
Cloudlet-based Just-in-Time Indexing of IoT Video

Mahadev Satyanarayanan∗, Phillip B. Gibbons∗, Lily Mummert†, Padmanabhan Pillai‡, Pieter Simoens§, Rahul Sukthankar†
∗Carnegie Mellon University

†Google
‡Intel Labs

§Ghent University, imec

Abstract—As video cameras proliferate in the Internet of Things,
the ability to scalably capture and search that data becomes impor-
tant. Scalability can be achieved by performing video analytics on
cloudlets at the edge of the Internet, and only shipping extracted index
information and meta-data to the cloud. This paper describes a tech-
nique called just-in-time indexing that extends such an architecture to
support interactive content-based retrospective search of cloudlet data
for predicates that were not part of the original indexing strategy.

I. UBIQUITOUS VIDEO CAMERAS

Video cameras that are always on or frequently on are
proliferating in the Internet of Things (IoT). A 2013 survey in
the U.K. estimated one surveillance camera in a public space
for every 11 people [1]. By 2012, virtually every automobile
in Russia had a video camera on its dashboard to record
incidents for insurance purposes [2], [3]. Body-worn cameras
are increasingly common in police forces [4]. Extrapolating
from these trends, the report of the 2013 NSF Workshop on
Future Directions in Wireless Networking [5] predicts that “It
will soon be possible to find a camera on every human body,
in every room, on every street, and in every vehicle.”

The video captured by these cameras is typically stored on
local storage, close to the point of capture. It is examined
only in response to some traumatic event such as a vehicular
accident, a burglary, an accusation of police brutality, or a
terrorist attack. Without ever being examined, most data is
overwritten to reclaim space after a modest retention period.
This represents an enormous loss of knowledge. Embedded in
this data is information relevant to important questions that are
hard to answer today. Can we extract this valuable information
before discarding the raw data? For example, a lost child or
pet may unexpectedly appear in video far from home. Timely
recognition could lead to their rescue. As another example,
video footage from road intersections could reveal those that
have many near misses. Traffic lights or stop signs could then
be installed in time to prevent serious accidents. As a third
example, timely analysis of video from a sidewalk may reveal
a number of people slipping on an icy patch that was missed
by the salt crew. Prompt attention to the icy patch could avert a
serious injury. As a final example, in marketing and sales, real-
time video analytics could reveal that shoppers are ignoring
a new window display. The richness of high-resolution video
content and the open-endedness of deep video analytics make
vision-based sensing especially attractive.

index terms End timeStart timeCloudlet # Video ID

Internet

Cloudlet-1

Global Catalog

Cloud

Cloudlet-2 Cloudlet-3 Cloudlet-N

associated
cameras

associated
cameras

associated
cameras

associated
cameras

Fig. 1. Two-level Cloud-Cloudlet Architecture

II. WHY EDGE-BASED VIDEO ANALYTICS?

Video analytics is typically performed in the cloud today.
Using Netflix’s estimate of 3 GB per hour of HD video,
one video stream demands nearly 6.8 Mbps. A 100 Gbps
metropolitan area network (MAN) can only support about
15,000 such video streams. Even upgrading to a 1 Tbps MAN
will only support 150,000 video cameras. Supporting a million
cameras (one per home in a large city) will require nearly
7 Tbps. Shipping all video to the cloud is clearly not scalable.

Our solution is to process video close to the cameras, as
shown in Figure 1. Below today’s unmodified cloud is a second
architectural level consisting of dispersed elements called
cloudlets [6]. These have excellent network connectivity to
associated cameras, sufficient compute power to perform video
analytics, and ample storage to preserve video at full fidelity
for a significant retention period before being overwritten.
Extended retention permits retrospective search of captured
video, as discussed in Section IV. Using the above figure of
3 GB for an hour of HD video, a single 4 TB disk that costs
about $100 today could hold over 50 days of video from one
camera. Only the results of video analytics (e.g., index terms
and metadata such as cloudlet id and timestamp) are shipped
to a global catalog in the cloud. Based on popularity and
importance, small segments of full-fidelity video could also
be shipped to the cloud for long-term archiving.

