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ABSTRACT With thewidespread use of IoT applications and the increasing trend in the number of connected
smart devices, the concept of routing has become very challenging. In this regard, the IPv6 Routing Protocol
for Low-power and Lossy Networks (PRL) was standardized to be adopted in IoT networks. Nevertheless,
while mobile IoT domains have gained significant popularity in recent years, since RPL was fundamentally
designed for stationary IoT applications, it could not well adjust with the dynamic fluctuations in mobile
applications. While there have been a number of studies on tuning RPL for mobile IoT applications, but still
there is a high demand for more efforts to reach a standard version of this protocol for such applications.
Accordingly, in this survey, we try to conduct a precise and comprehensive experimental study on the impact
of various mobility models on the performance of a mobility-aware RPL to help this process. In this regard,
a complete and scrutinized survey of the mobility models has been presented to be able to fairly justify and
compare the outcome results. A significant set of evaluations has been conducted via precise IoT simulation
tools to monitor and compare the performance of the network and its IoT devices in mobile RPL-based IoT
applications under the presence of different mobility models from different perspectives including power
consumption, reliability, latency, and control packet overhead. This will pave the way for researchers in both
academia and industry to be able to compare the impact of various mobility models on the functionality of
RPL, and consequently to design and implement application-specific and even a standard version of this
protocol, which is capable of being employed in mobile IoT applications.

INDEX TERMS Communications, control overhead, delay, Internet of Things, mobility model, power-
efficiency, reliability, routing, RPL, survey.

I. INTRODUCTION
Birth of Internet of Things (IoT) was a major step towards
providing a more convenient way of life for the human soci-
ety. The foot print of IoT could be observed in every corner
of the globe due to its broad range of supporting applications
in home automation, transportation, industry, health-care, and
many other smart services [1]. Nowadays, IoT is believed as
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an indispensable part of human lives with the ability of acting
as a ubiquitous communicating infrastructure, which estab-
lishes internet-based communications between an enormous
number of resource-constrained physical objects with no or
minimum human intervention. IoT has provided a pervasive
infrastructure for the information systems to gather and pro-
cess raw data obtained frommany remote devices, and exploit
the outcome as an asset to pave the way for analytical and
practical operations [2]. Since its declaration by the British
scientist Kevin Ashton in 90’s [3], IoT has gained significant
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attention in the past few years, with an increasing trend in the
number of connected smart devices under its communication
infrastructure.

There have been numerous anticipations on the expected
number of connected smart objects in the near future.
Meanwhile, the International Data Corporation (IDC R©) has
recently published a report indicating the proliferation of the
connected smart devices by up to 41.6 billion at the end
of 2025 [4]. The high number of operating devices in such
networks arises many considerations, where the routing is
believed as one of the most important challenges among
them [5]. The employed routing procedure in the network
plays an important role in providing a low cost and reliable
communication for delivering the data packets from their
sources to their destination(s). Meanwhile, in order to enable
IoT to reach its goals and provide more flexibility and inter-
operability in its layered architecture, many of its enabling
technologies and protocols, including the routingmechanism,
should be standardized.

Accordingly, the Internet Engineering Task Force (IETF),
established the Routing over Low-power and Lossy net-
works (RoLL) working group in 2008, to specify the pre-
requisites for an appropriate routing procedure in IoT, and
consequently to design and implement a protocol, which
is capable of handling the existing resource constraints in
the deployed embedded nodes in IoT infrastructures. In this
regard, the RoLL working group published several docu-
ments between 2009 and 2010 for determining the routing
requirements for a number of IoT applications, i.e., Urban,
Industrial, Home automation, and Building automation [6].
As a result of their efforts, onMarch 2012, the IETF standard-
ized theRouting Protocol for Low-power and lossy networks
(RPL), and publicly introduced it to the IoT society as an
RFC 6550 [6].

Along with many of the strong points of the IPv6 RPL, one
of its major drawbacks is that is was initially developed to be
adopted by the stationary IoT applications, and it is not able
to get well adjusted with the severe fluctuations in mobile
conditions mainly due to its timing principles for control
packet dissemination, neighbor table placement principles,
and of course inappropriate routing policies, which does not
consider moving aspects of the objects [7]. This is despite the
fact that in recent years, the IoT devices are being attached
and operated on many mobile objects, e.g., humans, bicy-
cles, transportation vehicles, ships, and airplanes leading into
advent of emerging mobile IoT applications, such as social
IoT, road conditioning, automotive networks, driver-less elec-
tric vehicles, crowd sensing, and logistics [8]. Many of the
existing real-worldmobile IoT applications, e.g., mobile asset
tracking, fleet management [9], connected electrical bicycles
[10], real-time health-care services [11], and vehicle tracking
systems [12], are composed of devices with built-in Global
Positioning System (GPS)modules [13], [14]. In contrast, the
standard version of RPL does not support GPS and Loca-
tion Based Services (LBS). Furthermore, applications such
as Unmanned Aerial Vehicles (UAV), and Flying Ad-hoc

Networks (FANET), which are composed of flying objects,
e.g., drones, require 3D routing procedures, while RPL is a
2D approach [15]–[17].

On the other hand, in addition to significant efforts made by
the scholars for improving the performance ofmobile systems
from different aspects, in order to be able to perform simula-
tions and emulations, a number of mobility models have been
developed to mimic the motion pattern of IoT devices with
the help of formal and mathematical representation of their
actual movement in their corresponding real-world mobile
applications. According to the characteristics of these appli-
cations and their deployment environment, a moving object
under the presence of each of these models will be obliged to
perform its movement based on a set of rules and restrictions
determined by the laws of motion in that specific application.
The achievedmilestones by the researchers have significantly
enhanced the performance of mobile IoT infrastructures, spe-
cially with knowing that dynamicity and severe fluctuations
are major attributes in mobile IoT infrastructures [18].

The mobile IoT applications are mainly characterized with
relatively short and recurrent contacts between the existing
moving nodes. The presence of mobile nodes in an IoT
infrastructure leads into having less reliable links and more
packet drops in the network, which ignites critical challenges
such as topology instability and severe power consumption
in the nodes. Followed by these issues, since the RPL was
designed as a standard routing protocol for IoT, it should be
modified to be also applicable in mobile IoT applications.
In this regard, there have been several studies on proposing
mobility-aware routing policies, which are mostly based on
modification of RPL’s Objective Functions (OF) [6]. The OF
is an independent part of RPL, which is responsible for deter-
mining the optimized path selection for the nodeswith respect
to the requirements of the intended IoT application. To the
best of our knowledge, the provided OF in [19] is among
the few mobility-aware OFs, which have been introduced for
RPL. Nevertheless, based on our evaluations, there should
be lots of work done to further improve the performance of
RPL in presence of mobility. In this regard, it is essential
to have a comprehensive evaluation on the performance of
a mobility-aware version of RPL in presence of different
motion patterns in various mobility models.

In this survey, through conducting a significant set of
experiments via precise IoT simulation tools, we have com-
prehensively monitored and evaluated the performance of the
network and its IoT devices in mobile RPL-based IoT appli-
cations from different aspects to analyze the functionality of
various mobility models in the presence of a mobility-aware
version of RPL, and consequently to determine and compare
the performance of this protocol in different mobile scenarios.
We have analyzed the functionality of this routing protocol
from the most fundamental node and network related param-
eters, i.e., power consumption, reliability, latency, and control
overhead. Based on our experiments, we could also show that
due to the existing differences between the motion pattern of
the nodes in different mobility models, the performance of
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RPL could be significantly affected. Meanwhile, to be able
to justify and compare the observed results, it is essential
to deeply understand the structure of the nodes movement
in different mobility models. Accordingly, while there have
been a number of efforts on giving a survey on a number
of mobility models [20]–[25], not only neither of them has
evaluated those models in the presence of RPL, but to the
best of our knowledge, none of them has conducted any sorts
of experimental studies as part of their survey to provide
a deeper insight into the impact of different mobility mod-
els on the performance of the network in RPL-based IoT
applications.

Knowing the behavior of a mobility-aware version of RPL
in presence of different mobility models not only helps the
researchers in academia and industry to have a better under-
standing of the factors, which have caused the poor behav-
ior of RPL in mobile IoT applications, but it would pave
the way for them to design and implement more improved
application-specific RPL routing policies to further improve
the performance of RPL in their targeted mobile IoT appli-
cation. Accordingly, the outline of the contributions made by
this survey article relative to the recent literature in the field
are summarized as the following:
• Providing a comprehensive taxonomy and classification
for the mobility models and comparing them from their
major specifications point of view.

• Giving a complete explanation of the structure and func-
tionality of the nodes motion pattern in different mobil-
ity models, accompanied with their cons and pros, their
IoT application use-cases, a graphical representation of
their movement, and also their simulated trajectory in
the area.

• Conducting a broad range of experimental evaluations in
amobile RPL-based IoT infrastructure via accurate tools
and approaches to monitor and evaluate the performance
of the network and its IoT devices from different aspects
(i.e., power consumption, reliability, latency, and control
overhead), to analyze the functionality of various mobil-
ity models in the presence of a mobility-aware RPL
as a routing protocol in the network, and consequently
to determine and compare its performance in different
mobile scenarios.

• Evaluating the effect of RPL’s trickle timer [26] on the
performance of RPL and theway it could alter the impact
of mobility models on the RPL. As it will be discussed
later, the trickle algorithm has a pivotal role in handling
the amount of disseminated routing information, which
directly affects the stability and resource consumption in
the network. We will show that by even using the same
OF in the structure of RPL, with considering appropriate
values for the trickle timer, the performance of RPL
could be improved in mobile conditions.

The rest of this article is organized as follows: Section II
represents a background on RPL, and an introduction to a
number of studies on improving the RPL for mobile IoT
applications. Subsequently, with giving an introduction to

FIGURE 1. The structure of the paper.

the concept of mobility model, the existing mutual rela-
tion between RPL and mobility model will be addressed.
In Section III, a comprehensive taxonomy of the mobility
models followed by the explanation of their specifications is
provided. The related studies in the field are also addressed in
this section. A comparison of the surveyed mobility models
with focusing on the their major attributes is also represented
at the end of this section. System setup and experimental
comparison are stated in Section IV. Finally, the conclusion
and future directions are provided in Section V. The structure
of the paper is illustrated in Fig. 1.

II. PRELIMINARIES AND RESEARCH METHODOLOGY
In this section, we are going to provide the reader with
adequate information on the required concepts in our survey.
For the sake of clarification, a summary of notations that are
exploited in the paper has been presented in Table 1.

A. BACKGROUND ON THE IPv6 RPL
According to [27], there are a number of specifications that
should be taken into account for designing an appropriate
routing mechanism to comply with the existing restrictions
in IoT systems. Accordingly, a suitable routing protocol for
an IoT network must be scalable, energy efficient, reliable,
stable, and multi-hop, which is expected to be able to support
different traffic patterns in the network, e.g., P2P, Point-to-
MultiPoint (P2MP), and MutiPoint-to-Point (MP2P).

Accordingly, in 2012, IETF proposed the RPL routing
protocol to be employed in IoT applications. RPL is a
distance-vector routing mechanism, which is highly adap-
tive to the existing alterations in IoT networks in case of
having inaccessibility at the default routes. With respect to
the different layers in the architecture of IoT, RPL could
be operated on top of the link layer technologies such as
the IEEE 802.15.4 PHY and the Medium Access Control
(MAC) [6]. The nodes in RPL-based IoT infrastructures are
organized in a tree-shape manner, which is called Directed
Acyclic Graph (DAG). Based on the implementation of RPL,
every DAG in the network is capable of having one or more
sink nodes, which is the main target for receiving the trans-
mitted information by the other nodes. Meanwhile, a DAG
composed of only a single sink, is known as Destination
Oriented Directed Acyclic Graph (DODAG).
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TABLE 1. Summary of notations in the survey.

In RPL-based IoT infrastructures, the shape and construc-
tion of the DODAG, (which could be also referred to as the
topology of the network) is directly affected by the considered
routing metrics in the RPL’s OF. OF is the main contributor
for determining the path selection policies in RPL. According
to the requirements defined by the intended IoT application,
OF is responsible for providing the optimized routing paths to
fulfil those requirements. In an RPL-based IoT infrastructure,
there exists one or more number of RPL instances with each
having a unique identification number (RPLInstance_ID). Every
one of the instances could have their own specific set of met-
rics and routing policies independent from the neighbouring
instances. These RPL instances are usually composed of one
or more number of DODAGs. In case of having DAGs in the
network, RPL tries to split them into several DODAGs and
consequently assigns a DODAGID to each of them, so they
could be distinguished in the RPL instance. Meanwhile, the
sink is able to enforce the DODAGs to rebuild themselves due
to factors such as occurrence of inconsistency in the network.
Accordingly, every time that the DODAG is being rebuilt,
a DODAGVersion_Number will be assigned to it by the sink
in an incremental manner. Finally, By having the tuple of

(RPLInstance_ID, DODAGID, and DODAGVersion_Number), the
exact version of a specificDODAGcould be recognized in the
RPL instance. In order to make all of the mentioned features
of RPL functional, four types of Internet Control Message
Protocol (ICMPv6) messages have been embedded in the
structure of RPL.

The first and the most important control message in the
body of RPL is the DODAG Information Object (DIO).
Generally speaking, the DIO’s duty is to initiate the con-
struction of the DODAG and then to maintain it through the
time. In this regard, in the first stage, the sink broadcasts
the essential routing information, e.g., routing metrics, min-
imum rank, trickle timer parameters, the RPL identification
numbers, along with the employed OF, via the DIO message
to its neighbours. With the reception of these information
by any of the sink’s neighbouring nodes (and subsequently
the other existing nodes in the area), the nodes would be
able to discover and join an RPL instance, select, place or
replace a set of nodes in their candidate parent list, and finally
choose the best candidate as their preferred parent. Basically,
the main responsibility for maintaining the DODAG is upon
the DIO messages. There are two sections in the body of
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DIO messages, where a major portion of these information
has been embedded, i.e., the DAG Metric Container and the
DODAG Configuration Option. In RPL-based IoT networks,
every node has been assigned with a rank, which approxi-
mates its distance to the sink node. This distance could be
determined physically (based on the hop-count) or based
on the node or link metrics such as the remaining battery
energy, Expected Transmission Count (ETX), or any other
pre-defined metrics in the OF. With receiving a DIO, the
nodes would be able to calculate their ranks by increasing the
rank of their preferred parent monotonically. Subsequently,
the node propagates all of its updated routing information
along with its calculated rank to the existing nodes in its
transmission range and this procedure iterates for all of the
nodes until the DODAG is being created.

As it was mentioned earlier, the resource restrictions in
IoT devices are very intense. Therefore, in order to mitigate
the amount of control packet dissemination by the nodes in
the network (which results in less transceiver activity and
lower power consumption), the DIO messages are broad-
casted with an exponentially increasing interval defined by
the trickle algorithm [26]. This issue also applies to other
existing control messages in the RPL until the DODAG
reaches a stable status. According to this algorithm, the initial
time interval between two consecutive control packets is set
to (Imin = 4ms), which it will be exponentially increased
with every transmission. When the interval begins, the trickle
resets its counter (c) to zero and then specifies a random value
based on the current interval value (I ) between [I/2, I ] for
the transmission. After receiving a packet, trickle increase c
monotonically, and then if it detects that c has got bigger than
a constant value k , it prohibits the transmission of the new
packet; otherwise the packet will be transmitted. Each time
that the I expires, it will be doubled in size until it reaches
the maximum possible value Imax , where the time interval
will be maintained constantly. In case of occurrence of any
inconsistencies, the value of I will be reset to Imin, and the
control packets will be sent with the initial high frequency to
bring back the stability to the DODAG as soon as possible [6].

Another existing control message in the structure of RPL
is the Destination Information Solicitation (DIS), which is
being utilized for those nodes, who want to become amember
of a DODAG. Accordingly, the new-coming node (or the
node, which has been disconnected from the DODAG and
desires to connect again) will broadcast its DIS message to its
neighbours, and waits for a probable DIO reply from at least
one of them to be informed about the required information
for joining the DODAG. Any node, who receives the DIS
message, will send a DIOmessage back to the soliciting node
in a unicast manner to provide it with the required routing
information. Consequently, the soliciting node would be able
to choose its preferred parent according to the provided infor-
mation in the DIO messages from the neighbouring nodes.

The DIO and DIS messages are mainly designed for estab-
lishing the upward routing (a route from non-sink nodes to
the sink), which leads into creation of MP2P traffic flows.

FIGURE 2. The structure of RPL protocol.

In order to provide downward routing in RPL (mainly for
P2MP and P2P traffic patterns), another control packet has
been also considered in the structure of RPL. This control
packet, which is responsible for providing the downward
flows is known as the Destination Advertisement Object
(DAO). Whether the intermediate nodes are allowed to keep
the destinations routing information (carried via the DAO
messages) in their memories or not, two Modes of Oper-
ation (MoP) have been defined in the RPL respectively:
1) Storing, and 2) Non-storing. Furthermore, upon an explicit
request from the transmitting node or occurrence of an error,
an acknowledge packet will be sent from the receiver side
through a Destination Advertisement Object Acknowledge-
ment (DAO-ACK) message back to the sender. The structure
of RPL has been illustrated in Fig. 2.

While RPL was initially developed to be adopted by sta-
tionary lossy networks to provide higher reliability (PDR),
and more power-efficient communications, the default OFs
in the standard version of RPL, i.e., Objective Function Zero
(OF0) [28] and theMinimumRankwith Hysteresis Objective
Function (MRHOF) [29], could not be employed in mobile
IoT applications due to their poor behaviour in facing with
the dynamic movement of the nodes [27]. Accordingly, there
have been several studies on providing mobility-aware ver-
sions of RPL for mobile IoT applications. Nevertheless, the
design, implementation, and employment of more compre-
hensive mobile OFs and routing metrics, is still an open
research area, and it is in its early stages [19], [30]–[36].
Meanwhile, to the best of our knowledge, the proposed OF
in [19], could be recognized as one of the most appropriate
available mobility-aware OFs, which could be employed in
mobile IoT applications. This newly defined OF introduces
a novel mobility-aware and energy-efficient parent selection
procedure. The authors have claimed that their proposed OF
could overcome its previous mobile RPL extensions in terms
of energy efficiency, End-to-End (E2E) delay and reliability
(in terms of Packet Delivery Ratio). In this regard, it has
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been selected as the RPL’s OF in this survey for conducting
our comprehensive experiments, and it will be named as the
Mobility-Aware OF (MAOF) in the rest of this article.

