of bits (1 to 5).

Quantization introduces a non-linear effect between the ideal “analog” correlation
and the one computed using quantized signals. These effects were introduced in [19], and
analyzed more in-depth in [18]. However, for small correlation values the relationship is
almost linear, and just a slope correction factor is required (1.0092 for 5 bits, 1.0321 for 4 bits,
1.1128 for 3 bits, 1.1558 for 2 bits, and 3.3670 for 1 bit), although it also amplifies the noise
in the measurements (see Appendix A).

The simulation results for the frequency domain and time domain correlations with
different numbers of bits are shown in Figure 9a,b. The vertical grey lines represent
the 16-bit quantization noise floor: 10·log10(2−16) + 40 = −8.16 dBcu (1 cu = 10−4 = 1
correlator unit) as in SMOS. The horizontal lines represent the quantization noise floor for
the different quantization levels. As can be appreciated, for a virtually infinite number of
levels (top left scatter plot) there is no saturation effect. As the number of quantization bits
(levels) decreases (5 to 1 bits: 31 to 2 levels) a saturation effect appears at the increasing
levels: for 31 levels, the saturation occurs very close to the SMOS quantization noise floor
and increases at ~+3 dB for every bit that is decreased. Note that the performance is
significantly worse when the correlation is performed in the time domain due to the fact
that the truncation to compute the FFTs already spreads the spectra, and the subsequent
truncation degrades it even further.

The above results are summarized in Table 7 showing that the performance of com-
puting the cross-correlations in the frequency domain is much more efficient in terms of
mitigation for 31, 15, and even 7 quantization levels, with actually very similar perfor-
mances, and only approached by the cross-correlation in the time domain with 31 levels,
although it mitigates in a smaller fraction of samples and degrades it in a larger fraction.
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Figure 9. Mitigation performance in the (a) frequency and (b) time domains as a function of the
quantization levels: 2, 3, 7, 15, and 31 and multi-bit reference case (top left).
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Table 7. Comparison results for the different correlator architectures under consideration. In green:
optimum values.

Correlation
Approach All [1200 it.] Mitigating (<0) Degrading (>0)

FRef Mean −3.00 dB Std 4.22 dB %. It. 57.5% Mean −4.36 dB %. It. 4.6% Mean 1.82 dB
FQ31 Mean −3.28 dB Std 4.25 dB %. It. 65.9% Mean −4.04 dB %. It. 10.8% Mean 1.00 dB
FQ15 Mean −3.37 dB Std 4.28 dB %. It. 65.6% Mean −4.21 dB %. It. 11.7% Mean 1.14 dB
FQ7 Mean −3.35 dB Std 4.35 dB %. It. 64.1% Mean −4.39 dB %. It. 13.5% Mean 1.49 dB
FQ3 Mean −2.73 dB Std 4.45 dB %. It. 59.9% Mean −4.24 dB %. It. 17.7% Mean 2.33 dB
FQ2 Mean 0.06 dB Std 5.27 dB %. It. 40.1% Mean −3.92 dB %. It. 37.6% Mean 4.32 dB

TRefIFFT Mean −3.10 dB Std 4.31 dB %. It. 64.6% Mean −3.85 dB %. It. 12.3% Mean 0.67 dB
TQ31 Mean −3.33 dB Std 4.89 dB %. It. 58.9% Mean −4.88 dB %. It. 18.9% Mean 1.50 dB
TQ15 Mean −1.88 dB Std 5.00 dB %. It. 49.9% Mean −4.34 dB %. It. 27.9% Mean 2.53 dB
TQ7 Mean 0.99 dB Std 5.74 dB %. It. 30.1% Mean −4.34 dB %. It. 47.8% Mean 4.35 dB
TQ3 Mean 2.03 dB Std 5.82 dB %. It. 24.8% Mean −4.13 dB %. It. 53.0% Mean 4.91 dB
TQ2 Mean 12.04 dB Std 7.14 dB %. It. 2.9% Mean −3.28 dB %. It. 74.9% Mean 12.64 dB

5. Conclusions

This study has presented a new RFI detection and mitigation algorithm for Synthetic
Aperture Microwave Radiometers with coarse quantization schemes, such as the one
planned for the SMOS follow-on mission. After signal windowing and channel equalization,
statistical and polarimetric tests were applied in the time and/or frequency domains to
detect the presence of RFI. As new features of this algorithm, it computes the Stokes
parameters per frequency bin in the Short Time Fourier Transform (STFT) and also the
so-called Polarimetric Kurtosis for the 3rd and 4th Stokes parameters. Finally, when RFI
was detected in one of these domains or both, blanking masks were calculated and applied
to remove the RFI.

For a CFAR of 10−8, it was found that the optimum parameters were: length of the
FFTs equal to 1024 (without significant improvement found for larger values, except for
a slightly better probability of detection: from 63 to 73%), βth equal to 100% (i.e., only if
the AND approach does not mitigate at all is the OR approach used), and application of
Parseval’s theorem to compute the cross-correlations in the frequency domain using 31, 15,
or even 7 quantization levels, with very similar performances among the three of them.

Finally, it is also worth mentioning that: (1) the algorithms presented can also be
applied to (Polarimetric) Real Aperture Radiometers, despite Ravg = 1, and (2) the algorithm’
performance can be significantly improved if softer quantization schemes are used (i.e.,
more than 1 bit).
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Appendix A

Quantization Effects and Their Compensation

If after the STFT the real and imaginary parts are truncated at a maximum value of
±VTrunc = ±δ·σx,y, δ being the scaling factor and σx,y the standard deviation, the resulting
spectra becomes discretized. In principle, δ must be selected so that the clipping effects
are negligible. Figure A1 shows the evolution of the RMSE in correlation units [CU]
(×10−4), computed as the root mean squared error between the cross-correlation and the
reference cross-correlation in the time domain, for the different number of bits/levels used
in the quantization:

RMSE =

√
∑|CorrX− CorrTimeRe f |2 (A1)

For 1 bit/2 levels (Q2), there is no sensitivity as the amplitude information is lost.
For 2 bits/3 levels, a narrow optimum exists around δ ≈ 2, and this valley flattens for an
increasing number of levels (i.e., bits). In these circumstances, the impact of δ is not as
relevant as in an ADC the value of VTrunc may be adjusted as a function of the estimated
σx,y to work in an optimal δ value.

Figure A1. Evolution of the RMSE in [CU] as a function of δ = VTrunc/ σx,y, for different
quantization levels.

Figure A2 (left) shows the correlator transfer function for the ideal δ as a function
of the ideal correlation value and different quantization schemes. Note that CorrFreqQ2
becomes the asin (inverse sine function), as in SMOS, if no filtering is performed at all.
Figure A2b shows a zoom of Figure A2a for values < 1000 CU, showing that the relationship
is nearly a straight line.
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Figure A2. Evolution of the RMSE in [CU] as a function of the δ = VTrunc/ σx,y, for different
quantization levels. showing the entire range in (a), and the local behavior for < 1000 CU in (b).

For values smaller than 1000 CUs, the slope correction factor is given in the following table.

Table A1. Slope correction factor due to quantization scheme applied when cross-correlations are com-
puted in the frequency domain. Note: the larger the slope correction, the larger the noise amplification.

FQ31 FQ15 FQ7 FQ3 FQ2
Correct. Fact.

(m−1) 1.0092 1.0321 1.1128 1.1558 3.3670
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