III. BACKGROUND: VIDEO DENATURING AND INDEXING

Each cloudlet in Figure 1 runs the GigaSight software for
video processing. Since GigaSight has been described in a

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Ghent University Academic Bibliography

https://core.ac.uk/display/84046415?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

fa
ce

 d
et

ec
tio

n

de
co

di
ng

en
co

di
ng

STF indexer

tagging
of

denatured video

cloudlet
storage

sampling denaturingcaptured
video

privacy enforcement VM

Fig. 2. GigaSight Video Processing Workflow on a Cloudlet

Fig. 3. Examples of STF Object Detection (Adapted from Shotton et al [7])

The owner of a dog has not seen her pet for 24 hours.
A search on foot of the local neighborhood has yielded no
results. Worried and anxious, the owner thinks her pet may
have wandered off to some distant part of the city. She obtains
permission from local authorities to search for her dog in
denatured video on city cloudlets. Assuming a speed of two
miles per hour (two-thirds that of humans), the dog could
have wandered anywhere within an area of 12 square miles
in 24 hours. That is half the size of Manhattan, and contains
over 100,000 surveillance cameras outside residences and
businesses (London is estimated to have 500,000 surveillance
cameras today). In a 24-hour period, even if frames are
denatured and indexed only once every 10 seconds on each
video stream, there will be over 800 million frames to search.
Although “dog” is one of the index terms supported by video
indexing in cloudlets, the hit rate is too high: nearly one in every
thousand indexed frames (0.1%) in this dog-friendly city has a
dog somewhere in it. The index of the global catalog shrinks
the search space from 800 million frames to 800,000 frames
but that is still a daunting figure. The owner needs some tools
to help search for her dog, not just any dog. Every hour of
delay reduces the chances of rescuing her pet.

Fig. 4. Use Case: Searching for a Lost Dog

previous paper [8], we only provide a brief summary here as
background to our new work in Sections IV–VII.

Privacy is a key concern of GigaSight. As shown in
Figure 2, each cloudlet performs denaturing, which refers to
automated, content-specific lowering of fidelity of video in
order to preserve privacy. Isolation between video streams is
ensured by performing the denaturing of each stream within
its own virtual machine (VM). By default, GigaSight blurs all
faces detected in video frames. However, under appropriate
authorization controls, the original undenatured frames can
be retrieved from its VM in order to support use cases such
as looking for a lost child that require faces to be exposed.
GigaSight performs content-based indexing of denatured video
frames using Shotton et al’s Semantic Texton Forest (STF)
algorithm [7], with classifiers trained on the MSRC21 data
set. This enables tagging of video frames with 21 classes of
common objects such as aeroplanes, bicycles, birds, boats,
etc. Figure 3 shows some example images along with the
segmentation performed by STF. Extracted tags are propagated
to the global catalog in the cloud (Figure 1) to support system-
wide searches. GigaSight could easily be extended to use deep
neural networks (DNNs) or other techniques for indexing.

To reduce cloudlet workload, GigaSight only processes
periodic samples of frames from each video stream. The
sampled frames effectively serve as “thumbnails” that are
representative of content for the next N frames. Those next N
frames are not denatured or indexed, but stored in encrypted
form on the cloudlet. Those frames are only processed on
demand, if their thumbnail triggers user interest (typically
during during a search). A typical value of N is 300, thus
giving one denatured and indexed frame every 10 seconds.

IV. INTERACTIVE DATA EXPLORATION

Cloudlet-based video capture, denaturing, and indexing as
discussed in Sections II and III can only partially deliver

the full value of video analytics as outlined in Section I. To
complete the picture, we need a human-in-the-loop interactive
image search capability that embodies the necessary flexibility
and versatility to customize searches for the very specific
needs of a user. To understand why, consider the hypothetical
use case in Figure 4 of searching for a lost dog. This is exactly
the kind of public service use case envisioned in Section I.

What kind of image search tools can we provide to help in
scenarios such as Figure 4? The simplest answer would be to
create a high-accuracy object detector for the lost dog using
any of the well-known techniques today such as DNNs or
SVMs, and then use it to index the subset of relevant frames on
cloudlets. Unfortunately creation of an object detector requires
a significant amount of training data, preferably hundreds or
thousands of images. The pet owner may not have such a
large number of images of her pet. She may have at most a
few images, and in some cases she may not have any images
at all. Yet, in her mind’s eye, she has a very clear image of
what her dog looks like.