B. MOBILITY MODEL AND ITS RELATION WITH RPL
IoT is a multi-disciplinary paradigm, which embraces a rela-
tively broad range of mobile networks, e.g., Mobile Ad-hoc
Networks (MANET), Flying Ad-hoc Networks (FANET), and
vehicular Ad-hoc Networks (VANET). Implementation of
these applications in real-life has made the humans daily
activities much more smarter. For instance, the emerging
smart connected bicycles, e.g., Deutsche Bahn Connect
GmbH [37], Nextbike Berlin [38], and shared electrical scoot-
ers such as Voi with more than 4 million scooters operating
across Europe [39], are making cities free from congestion,
noise and pollution. Furthermore, smart connected vehicles
such as the Multi-Car Collision Avoidance Project (MuCCA),
which has implemented the next-generation driver aid that
aims to avoid multi-car collisions on motorways [40], or the
deployment of more than 1200 Intel R© shooting star drones in
the opening ceremony of the Pyeongchang winter Olympic
games [41], [42].

MANET has become a crucial element in forming the
infrastructure of IoT and smart city applications [43]. These
networks are typically composed of moving entities such
as mobile phones, vehicles, and drones with similar spec-
ifications such as supporting movable resource-constrained
embedded devices, self-organized communication, employ-
ing mobility models, and cooperation between the nodes
without a centralized infrastructure [44], [45]. Nevertheless,
since FANET is considered as a subset of VANET, and
VANET is a subset of MANET [46]–[48], there exists sev-
eral factors, which distinguishes these systems from each
other, e.g., movement pattern, mobility degree, speed varia-
tion, space dimension, number of deployed nodes, scale of
the network, nodes transmission range, structure of anten-
nas, physical layer behavior, Line of Sight (LoS), energy
and computational power, link stability, localization, latency,
packet loss, control signaling overhead, path predictability,
andQuality of Service (QoS). The interested reader is referred
to [45], [46], [49]–[52] for gettingmore information about the
exact values and specifications of the mentioned aspects in
these networks. Accordingly, in order to be able to employ
any routing mechanism, e.g., RPL in different networks,
it should be appropriately tuned based on the intended IoT
infrastructure; for instance some believe that the existing
requirements in FANETs prevent the employment of tra-
ditional MANET and VANET routing techniques in their
infrastructure and these systems must use their own set of
dedicated routing procedures [17], [53], while others believe
due to lack of appropriate routing mechanisms, FANETs are
still dependent on the existing routing protocols forMANETs
and VANETs [54], [55].

In these systems, a moving entity is referred to those
objects with frequent disconnection and connections to their
attachment point due to their commitment to the laws of

motion in physics. There are numerous factors for an entity
to become mobile. An object could be displaced based on its
instincts, intelligence (in an intentional manner), responsibil-
ity for executing tasks that is instructed for, or due to natural
forces, such as wind and water. Existence of mobile objects
in IoT infrastructures not only causes significant challenges
in the network, but even it may lead into violation of the main
principles of IoT devices such as their resource-constrained
nature. The frequent disconnection of the nodes from the
network, occurrence of abundant or sparse spots in the area,
contention, link quality fluctuations, and low PDR in the net-
work are among the few challenges that mobile IoT networks
are facing. In addition, due to necessity of frequent handover
procedures in the mobile networks, their stability is under
threat, which would impose high control packet overhead to
the network for re-establishing the connections. This not only
increases the End-to-End (E2E) delay, but it would impose
more transceiver activity to the nodes, which leads into their
higher power consumption and lower longevity of the entire
network. Whether a node has been disconnected from the
network and aims to select a new parent, or whether it is
a completely new node, who wants to be a member of the
DODAG, this requires the propagation of control packets,
e.g., DIO and DIS, in the network to provide this opportunity
for the nodes and their neighbours to be aware of each other.
The frequent occurrence of this process imposes more power
consumption and latency to the network. Generally speaking,
it is a common place to have inconsistencies in mobile IoT
networks, which results in resetting the trickle timer in the
nodes to disseminate more number of control packets to bring
back the stability to the network.

Therefore, routing related issues such as, mobility-aware
parent selection, handover procedures, and proposing appro-
priate OFs have become very important in mobile IoT appli-
cations. Proposing an appropriate routing protocol for mobile
IoT applications would increase the overall connectivity
period between the nodes and the DODAG, the stability
of the network, and PDR. Furthermore, it could reduce the
control packet overhead due to fewer parent switches in the
network, the E2E delay, and also the amount of consumed
energy by the nodes due to less packet re-transmissions and
lower control packet transmissions. In addition, the resource
restrictions in the mobile nodes limits the employment of
robust cryptography routing mechanisms as they impose sig-
nificant computation overhead for providing security. This
is despite the fact that security is known as one of the most
critical challenges in IoT applications, and the mobility of the
nodes intensifies this issue. Although RPL has been equipped
with several built-in security mechanisms [6], its reliability
is far from what is expected for secure mobile IoT applica-
tions such as VANETs and health-care monitoring systems
[56], [57]. Therefore, researchers have recently focused on
proposing mobile extensions of RPL to improve the security
of the network against abnormal behavior of the devices,
which exhibit an egoistic conduct, selective forwarding, con-
trol message tampering attacks, e.g., black-hole attack [58],
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Denial of Service (DoS), man in the middle, version number
attacks, DIS attack, spoofing, gray-hole attack, replay attack,
sink hole, worm hole, and Sybil attacks [57], [59]–[62].
A more interested reader is referred to [62], [63] for getting
more information about the explanation of each of these
threats. Nevertheless, while the standard version of RPL
was mainly designed for stationary IoT applications, even
its mobility-aware extensions behave weak from the men-
tioned aspects in confronting mobile IoT infrastructures [27].
Hence, it is essential to have a deep evaluation on the per-
formance of this protocol in presence of mobility in IoT
networks to pave the way for scholars to design, implement,
and propose more improved mobility-aware versions of RPL
to be adopted by different mobile IoT applications.

Prior to designing new versions of efficient mobility-aware
RPL extensions, we need to improve our knowledge of intrin-
sic aspects of different mobility models. This will provide the
opportunity for us to propose appropriate routing metrics in
the structure of RPL to be adopted by the intended mobile
IoT applications. The first step towards the understanding of
different mobility models is to get familiar with an expres-
sion known as mobility pattern. Mobility pattern is referred
to the actual movement behaviour of the moving objects
in the environment. This behaviour is being identified via
several factors such as the velocity, the distance between the
stopping points, the individual or group based movements,
selection of destinations, obstacles, impediments, and the
existing restrictions in the motion. Mobility patterns are the
main influential factor on the performance of mobile IoT
networks. Accordingly, the termmobility model is referred to
the formal andmathematical representation form of a specific
mobility pattern. In recent years, there have beenmany efforts
on introducing new forms of mobility models to evaluate
different network communication aspects such as routing,
medium access control mechanisms, handover techniques,
neighbour discovery methods, and service discovery. Under
different mobility models, the nodes would move differently
based on the structure and algorithm of that specific model.
Therefore, the routing protocols would act differently under
the presence of different mobility models. Thus, this article
tries to first survey the most important mobility models from
every angle and then to provide a deep evaluation on the
performance of RPL in presence of each of them.

III. MOBILITY MODELS
A detailed taxonomy of the existing mobility models has
been illustrated in Fig. 3. This figure not only clarifies
the different types of existing mobility models, but it also
specifies the currently-under-study applications in each class
along with their most important related models. Based on
the provided information by this figure, the mobility mod-
els could be broadly classified into two major variations:
1) Sink-based models, and 2) Non-Sink-based models. The
sink-based mobility models are referred to those mobility
models, which are specifically designed for modeling the
movement behaviour of the sink node among the other

existing nodes in the network [64]. For instance, assume
a base station or an access point, which is placed on a
moving vehicle to establish connections between the smart
self-driven vehicles in a highway. One of the positive aspects
of employing mobile sinks specially in sparse RPL-based
IoT infrastructures is to eliminate the energy hole problem
and consequently to improve the life-time of the network.
It is worthy to mention that the nodes with lower ranks
in RPL-based networks (higher levels in the DODAG tree)
would have more amounts of transceiver activity due to being
responsible for forwarding more portion of the underlying
packets towards the sink. This issue has made these nodes
more prone to energy hole problem. Hence, by moving the
sink between all the other nodes in the network, everyone
of them will have this opportunity to accomplish their duty
in forwarding packets towards the sink for a period of time,
which will distribute the transceiving stress among all of the
nodes. Nevertheless, in IoT networks with mobile sinks, the
packet loss is relatively high, and in case of employing RPL
as the underlying routing procedure in the network, due to the
frequent reset of the DODAG, high amounts of control packet
must be disseminated by the nodes [65]. Therefore, in many
IoT applications, the sinks are assumed to be stationary with-
out any movement and the other nodes will have movement
based on the non-sink-based mobility models [22]. In this
regard, we have concentrated our study on non-sink-based
mobility models.

The non sink-based mobility models are generally cate-
gorized into two classes: 1) Trace-based, and 2) Synthetic.
In trace-based models, the movement behaviour of the exist-
ing nodes in the mobile network is being determined through
extensive data collection from enormous amount of moving
objects in real-world applications. In order to collect the
required information, a relatively large number of users with
appropriate location-based gadgets, e.g., smartphones, smart
tracking bands and smart watches, must be deployed in a large
area to gather valuable information regarding their movement
behaviour, e.g., the exact location of the visited places, the
way that the object is moving, speed of the motion, and
acceleration. Subsequently, these information will be sent
to a warehouse to be processed and analyzed, so the type
of the mobility could be determined. This process will pro-
vide this opportunity for designing and proposing trace-based
mobility models. The high precision of the movements and
their compliance with real-world applications (in case that
a sufficient amount of data has been collected) are the two
major advantages of this type of mobility models. Neverthe-
less, due to necessity of employing users for data collection,
trace-based models are believed as an impractical option in
dense and wider IoT applications with large number of nodes
(specifically, if there is not any supporting organizations or
previously launched open projects to provide the required
movement data). Trace-based models are applicable in rel-
atively small areas such as campuses, zoo, and exhibitions.
In addition, in order to obtain a detailed model with high
precision, a long time should be devoted (nearly 1 year) for
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FIGURE 3. A general taxonomy for the mobility models, their applications and a number of corresponding applicable mobility models in
each class.

data collection [25]. This is the reason that we believe that
trace-based mobility models are not an appropriate option for
IoT simulations and therefore we have not considered this
type of models in our study to pay more attention to synthetic
models. Nevertheless, for thosewho are eager to employ vehi-
cle trace-based data in their studies, an open-source, flexible,
European-scale project known as MONROE was introduced
in [66], which provides an opportunity for extracting real
mobility traces from 3G/4G Mobile Broadband (MBB), and
WiFi networks [35]. The database of this project includes
accurate, realistic and meaningful traces for the movement
of vehicles, e.g., buses, trains and tracks across Europe.

In contrast with trace-based models, the synthetic mobil-
ity models try to simulate the movement behaviour of the
mobile objects based on mathematical functions, algorithms,
and physics of motion. These simplified models provide less
precision against their trace-based counterpart, but they pro-
vide more flexibility and they could be easily adjusted with
different types of scenarios and IoT applications. Due to the

mentioned aspects, there is much more desire towards the
synthetic mobility models against trace-based models. The
authors in [25] have made a study on a number of synthetic
mobility models in Opportunistic Networks (OPPNet).

The synthetic models themselves have two sub-classes:
1) Entity mobility models, and 2) Group-basedmobility mod-
els. In the first category, each individual node is responsible
for determining its own movement behaviour without being
influenced by the movement of other existing nodes or even
tending to affect theirs. This is despite the fact that in the
group-based models, the movement behaviour of a node is
affected (whether restricted or guided) by the other nodes.
In group-based mobility models, the nodes move in groups
and typically in form of clusters. In order to get into more
detail, the entity models have two sub-categories: 1) Human-
basedmodels, and 2) Object-basedmodels. The human-based
mobility models are referred to those models, where the
movement of the nodes are completely inspired by the prin-
ciples of the human movement activities. These models have
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two variations: 1) Macroscopic, and 2)Microscopic [64]. The
macroscopic human models are able to simulate monotonic
tasks, which are being accomplished by humans in their daily
life. For instance, they typically act as the same way for
traveling to work during the week, whether they walk, drive
or use public transportation. As their name would suggest,
in macroscopic models, the nodes tend to represent a more
general picture of human movement without focusing on
details. The Truncated Levy Walk [67] is one of the most
well-knownmacroscopicmobilitymodels. On the other hand,
the aim of microscopic models is to simulate the way that
the humans interact with their surrounding environment and
social community. These models tend to provide a more
clear picture on the human’s movement behaviour in their
current location, whether it’s their home, office, or outside
on the street, park, bus stations, airports and other popu-
lated areas. A number of human-based mobility models have
been surveyed in [68], and [69] respectively. Meanwhile,
the Self-similar List Action Walk [70], Smooth [71], Small
World In Motion [72], andMap-based SLAW [73] are among
the most famous members of the microscopic human-based
mobility models.

In the mentioned classes (group-based and human-based),
the nodes can either accidentally move in the area with
having random attributes in their movement behaviour, e.g.,
direction, next destination, and velocity, or they could select
their movement pattern according to a purposeful principle
to create an intentional motion. With respect to this issue,
in order to remove complications in Fig. 3, the accidental and
intentional models have been placed under the object-based
mobility models, which are generally proposed to model
movements of things (while they could still employ human
or group-based models). Accordingly, in accidental mobility
models, the nodes can move freely in the area without being
restricted by any limitations. According to Fig. 3, Random
Waypoint [74], Random Direction [75], Random Walk [76],
Truncated Levy Walk [67], and Steady-State Random Way-
point [77] are known as the most important members of this
category. Unlike accidental mobility models, in intentional
models, the movement of the nodes is restricted by means of
a number of factors such as geographical constraints or the
movements of the other nodes, e.g., the speed of a vehicle
in a street could not exceed the speed of the following car.
According to Fig. 3, the intentional mobility models could be
classified into three major variations:
1) Mobility models with temporal dependency: In this

type of models, the movement behaviour of the mobile
objects is under the influence of physics regulations.
The main feature of temporal models, is the dependency
between different movement attributes to their historical
states. For instance, the angle of movement, or the speed
of motion in the following acts would be dependent
on their previous values. Furthermore, in this group
of mobility models, the parameters of motion could
be calculated based on the past choices made by that
specific node. Gauss-Markov [78], Boundless Area [79],

Smooth [71], andDisaster Area [80]mobilitymodels are
believed as temporal.

2) Mobility models with spatial dependency: As their name
would suggest, in this group of mobility models, the
future coordinates of the nodes location directly depends
on their current status. This relation could be determined
based on a probabilistic equation. Typically, themobility
models in which the nodes move in groups, could be
placed in this class [20]. A number of important models,
which are placed in this category are pursue [81], Refer-
ence Point Group [82], Nomadic Community [81], and
column [81].

3) Mobility models with geographical restrictions: The
geographically dependent mobility models are referred
to those models, where the movement of the objects is
confined by maps, borders, and obstacles. These restric-
tions could be established by determination of walls,
fences, buildings, impediments or even the hypothetical
lines on the streets.Map-based Self-similar Least Action
Walk [73], Tactical Indoor [83], Disaster Area [80], Ran-
dom Street [84], and Manhattan [85] mobility models
are a number of well-known models with geographical
restrictions.

It should be mentioned that independent from the type of
the model, the nodes could have a continuous motion along
their way towards their final destination without having any
stops in the middle (which it’s called pause time), or they
could pause for a while after some amount of time to simulate
the required time for executing a number of tasks when reach-
ing a point, and then continue their journey towards their final
destination. The models, which exploit pause time in their
structure are also known as intermittent mobility models.

A. RELATED STUDIES
Due to the critical impact of mobility models on the func-
tionality, performance and the topology of the networks, their
evaluation has been an attractive area of research for analyz-
ing different aspects of communications such as routing, and
resource sharing in presence of mobility in IoT and WSN
infrastructures. Furthermore, a group of studies try to specif-
ically focus on the topic of mobility itself and either survey
a number of models or even try to propose novel models
to be adopted by their intended applications. Accordingly,
there has been a research on studying mobility models in
Flying Ad-hoc Networks (FANET) [20]. In a relative study,
the authors in [24] have claimed that due to lack of a compre-
hensive taxonomy for mobility models in the literature, they
have came up with a survey study on a number of mobility
models to pave the way for researchers to propose their new
models with more ease and transparency. In this regard, the
authors have studied a number of models, which are being
used in the simulation ofMobile Ad-hocNetworks (MANET).
The authors in this article have claimed that their study can
help the reader to select a more appropriate model for his/her
study, but due to low number of studied mobility models, this
claim could not be realistic and their comparisonwould not be
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comprehensive and precise. A number of applicable mobility
models in Air-born Networks is studied in [21]. The authors
of this article have indicated that due to the direct impact
of mobility models on the performance of such networks,
they have been motivated to study a number of models from
their adaptability and also their ability in representing the
main characteristics of Air-born networks perspective. The
group-based mobility models were also surveyed in [23] and
a dedicated classification has been proposed for them in a
comprehensive manner.

