250 research outputs found

    Continuum percolation of wireless ad hoc communication networks

    Full text link
    Wireless multi-hop ad hoc communication networks represent an infrastructure-less and self-organized generalization of todays wireless cellular networks. Connectivity within such a network is an important issue. Continuum percolation and technology-driven mutations thereof allow to address this issue in the static limit and to construct a simple distributed protocol, guaranteeing strong connectivity almost surely and independently of various typical uncorrelated and correlated random spatial patterns of participating ad hoc nodes.Comment: 30 pages, to be published in Physica

    Policing, Protestors, and Discretion

    Get PDF

    Deflection routing in slotted self-routing networks with arbitrary topology

    Get PDF
    A deflection routing algorithm that can be applied to a novel self-routing address scheme for networks with arbitrary topology is proposed. The proposed deflection routing algorithm can be implemented all-optically using bitwise optical logic gates. Besides the primary output link selection, alternate output link choices by a packet at each node in case of deflection are also encoded in the address header. Priority classes can also be defined in the proposed address scheme. The performance of the deflection routing algorithm is studied using the AT&T North America OC-48 optical fiber network topology.published_or_final_versio

    Design of Switches with Reconfiguration Latency

    Get PDF

    Impacts of Mobility Models on RPL-Based Mobile IoT Infrastructures: An Evaluative Comparison and Survey

    Get PDF
    With the widespread use of IoT applications and the increasing trend in the number of connected smart devices, the concept of routing has become very challenging. In this regard, the IPv6 Routing Protocol for Low-power and Lossy Networks (PRL) was standardized to be adopted in IoT networks. Nevertheless, while mobile IoT domains have gained significant popularity in recent years, since RPL was fundamentally designed for stationary IoT applications, it could not well adjust with the dynamic fluctuations in mobile applications. While there have been a number of studies on tuning RPL for mobile IoT applications, but still there is a high demand for more efforts to reach a standard version of this protocol for such applications. Accordingly, in this survey, we try to conduct a precise and comprehensive experimental study on the impact of various mobility models on the performance of a mobility-aware RPL to help this process. In this regard, a complete and scrutinized survey of the mobility models has been presented to be able to fairly justify and compare the outcome results. A significant set of evaluations has been conducted via precise IoT simulation tools to monitor and compare the performance of the network and its IoT devices in mobile RPL-based IoT applications under the presence of different mobility models from different perspectives including power consumption, reliability, latency, and control packet overhead. This will pave the way for researchers in both academia and industry to be able to compare the impact of various mobility models on the functionality of RPL, and consequently to design and implement application-specific and even a standard version of this protocol, which is capable of being employed in mobile IoT applications

    Cloudlet-based just-in-time indexing of IoT video

    Get PDF
    P

    Scale-dependent measure of network centrality from diffusion dynamics

    Get PDF
    Classic measures of graph centrality capture distinct aspects of node importance, from the local (e.g., degree) to the global (e.g., closeness). Here we exploit the connection between diffusion and geometry to introduce a multiscale centrality measure. A node is defined to be central if it breaks the metricity of the diffusion as a consequence of the effective boundaries and inhomogeneities in the graph. Our measure is naturally multiscale, as it is computed relative to graph neighbourhoods within the varying time horizon of the diffusion. We find that the centrality of nodes can differ widely at different scales. In particular, our measure correlates with degree (i.e., hubs) at small scales and with closeness (i.e., bridges) at large scales, and also reveals the existence of multi-centric structures in complex networks. By examining centrality across scales, our measure thus provides an evaluation of node importance relative to local and global processes on the network

    Cost-performance trade-offs in Manhattan Street Network versus 2-D torus

    Full text link
    • 

    corecore