If the dog is a pure-bred, perhaps there are pre-trained
classifiers available for German Shepherds, Collies, Shetland
Sheepdogs, etc. Using such a classifier to further narrow the
search space would be a natural first step. The ability to
introduce such a classifier easily in the course of a search,
and to only index on demand a small relevant part of the
whole dataset would be extremely valuable. If the dog is not
a pure-bred or is a rare breed, no pre-trained classifier may
be available. In that case, the owner may have to resort to
more generic features such color or fur texture to narrow
the search space. Ultimately, through some combination of
search predicates that are obtained through trial and error on
the actual data, the search space has to be narrowed down
to human scale: i.e., a few hundred images that a user can
manually scan carefully in a reasonable amount of time. If

Query
Space

Q1Q2 Q3
Q4

Q5 Q6Q7Q8 Q11Q9
Q10 Q12Q13

Q14
Q15

Q18

Q16Q17

Image
Space

User
Peforming
Interactive

Data Exploration

Each space sampled to gain insight
about the other

Fig. 5. IDE: Interleaved Search in Two Spaces
C

om
pl

et
en

es
s

of
 E

ac
h

In
de

x Traditional Indexing 100%

0%
Static Offline

re-tuning
On-the-Fly
re-tuning

On first use
of new term

Reactivity of Indexing

Just-In-Time
Indexing

Fig. 6. Spectrum of Indexing Strategies

S1 S2 S3 S4 S5
User 1 7 7 7 2 6
User 2 6 3 4 2 9
User 3 3 14 4 3 4
User 4 3 3 6 3 2
User 5 3 7 5 4 5
User 6 16 11 5 1 11
User 7 10 3 4 5 2
User 8 14 22 5 1 12

Fig. 7. Queries per IDE Session

Description Images Hits
S1 Find all images of

a specific person.
2582 8

S2 Find five instances
of theft in a
surveillance image
dataset.

1072 6

S3 Find five pictures
of sailboats or
windsurfers.

281,324 476

S4 Find three pictures
of urban outdoor
scenes.

281,324 18,805

S5 Find ten pictures
from a colleague’s
wedding.

281,324 67

Fig. 8. Search Tasks Emulating IDE Sessions

the owner is fortunate, her pet will be in one of the recently-
captured video frames and the location of the relevant video
camera will help to target her physical search.

In some cases, the search may be for a scene that is
hypothesized to have occurred, with many particulars of the
scene being fuzzy. For example, an insurance adjuster may
want to verify a verbal accident report about a perpetrator
whose attributes are only vaguely known. It is only during the
process of data exploration, after seeing many false positives
and a few false negatives, that the search predicates themselves
get refined. Unlike the previous example, where the target of
the search (precise attributes of missing dog) was clear, even
the target of the search may be fuzzy initially. The absence of
training data for creation of detectors will be even more acute
in these kinds of searches.

Generalizing from these examples, we identify interactive
data exploration (IDE) as an important class of human-centric
search activity on images in which hypothesis formation and
hypothesis validation proceed hand in hand in a tightly-
coupled and iterative sequence. A user constructs an initial
search predicate, gets back a few results, aborts the current
search, and then modifies the search predicate (sometimes
extensively) in the light of these results. This iterative process
continues until the user finds what she is looking for, or
gives up. As illustrated in Figure 5, the user is effectively
conducting two interleaved and tightly-coupled searches: one
on the query space (the space of all possible combinations of
search predicates) and the other on the data space (all images).
This interleaved workflow is consistent with the metaphor that
asking exactly the right question about complex data is often
the key to a major insight. However, the path to converging on
that precise question may be long and convoluted with many
false turns and dead ends. This workflow is the essence of
IDE. If successful, you end with a search query that can be
used as the basis of future classic indexing to rapidly answer
similar queries — e.g., if this specific dog is ever lost again,
the global catalog in Figure 1 will contain an index term to
rapidly locate it.

Classic indexing, such as GigaSight’s implementation from
Section III, is context-free. The index is created in advance of
use, without any knowledge that is only available at the time of
a future search. In contrast, IDE is inherently context sensitive.
The ability to deeply incorporate context-sensitive information
into the search iterations of IDE is crucial to success. We
describe our solution in the next section.