In mobile infrastructures, the shape of the topology is
a dynamic attribute and it could be changed from time to
time. This issue would challenge any type of routing mech-
anisms in such networks. Accordingly, the authors in [25]
have indicated that the performance of Mobile Opportunistic
Networks (MON) is severely affected by the mobility of
the nodes. Hence, they have studied a number of mobility
models in presence of different routing algorithms in MON
networks. Unfortunately, the authors have not conducted any
experimental evaluations to provide a more clear picture on
the performance of the MON networks with the coexistence
of routing challenges and different mobility models. Never-
theless, while there have been a number of efforts on eval-
uating few common WSN routing algorithms, e.g., Ad-hoc
on Demand Distance Vector (AODV) [86], Dynamic Source
Routing (DSR) [74], Dynamic MANET on demand (DYMO)
[87], Optimized Link State Routing Algorithm (OLSR) [88],
Destination Sequenced Distance Vector (DSDV) [89], and
Lightweight On-demand Ad-hoc Distance-vector Routing
Protocol-Next Generation (LOADng) [90] in presence of
a few number of mobility models (mainly Random Way-
point and Reference Point Group) [24], [91], [92], and [93];
But the existing research on evaluating the functionality of
RPL-based IoT infrastructures in presence of mobility is in
its early stages.

In this regard, the authors in [27] along with proposing a
new version of the RandomWaypoint mobility model (which
is called Random Waypoint with Angle View (RWAV)), have
shown the severe weakness of RPL in case of having RWAV
mobile nodes in IoT infrastructures, by comparing RPL’s
performance in stationary and mobile scenarios. The authors
in [94] have evaluated the functionality of RPL in presence
of a number of entity and group-based mobility models. In a
related study, the Manhattan, Gauss-Markov, and Random
Waypoint models were analyzed in an RPL based network
from several Quality of Service (QoS) parameters point of
view [95]. Furthermore, there exists a number of studies,
which have tried to enhance the original version of RPL
and introduce a mobile-aware version of this protocol by
modifying its structure or by introducing appropriate OFs
[19], [30], [31], [33]–[36], [96]–[100]. The authors in [73]
have compared a number of mobile extensions of RPL in
presence of RWP model. An interested reader could also
find more detailed information on a number of well-known
mobility-aware extensions to the RPL in [101]. Aside from
all of the mentioned studies, there is a lack of comprehensive

study on the performance of RPL in different mobile
scenarios.

B. DESCRIPTION OF THE MODELS
To the best of our knowledge, neither of the previously pub-
lished papers have either completely studied all of the aspects
of the contemporary mobility models or conducted a set of
comprehensive experiments on the performance of RPL in
presence of each of them. Therefore, in this section, we first
explain the mobility models, then we compare all of them
in terms of their main attributes in a comprehensive table in
Section III.C. It should be mentioned that in this section, the
trajectories of the nodes in every one of the mobility models
have been obtained through the conducted experimental sim-
ulations, which have been described in detail in section IV.

1) RANDOM WAY POINT MOBILITY MODEL (RWP) [74]
RWP is an entitymobilitymodel, whichwas proposed in [74].
This model is being extensively used in the evaluation of
Mobile Ad-hoc Network (MANET) routing protocols, e.g.,
RPL, mainly due to its simplicity and ease of implementation
[76]. The existing studies have shown that the RWP could
provide an opportunistic routing performance among the
other available random mobility models due to its support of
long walking lengths. This feature enables the mobile nodes
to reach farther end-points and meet more number of nodes
through their journey, which would enhance the probability
of reaching their destinations [102]. This mobility model
consists of periods of random motion, each followed by a
pause time. Accordingly, in the RWPmobility model, at first,
each node chooses a random destination in the simulation
area and heads towards it with a velocity chosen uniformly
from an interval. After arriving at the intended destination, the
mobile node pauses there for a given period of time, before
proceeding to a new destination. The above process carries
on until the end of simulation time.

Along with its strong points, the RWP mobility model
is facing with several downsides. RWP is a memory-less
mobility model, which implies that the next values of direc-
tion and velocity are set randomly, i.e., the future values of
direction and velocity are totally independent of the previous
values. Due to its memory-less nature, sharp turns can occur
frequently, which results in unrealistic mobility patterns.
In addition, Since there is no relation between the current and
previous values of speed, the slowdown in velocity cannot
be modeled using RWP. Consequently, upon reaching the
destination, the mobile node stops suddenly and becomes
motionless. This type of behavior may hardly happen in a
real-world scenario. Normally, the moving objects have a
smooth transition from their current state of motion to the
stationary state.

In the RWP, the nodes are uniformly distributed in the
simulation area at the beginning of the simulation. How-
ever, as the simulation advances, the nodes are inclined to
accumulate around the center of the simulation area. This
phenomenon, which is called the border effect was observed
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in [103], and [104]. In many mobility models, the mobile
node chooses a random direction and continues traveling in
that direction for a certain distance or time interval. In RWP,
on the other hand, the node chooses a random position and
starts moving towards the new position in a straight line.
Even if the chosen destination is not placed near the center,
it is likely that the straight line, which connects the current
position of the node to the next destination, crosses the center
of the simulation area. Therefore, in every time slice, the
majority of the nodes that are either passing through the
middle or have chosen a central point as their next destination,
would be spotted near the center.

As it has been indicated in [105], the spatial distribution
of the nodes and thus the intensity of the border effect is
highly influenced by the selection of RWP parameters. The
node’s spatial distribution in RWP consists of a uniform
and a nonuniform component. For longer pause times, the
uniform component outweighs the nonuniform component,
and hence diminishes the border effect. As the pause times
become shorter, the nonuniform component preponderates,
and therefore, the border effect will become more apparent.
Furthermore, the velocity of the nodes can also impact the
border effect. In general, higher velocities lead to a less
transparent border effect. However, the impact of pause times
on the spatial distribution of the nodes is far more signif-
icant compared to that of velocity. It should be noted that
the border effect should be taken into consideration when
performing the simulations. In case of RPL, the sink nodes
should have a higher density near the center since the nodes
are accumulated around the middle of the simulation area.
Otherwise, the residual energy of the central roots will soon
fall below the critical threshold, and the energy hole problem
will occur [106].

Another phenomenon, which is highly correlated with the
border effect is called the density waves. Authors in [107]
have observed that the number of neighbors for each node
fluctuates considerably over time. As mentioned before, dur-
ing each time period, there is a high probability that each
node passes through the middle of the simulation area. When
a node is traveling towards the center, where there is a higher
density of nodes, the number of node’s neighbors gradu-
ally increases. As the node passes by the center and moves
towards the boundaries, the number of neighbors decreases
again. Therefore, the nodes continue converging at the center
of the simulation area and then diverging periodically, which
leads into creation of density waves. The trajectory of the
mobile nodes moving based on the RWP principles has been
illustrated in Fig. 4, and the most important specifications of
this model have been indicated in Table. 2.

2) RANDOM DIRECTION MOBILITY MODEL (RDM) [75]
The Random Direction mobility model was proposed in [75],
and [107] to ameliorate the effect of density waves and main-
tain a near-constant number of neighbors per node throughout
the simulation time. This mobility model was developed to
address the non-uniform distribution of the mobile nodes in

FIGURE 4. Trajectory of the nodes in RWP.

TABLE 2. An overview on the specifications of RWP.

RWP [108]. In RDM model, the nodes initially choose a
random direction along with a random speed. Afterwards, the
node starts moving in the new direction with the chosen speed
until it reaches the boundary. Once the node arrives at the
border of the simulation area, it pauses there for a given period
of time. The new direction and speed will then be chosen
and the above process will be repeated. Generally speaking,
the behavior of the Random Direction mobility model in
case of mobile nodes reaching the boundaries, is one of its
major challenges. This problemwas addressed in a number of
studies such as the Random Direction with Reflection [109],
and Random Direction with Wrap Around [110].

In the RDM model, since nodes choose a random direc-
tion rather than a random position and they pause at the
boundaries, the problem of nodes accumulating at the center
of the simulation area has been resolved. As a result, the
nodes are distributed more uniformly over the simulation
area throughout the time. Nevertheless, the authors in [107]
have tried to provide a more flexible version of the Random
Direction mobility model, which does not forces the nodes
to reach the borders in order to select a new direction, and
they can feel free to change their direction anywhere along
their movement [25]. With all of the positive aspects of
this model, the problem of sharp turns and sudden stops
still persists as the new values of speed and direction are
completely independent of the previous values. Moreover,
the Random Direction along with the RWP mobility mod-
els cannot properly reflect the human movements and they
fundamentally could provide homogeneous or limited user
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FIGURE 5. Trajectory of the nodes in RDM.

TABLE 3. An overview on the specifications of RDM.

densities. Hence, authors in [111], came up with a more
realistic version of Random Direction mobility model, which
is able to provide non-homogeneous movement patterns.
According to the provided information in [111], this ability
has been made possible by partitioning the simulation area
into several regions with no overlap. In this extended version
of RandomDirection model, the motion pattern of the mobile
nodes in every region is configured independently compared
with the other regions. One of the major drawbacks of the
Random Direction and RWP mobility models is the Average
Speed Decay Problem (ASDP), which refers to the tendency
of the nodes to reduce their velocity during their movement
[108]. This issue was studied and resolved in the future gen-
erations of the mobility models such as Multi-Group Coor-
dination (MGCM), and Smooth mobility models [71], [112].
The trajectory of the mobile nodes in RDM is represented in
Fig. 5, and the major specifications of this model have been
presented in Table. 3.

3) RANDOM WALK MODEL (RWM) [76]
Another mobility model, which is quite similar to RWP is
the RWMmobility model. This model was first developed by
Einstein in 1926 with the aim of simulating the unpredictable
behavior of natural entities in physics [76]. The distinction
point between RWM and RWP is that the pause times are
excluded in the RWM mobility model. In the initialization
phase of this model, each of the nodes choose a random
direction, and they will be assigned with a random velocity,
which is uniformly selected from an interval. Subsequently,
each node starts to travel in the selected direction with the

FIGURE 6. Trajectory of the nodes in RWM.

TABLE 4. An overview on the specifications of RWM.

chosen velocity for a specified distance or in a time interval.
Afterwards, the new values of velocity and direction will be
calculated for each node after the expiration of the deter-
mined time interval or in case of completion of traversing
the specified distance. It should be mentioned that in case of
reaching the boundaries of the simulation area, the nodes will
be reflected [113].

RWM is a simple and resource-efficient mobility model,
which has been widely employed in wireless ad-hoc networks
and IoT infrastructures. Since RWM mobility model is con-
sidered as a subset of memory-less models, as it was men-
tioned earlier, the mobile nodes are prone to sudden changes
of direction in their movement patterns. These sudden turns
as well as the absence of a specific destination and the lack
of pause times are the main reasons for why human mobility
patterns cannot be modeled with RWM [114]. The movement
trajectory of the nodes under the presence of RWM has been
depicted in Fig. 6. A number of RWM’s features have been
indicated in Table. 4.

4) MARKOVIAN RANDOM WALK (MRW) [115]
Markovian Random Walk (MRW) or Probabilistic Random
Walk (PRW) is a modified version of the Random Walk
mobility model, which is originally utilized in multi-hop
mobile wireless networks to measure the performance of the
multi-cast protocols [115]. This mobility model is considered
as a non independent and identically distributed (non i.i.d)
mobilitymodel, which has been constructed based onMarkov
chains. The term i.i.d refers to those mobility models with a
cellular environment composed of N cells, where each of the
mobile nodes are uniformly placed in one of these cells at
time t0; then, they select another cell at t1 in a randommanner
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FIGURE 7. Movement structure of the nodes in MRW model.

and independent from the other nodes with probability (1/N ).
Consequently, the node moves towards that cell to stay in it
for a time slot and repeats the selection procedure at the end
of that period [116]. Accordingly, the employment of i.i.d
mobilitymodels could severely alter the shape of the topology
in IoT and wireless networks in every time slot [117]. Hence,
the stationary-based routing protocols, e.g., the original RPL,
should be fundamentally modified to be applicable in such
scenarios.

As it has been depicted in Fig. 7, in the MRW mobility
model, based on the utilized 3-state Markov chains in every
axis, the nodes can move forward, backward or they could
keep their current position. In this model, the nodes can move
towards an adjacent cell with different probabilities. It is
worthy to mention that a restricted version of this mobility
model has been proposed in [118], which declares specific
probability values for the transitions. In case of reaching
the target neighborhood, the mobile device selects a random
position within the cell and tries to move towards it according
to the RWM principles [119]. Since it is less probable for
real-world objects to suddenly turn around, especially during
small time intervals, in MRW model, in case of moving for-
ward or backward, the mobile nodes tend to continue moving
in their previous direction with a higher probability.

Based on the principles ofMRW, the nodes have to become
stationary for only one time slot, before changing their direc-
tion. Furthermore, as it has been illustrated in the trajectory
pattern of the mobile nodes following the MRW (Fig. 8),
this issue has disabled the nodes to have a straight path
for more than a time slot. In other words, the trajectory
of the nodes in MRW is mainly consists of diagonal lines.
Therefore, the authors in [120] have proposed an extended
version of this mobility model (Simple Individual Mobility
Markovian (SIMM)), which enables the nodes to stay in the
same cell, even after a single time slot. In MRWmodel, since
the movement of the nodes is based on a probability matrix
with adjustable parameters rather than a uniform distribution,
it could be better adopted to different network scenarios com-
pared with the original Random Walk mobility model [113].
However, estimating the appropriate values for the transition
probabilities to achieve a realistic outcome might be difficult
and may require a large data set of real mobility traces [76].

FIGURE 8. Trajectory of the nodes in MRW.

TABLE 5. An overview on the specifications of MRW.

It is worthy to mention that the MRW mobility model has
recently gained attention in modeling mobile devices in edge
and cloud computing applications [121]. For instance, the
authors in [122] have utilizedMRWmobility model for smart
city fog-based applications. A number of MRW’s specifica-
tions have been represented in Table. 5.

5) GAUSS-MARKOV MOBILITY MODEL (GMM) [78]
The Gauss-Markov mobility model was initially proposed
to model mobile Personal Communications Service (PCS)
networks, but later it was widely exploited in ad-hoc network
protocols [78]. Gauss-Markov is a memory-based mobility
model, i.e., the speed and direction of the nodes in the current
time interval are dependent on the values of the previous
time interval. In this model, the values of speed and direction
are updated periodically after the expiration of a fixed time
interval. In this mobility model, the level of randomness is
configurable and it could be tuned by using a parameter,
which is represented by α ranging from 0 to 1. For higher
values of α, the mobile nodes would have more tendency to
retain their current state of motion, whereas the nodes will
move more randomly for values of α closer to zero. Hence,
there will be a higher degree of temporal dependency for
greater values of α. In case of reaching the boundaries of the
simulation area, the mobile nodes are forced to change their
direction away from the borders.

In the Gauss-Markov mobility model, the occurrence of
sharp turns and sudden stops can be avoided by setting the
value of α to a proper value. For smaller values of α, sharp
turns and sudden stops occur more frequently, while as α
becomes closer to one, the above mentioned problem will be
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FIGURE 9. Trajectory of the nodes in GMM.

TABLE 6. An overview on the specifications of GMM.

FIGURE 10. The shape of the simulation area in BSA.

gradually alleviated. Therefore, the Gauss-Markov mobility
model can provide more realistic movement scenarios com-
pared to random mobility models such as Random Walk and
Random Waypoint. An Enhanced version of Gauss-Markov
mobility model (EGM) was proposed in [123], which tries to
eliminate or limit the sudden stops and also the sharp turns by
the mobile nodes, to provide an even more realistic mobility
model compared with the standard Gauss-Markov mobility
model. The newly proposed EGM was mainly developed
for Unmanned Aerial Vehicles Ad-hoc Networks (UAANET).
The Trajectory of the mobile nodes in the GMM model has
been illustrated in Fig. 9, and the important characteristics of
this model are indicated in Table. 6.

6) BOUNDLESS SIMULATION AREA MOBILITY
MODEL (BSA) [79]
The Boundless Simulation Area mobility model was first
developed and utilized in [79] for evaluating a routing pro-
tocol called Zone Routing Protocol (ZRP). In BSA mobility
model, the simulation area is mapped into a closed surface
in shape of a torus, which has been illustrated in Fig. 10.

FIGURE 11. Trajectory of the nodes in BSA.

TABLE 7. An overview on the specifications of BSA.

Therefore, the simulation area is being transformed into a
boundless area. As a result, if a node goes off the simulation
area from one side, it will appear from the other side with the
same direction and speed. Therefore, the euclidean distance
between the two moving nodes will be calculated in a differ-
ent manner [79].

In all of the previously mentioned mobility models, the
simulation area was in form of a rectangle (left hand side
of Fig, 10). Hence, if a node reaches the boundaries of
the simulation area in those mobility models, it will be
forced to change its direction away from the boundaries. This
sudden and sharp change of direction can lead to unreal-
istic mobility patterns. In contrast, in the BSA model, the
node stays in motion with the same speed and direction
when it reaches the boundaries and it will enter the sim-
ulation area from the opposite side [113]. Similar to the
Gauss-Markov mobility model, the BSA is a memory-based
mobility model, and the new values of speed and direction
are dependent on their past values, resulting in smooth inte-
grated movement patterns without any sudden change of
direction. In Fig. 11, the trajectory of the nodes could be
observed.

Although this model seems to produce realistic mobility
traces, there might be several cases, where the boundless
simulation area may produce an unwanted side effect. In this
regard, consider we have two nodes, which one of them is
stationary and the other is moving in a straight line. In this
situation, according to the structure of the Boundless Sim-
ulation Area mobility model, these two nodes will become
neighbors repeatedly [76]. The major specifications of this
model have been represented in Table. 7.
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FIGURE 12. Movements of the mobile nodes in MMM.

7) MANHATTAN MOBILITY MODEL (MMM) [85]
There are many outdoor IoT applications in the context of
smart city infrastructures, such as self-driven vehicles, smart
fitness Body Area Networks (BAN), Remote Health-care
Monitoring Systems (RHMS), and smart public transporta-
tion, which encompass a number of moving objects across
the streets and highways of a city. The Manhattan mobility
model was introduced tomodel themovements of the existing
mobile nodes in the streets of a city [85]. As it has been
depicted in Fig. 12, in the Manhattan mobility model, the
mobile nodes are equipped with a predefined map, which
consists of several vertical and horizontal lines. Accordingly,
every node is allowed to move along a certain line without
the possibility of having diagonal motion.Whenever a mobile
node reaches an intersection it could either move straight or
change its direction. The mobile nodes change their direction
based on a probability, which has been determined in a way to
maintain their current direction with a higher chance. In case
of reaching the borders, the nodes will be reflected with
a 180◦ angle.

According to [124], Manhattan along with Random Walk
mobility models are special cases for Correlated Random
Walk (CRW)-based mobility models with few constraints,
including the probabilities of changing direction. Further
more, inManhattan model, the velocity of a node at each time
interval is determined according to the node’s velocity at the
previous time interval and it is also confined by the preceding
node’s velocity in the same line in the street [22]. As a
result, the Manhattan mobility model tends to be spatially
and temporally dependent. Furthermore, this mobility model
places geographical constraints on the mobile nodes, forcing
the nodes to move along predetermined paths. In order to pro-
vide more realistic movement patterns, this model simulates
traffic events using semaphores [125]. The position of the
semaphores are set randomly, and whenever a node reaches
a semaphore it stops until the semaphore turns green. The
trajectory of the mobile objects in the Manhattan mobility
model has bee illustrated in Fig. 13.

The Manhattan mobility model is suitable for simulating
urban areas and does not provide realistic movement pat-
terns at freeways [126]. Furthermore, since the movements
of the mobile objects in urban areas are mainly under the
influence of social behavior of the humans, who carry them,

FIGURE 13. Trajectory of the nodes in MMM.

TABLE 8. An overview on the specifications of MMM.

the relationship between humans should be considered in the
structure of the mobility model. Therefore, the authors in
[127] have came up with a new version of the Manhattan
mobility model (the Weighted Social Manhattan mobility
model), which tries to bring more sense for human move-
ments even by introducing attraction points in the model.
A number of important features of the Manhattan mobility
model have been indicated in Table. 8.

8) REFERENCE POINT GROUP MOBILITY MODEL
(RPGM) [82]
Reference Point Group Mobility (RPGM) model was origi-
nally proposed in [82]. One of the main goals for introducing
RPGM was to model the movements of a group of nodes
in a terrain, e.g., the troops behaviour in a battlefield [128].
In this model, the existing nodes are partitioned into several
groups, where a logical center (also known as a leader) will
be considered for each of the groups. As it has been depicted
in Fig. 14, different aspects of group members (GM) (their
velocity (v), and direction (θ)) are highly influenced by the
motion of the group’s logical center (LC).
Initially, the nodes that belong to a certain group are uni-

formly distributed within a predefined range of the group’s
logical center, which is calculated according to [129]. In this
mobility model, every node has been assigned with a refer-
ence point, and the maximum allowable distance deviation
of a node from its reference point is rmax . The reference
points of the nodes follow the group motion (according to
the logical center’s movements), while each node can only
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FIGURE 14. Movements of the mobile nodes in RPGM.

FIGURE 15. Trajectory of the nodes in RPGM.

move independently around its reference point. The groups
logical centers move along predefined paths with the RDM
mobility model at a limited velocity [129]. Each of the paths
in RPGM consists of several check points (indicated with
flags in Fig. 14), where during a time interval (1t ), the
group’s logical center moves from one checkpoint to another.
The structure of nodes movements in the RPGM has been
illustrated in Fig. 14, and the trajectory of the nodes has been
represented in Fig. 15.

By properly setting the parameter values in RPGM (includ-
ing the checkpoints), it could provide various scenarios for
different mobile IoT and sensor network applications. In [82],
three kinds of scenarios have been proposed. The first model,
which is called the In-Place Group Model can be utilized
in situations, where several groups are performing similar
operations in different regions, e.g., mine clearance. Accord-
ingly, the entire area will be partitioned into several regions
and each group will be placed in a different region. The
second model, which is called the Overlap Mobility Model
could be used to model several groups performing different
operations in a single region. For instance, in the search and
rescue operations, several teams e.g., the rescue team and the

TABLE 9. An overview on the specifications of RPGM.

FIGURE 16. Movements of the mobile nodes in NCM.

medical team traverse the same area, while they are providing
different services with probably divergence motion patterns.
Therefore, in the Overlap Mobility Model, each group has
a different movement pattern and moves independent from
the other existing groups. Finally, the third model that has
been proposed in [82], tries to emulate the motion behavior of
exhibitors and attendees in a convention. In this model, which
is known as the Convention Mobility Model, different groups
of exhibitors are in adjacent rooms giving a presentation and a
group of attendees visits the rooms. A number of use-cases for
this mobilitymodel are conferences, seminars, art and fashion
galleries. The RPGM’s characteristics have been summarized
in Table. 9.

9) NOMADIC COMMUNITY MOBILITY MODEL (NCM) [81]
Nomadic Community mobility model is a group-based
model, which was proposed to simulate the movement pat-
terns of a group of nodes traveling collectively from one
point to another [81], just like the ancient nomadic societies
moved away from sophisticated environmental conditions in
summer and winter quarters of the year [130]. This model
is relatively similar to the RPGM mobility model, where
every one of the group members would also move towards
a randomly selected location within a circular range of radius
rmax around its reference point. Therefore, the NCMmodel is
believed as a special case for the RPGM [131]. In this model,
every one of groups has been assigned with a reference point,
which all of the existing members in that group are allowed
to follow their reference point and move around it randomly.
According to the structure of this mobility model, which
has been represented in Fig. 16, the group members could
move independently and based on an entity mobility model
that should be specified prior to starting the simulation, e.g.,
Random Walk mobility model.The trajectory of the nodes in
the NCM model has been illustrated in Fig. 17.

This model can be employed in situations, where a group
of nodes has to perform a similar operation in a large area
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FIGURE 17. Trajectory of the nodes in NCM.

TABLE 10. An overview on the specifications of NCM.

contained of several subareas, e.g., in situations, where a
group of people are performing scanning and searching oper-
ations [132]. The NCM model could be utilized in appli-
cations such as agricultural robotics and several types of
military operations. According to [133], a good use case for
this mobility model is a class of students, which are touring an
art museum. In such applications, students may roam around
the group’s reference point individually, while the entire
group is moving from place to place in a random manner
and according to the movements of its reference point. Bomb
disposal in a building with a set of robotic equipment is
another application of NCM [134]. This mobility model is
very similar to the In-Place Group model, which is a mobility
scenario generated by the RPGM. Hence, it could be easily
implemented by using the RPGM model [131]. The major
attributes of this model are indicated in Table. 10.

10) PURSUE MOBILITY MODEL (PMM) [81]
The Pursue mobility model, as its name would suggest, rep-
resents the movement of several nodes pursuing a target node
[81]. Similar to the NCMmodel, the PMM is also a modified
deviation of the RPGM [82], [135]. In this model, the target
node (the reference point of the group) employs the Random
Waypoint mobility model to travel around the simulation
area with a uniform speed [136], while the other nodes are
chasing it with a configurable amount of deviation around
it. Furthermore, while the pursuing nodes move independent
from each other, their direction (θ), speed (v), position (Pi),
and all of the othermoving aspects are dependent on the target
node. In addition, all of the mobile nodes aim to intercept
the location, where the target node will be at the end of the

FIGURE 18. Movements of the mobile nodes in PMM.

FIGURE 19. Trajectory of the nodes in PMM.

TABLE 11. An overview on the specifications of PMM.

movement time interval [137]. The fundamental aspects of
mobile nodes movement in the PMM has been represented in
Fig. 18.

The Pursue mobility model is one of the most applicable
mobility models in different types of IoT applications. For
example, it could be utilized in law enforcement or pursuing
a retreating adversary [138]. It could be also used in those use
cases with a high demand of modeling the movement patterns
of a group of police officers chasing a criminal in a highway.
Furthermore, it could be exploited in a few number of team
sports, where a few players have to chase down an opponent
to get a score, e.g., Rugby. Touring industries is another
type of applications, which Pursue mobility model could be
utilized. in such applications, a number of visitors will pursue
the tour leader (the target node) for getting information about
the visiting site. The trajectory of the nodes in the Pursue
mobility model has been depicted in Fig. 19, while a number
of its characteristics are represented in Table. 11.
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FIGURE 20. Movements of the mobile nodes in CMM.

TABLE 12. An overview on the specifications of CMM.

11) COLUMN MOBILITY MODEL (CMM) [81]
The Column mobility model was originally designed and
used for evaluation of routing protocols in ad-hoc network
simulators [81]. CMM models a group of nodes moving
around a column. In this model, the column itself is also
able to move in a forward direction. As it has been illustrated
in Fig. 20, the implementation of CMM requires an initial
reference grid, which determines the location of the mobile
nodes in every column. In addition, for each node, a reference
point (RP) has been considered along the column and the
nodes can move randomly around their reference point based
on a predefined mobility model without violating a prede-
fined maximum distance threshold (rmax) [139]. According
to Fig. 20, when the reference grid moves based on a vector
known as Advanced Vector ( EAV ), the mobile nodes will also
start moving with the reference grid, and when the reference
point stops at its destination, the mobile nodes will start
roaming around their own reference points. In this model,
when the mobile nodes reach the boundaries of the simulation
area, they will flip their direction with a 180◦ angle to be able
to move towards the center of the area again [140].

The CMM model can be used in certain search tasks such
as mine clearance or modeling the organized military march
ceremonies, where a group of nodes (forming a column)
are moving together towards a certain target [141]. This
model can be considered as a variation of RPGM mobility
model.While in the original edition of the CMM, nodes move
perpendicular to the direction of the movement, in [130] a

FIGURE 21. Trajectory of the nodes in CMM (after 10 Min).

FIGURE 22. Trajectory of the nodes in CMM (after 60 Min).

modified version of this mobility model was proposed, where
the nodes move in parallel with the direction of movement.
Furthermore, in contrast with the NCM model, which all of
the mobile nodes in a group share a common reference point,
in CMM, every mobile node has its own reference point [64].
Furthermore, the movement of the mobile nodes in NCM
is sporadic, while the movements in the CMM occurs in a
relatively constant manner [25]. The trajectory of the nodes
in the presence of CMM has been depicted in Fig. 21, and
Fig. 22, and a number of its features are stated in Table. 12.

12) SELF-SIMILAR LEAST ACTION WALK MODEL (SLAW) [70]
The Self-similar Least Action Walk (SLAW) is a mobility
model, which tries to generate synthetic traces for the human
walking patterns similar to the gathered information from
the Global Positioning System (GPS) traces [70], [142].
Unlike Random Waypoint and Random Direction mobility
models, SLAW is one of the most comprehensive mobility
models, which is able to simulate the real movements of
humans in social gathering places [143]. This model is a
modified version of the Levy-walk mobility models [67],
and it takes into consideration the five dominant statistical
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FIGURE 23. Movements of the mobile nodes in the SLAW mobility model.

properties of human movements extracted from the GPS
traces. These five properties include: 1) Heavy-tail Flight
length, 2) Limited mobility range, 3) Truncated power-law
distribution Inter-Contact Time (ICT) [71], [144], 4) Self-
similar waypoints, and 5) Minimized distance of travel.

Accordingly, the flight length indicates the traversed dis-
tance between two consecutive pausing points with no direc-
tion alterations [67], [145]. ICT refers to the time interval
between the moment, where a mobile node leaves the trans-
mission range of a specific node, until the next time it enters
the transmission range of the same node again. In addition,
waypoint refers to those temporal pausing spots in the visiting
area, where more number of visitors are attracted to them.
Self-similarity of waypoints suggests that humans are likely
to visit more popular places, which are tightly clustered such
as shopping malls [73]. In the SLAW mobility model, the
degree of self-similarity can be adjusted by an input param-
eter known as the hurst value. Therefore, the distribution of
waypoints in the SLAW mobility model is controlled by the
hurst parameter [71]. It is worthy to mention that the hurst
value highly alters the generated traces and has a significant
impact on the performance of the network, and it could
directly affect the structure and the shape of the DODAG in
RPL-based IoT networks.

At the initialization phase of the SLAW mobility model,
the waypoints will be generated using a special method
similar to the Fractional Brownian Motion (FBM) or the
Fractional Gaussian Noise (FGN) generation methods [146],
[147]. Afterwards, the walkers will start traveling between
the generated waypoints according to an individual walker
model [148]. The walker model is based on a trip planning
algorithm, which is called the Least Action Trip Planning
(LATP) [149]. As it has been illustrated in Fig. 23, by using
the individual walker model in the structure of SLAW, the
waypoints will be clustered into groups such that the distance
between every two waypoints in a cluster should be less
than a predefined value, which is known as the Clusterrange.
In this mobility model, each cluster is assigned with a weight
proportional to its size, which impacts the cluster selection.
In the process of selecting waypoints within a new cluster,

FIGURE 24. Trajectory of the nodes in SLAW.

a predefined percentage of them would be selected and the
waypoints that belong to the old cluster will be replaced by
the selected waypoints of the new cluster. The trajectory of
the nodes in the SLAW mobility model has been illustrated
in Fig. 24.

Generally speaking, SLAW could be used for modeling the
pedestrian movement behaviour in small scale social gather-
ing events, such as train stations, malls, and theme parks due
to its accuracy and realistic outlook in terms of network traffic
per square meter in comparison with the random mobility
models [150]–[152]. However, there have been a number of
efforts on providing a more realistic mobility model for appli-
cations such as theme parks, airports, fairs, and festivals with
prohibited or restricted use of vehicles. In [145], authors have
came up with a novel mobility model, which tries to enhance
the accuracy of the traces in comparison with the SLAW
mobility model. The major specifications of this mobility
model are summarized in Table. 13.

13) TRUNCATED LEVY WALK MOBILITY MODEL (TLW) [67]
Truncated Levy Walk (TLW) was proposed to produce more
realistic patterns of human mobility compared to the con-
ventional random based mobility models such as RWP [67].
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TABLE 13. An overview on the specifications of SLAW.

FIGURE 25. Movements of the mobile nodes in TLW.

According to [153], occurrence of longer flights (which is a
positive aspect of a mobility model) is more likely to happen
in TLW in comparison with RWP. TLW is potentially one of
the most well-known synthetic mobility models, which has
gained lots of attention due to being well understood [154].
This model is based on the GPS traces gathered from moving
individuals in 5 different outdoor sites [71]. According to the
obtainedmobility trace data-sets, it has been observed that the
human mobility has statistical features similar to that of Levy
Walks (a phenomenon in physics), and one of the most impor-
tant characteristics of the Levy Walks is the heavy-tailed
distribution of the flight lengths. Therefore, similar to what
it has been represented in Fig. 25, and Fig. 26, Levy Walks
can be described as clusters of short flights each followed by
a long flight or vise-versa. More information on Levy Walks
could be found in [67], and [155].

This mobility model is very similar to the Random Walk
mobility model; however, the flight length and pause time,
which are both selected randomly, follow a truncated levy
walk distribution [154], [156]. Based on the observations
from the GPS traces, it could be concluded that the flight
velocity increases with the flight length. The reason is that
as the distance gets longer than a threshold (γ ), people tend
to exploit faster transportation facilities [67]. TLW is able
to model different types of movement patterns with utilizing
a coefficient known as α [67], [102], [157]. Smaller values
of α creates faster mobility patterns, while its higher values
reduces the velocity of the nodes. Therefore, the value of α
plays an important role on the stability and consistency of
the RPL-based topologies and obviously there will be a tight
relation between its value and the parameters of the trickle

FIGURE 26. Trajectory of the nodes in TLW.

TABLE 14. An overview on the specifications of TLW.

algorithm. The interested reader is referred to [158], and [67]
for a more detailed characterisation of TLW.

Generally speaking, TLW is a simple yet reasonably real-
istic mobility model for simulating human mobility behav-
ior. Although TLW is not highly accurate compared to the
available complex mobility models in the literature, e.g.,
the SLAW mobility model, it is easy to use and it could
generate more realistic traces of human walks compared
to the common random models such as Random Waypoint
and Random Walk. However, authors in [159] have claimed
that TLW could not represent itself in large geographical
areas. Therefore the authors in [160] have recommended to
use smaller scale environments for modeling the movement
behavior with TLW. Recently, authors in [161] have proposed
a new mobility model composed of TLW and RPGM to be
deployed in disaster areas with the aim of considering civil
protection issues in post-emergency scenarios. Furthermore,
Levy walks are being widely used in the context of target
detection in swarm robotics and also in modeling animal
foraging [162]. A number of TLW’s specifications are stated
in Table. 14.

14) SMOOTH MOBILITY MODEL [71]
Smooth is a simple mobility model that tries to satisfy the
statistical features of the humanmobility similar to the SLAW
mobilitymodel [71]. Inspired from the SLAWmodel, Smooth
and the MobHet mobility models try to establish the social
interactions in the environment based on the obtained data
from GPS devices [163], [164]. In this mobility model, the
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FIGURE 27. Movements of the mobile nodes in Smooth.

movement of the mobile nodes depends on their past move-
ment pattern, visited locations, and also the way that the
other mobile objects act in the area. This is the main reason
behind supporting the social interactions by the Smooth. The
mobile nodes following the Smooth mobility model have a
probabilistic movement pattern, in which they tend to visit
known places with higher probability rather than the unvisited
sites. However, they may visit the unvisited places throughout
their journey towards their destinations based on a probability
distribution, where those places with higher degree of popu-
larity among the other walkers would have higher chances
of being visited by that node [165]. These are all part of the
human mobility features, which were found and determined
in a number of previously made studies [67], [166]–[169].