V. JUST-IN-TIME INDEXING

For a human-in-the-loop system, the most precious resource
is user attention. For IDE, we define a user’s attention as being
used well if most of it is spent on (a) examining individual
results (i.e., video frames) to decide if they are true positives
or false positives, or (b) on thinking about how the predicates
of the current query should be modified for the next iteration
of the IDE. We define user attention as being used poorly if
most of it is spent on (a) waiting for the system to return
results to examine, or (b) dismissing frivolous false positives
from a search with low selectivity. Time is of the essence in
IDE. In the working example of Figure 4, the owner’s sole
focus is finding her lost dog as soon as possible. She would
prefer success sooner rather than later, even at the cost of more
effort from her in IDE. This precludes approaches that defer
IDE for many hours while the system performs background
optimizations such as indexing or data restructuring.

To support IDE, we propose just-in-time indexing (JITI),
a new indexing strategy that exploits the following three
properties of iterative query refinement:

• Temporal locality of search predicates: there is consid-
erable redundancy in the queries posed during an IDE
session. Each query is a refinement on the previous
queries, often repeating many of the search predicates.
• Rapid Refinement: a user typically refines a query after

seeing only tens of results. “Abort search” is frequent.
• Considerable think time: because IDE requires signifi-
cant user reflection, there is an opportunity during think
times to perform indexing.

As Figure 6 illustrates, JITI differs from previous ap-
proaches to indexing in two important ways. First, it is highly
reactive to the current query session, building new indexes (or
augmenting existing indexes) speculatively, on-the-fly during
user think time. JITI exploits temporal locality of search predi-
cates in the successive iterations of an IDE session by indexing
any new search predicate on its first use. Second, JITI indexes
only a small, adaptive subset of the images, instead of building
complete indexes. This is sufficient because a user typically
refines the content-based search query after seeing only tens
of images returned. It is also necessary, given the prevalence
of expensive predicates for image processing and the bounded
amount of user think time (typically tens of seconds). While
both speculative indexing [9] and partial indexing [10]–[12]
have been proposed previously for relational databases, this
work is the first to combine the two and to apply them in the
context of image search.

We have built a prototype implementation of JITI that
allows us to flexibly explore its design tradeoffs. Our prototype
leverages the concept of early discard, whose importance in
interactive image search was first established by Huston et
al [13]. The code for parameterized image search predicates
(called filters) can be combined using a directed flow graph
(called a filter configuration) into a composite searchlet that
defines a search query. Predefined filters exist for color,
texture, human faces, and many other image primitives. These
can be parameterized during an IDE by the user (e.g. by using
a color or texture patch from a previous result). JITI works at
the granularity of individual filters. Conceptually, all the filters
in the searchlet are executed de novo. However, JITI ensures
that previously computed results can be used whenever they
are still valid (i.e., neither filter code nor filter parameters have
changed). Hence, a searchlet that reuses many previous filters
unmodified will benefit from JITI.

Although our implementation is not yet integrated with
GigaSight, we expect such integration to be straightforward.
Here, we describe the steps of a search as it would occur
in an integrated implementation. The term “image” in this
description refers to a video frame that has been deemed to be
within scope at the start of an IDE, based on timestamps and
index terms in the global catalog. Scope can be dynamically
changed as an IDE progresses. At the start of an iteration, the
searchlet defining the query is shipped from the user’s search
front-end to all the cloudlets involved. The search proceeds
independently at each cloudlet, and results are streamed back
to the user as soon as each is generated. The search terminates
at all cloudlets as soon as the user aborts the search. By then,
the user has likely seen enough to create an improved searchlet
for the next iteration of the IDE session.

VI. JITI POLICIES

JITI is performed independently at each cloudlet, as a
transparent side effect of the search process. In response to a
search query (defined by a filter configuration), the user starts
seeing results from all the cloudlets intermingled as they are
streamed to her. Her display pauses when the screen is full, but

processing on cloudlets and streaming of results can continue
in the background. Buffered results are presented to the user
as she advances to new screens. The order in which images
are evaluated on a cloudlet is left unspecified, thus allowing
flexibility in optimizing the storage layer. Before applying a
filter to an image, the cloudlet first checks to see if the result
is already available in the index. The early discard strategy
mentioned earlier ensures that processing on the image can
be terminated as soon as it is clear that no path to success is
possible with the current filter configuration.