Smooth is very similar to the SLAW mobility model and
the traces generated by the Smooth are nearly identical to that
of SLAW. The major difference between these two models
lies within the employed approach for generating the way-
points of the human walks. One of the challenges in the
SLAW mobility model is assigning an appropriate value to
the hurst parameter. One of the positive aspects of the Smooth
model against SLAW is that the Smooth model employs a
simpler approach for the waypoint generation process, which
does not require the hurst value as the input parameter,
while it could still maintain the self-similarity property of
the waypoints. In this model, the area is partitioned into
several clusters with each containing a number of groups.
The size of the clusters and groups are an indication for their
popularity among the walkers [170]. Once the clusters and
their corresponding groups have been specified, the location
of the waypoints will be determined. In the Smooth mobility
model, the walkers follow a nearly similar movement pattern
to what we have seen in the SLAW. More details on the
calculation of the nodes coordination and their movement
aspects could be found in [71], and [25]. The fundamental
aspects of the nodes movement in the Smooth mobility model
has been illustrated in the right hand-side of Fig. 27.

Aside by all of the positive aspects of the Smooth mobility
model, some believe that it is not able to properly model com-
munities such as village societies. Hence they have come up
with their own mobility model to capture the dynamics of the
mobile nodes in village level movements [171]. Furthermore,

TABLE 15. An overview on the specifications of Smooth.

the authors in [172] have claimed that in SLAW and Smooth
mobility models, there is a probability that a mobile node
may never meet another node. This issue should be handled
through proposing efficient multi-hop communication tech-
niques for establishing a more realistic social interactions.
An extended version of this mobility model has been pro-
posed in [173], which is called the Statistical Area-based
MObility model for VirtuAl and Real-world environments
(SAMOVAR). SAMOVAR is following the same objective as
the Smooth mobility model, but it is derived or recreated from
the real world traces [25]. The major aspects of the Smooth
mobility model are indicated in Table. 15.

In addition to the Smooth mobility model, there is an older
model with relatively the same title, but completely different
structure. This model was proposed in [103] and it is called
the Smooth Random Mobility model (SRM). SRM provides
a flexible and small equal sized time slots (1t) in which the
mobile nodes can change their way of movement and speed
gradually to provide a more realistic movement pattern for
humans [174]. Similar to the fundamentals of physical law
of motion, the movement of the walkers in the SRM model
is partitioned into three stages: 1) Speed-up, 2) Middle, and
3) Slow-down [174], [175]. Accordingly, during the speed-
up, the mobile nodes try to accelerate to a certain velocity
during their trip towards their waypoint. Before reaching a
waypoint, the mobile node enters the slow-down phase and
then reduces its speed to zero in order to pause for a period of
time. Furthermore, the coordinates of the nodes are calculated
in a periodic manner (every 1t) in the middle phase of their
every movement. As it has been depicted in the left hand side
of Fig. 27, in case of reaching the boundaries of the simulation
area, the nodes will enter the area from the corresponding
opposite side of the X or Y border. In other words, the
simulation area in SRM behaves like a torus [176]. More
detailed information on the functionality of SRM could be
found in [25], [104], [113], [177]–[179].

One of the main differences between Smooth and SRM is
the absence of providing a dynamic behaviour for the velocity
in the structure of Smooth. While the speed of the nodes in
the Smooth mobility model is a function of flight length and
the required time for traversing it, it is calculated through a
dependency equation in SRM, which depends on its previous
values. Furthermore, according to Fig. 28, in contrast with the
trajectory of themobile nodes in Smooth, which are sharp, the
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FIGURE 28. Trajectory of the nodes in Smooth.

turning points of the nodes in SRM follow a soft and smooth
movement. This is mainly due to utilizing the turn radius
parameter (rc), which indicates the radius that the walker
has to perform its turn [21], [103], [113]. This has provided
a more realistic movement pattern in comparison with the
Smooth mobility model. Another positive aspect of the SRM
model is the absence of ASDP; because the velocity is inde-
pendent of the travel time in the nodes movements. This will
bring a steady speed average for the nodes throughout the
simulation time [180].

The SRM model is appropriate for analysing the link
quality fluctuations in which the time is being divided into
several small and equal-sized time slots [181]. This model
could be employed in various MANET applications, e.g.,
Vehicular Ad-hoc networks focusing on safety driving and
commercial objectives [175]. Since SRM does not consider
the geographical features of the zones, the waypoints could be
placed in irrational places such as the middle of a lake. Thus,
the SRM model is not an appropriate option for outdoor IoT
applications [180]. In this regard, the authors in [182] have
came up with a novel mobility model, which tries to increase
the precision of the walker’s movement in comparison with
the SRM. Furthermore, in the SRM model, the mobile nodes
may change their velocity during the speed transition. In such
scenarios, the mobile node will not stop, unless the tar-
get velocity is specified as zero. More specifically, every
movement in SRM should accomplish the three mentioned
steps before any new actions. This issue would make SRM
as an inflexible mobility model for movement control [25].
Another version of this mobility model has been proposed
in [183], which tries to mimic the microscopic movements
of the users [184]. This mobility model, which is called the
Semi-Markov Smooth (SMS), does not consider the existing
obstacles of the area; hence, its best use cases will be model-
ing the aviation applications, e.g., airliners [185], [186]. The
Semi-Markov Smooth mobility model is also a good option
for modeling the movement pattern of fishing vessels, which
try to establish their trip from the shore towards the fishing
zones [187].

FIGURE 29. The Weight of the cells and the mobile nodes’s cell selection
in the SWIM mobility model.

15) SMALL WORLD IN MOTION MOBILITY MODEL (SWIM)
[72]
SWIM is a simple mobility model proposed for evaluating
ad-hoc network routing protocols and also forecasting the
performance of forwarding protocols [25], [72], [144]. This
mobility model generates synthetic traces, which demon-
strates social interactions in a community. SWIM has been
designed based on a very simple intuition, which indicates
that people usually make a trade-off between two aspects
of a location for visiting: 1) Nearness, and 2) Popularity.
Similar to the Markovian Random Walk mobility model, the
simulation area is partitioned into small square cells, which is
also known as neighborhoods. The size of these cells should
be small enough so that the existing nodes in the same cell
get under cover the transmission range of each other. Thus,
the diagonal of the square cells (ds) should be equal to the
transmission radius of the mobile nodes (Trr ). Based on the
principles of SWIM, which have been illustrated in Fig. 29,
every node (N ) begins its movement from its home (hN ) and
assigns a weight to each cell (Ci,j), which corresponds to
the probability of that cell being chosen as the node’s next
destination. In this model, the trade-off between popularity
popularity(N ,Ci,j) and nearness distance(hN ,Ci,j) is config-
urable according to a parameter known as α. The weight of a
cell will be increased (maximum is 1) with more number of
visits (more popularity), while it will be decreased (minimum
is 0) with getting farther from hN [144], [188].

Similar to TLW, in SWIM, the people tend to use faster
transportation for farther destinations, e.g., planes, cars, while
they are likely to walk to nearby destinations. Furthermore,
the employment of truncated power-law distribution for the
pause times has resulted in mainly small pause intervals
followed by occasionally longer duration of pause times and
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FIGURE 30. Trajectory of the nodes in SWIM.

vise versa [25]. The studies have shown that the distribution
of several key metrics such as the number of contacts, contact
duration between a pair of nodes, and ICTs in traces generated
by SWIM are nearly identical to that of real world traces
[144], [189]. These issues havemade SWIM as a suitable can-
didate for modeling the human movement patterns through
their daily activities. More information about this mobility
model could be found in [144], [190]. The trajectory of the
nodes in the SWIM mobility model has been depicted in
Fig. 30.

SWIM is a resource-efficient model due to its memory-
efficient features. One of the main domains, which SWIM is
broadly employed is the context of Social Internet of Things
(SIoT) [189]. While SWIM is an appropriate mobility model
for modeling the concept of resource sharing in mobile social
networks, according to [191], there is a chance that themobile
users visit unpopular places located in far distances to their
home. Hence, in order to resolve this issue, the authors in
[191] have proposed a new measurement mechanism for
calculating the weight of the cells. The dependency of the
nodes decisions on the behavior of the other nodes has made
SWIM an appropriate mobility model for modeling the social
interactions in the society. The authors in [189] have extended
the SWIM mobility model to support mobile things, e.g.,
gadgets, vehicles, and smartphones owned by the humans.

Similar to the SLAW mobility model, the SWIM model
only considers pairwise contacts, and it lacks supporting any
group meeting regularities and relationships [192]. In this
regard, the authors in [193] have proposed Group Regularity
Mobility model (GRM), a novel mobility model inspired from
the SWIMmodel, which tries to maintain the humanmobility
characteristics such as group meeting regularity, and social
community structures for more than two people. SWIM has
been also an attractive target for service management sys-
tems. Authors in [194] have proposed a hierarchical mobile
IoT cloud, which allows the existing customers to report their
service experience in a large-scale cloud IoT infrastructure.
One of the downsides of the SWIM model is the existing
probability that the mobile nodes may never meet a few

TABLE 16. An overview on the specifications of SWIM.

of nodes during their movements. This issue is in common
among the synthetic mobility models such as SWIM. Hence,
a hybrid mobility model (Trace-based Probabilistic Mobility
Model), has been recently proposed to resolve this issue and
further to make the pause and contact times shorter compared
with the SWIM model [195]. The social routine work of the
human operators in a service-oriented MANET composed of
service providers and service requesters has been also mod-
eled via the SWIM mobility model in [196]. In addition, the
Pocket Switch Networks (PSN), which are a subset of Delay
Tolerant Networks (DTN), and the DTN systems themselves
are also a pair of use cases for the SWIM mobility model
[188], [190]. Some of themain features of thismobilitymodel
have been summarized in Table. 16.

16) TACTICAL INDOOR MOBILITY MODEL (TIMM) [83]
The main objective behind proposing the TIMM model is to
provide the ability for simulating the movements of military
forces in urban warfare indoor scenarios, e.g., securing a
building and bomb neutralizing operations [83]. In indoor
scenarios, the mobile nodes would encounter many obstacles
such as doors and walls, which restrict their motion. Thus,
it is not always possible to move in a straight path from the
current location to the next destination. Moreover, in tactical
situations, nodes do not move in a random direction, but
instead they try to move along certain paths to enhance the
efficiency and reduce the amount of risk.

In order to integrate geographic constraints into the TIMM
mobility model, the building should be modeled as a graph
with a technique similar towhat has been utilized in [88]. As it
has been illustrated in Fig. 31, based on this method, each
vertex represents either the center of a room or a doorway.
An edge will be added between each couple of vertices if
and only if a path without any obstacles could be estab-
lished between them [83]. In every step of the simulation,
each group searches for a neighboring vertex, which hasn’t
been visited before. In case of discovering only a single
univisited vertex, the entire group will start moving towards
it. Otherwise, the group will be divided into a number of
smaller groups with each containing at least three people
(mobile objects), in such a way that the maximum number of
discovered univisited vertices would be visited. If no unvis-
ited neighbor is found, the entire graph will be explored for
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FIGURE 31. The movement structure of the troops in the TIMM mobility model.

FIGURE 32. Trajectory of the mobile nodes in the TIMM mobility model.

finding the nearest unvisited vertex. Subsequently, the entire
group moves towards the founded vertex via the shortest path
in the graph. After a group reaches its destination and pauses
there for a specified period, it will be checked whether the
total duration of the movement or the amount of traveled
distance has been passed through a certain threshold or not.
If so, the group’s mission will be terminated and they will
not move to any further destination(s). It should be mentioned
that the first group ofmobile nodes is in charge of securing the
doors and passageways and has a slightly different mobility
rules. Accordingly, the members of the first group will be
placed in a row with having a few meters of distance between
each of them and they will not split up at the junction spots.
Finally, the simulation will be eventually terminated when all
of the vertices have been visited. The trajectory of the nodes
under the presence of TIMM has been depicted in Fig. 32.

In contrast with the TIMMmodel, previous mobility mod-
els were not able to appropriately model the indoor tacti-
cal applications characteristics. For instance, the RPGM (as
one of the few mobility models, which consider the group

TABLE 17. An overview on the specifications of TIMM.

movements), does not support join or split operations in the
groups. Furthermore, random-based mobility models such as
RWP and RWM could not model the existing obstacles in
the buildings due to their random behaviour [83]. Part of
these considerations were realized in a number of models,
such as Constrained Mobility Model [197], and the Coalition
Mobility Model [198], but they were unable to appropriately
model the details of the tactical scenarios. Meanwhile, one of
the downsides of the TIMM mobility model is the disability
of the mobile nodes in having a movement in the corner of
the rooms due to the existing obligation, which states that
the nodes must travel only along the edges [83]. This issue
could be resolved by allowing the mobile nodes to move in
the room based on a specific moving pattern (such as the
RWM) before start moving towards another room based on
the TIMM principles. It seems that in addition to the bomb
neutralization applications, there could be few other mission
critical scenarios such as indoor hostage rescue operations,
which the TIMM mobility model could be utilized. Some of
the major specifications of TIMM are listed in Table. 17.

17) RANDOM STREET MOBILITY MODEL (RSM) [84]
In many scenarios in real-world IoT applications, it is an
unrealistic assumption that the mobile nodes can move any-
where through the entire simulation area. One of the contem-
porary approaches for resolving this issue is to exploit digital
maps for establishing the movement of the objects in an area
comprised of physical obstacles and restrictions, e.g., walls,
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FIGURE 33. Movements of the mobile nodes in the RSM mobility model.

fences, and buildings. Although there were few studies on
providing map-based mobility models in the past, e.g., Ran-
dom Waypoint City Mobility Model (RaWaCi) [199], it has
been proven that they suffer from unrealistic and inaccurate
map data. Hence, the authors in [84] have came up with a new
mobility model, which employs Location-Based Services
(LBS) in its structure and it’s called Random Street mobility
model (RSM). RSM is a map-based mobility model, which
was proposed for evaluating the performance of opportunistic
networks, where the ICTs are believed as a key performance
metric [84]. The RSMmobility model could be also regarded
as a map-based RWP, which takes into consideration the
geographic restrictions to limit the movements of the mobile
nodes.

In order to establish the paths between the end points, two
projects were got involved in the structure of RSM: 1) Open
Street Map (OSM) [200], and 2) Open Route Service (ORS).
OSM is a technical infrastructure, which allows a number of
authorized contributors to generate and publish a set of free
and editable map-based data to provide a street level map of
the world. On the other hand, the ORS is a routing platform,
which is able to provide LBS services based on the provided
data by the OSM and according to different metrics such as
the fastest path, shortest path, and etc. [201]. Accordingly,
in the first stage of the RSM’s operation, the current and
future location of the nodes will be determined on the map
that has been previously provided by the OSM. Afterwards,
the ORS will establish a path between these two locations
according to a predefined arbitrary metric and subsequently
returns a list of waypoints on the founded path. Then, the
mobile node will start moving from one waypoint to another
in a straight line until they reach their final destination. Since
the simulation area is restricted from every direction and
it includes only a small part of the map provided by the
OSM, some of the paths might fall outside of the simulation
area, especially for the destinations that are near the borders.
In order to resolve this issue, as it has been illustrated in
Fig. 33, the location of the possible destinations should be
limited to a rectangular area surrounded by a margin. The sur-
rounding rectangle plus the exterior margin will comprise the
entire simulation area. It is worthy to mention that according
to the principles of the RSM mobility model, the paths that

FIGURE 34. Node trajectory in RSM.

have been placed partially outside of the simulation area will
be regarded as invalid paths. The trajectory of the nodes in
RSM has been illustrated in Fig. 34.

Despite that several studies have been published, but simi-
lar to the TIMMmobility model, the Random Street mobility
model has not been well studied and it lacks a comprehensive
evaluation to be reliably employed in mobile IoT application
scenarios. Meanwhile, the Vehicular Ad-hoc Networks have
been an attractive target for employing the RSM mobility
model [202]. Among the few studies that have considered
RSM as part of their mobility models, the authors in [203]
have indicated that the RSM is one of the most complicated
mobility models, which different routing protocols, e.g., the
Optimized Link State Routing (OLSR) [88] could not adjust
themselves to the existing constant and close interactions
between its mobile objects. This issue would place this mobil-
ity model at a high importance for evaluating the intended
routing policies, which are supposed to be used in specific
IoT applications, specially the mission critical applications in
emergency occasions. This consideration could be more sen-
sible by knowing that the the authors in [203] have claimed
that the OLSR behaves very poor in establishing routes
between themobile nodes following the RSMmobility model
due to the occurrence of loops in the network. In order to
provide a broader range of supported mobile IoT applications
by the RSM mobility model, different types of restrictions
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TABLE 18. An overview on the specifications of RSM.

could be added to its original version. For instance, instead of
having a uniform distribution for selecting the destinations,
the mobile nodes could be forced to select a number of
waypoints with more probability, representing the concept of
popularity for the destinations (similar to what we have had in
the SWIM, SLAW, and Smooth mobility models). A number
of characteristics related to RSM are indicated in Table. 18.

18) MAP-BASED SLAW MOBILITY MODEL (MSLAW) [73]
MSLAW is an extension to the SLAWmobility model, which
tries to include geographic constraints into its structure [73].
Nevertheless, the MSLAW mobility model tries to preserve
the fundamental aspects of the humanmobility pattern, which
was previously considered in the SLAW mobility model
[204], [205]. Similar to the RSM mobility model, in order to
include geographical restrictions in MSLAW, the OSM and
ORS projects have been utilized to exploit digital map data
for establishing the movements of the mobile nodes.

For generating the self-similar waypoints, as it has been
represented in Fig. 35, the simulation area will be partitioned
into four identical rectangles and the waypoints will be spread
among these four areas based on the hurst value and a nor-
malized variance. This procedure is executed recursively until
the maximum recursion depth (l) is reached [206]. After the
generation of waypoints, they will be organized in clusters
with a predefined radius (r). It should be mentioned that the
generated waypoints may be placed in inaccessible areas such
as rivers, lakes, forests, and desserts. To avoid this problem,
a random approach is iterated in a limited manner until a
routable location is found. After the placement of waypoints
in the clusters, a portion of the clusters (qc) will be considered
for each of the mobile nodes (ni). Subsequently, one of these
clusters (Ci) will be selected and a subset of its waypoints
will be randomly chosen to form a path, such that each
section of the path between two consecutive waypoints could
be traversed in a straight line without passing through the
existing obstacles.

One of the major differences between SLAW andMSLAW
is the calculation of the distance (d) between the current
waypoint (wpc), and the next waypoint (wpn), where due to
the existence of geographic constrains, the real path length
is not necessarily equal to the Euclidean distance, and it
should be replaced with the actual path length in the LATP
algorithm. This method of path traversal is very similar to that
of the RSM mobility model. It is worthy to mention that in

FIGURE 35. Movements of the nodes in MSLAW.

FIGURE 36. Trajectory of the nodes in MSLAW.

case of reaching the destination, the mobile nodes will pause
based on a truncated power-law distribution [73]. Further-
more, whenever the mobile node visits all of the considered
waypoints before expiration of the simulation time, another
cluster will be chosen randomly among the unvisited clusters
and the old waypoints will be replaced with new waypoints to
start another daily trip. The simulated trajectory of the nodes
in MSLAW has been represented in Fig. 36.

The conducted evaluations on the SLAW and MSLAW
mobility models have shown that they behave differently
from a number of major parameters, which are signifi-
cantly important in evaluating the forwarding algorithms in
OPPNets, e.g., ICTs, number of contacts, contact duration,
and number of re-encounters [207]. One of the existing
challenges that the MSLAW is facing, is the super-linear
relation between the waypoint generation time and the num-
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TABLE 19. An overview on the specifications of MSLAW.

ber of deployed nodes in the area, which could make it
an inappropriate mobility model for simulating dense IoT
applications [204]. However, if the mobile objects are rep-
resenting humans, geographic constraints would be among
the most important details that should be considered in the
simulation; because humans come across numerous obstacles
throughout their daily trips. Therefore, integrating geographic
constraints into the SLAW mobility model would be help-
ful for estimating the performance of the mobile network
deployments with more precision. Moreover, the existence
of obstructions such as buildings and walls have a significant
impact on the signal propagation. There exists several signal
propagation models, which consider the presence of such
kind of obstacles. Nevertheless, employment of these models
is pointless unless the nodes are not prevented from moving
through the building and walls. The major specifications of
MSLAW are summarized in Table. 19.

19) STEADY STATE RANDOM WAYPOINT MODEL (SSM) [77]
Steady-State Random Waypoint is one of the variations of
RWP in which the initial position and velocity of the nodes
are drawn from the steady-state distributions of the nodes.
Exploiting the steady-state distribution paves the way for ana-
lyzing the simulation scenarios right at the beginning without
requiring initialization for the movement of the nodes [208].
Therefore, the convergence is immediate and the results will
be reliable [209]. In the original version of the RWP model,
the distributions of velocity and position are considered as
uniform at the initial phase, but they gradually converge to
their steady-state distributions (also known as stationary dis-
tribution) as the simulation time elapses. This issue not only
disables the model to represent the distribution of the mobile
nodes while moving, but it might cause major flaws in evalu-
ating the performance of the networks; because the obtained
results vary significantly as the time passes. To address this
problem, the stationary distributions have been utilized to
generate the initial positions and velocities of the mobile
nodes. The authors in [108] have claimed that in the RWP
mobility model, the average velocity of the nodes is equal
to Vmax/2 (due to bounding the velocity to the (0,Vmax)
interval). Hence, its value will gradually converge to zero.

FIGURE 37. Movements of nodes in SSM.

On the other hand, the steady-state version addresses this
issue by employing a positive Vmin instead of zero, along
with exploiting the steady-state distribution [210]. It should
be mentioned that the distributions have been derived under
the assumption that the simulation area is a unit square. Nev-
ertheless, one can easily change the scale of the simulation
area throughmultiplying the unit values by the intendedwidth
(W ) and height (H ) values.

Furthermore, in contrast with RWP, the SSM enables the
mobile nodes to pause for a period of time in their location
[77]. According to the principles of this mobility model,
which has been depicted in Fig. 37, the nodes could travel
towards their destinations without stopping in between or
they could pause for a while after reaching awaypoint. In case
that the pause time is set to zero, an initial path must be
selected via the rejection sampling mechanism, where the
probability density of a path chosen by a node is propor-
tional to the length of the path. Subsequently, the nodes will
start traveling along the selected path with a constant speed
calculated through a cumulative distribution function and its
inverse [77]. When the initial location and velocity of the
nodes are determined, the subsequent values of velocity and
position will be chosen according to the principles of the
original RWP model. On the other hand, in situations with a
non-zero pause time, at the beginning of the simulation, some
of the nodes will be in motion while the others are stationary.
In such circumstances, the initial state of the nodes must
be determined through a set of mathematical calculations
[77]. In case that the node is obliged to start from a moving
state, selection of the initial position and velocity follows
an approach similar to a procedure, which was used for the
cases with a zero pause time. Furthermore, whenever the node
is enforced to begin from a paused state, it is necessary to
determine the period of its initial pause time (P0), which
could be calculated with a cumulative distribution function
obtained based on the renewal theory [211]. Once the initial
pause interval is over, the node’s velocity will be randomly
selected from an interval and then it begins its movement
towards the selected destination.

SSM is one of the most commonly used mobility models
for simulating real-life mobile applications [212], [213]. This
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FIGURE 38. Trajectory of the nodes in the SSM.

TABLE 20. An overview on the specifications of SSM.

mobility model has been an attractive target for MANETs,
and many scholars have employed it to conduct their exper-
iments [214]–[216]. The Long Term Evolution (LTE) is one
the use cases for this mobility model, which has gained lots of
attention as it is being the defacto technology for 4G infras-
tructures [217]–[219]. Modeling the movements of the users
in a rail-way station is another application for the SSMmodel,
which has been addressed in [220]. The authors in [221] have
employed this mobility model to simulate a Mobile Wireless
Sensor Network (MWSN) composed of vehicles and users
equipped with handheld mobile sensors and devices. Never-
theless, while the SSM has been widely used for modeling the
movement of the nodes in relatively high number of papers,
but its functionality has been never evaluated in different IoT
and WSN applications. Hence, this could be an opportunity
for scholars to pay more attention to this mobility model and
make an investigation on its pros and cons in their future
studies. The simulated trajectory of the nodes in SSM has
been provided in Fig. 38, and its specifications are stated in
Table. 20.

20) DISASTER AREA MOBILITY MODEL (DAM) [80]
Disaster Area mobility model, as its name would suggest,
was originally proposed to model the movement of the
nodes in disaster scenarios, e.g., occurrence of earthquakes,
flash floods, and massive tropical storms [80]. This mobility
model was fundamentally designed based on the information

gathered from two major disasters, which were happened
in Germany in 1999 (Wuppertal suspension Railway Crash)
and 2001 (Bruehl Roller-Coaster Fire), respectively [69]. The
main application in such scenarios is the voice communi-
cation, which is being provided through the use of push
to talk technologies to establish a wireless communication
network in disaster areas. Typically, in disaster scenarios, the
situation could not be predicted as during normal periods and
conditions alter drastically [222]. Therefore, it is required
to employ several operating groups in the area to control
the situation in an organized manner. The members of these
groups might have different mobility patterns according to
the type of service that they are providing. Typically, their
movements are very strict and controlled by the technical
operational command team.

Based on a principle of this mobility model, which is
known as the separation of the room, the disaster area can
be partitioned into several polygonal subareas, which fall
into one of the following categories. The Incident Location
(IL), is a part of the disaster scene, where injured people
are detected, picked up and taken for treatment to the estab-
lished treatment areas, such as the established field hospitals.
In addition, there is a casualties treatment area, which itself
has been divided into two subareas. Initially, the rescued
people are brought to the Patients Waiting for Treatment area
(PWT). Then they will be carried by a number of pedestrians
to the Casualties Clearing Station (CCS), where they receive
emergency treatments by the paramedics before being moved
to the local hospitals. The Technical Operational Command
(TOC), which is a group of leaders directing the rescue
operation also belongs to the casualties treatment area. The
scene is also composed of a transportation zone, where the
ambulances (or helicopters) are waiting to transport patients
to the hospital. This area can be also called the Ambulance
Parking Point (APP). It is worthy to mention that each of the
mentioned areas represent different types of scenarios with
relatively distinguished densities and activities. Therefore,
the existing nodes in each of them would behave differently
in terms of velocity and movement [223].

As it has been declared in [80], in the disaster area mobility
model, the disaster area (F) is partitioned into several tactical
subareas, where each subarea is represented via the following
tuple:

r = (lr ,Pr , er , ar ,N stat
r ,V stat

r ,T statr ,Gstatr ,

N trans
r ,V trans

r ,T transr ,Gtransr ,Z transr )

where lr ∈ {IL,PWT ,CCS,APP,TOC} denotes the cat-
egory that the subarea r belongs to. Furthermore, Pr is a
polygonal region of F , which indicates the location of r on F .
er and ar are representing the entry-point and exit-point on
the border of Pr for transporting patients, respectively. Based
on how the clearing troops (e.g., firefighters) have removed
the obstacles in the disaster area, there will be normally
two points for entering and exiting each area. It should be
mentioned that it has been assumed that there are no obstacles
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FIGURE 39. Movements of the nodes in the DAM model.

inside the areas, and they could be only found between the
existing areas [224]. N stat

r is a set of stationary nodes that
only move inside the Pr and belong to the area r and also
move according to the RWPmobility model. These stationary
nodes try to move to a spot to execute a given command with
a velocity randomly chosen from the V stat

r interval.Whenever
they reach to their intended destination, they will stay there
for a period of time randomly selected from T statr interval
in order to accomplish their task and then move towards a
new point. It should be mentioned that the stationary nodes
could be usually found in the TOC and CCS subareas, and
the IL area does not include any stationary nodes. On the
other hand, N trans

r is representing a set of transporting nodes
that are responsible for carrying the patients to other areas.
Therefore, all of the existing nodes in the IL area should
be of this type, which their movement has been based on a
sequence of points denoted by Z transr (movement cycle). It is
worthy to mention that the velocity of the transporting nodes
is constant throughout the cycle, and it’s chosen randomly
from the V trans

r interval. Each of the tactical areas has their
own separate Z transr , which is different from the others. Based
on the provided information in [80], the TOC and CCS areas
do not have any transporting nodes.

According to Fig. 39, in an incident location area, the
transporting nodes start their movement from the exit point of
their current tactical area (ar ). They first move to a randomly
chosen destination in the Pr denoted by RP. Subsequently
they pause there for a period of time and then begin their
travel towards the entry point of a random PWT area via
the exit point of their current area (ar ). After reaching the
entry point of the selected PWT, they will stay there for a

period of time and afterwards they will come back to the exit
point (where they begun their movement) again and the cycle
will be iterated. Therefore, the sequence of passing points for
the transporting nodes in an incident location area would be
Z transr : {ar → RP → ar → ePWTRP → ar}. It is worthy to
mention that the pause times are chosen randomly from the
T transr interval.
Besides of the transporting nodes, the movement cycle of

patients waiting for treatment area is almost similar to that of
incident location area. However, the nodes will move to the
entry point of the casualties clearing station area at the forth
step of the cycle. Accordingly, the sequence of passing points
would be Z transr : {ar → RP→ ar → eCCSRP → ar}.
In case that the tactical area is the APP, the transport nodes

will start their movement cycle from the entry point of the
intended area (er ). Subsequently, they move to a random
location in the Pr and pause there for an interval randomly
selected from the T transr interval. Once the pause period is
over, the nodes exit the area via the ar and move towards
the exit point of the randomly selected casualties clearing
section. After a random period of pause time (again chosen
from the T transr interval), the nodes continue their trajectory
directly to the determined global exit point (as), which has
been located on the border of the simulation area. Once they
reach the border, they are switched off and they start moving
on the border until they reach the global entry point (es),
where they will begin their movement towards the ambulance
parking point. From there, they move towards the entry point
of their area, where they will be switched on again. Hence,
for an ambulance parking point area, the sequence of passing
points will be Z transr : {er → RP→ ar → aCCSRP → as →
es→ er }. This cycle simulates the movement of ambulances
transferring the patients to the hospital. More specifically,
they enter the parking area and wait for a mission. Once
they are given a mission, they move to the casualties clearing
section, pick up a patient and take him/her to the hospital.
Since the hospitals are usually far from the disaster area
and they are not part of the communication network, the
ambulances will frequently leave the disaster area and then
rejoin the network.

One of the important issues that has been considered in the
structure of the disaster area mobility model, is whenever the
transport nodes are moving from the exit point of an area to
the entry (or exit) point of another area, they have to choose an
optimal path and avoid the existing obstacles. It is worthy to
mention that all of the areas are also considered as obstacles
in this case. The employed algorithm for finding the optimal
path is similar to the common methods, which are widely
used in robot motion planing [225]. All of the obstacles
are assumed to be polygonal shaped [80]. A visibility graph
has been used for finding the shortest path between two
points [226]. The starting and ending points as well as the
corners of the obstacles comprise the graph nodes. An edge
exists between two nodes if they could be connected with a
straight line such that the line does not intersect any obstacles.
A weight is then assigned to each edge proportional to the
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FIGURE 40. Trajectory of the nodes in DAM.

Euclidean distance between the two end-nodes of that edge.
Finally, the shortest path between the staring and ending point
can be found by using the well-known Dijkstra’s algorithm
[69]. The trajectory of the nodes in the DAM mobility model
has been represented in Fig. 40.

In this model, the group-based behaviour is regarded as
an optional feature [69]. The reason is usually when a team
of rescuers are moving together, only one of them is carry-
ing a communication device and therefore, the entire group
will be considered as a single node in the communication
network [80]. Nevertheless, the Mission-Critical Mobility
model (MCM) is a group-based mobility model, which is
designed formodeling themovements of humans (with differ-
ent roles) in disastrous scenarios with presence of obstacles
[227]. The Disaster Area Mobility Model has been widely
used in different studies. The authors in [228] have employed
this model to propose their approach in multimedia deliv-
ery systems in emergency response operations. The authors
in [20] have indicated that this mobility model is one of
the best candidates for being adopted by the FANETs. It is
believed that the employed policies in the routing protocols
could severely impact the operations made in the disaster area
[229]. There is also a vise-versa relation, were the number of
victims, the amount of generated data by the stationary and
transporting nodes, and the number of nodes would directly
affect the functionality of the employed routing protocol
[223]. While the disaster area mobility model had not been
evaluated in the presence of RPL routing protocol before,
a number of studies have surveyed and evaluated different
routing protocols in MANET in order to determine their
behaviour under the presence of disaster area mobility model
respectively [230]–[233]. In addition, the authors in [234],
have proposed a new routing protocol known as Optimized
Routing Approach for Critical and Emergency Networks
(ORACE-Net) for critical and emergency domains and con-
sequently evaluated it under the presence of disaster area
mobility model. Furthermore, a novel mobility-based sink-
node-aided routing scheme has been proposed in [229] to
meet some of the requirements in the devastated areas. Based

TABLE 21. An overview on the specifications of DAM.

on the existing requirements in disastrous areas, the most
important feature that should be guaranteed by the employed
routing protocol is the reliability in terms of PDR.

One of the drawbacks of this mobility model is the lack of
support for the movements of the victims [235]. Accordingly,
there has been a study, in which the authors have came up
with a newmobility model called Cooperation, Organization,
and Responsiveness for Public Safety (CORPS) that consid-
ers few spots in the area to attract first responders [236].
Furthermore, there exists amobilitymodel called Theme Park
Disaster (TP-D), which tries to only concentrate on the behav-
ior of people’s movement in case of escaping and evacuating
crowded locations hit by a disaster, with limited presence
of vehicles and absence of any helping teams, e.g., security
[237]. Therefore, it could be assumed that the TP-D mobility
model could be employed for modeling the movements of
the victims in disastrous areas. Authors in [238] have also
proposed a more detailed and complete mobility model for
victims, which is able to consider different elements found
in the devastated sites, e.g., roads, wreckage, buildings, and
other obstacles. In addition, the original version of this mobil-
ity model could not be integrated with map-based data to
provide more accuracy regarding the exact location of the
rescue teams and the victims. It is worthy to mention that the
TP-D mobility model has integrated the use of digital map
data via the employment of OSM services. It has been shown
that in comparison with other less detailed disaster-based
mobility models, the disaster area mobility provides the worst
connectivity and even it creates more link breaks in case
of larger network communication ranges [80]. The major
aspects of this mobility model are represented in Table. 21.

C. BRIEF COMPARISON OF THE MODELS
With completing the description of the models, in order
to gather all of the provided information in a union form
of representation, we have prepared a table containing the
major aspects of the surveyed mobility models. In this
regard, Table 22, provides this opportunity for the read-
ers to immediately observe and compare different models
from various perspectives, which were discussed earlier in
the paper. It is worthy to mention that the term Hybrid in
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TABLE 23. Specifications of the Z1 Platform.

Table 22 refers to those models, which could encompass
several types of different models, i.e., entity and group-based,
in their structure. In the next section, our comprehensive
experiments and evaluations on the performance of RPL in
presence of each of the surveyed mobility models will be
presented.

IV. SYSTEM SETUP AND EVALUATIVE COMPARISON
In order to conduct our experiments, we have employed
Cooja [239], which is a cycle accurate Java-based sim-
ulator, and it’s capable of emulating a number of major
Off-The-Shelf IoT devices. This simulating environment is
part of the well-known Contiki operating system, which was
fundamentally designed and implemented to be utilized in
resource constraint IoT embedded devices [240]. The Zolertia
One (Z1) IoT platform, which is developed by Zolertia R©,
has been selected for conducting our simulations and anal-
ysis. These group of hardwares employ the low power Texas
Instruments R© MSP430 micro-controller as their processing
core and also the Chipcon R© CC2420 radio module for estab-
lishing their wireless communications. A number of major
specifications of this platform has been indicated in Table 23.
It should be noticed that the original version of the Cooja does
not support mobility. Therefore, a mobility plugin, which has
been provided in [241], is added to this simulator to extend its
ability for simulating mobile IoT applications. Furthermore,
in order to generate the mobile movement pattern of the
nodes, we have exploited BonnMotion [242]. BonnMotion
is a Java-based and open-source software developed in the
university of Bonn, Germany. This publicly available tool
enables the researchers to create and analyze mobile Ad-hoc
applications. In the following, first we explain the considered
network scenarios, then the results of the experiments will be
discussed in detail.