JITI is a broad concept that allows a wide range of flexibility
in its implementation. The design parameters include: when
indexing is triggered, which images are chosen for indexing,
which filters are used in the indexing, how long indexing is
continued, and so on. JITI policies can also vary in the weight
they assign to the current query versus overall query trends.
The range of policies include the following:
1. Current Query Work-Ahead: User think time is applied
solely to working ahead on the current query. This optimizes
for the case that the user requests more screenfuls of images,
but is less effective if the user aborts the query immediately.
2. Popularity-Based: Statistics of filter use over a time
window are maintained, and user think time is used to index
the most popular filter. If indexing proceeds to completion, the
next most popular filter is selected, and so on. This scheme
optimizes for future queries that use these popular filters, at
the expense of current query performance.
3. Efficiency-Based: Policy 2 is extended to recognize that
slower (i.e., computationally more expensive) filters are more
valuable to index because that can reduce user wait time. The
policy also separately recognizes that filters with low pass-
rates are especially valuable for early discard. Inaccuracies in
filter cost estimation and pass rate are challenges.
4. Dimension Switching: Policy 2 is refined to scope popu-
larity to only those filters that are actually used in the current
query. Non-popular filters are evaluated only as needed to
resolve pass/fail outcome. This policy balances the weight of
the current query versus overall query trends.
5. Self-Balancing: This is a combination of the other policies.
Between queries, Policy 3 is used to optimize for future
queries. Once a query is submitted, it is favored as follows.
First, Policy 1 is used until the number of images awaiting
user attention exceeds a predefined threshold. Then, Policy 4
is used until the number of images awaiting user attention ex-
ceeds a second predefined threshold. From that point onwards,
Policy 3 is used until a new query is received from the user.

An analytical comparison of these policies (omitted here
for space reasons) shows that Policy 5 (Self-Balancing) is the
best. The details can be found in our technical report [14].

VII. EXPERIMENTAL RESULTS

The ideal experimental approach to comparing JITI policies
would be to use benchmarks that capture real-world IDE
workloads. Unfortunately, we are at a very early stage of the
evolution of edge computing. It will be many years before
cloudlets and GigaSight are widely deployed, and generate

 S1 S2 S3 S4 S5
0

10

20

30

40

Unique to session Reuse intersession Reuse intrasession
N

um
be

r o
f f

ilt
er

s
us

ed
, a

ll
qu

er
ie

s S1 S2 S3 S4 S5

U1-U8 U1-U8 U1-U8 U1-U8 U1-U8

Fig. 9. Filter Reuse

real-world IDE workloads. In the interim, we emulate IDE-
like workloads by capturing and replaying the actions of real
users in performing search tasks on static image collections.

The hardware setup for our experiments consists of four
servers playing the role of cloudlets, connected to a client via
a 1 Gbps Ethernet switch. All machines have 2.83 GHz Intel
Xeon processors with 8 GB RAM, and run Ubuntu Linux. The
trace replay approach mentioned above reproduces captured
user workloads with realism and replicability, while providing
tight control of experimental conditions.

We captured traces of eight users on the five different
search tasks summarized in Figure 8. Some of these tasks
are vague by nature, and have many degrees of freedom. S1
and S2 work on relatively small collections of images and
emphasize recall (fraction of relevant images retrieved against
the total number of relevant images in the database). S3–S5
work on a much larger image collection and favor precision
(fraction of relevant images retrieved against the number of
retrieved images). The image repository employed for searches
S3–S5 consists of 32,757 manually ground-truthed personal
photographs augmented with 248,567 images downloaded
from Flickr. A subset of 4,323 randomly-sampled images from
the latter was manually labeled to estimate the number of
matches in the Flickr collection.

A. Observed Query Attributes

Figure 7 shows the number of queries in IDE sessions. The
average of six queries suggests that the IDE process is indeed
iterative. Figure 9 shows the extent to which queries within an
IDE session reuse filters. Repeated use of any filter within a
session constitutes intra-session reuse. The first use of either
a predefined color filter or a popular filter is shown as inter-
session reuse. Subsequent uses of such filters are considered
intra-session reuse. The amount and type of reuse determines
the extent to which JITI can be successful. Filters used
across sessions may be indexed by the Popularity-Based and
Dimension Switching schemes during idle periods between
and during sessions, respectively. Even filters unique to a
session, if reused, benefit from the indexes created by Current
Query Work-Ahead. The Self-Balancing scheme inherits the
benefits of each of these constituent schemes.