A. EXPERIMENTAL METHODOLOGIES
According to Table 24, to conduct a comprehensive set of
experiments for analysing the behaviour of RPL in presence
of different mobility patterns, a set of simulation scenarios
has been carried out in an environment with 10000m2 area
(as in [243], and [244]). We have considered 40 nodes in
our simulations. As it has been illustrated in Fig. 41, our
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FIGURE 41. A snapshot from the network topology.

TABLE 24. Simulation environment parameters.

simulation infrastructure consists of 31 mobile nodes along
with 9 anchor nodes. The anchor nodes are being employed
to model the stationary nodes in the infrastructure, which
may exist in a number of mobile IoT applications. According
to this figure, to provide a balanced probability of having
connections and disconnections in the mobile network due
to the type of the node movements, and also to provide a
fair set of evaluations for specifying the existing difference
between all of the mobility models, the simulation area has
been separated into three zones by means of the placement
of the anchor nodes. This kind of simulation configuration
would provide an environment consisting areas with high
probability of connection to the sink, and areas with low (even
zero) probability of reaching the sink (consider an individual
node in the area without any neighbours to be connected to).
In the latter, the mobile nodes should use their ad-hoc abilities
to establish a hop-by-hop connection towards the sink node.
Furthermore, the network is composed of only a single sink
node as the LLNBorder Router (LBR) to control theDODAG.
Meanwhile, the mobile nodes have been set to transmit User
Data gram Protocol (UDP) packets with 52 Bytes of payload
towards the sink with fixed Transmission Intervals (TI).

According to Table 24, in order to conduct our experi-
ments, we have set the TI as 30 seconds. In addition, the
transmission power of 0 dBm has been considered in the

Z1 nodes for transmitting their packets, because it is the
default value for many radio modules [245]. Every node
could cover an area up to 20m range, while its interference
range has been set to 30m. As it was discussed earlier in the
paper, in case of having mobile nodes in the network, due
to occurrence of more inconsistencies, the control packets
should be disseminated with higher frequency to maintain
the stability of the network. Therefore, the RPL’s trickle
timer could have a decisive role in this issue. Accordingly,
we have also tried to analyze the performance of RPL’s
trickle timer by comparing its original configuration with a
modified version. Accordingly, it should be mentioned that
in addition to designing and implementing new versions of
the trickle algorithm in RPL, which could be a complex and
time consuming task [98], [99], another option for making
RPL better comply with the mobile fluctuations, is to remove
the exponential increment of trickle time slots and consider
a constant value for them based on the specifications of the
intended network scenario, e.g., size, scale, density, and link
bandwidth/quality of the network. In this regard, we have
decided to compare the performance of RPL in both, the
original trickle version (starting with 4ms) and a constant
trickle with 30ms to show that even with slightly modify-
ing the original trickle structure, the performance of RPL
could be enhanced in confronting mobility. The configuration
parameters related to the movement of the nodes, such as
their velocity, pause times, and acceleration are considered as
their values in their original corresponding mobility models,
which were published in their papers. Finally, to provide a
fair comparison among different scenarios, every simulation
was lasted for 3600 seconds with respect to the network’s
convergence time.

B. EXPERIMENTAL RESULTS AND COMPARISON
In this section, the results of our comprehensive experiments
are provided. We have analyzed the RPL protocol containing
a mobility-aware OF [19] in presence of different mobility
models from different perspectives, including the power con-
sumption, the reliability of RPL in terms of PDR, the amount
of latency in the network, and the amount of imposed control
overhead to the network.

1) POWER CONSUMPTION
Since in many IoT applications, the nodes are either portable
or inaccessible, in case of running out of energy, recharging
or replacement of their power supply is relatively impos-
sible. Furthermore, the nodes energy depletion could lead
into catastrophic situations by occurrence of energy hole
problem in the network, which leads into disconnection of
a part of the network from the rest of it [246]. Hence,
power-efficiency is of high importance and it should be
carefully evaluated [247]–[250]. Accordingly, there are four
effective contributors in the total amount of consumed energy
in an IoT device. The first component is the activity of
the node (mainly the CPU and radio) in the listening phase
for receiving the probable packets from the other nodes.
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FIGURE 42. A comparison between the amount of consumed power by the nodes in presence of different mobility models.

The second factor is the amount of energy consumption due
to the leakage current in the Low Power Mode (LPM). The
third contributor is the amount of consumed energy due to
CPU activities and processes in the active mode, and finally
the fourth contributor is the transmission activities, in which
the node tries to send its data packets towards its destina-
tion(s). In order to calculate the amount of energy consump-
tion, the Cooja simulator employs the On-Line Node-Level
Energy Estimation technique proposed in [251], where the
total amount of consumed energy (Etotal) is computed based
on Equation 1.

Etotal = V .[Iata + Ilpmtlpm + Itr ttr + Irctrc +
n∑
i=1

Iptp] (1)

where Etotal is representing the total amount of consumed
energy by the node, V is an indication for the platform’s
supply voltage, Ia is indicating the drained current from the
processor in active mode, the drained current in the LPM
has been represented with Ilpm, the drained currents due to
transmission and reception operations have been indicated
by Itr and Irc respectively, and finally, Ip corresponds to the
drained current from the peripheral parts, e.g., the proba-
ble LEDs, sensors and push-buttons. Furthermore, t is the
spent time by the modules in a specific phase of operation,
i.e., active, LPM, transmit, or receive. With respect to
Equation 2, in order to calculate the average power consump-
tion in a node, the value of Etotal should be divided by the
node’s operational period, which is the sum of the CPU’s
spent time in active and LPM modes.

Power =
Etotal

tcpu + tlpm
(2)

With introducing the activity of the transceiver module
as one of the most important influential contributors to the
overall power consumption in an IoT node, it should be
mentioned that the OFs can significantly affect this activity
by being responsible for determining the parent and path
selection procedures in RPL, and bringing longer or shorter
radio up-times in a duty-cycled network [27], [252], [253].
In particular, the movement of the nodes in a mobile IoT
application could impact the functionality of the OFs and the
overall performance of the RPL in terms of power consump-
tion. It is worthy to mention that OFs could also increase
the amount of consumed power by the CPU in active mode

by imposing more complex calculations for determining the
next hop in the structure of the routing algorithms. Accord-
ingly, it is important to have a deep evaluation on the effect
of different mobility models on the energy efficiency of a
mobile-aware OF in the structure of RPL. Therefore, in the
following, the effect of different mobility patterns on the
power consumption will be analyzed under the presence of
MAOF as the operating mobility-aware OF in the structure
of RPL.

The average amount of consumed power by the nodes in
every model has been depicted in Fig. 42. This plot consists
of two major sections: 1) The power consumption in case of
having an exponentially increasing trickle timer in the RPL,
and 2) The consumed power in case of having a constant
trickle. At the beginning, we will discuss the results in case
of having an exponentially increasing trickle as the original
version of RPL. According to Fig. 42, the TIMM has the
lowest amount of power consumption among the mobility
models. As it was mentioned previously, due the structure
of TIMM, disconnections occur frequently. Therefore, each
node remains parent-less for a significant amount of time.
During these periods, the nodes do not forward or transmit
any data packets, which causes the overall power consump-
tion to be decreased significantly. This has made TIMM to
consume nearly 28% less power compared to its following
model, i.e., PMM. Similar to TIMM, the number of discon-
nections is also high in the PMM model. However, the main
difference between PMMand TIMM is in havingmore or less
number of neighbours around the nodes for transmitting their
packets. Unlike the TIMM model, in the PMM, since all of
the nodes move together, a majority of them have the chance
to choose an existing nearby mobile node as their parent and
start forwarding data packets towards it. This is despite the
fact that at the end, the packets will be mainly propagated
through the network until they reach a mobile node without a
parent, where they will be dropped. In the TIMM, the nodes
are divided into smaller groups and in each group there exists
several nodes without a parent, which could not transmit any
data packets. Therefore, the number of nodes without any
parents are higher in the TIMM and consequently the number
of transmitted data packets and the power consumption will
be lower.

In addition to the data packets, the control packets could
significantly affect the amount of power consumption in the
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nodes (there is a trade-off). As it will be discussed later,
the MMM and MRW (Probabilistic Random Walk) models
impose the lowest amount of control overhead among all of
the other mobility models. Accordingly, the existing nodes
under the presence of these models would have less activity
in terms of transmitting control packets for maintaining the
DODAG. Thus, the nodes could live longer in the correspond-
ing applications. However, the amount of consumed power in
these twomodels is still higher than the TIMMmodel (26.9%,
and 27.1% respectively). This is because the nodes in these
two models have a lower probability in remaining without
a parent compared with the TIMM. Therefore, the number
of attempts for transmitting data packets would be higher.
Therefore, although the control overhead is higher in TIMM,
its total number of transmitted packets is lower, which leads
to lower power consumption.

On the other hand, the nodes moving based on the SWIM
principles consume the most amount of power compared to
the other models. According to Fig. 47, this mobility model
has imposed the highest amount of control overhead among
the entity mobility models. According to the structure of this
model (Fig. 29), the simulation area is divided into smaller
regions and the nodes choose one of these regions as their
next destination based on their closeness and popularity.
Whenever a node enters a region, it counts the number of
nodes it encounters as a measure of that region’s popularity.
The higher the number of encountered nodes, the higher the
probability of choosing that region as a future destination.
Consequently, some of these regions will turn into hot-spots
with numerous number of accumulated nodes. As mentioned
previously, when the nodes aggregate in an area, the amount
of control packet overhead increases; Because the nodes
will frequently find a better option as their preferred parent,
which leads to a parent switch (which is considered as an
inconsistency and the RPL will reset the trickle timer to keep
the stability of the DODAG). Therefore, the high control
overhead in SWIM has led to higher power consumption in
the nodes. It is worthy to mention that this challenge could
be simply resolved by designing more intelligent OFs in the
body of RPL to eliminate the unnecessary parent switches in
the DODAG, e.g., modification of the Min Diff Threshold in
the RPL. In addition to the high control overhead, as it has
been represented in Fig. 43, the SWIMmodel has the highest
number of re-transmissions, which has further increased the
consumed power in the nodes.

In the group mobility models, on the other hand, the power
consumption is relatively low despite the high amount of
control overhead. The reason is that in the group models,
the nodes that belong to the same group remain close to
each other and thus, the average hop length is short. Con-
sequently, transmitting a packet from one node to its parent
consumes less power and the high control overhead will
be counterbalanced by the short hop distances. However,
in SWIM, the nodes converge in popular areas, pause for a
random time, and then diverge again as each node moves
towards another area. Hence, the nodes do not always remain

FIGURE 43. The total number of re-transmitted packets by the nodes in
different mobility models.

close to their parents and the average hop distance will
be higher.

The SWIMmobility model consumes nearly 1.1× of more
power compared to its following model, i.e., SLAW. As it
has been illustrated in Fig. 47, the SLAW model has the
highest control overhead among the entity mobility models
after SWIM and DAM models. The reason is that the nodes
are only allowed to choose their next destination from several
predetermined waypoints many of which are located near
each other. Thus, the accumulation of the nodes would be
higher near the areas, where the waypoints have been located.
The high density of the nodes near the waypoints leads to
higher control overhead. Furthermore, similar to SWIM, the
resulting average hop distance is not short in the SLAW
mobility model. This is because the nodes heading towards
the waypoints located closely to each other, might converge
near their destinations, but they will spread out as they move
towards their next destination. The high control overhead
along with longer hop lengths will lead to high power con-
sumption. Nevertheless, the SLAW still provides lower power
consumption compared to SWIM due its lower overhead and
lower number of re-transmissions.

The RWP is one of the most power consuming mobility
models after the SWIM and SLAWmodels. In this model, the
control overhead is relatively high and according to Fig. 43,
the nodes moving under this mobility pattern have the high-
est number of re-transmissions after SWIM. Both of these
factors have led to higher power consumption against the
majority of the models. One of the reasons that the number
of re-transmissions is high in the RWP is that the most of
the nodes either choose a central point as their destination
or pass through the center of the simulation area in order
to reach their destination. When a node is approaching the
center, it might select one of the stationary nodes as its parent.
But as soon as the node starts moving away from the center,
it might loose its connection. Since in the RWP, the nodes
have more randomness in their movement and the probability
of having a new preferred parents is decreased, in many cases,
the node has no other option but to keep its namely parent and
continues forwarding data packets to it, although that parent
is not in its range anymore. Consequently, since it will not
receive any acknowledgement, it will re-transmit the packet.
Indeed, the convergence of the nodes near the center of the
simulation area causes the nodes to find new parents. But
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as soon as they start to diverge, they will loose connection
and re-transmissions will occur. The same problem holds in
SWIM as well. The nodes converge at popular areas, pause
for a while and diverge again to head towards other areas.
These periodic convergences and divergences increases the
number of re-transmissions and also the power consumption.
As it has been indicated in Fig. 42, in case of having the
exponentially increasing trickle timer in the body of RPL, the
type of the mobility model could affect the amount of energy
consumption in an IoT device by up to 41%.

Now, let’s analyze the amount of power consumption after
employing a constant trickle timer. In this case, independent
from the occurrence of inconsistencies in the network and the
reset of the timer, the nodes will propagate control packets
after the expiration of a constant period. Therefore, the nodes’
routing information would be more up to date in compar-
ison with the exponentially increasing timer. Consequently,
with knowing that the number of transmitted control packets
would be increased, depending on the type of the mobil-
ity model, the general stability of the DODAG would also
increase, which may result in lower re-transmissions, higher
reliability and lower power consumption in many cases. As it
could be observed in Fig. 42, the amount of power consump-
tion could be reduced by more than 9% with the employment
of a constant trickle timer. However, there is an optimization
problem for specifying the period of the constant trickle,
which could be an interesting topic of research for scholars
in the future. It should be mentioned that this modification
could be an enhancement or disgrace to the performance of
the network under the presence of different mobility models
based on their structure. After introducing the modifications,
the BSA model has turned into the lowest power consuming
model. The reason is that in case of the modified trickle timer
in RPL, BSA has imposed the lowest amount of control over-
head among the mobility models. Furthermore, its number
of re-transmissions has been also decreased by nearly 8%
compared to the original version of RPL.

In addition, among the existing models, the PMM has
imposed the lowest amount of power consumption after the
BSA model. Prior to introducing the modifications to the
trickle, the PMM was placed forth in terms of the lowest
power consumption. Despite its high control overhead, the
number of re-transmissions was very low. The reason is that
when the group is not moving near an anchor node, each node
either chooses one of the neighboring mobile nodes as its
preferred parent or it will remain without any parents. In the
former case, the forwarded packet is likely to be successfully
transmitted as the nodes remain close and never leave the
transmission range of each other. In the latter case, the nodes
will discard all the received packets and also do not send
any packets itself. Thus, re-transmission does not occur in
this case either. The very low number of re-transmissions in
PMM counterbalances its high control overhead and reduces
the overall power consumption. As mentioned previously, the
average hop count is lower in group models (including the
PMM), which further reduces the power. In addition, when

the group reaches an anchor node, based on the structure of
MAOF in RPL, all of the nodes will select an anchor node
as their preferred parent, which significantly reduces the hop
count, and all of the nodes will transmit their data packets
towards their nearest anchor node directly. After introducing
the changes to the RPL, the amount of control overhead in
the PMM has not increased as much as the other models
such that it does not have the highest overhead anymore.
Consequently, the lower level of control overhead along with
the other factors mentioned above have caused the power
consumption to be low in the PMM model.

According to Fig. 42, the RWMhas been placed as the third
model with the lowest amount of power consumption. The
lower amount of power consumption against the major por-
tion of other models is generally due to the miniaturized and
random nature of movements in this model, which enables
the deployed nodes to have a better level of connections
throughout their trajectory. As it could be observed in Fig. 6,
due to the structure of RWM, the movement of the nodes
have been well distributed across the area and the nodes have
relatively covered all over the environment. This issue keeps
up the connection and stability of the network, which would
mitigate the control packet overhead and consequently the
power consumption. The MRW has even a lower overhead
compared to the RWM; But, since it imposes slightly higher
number of re-transmissions, the overall power consumption
has been increased against it.

On the other hand, with the average consumed power
of 7.7 mW, the employment of the constant trickle timer
in RPL has made the MSLAW as the most power hungry
mobility model among the others. The SLAW, and the RDM
models haven placed in the following positions, which based
on our observations, the existing trend in their level of power
consumption directly matches with the trend of their imposed
control packet overhead in the network. Therefore, it is highly
recommended to design and exploit appropriate OFs in the
structure of RPL to mitigate the amount of overhead to
improve the lifetime of the network. According to Fig. 42,
in case of having a constant trickle timer, the type of the
mobility model could affect the amount of power consump-
tion by up to 25%.

2) RELIABILITY
Typically, since IoT infrastructures are held in harsh and
dynamic environments, the rate of packet loss is relatively
high, and these systems could be recognized as unreliable
[254]–[257]. Lower amounts of reliability not only leads
into more packet re-transmissions in the network, but causes
more E2E delay, more transceiver activity, and more power
consumption. Therefore, it is an important issue to measure
the reliability of delivering the packets to their final desti-
nation(s). In order to report and evaluate the reliability of
the network in case of having different mobility models,
we have measured the PDR. In this regard, we have exploited
Equation 3, in which the PDR is calculated as the ratio
of the received packets by the sink to the total number of
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FIGURE 44. A Comparison between the reliability of the RPL in presence of different mobility models.

transmitted packets by the mobile nodes towards the sink in
the network [258], [259].