The figure shows that reuse occurs in all but six of the
sessions, and that most sessions exhibit both types of reuse.

0.01 0.1 1 10 100 1000
0

10

20

30

40

50

60

70

80

90

100

Color Color (stride=3) Color (stride=1)
Texture Difference Face/body

Execution Time (ms)

P
as

s
R

at
e

(%
)

Fig. 10. Filter Execution Time and Selectivity (Log Scale on X Axis)

Of the total number of filters used, 70% are repeats. Nearly
half of all filters defined are reused. The vast majority of user-
defined filters are applied to a single session. Predefined filters
tend to be used across sessions.

Queries are refined well before completion. Only 16% of
the queries actually run to completion. For the recall searches,
which are most likely to be exhaustive, 42% of the queries run
to completion. For the precision searches, 7% of the queries
run to completion. Users are able to evaluate their queries
quickly and devise methods for refining them based on a
small number of returned results. On average, users refine their
queries after viewing only 36 images, and the queries process
less than 10% of the images in the repository. Users exhibit
considerable think time in performing the searches. Session
length varies from less than 30 seconds (for U6 performing
S4) to nearly 20 minutes (for U3 performing S5). 97% of the
total search session time is think time. These periods of think
time provide ample opportunities for JITI.

Figure 10 shows the speed and selectivity of the filters that
are used. Over half of the defined filters have pass rates of
10% or less, and nearly one-fifth of the filters have pass rates
of 1% or less. Average filter execution time, shown on a log
scale, varies over three orders of magnitude depending on filter
type. The most expensive filters are those for face and body
detection from the OpenCV library.

B. Effectiveness of JITI

Using trace replay, we compare the performance of JITI to
three other indexing schemes:

• No indexing: This is the worst case scenario.
• Clairvoyant: This is the ideal case, where indexes

already exist for all the filters and images needed.
• Workload-based: We allot a budget of 100 milliseconds

of CPU time per image. We index as many of our
workload’s most popular filters as we can within this
budget. In addition, current query workahead is enabled.
• JITI: Each workload begins with global knowledge of

filter use frequencies across all users. Only this user
and workload are new to JITI. In addition, no indexes
exist for any previously executed filters. This pessimistic
restriction eliminates any benefit that could be realized
from popularity-based indexing prior to the session.

U1 U2 U3 U4 U5 U6 U7 U8
0

10

20

30

40

50

60

70

No indexing Workload based Justintime Clairvoyant

T
im

e
(s

ec
on

ds
) S1

U1 U2 U3 U4 U5 U6 U7 U8
0

5

10

15

20

25

30

35

No indexing Workload based Justintime Clairvoyant

T
im

e
(s

ec
on

ds
)

U1 U2 U3 U4 U5 U6 U7 U8
0
5

10
15
20
25
30
35

No indexing Workload based Justintime Clairvoyant

T
im

e
(s

ec
on

ds
) S2

U1 U2 U3 U4 U5 U6 U7 U8
0

2

4

6

8

10

12

No indexing Workload based Justintime Clairvoyant

T
im

e
(s

ec
on

ds
) S3

U1 U2 U3 U4 U5 U6 U7 U8
0

0.5

1

1.5

2

2.5

No indexing Workload based Justintime Clairvoyant

T
im

e
(s

ec
on

ds
) S4

U1 U2 U3 U4 U5 U6 U7 U8
0
5

10
15
20
25
30
35
40

No indexing Workload based Justintime Clairvoyant

T
im

e
(s

ec
on

ds
) S5

Fig. 11. Response Times (S1–S5) for Different Indexing Schemes

From the user’s perspective, the primary figure of merit in
IDE is response time, which is defined as the average time over
the course of an IDE session that the user waits to receive a
screenful of results after issuing a query, or requesting the next
screenful of results. Across users and search tasks, Figure 11
compares response times across the four alternative indexing
schemes. Each bar represents the average of three runs. The
standard deviation is shown with error bars where it is large
enough to be visible. The main message of these results is that
JITI offers significant benefit in many cases, and often matches
or exceeds the performance of workload-based indexing.

VIII. CONCLUSION

The challenges of Internet-scale video capture, storage and
use will become more acute over time, as video cameras

proliferate and their resolution improves. Edge-based comput-
ing on cloudlets can alleviate this pain. By avoiding blind
transmission of captured video to the cloud, cloudlets improve
scalability by lowering ingress bandwidth demand. Only a tiny
fraction of the captured video, selected for their importance
and/or popularity, needs to transmitted to the cloud. By pro-
viding ample storage at the edge for extended retention periods
of tens of days, cloudlets provide the opportunity for users to
retrospectively discover important information that is buried
in the captured video. These discoveries can have significant
personal, business, and societal benefits.

Classic indexing on cloudlets using well-known computer
vision algorithms is necessary, but not sufficient, to support the
process of discovery from captured video. The final phase of
this process is almost always context-sensitive, and requires
incorporation of crucial information whose significance was
not known at the time of index creation. In this paper, we have
described a human-centric, interactive search process (IDE) for
this final phase of discovery that leverages system support for
early discard of image data at cloudlets. We have shown that
the user think time and temporal locality inherent in IDE can
be leveraged to perform partial and incremental indexing (JITI)
for context-sensitive attributes. Our experiments confirm that
JITI can improve interactive performance during IDE.

REFERENCES

[1] D. Barrett, “One surveillance camera for every 11 people in Britain,
says CCTV survey,” Daily Telegraph, July 10, 2013.

[2] A. Davies, “Here’s Why So Many Crazy Russian Car Crashes Are
Caught On Camera,” Business Insider, December 2012.

[3] D. Lavrinc, “Why Almost Everyone in Russia Has a DashCam,” Wired,
February 15, 2013.

[4] L. Miller, J. Toliver, and Police Executive Research Forum 2014,
Implementing a Body-Worn Camera Program: Recommendations and
Lessons Learned. Washington, DC: Office of Community Oriented
Policing Services, 2014.

[5] S. Banerjee and D. O. Wu, “Final report from the NSF Workshop on
Future Directions in Wireless Networking,” NSF, November 2013.

[6] M. Satyanarayanan, P. Bahl, R. Caceres, and N. Davies, “The Case for
VM-Based Cloudlets in Mobile Computing,” IEEE Pervasive Comput-
ing, vol. 8, no. 4, 2009.

[7] J. Shotton, M. Johnson, and R. Cipolla, “Semantic texton forests for
image categorization and segmentation,” in Proc. of IEEE Conf. on
Computer Vision and Pattern Recognition, June 2008, pp. 1–8.

[8] P. Simoens, Y. Xiao, P. Pillai, Z. Chen, K. Ha, and M. Satyanarayanan,
“Scalable Crowd-Sourcing of Video from Mobile Devices,” in Proc. of
ACM MobiSys 2013, 2013.

[9] N. Polyzotis and Y. Ioannidis, “Speculative Query Processing,” in
Proceedings of CIDR Conference, January 2003.

[10] C. Sartori and M. R. Scalas, “Partial Indexing for Nonuniform Data
Distributions in Relational DBMS’s,” IEEE Transactions on Knowledge
and Data Engineering, vol. 6, no. 3, June 1994.

[11] P. Seshadri and A. Swami, “Generalized Partial Indexes,” in Proceedings
of IEEE ICDE, March 1995.

[12] M. Stonebraker, “The Case for Partial Indexes,” ACM SIGMOD Record,
vol. 18, no. 4, December 1989.

[13] L. Huston, R. Sukthankar, R. Wickremesinghe, M. Satyanarayanan,
G. Ganger, E. Riedel, and A. Ailamaki, “Diamond: A Storage Architec-
ture for Early Discard in Interactive Search,” in Proceedings of the 3rd
USENIX Conference on File and Storage Technologies, San Francisco,
CA, April 2004.

[14] P. B. Gibbons, L. Mummert, R. Sukthankar, M. Satyanarayanan, and
L. Huston, “Just-In-Time Indexing for Interactive Data Exploration,”
School of Computer Science, Carnegie Mellon University, Tech. Rep.
CMU-CS-07-120, April 2007.