PDR =
Received Packets by the Sink
Transmitted Packets to the Sink

(3)

It should be mentioned that the value of PDR could be
highly affected by the transmission rate of the packets. As it
has been depicted in Fig. 45, with the increment of data rate,
the PDR has been severely degraded in the network. Hence,
to provide a fair set of evaluations and represent the exact
difference between the performance of the RPL in terms of
reliability in presence of different mobility patterns, we have
employed a data rate of 2PPM to assure that the obtained
low PDRs in mobile RPL-based applications is not caused
by the data rate but it significantly influenced by two factors:
1) The functionality of RPL in mobile IoT applications, and
2) The way of nodes’ movements in different mobility mod-
els, which directly affects the establishment of the communi-
cations in the network.

The PDR of the network in presence of different mobil-
ity models has been illustrated in Fig. 44. As it could be
observed, there is a high amount of difference between the
performance of exponential and constant trickle timers in
terms of PDR. The results have shown that by employing the
constant trickle timer, the reliability in the network would be
enhanced by nearly 72% compared with the original version
of RPL. This is due to the effect of periodically transmitting
DIO, DIS, and DAOs in the DODAG, which makes the
nodes to frequently update their routing information in their
neighboring tables and thus, to get better adjusted with the
sever fluctuations in mobile IoT applications. According to
this figure, in case of employing the exponentially increasing
trickle timer in the RPL, the TIMM has faced with the lowest
amount of PDR in the network. Based on the structure of
TIMM, disconnections occur frequently. As it was depicted in
Fig. 31, in this mobility model, the nodes move according to
a graph, which is a representation of a building. In this regard,
they are divided into small groups and each group secures a
different part of the building. For the rooms that are near the
anchor nodes, disconnection from the network would be rare.
However, for the areas that are far from anchors, there is a
strong possibility that the nodes become disconnected from
the rest of the network. This is mainly due to two factors:

FIGURE 45. Effect of Data Rate on PDR.

1) These nodes themselves do not have access to any of the
anchor nodes, and 2) The other groups are securing other
areas and thus, they are not probably close enough to act
as an intermediary node to establish the connection. As a
result, many nodes wouldn’t be connected to the sink and
they will either choose a parent within their own group or
remain parent-less. Accordingly, in many occasions, when
the nodes start sending packets within their own groups, the
packets will be finally received by a node without a parent
and they will be dropped. Therefore, the amount of PDR in
the TIMMmodel has been dropped bymore than 39% against
the average value.

Im addition to TIMM, the resulting PDR in the PMM
model was also low. In the PMM, the nodes move collectively
in form a single group and since their movement is random,
all of the nodes frequently exit the transmission range of the
anchor nodes. Accordingly, when the group is not connected
to any of the anchor nodes or the sink, similar to the TIMM,
some of the nodes will select other existing mobile nodes
as their parent while the others will have no parents. As a
result, when the parent-less nodes receive a packet from
their children, they will discard the packet; because it cannot
be further forwarded. Therefore, the amount of PDR will
be severely reduced. However, the amount of PDR in the
PMM is still higher compared to the TIMM mobility model.
In the PMM, all of the nodes move together and as soon as
the group enters the transmission range of an anchor node,
all of the nodes will be connected and can transmit their
packets successfully. In contrast, when one of the groups in
the TIMM becomes connected to one of the anchor nodes,
only a small portion of the entire network would be able
to transmit their data successfully; beacuse, the rest of the
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groups are still disconnected. In addition, once the areas near
the anchor nodes are secured, the groupswill move away from
these areas with higher velocities to reach to the rest of the
unsecured regions. Hence, they will leave the transmission
range of the anchor nodes in a short time and never come
back. Consequently, the amount of PDR in TIMM will be
quite lower than the PMM.

The RDM model has the lowest PDR after the two pre-
viously mentioned models. In the RDM model, the nodes
move from border to border and thus, the average flight length
is significantly high. Long flights without any pause time
implies that the nodes move from one region to another fre-
quently. Consequently, once a node moves into a new region,
initially it is not aware of its new neighbors and will continue
forwarding packets to its old parent, which is not accessible
anymore. These unsuccessful transmissions will cause PDR
to be reduced significantly. Since there are no pause times
in this model, the newly arrived node will not stay in the
region for a long time (especially if the nodes are being set
to move with high velocities) and it will continue moving in
its current direction, or it will start moving in a new direction,
which in both cases it leaves the area quickly. Thus, even if
the node successfully finds a new parent, it doesn’t take too
long before it leaves the transmission area of the new parent
as well. The amount of PDR in the RDM mobility model is
still higher than the PMM and TIMMmodels, because during
the flights in RDM, the nodes are likely to move through
the transmission range of one of the anchor nodes or another
connectedmobile node crossing the same area, and they could
successfully forward their data packets even for a short period
of time.

On the other hand, the DAM has provided the highest
amount of PDR among all of the mobility models by nearly
30% compared to the average PDR. In this model, as we
discussed earlier, there are several subareas of different types,
where every node belongs to one of them. The nodes them-
selves are divided into stationary and transporting nodes.
While the stationary nodes have very limited mobility, the
transporting nodes could move between several subareas.
Since in the disastrous area, the communication infrastructure
does usually fail, it is common for authorities to quickly
setup a temporary infrastructure near the established subar-
eas. Therefore, as it could be observed from the map of the
disaster area in Fig. 39, and the structure of the network in
Fig. 41,most of the subareas are placed near the anchor nodes.
Hence, the existing stationary nodes, whose movements are
confined to their areas can transmit their data packets via the
nearest anchors node. In addition, as it was described before,
the transporting nodes of the incident location area could
travel between the IL and PWT areas. Since these two areas
are not only close to each other but also both of them are near
the anchor nodes, the transporting nodes moving between
these two areas do not have to travel a long distance for
reaching their destination, and they can still remain connected
to the network. The same issue holds for transporting nodes of
the patients waiting for treatment area, which move between

the PWT and CCS areas. The ambulance nodes on the other
hand have higher mobility since they travel towards the lower
border of the simulation area and come back to the ambulance
parking point located on the top. These nodes face higher risk
of disconnection. However, since they only constitute a small
part of the network, the overall PDR remains high.

In the RWM andMRWmobility models, the average flight
length is shorter compared to the other mobility models.
In RWM, each node continues moving in the same direction
for a short time period before choosing a new random direc-
tion and velocity. In the MRW, the movement of the nodes in
the X and Y axis will be determined independently. In each
axis, the node will either move one step forward in its current
direction or stop for one time slot to change its direction.
Meanwhile, the nodes choose to move in the same direction
with higher probability and thus, they will probably continue
to take several steps in their current direction before heading
towards a new direction. However, the small step lengths
leads into short overall flight length. As a result, the nodes
tend to stay in their current area for a relatively long period
of time. Furthermore, since the direction of the movement is
random, the nodes have to take many short flights in order to
enter a new region. In contrast, mobility models such as the
RDM and RWP can move from one side of the simulation
area to the other side with only taking a one long flight. The
random long flights incurs the risk of becoming disconnected
from the current parent and also causes the children to lose
connection as well. The RWM and MRW avoid this risk by
taking short flights and remaining in the same region for a
longer period of time. As a result, the amount of PDR has
been increased in these models. However, compared to the
DAM mobility model, the nodes in RWM and MRW have
higher amount of mobility and consequently higher risk of
disconnection, which causes the PDR to be quite lower by
nearly 4% in both cases. Generally speaking, in case of using
the original version of the trickle algorithm, the type of the
mobility model could affect the PDR by up to 58%.

According to Fig. 44, after employing the constant trickle
in RPL, the BSAhas become themost reliablemobilitymodel
with the highest amount of PDR. As it could be seen from
the trajectory of the nodes in the BSA (Fig. 11), they move
smoothly. There are no straight flights and the nodes stay
in the same region for a relatively long time. Also in the
GMM, the nodes move smoothly as illustrated by the curved
lines in Fig. 9. Their main difference is that in the GMM,
the node’s trajectory has lower curvature, which results in
longer displacements, whereas in BSA, the trajectory bends
more sharply resulting in shorter displacements and creation
of loops near the same area. Hence, with nodes revolving
around the same area for a longer period of time, and the
gradual transition of the nodes from one region to another,
the reliability is expected to be high in the BSA, in both, the
exponential and constant trickle timer configurations. How-
ever, once the node reaches the boundary, it suddenly moves
to another side of the simulation area. This sudden extreme
movement, which happens few times for every node during its
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motion, causes the node to immediately become disconnected
from its parent and probably the rest of the nodes in its
neighbor list. Being unable to reach any of the nodes in its
neighbor list, it might stay disconnected for a while before
receiving messages from the new neighboring nodes and
substituting them in its neighbor list on the other side of the
area. This causes the PDR to be decreased. Meanwhile, with
the constant trickle timer in RPL, once a node reappears from
the other side of the simulation area, it can receive a DIO from
a new neighboring node within a short amount of time (even
before the RPL detects an inconsistency to reset the timer).
Therefore, the problem of sudden disconnections in BSA
would be significantly alleviated with the new scheme and
the PDR will be increased by more than 75% compared with
the exponentially increasing trickle algorithm as expected.

Based on the evaluations, after BSA, the RWM has
provided the highest amount of PDR, due to the reasons
mentioned earlier. However, with nodes having shorter dis-
placements and the mitigation of the previously mentioned
challenge in BSA, the amount of PDR in RWM is slightly
lower compared to the BSA by nearly 8%. In addition, the
utilization of the constant trickle timer instead of the expo-
nential trickle has improved the reliability of the TLW by
more than 72%. In this regard, in the TLW mobility model,
the movement of each node consists of several short flights
followed by a long flight. The long flights that occur after
a series of short flights cause the nodes to move into a new
area incurring the risk of disconnection.Meanwhile, when the
nearby anchor or mobile nodes start sending DIO messages
with shorter periods, it causes the nodes to face a lower risk of
becoming disconnected from the network while taking a long
flight. This is because after taking a long flight, the nodes will
shortly become aware of the available neighbouring nodes,
which could be chosen as their new parent. Thus, the problem
posed due to the occasional occurrences of long flights in
the TLW will get less effective. Nevertheless, the PDR still
remains lower than the RWM. This is because as it could
be seen from Fig. 6, and Fig. 26, the length of the flights is
slightly higher than the RWM. Consequently, there is a higher
probability for the nodes in the TLW to become disconnected
for a while due to moving to further areas with no anchor or
connected nodes nearby.

After modifying the trickle timer, the TIMM and PMM
models still have low PDR. Nevertheless, with the new
trickle, the TIMM has shown better performance in terms
of PDR compared to PMM. In order to make the constant
trickle get into effect and to get the best from it, there should
be possibility of having connections to either anchor or con-
nected mobile nodes in our transmission range. In this regard,
in the TIMM mobility model, there are a number of groups
in the area, while in the PMM model, there exists only one
group. Consequently, the probability of having at least one
group in the transmission range of an anchor or connected
mobile node at every time instance is higher than PMM.
Because in the PMM, there is only one group moving around,
which could be far away from the anchor or connected nodes

for a considerable amount of time. Therefore, sending more
number of RPL control packets to establish the communi-
cations will be useless and it would not affect the amount
of PDR as much as other mobility models. Accordingly,
the modifications will have more effect on the TIMM by
providing 14% of more PDR improvement against the PMM,
which has caused the reliability of this model to exceed that
of PMM by up to 28%.

It is worthy to mention that analyzing and comparing the
PDR values of map-based mobility models, e.g., MSLAW,
and RSM, with other models could not be rational due to the
existing compatibility or incompatibility between the utilized
digital map data and the network infrastructure in the simula-
tions. Because, you may employ a map that forces the nodes
to move in a relatively longer distance to the anchor nodes,
which results in lower PDR, while at the same time you can
use another map, which makes the nodes to move near the
anchors and shows higher PDR, although the mobility model
was the same. Generally speaking, based on the provided
information in Fig. 44, in case of having a constant trickle
algorithm in the RPL, the type of the mobility model could
impact the reliability of the network by up to 70%.

3) E2E DELAY
A number of IoT applications, such as Remote Health-care
Monitoring Systems (RHMS), require fast packet delivery
to avoid tragedies [260]–[262]. Therefore, the measurement
of the E2E delay is believed as a well-known method for
determining and comparing the performance of different enti-
ties in the context of networks. Typically, in a broad range
of IoT applications, the data is collected and sent from the
lower levels of the DODAG tree to the upper layers (mainly
the sink node). In other words, in many LLN applications,
the dominant traffic pattern is MP2P [263]. Accordingly, the
dominant part of the E2E delay could be defined as the delay
between the end nodes and the sink. Accordingly, we have
employed this parameter and calculated the average amount
of E2E delay for a packet to be transmitted by the mobile
nodes and received by the sink to specify the performance
of the RPL under the presence of different mobility models.
The average amount of delay in different mobility conditions
has been illustrated in Fig. 46. Similar to the previous plots,
in every model, the amount of latency has been depicted
for both, the RPL with the exponentially increasing trickle
timer, and also the modified version of this protocol with a
constant trickle. As it could be seen in this figure, the average
amount of RPL’s E2E delay with the constant trickle has been
improved by more than 22%. This behaviour is due to the fact
that according to the resulting observations, the periodical
transmission of DIO, DIS, and DAOs in the DODAG, has
significantly helped the mobile nodes to frequently update
their routing tables and to be aware of the existing fluctuations
in their surroundings in a short amount of time.

This is despite the fact that in the original version of the
trickle timer, the transmitted packets are typically sent to a
parent, which never exists in the transmission range of that
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FIGURE 46. A comparison between the observed E2E delay in RPL in presence of different mobility models.

specific node, or they would be seriously delayed due to the
time consuming nature of determination of inconsistency in
the DODAG or even declaring a local or global repair by
the sink in the network to rebuild the connections in the
network from scratch to further provide this opportunity for
the mobile nodes to find a new preferred parent. In addition,
since the nodes are continuously moving in the area, the
occurrence of inconsistencies and parent switches (handover
operations) would be frequent, which intensifies the problem.
All of these issues would make the E2E delay to be increased.
On the other hand, in case of having a constant timer, the
routing information packets will be disseminated in a periodic
manner leading to a more stable topology with less num-
ber of inconsistency and repair procedures in the network,
which provides a faster network for mobile RPL-based IoT
applications.

As it has been depicted in Fig. 46, in case of employing the
original version of the trickle timer, the PMMmobility model
has faced with the highest amount of delay among all the
other mobility models. In this model, all of the nodes move
together. This issue has made the nodes to be disconnected
from the network as long as the group is out of the trans-
mission range of the anchor nodes. Once the group moves
towards any of the anchor nodes and enters its transmission
range, a major portion of the nodes (maybe all of them) will
receive a DIO message from the nearby anchor node, and
they will all choose that anchor node as their preferred parent.
This way of parent selection is entirely upon the structure of
MAOF in the RPL, which considers a higher priority for the
anchors and stationary nodes to become the preferred parent
of the mobile nodes. Hence, since the nodes are moving
collectively, they will all receive the DIO message sent by the
nearby anchor node. Consequently, all of the mobile nodes
will start forwarding their packets to the anchor node in their
vicinity and suddenly the anchor node becomes flooded with
the incoming data packets sent from the mobile nodes nearby.
This leads to an extreme congestion in small part of the
network, which results in drastically increased E2E delays.
This matter has made the PMM to encounter up to 54% of
more latency in the network compared to the average amount
of delay in the mobility models.

In addition, in the DAM mobility model the same prob-
lem persists. The movement of the nodes (except for the
ambulance nodes) is confined to predefined areas, most of

which are near the anchor nodes. Aggregation of the nodes
near certain anchor nodes causes the network traffic to be
unbalanced as all the mobile nodes in that area will select
the anchor node as their preferred parent and start forwarding
their data packets towards that node. The high congestion
encountered by the anchor nodes that are placed near the
predefined areas causes the delay in the network to be risen.
However, the latency in this model is still lower compared
to the PMM, because the nodes are more distributed and
divided into smaller groups, where each group is connected
to a different anchor node. Thus, the network traffic would
be quite more balanced compared to the PMM model, which
causes the delay to be lower.

In the SLAW mobility model, the waypoints are deter-
mined in advance and the nodes are all obliged to only travel
between these predetermined waypoints. However, according
to Table III-B20, there are no geographic constraints and
obstacles imposed in this model and the nodes can travel in
a straight line between every two waypoints. In contrast, the
nodes in the RSM model face geographic constrains as they
have to move according to a digital street map given to them
as an input. Nevertheless, they are allowed to select any acces-
sible point on the map as their waypoint. Meanwhile, in the
MSLAW mobility model, both of the mentioned restrictions
exist at the same time as the nodes have to travel between
pre-specified waypoints with the existence of geographic
constraints. These restraints causes the nodes to be able to
use only a limited number of routes while traveling. Thus,
the problem of unbalanced network traffic will be still present
in the MSLAW model as well. The anchor nodes that are
placed near the busy routes will encounter high traffic, while
the rest of the anchor nodes remain unused. As it can be
seen from the trajectory of the nodes in MSLAW (Fig. 36),
the top half of the simulation area is unexplored since the
nodes mainly travel in the lower half. Although this challenge
is significantly dependent on the compliance of the existing
communication infrastructure in the area and the map of the
routes, since the influential factors on the delay here are the
existing restrictions of the routes in all of the map-based
mobility models and also the distance between those routes
and the anchors, we could consider MSLAW as part of our
latency evaluations. Accordingly, based on our observations,
since in theMSLAWmodel, the nodes move individually and
are more uniformly distributed compared to the PMM and
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DAM models, the amount of delay is nearly 26% and 24%
lower than these models, respectively.

On the other hand we have the RDMmodel with the lowest
amount of latency. In the RDM, the nodes are distributed
randomly. Unlikemodels such as the RWP, inwhich the nodes
tend to aggregate near the center, the nodes in the RDM
continue moving in the same direction until they reach the
boundary and thus, they are distributed more uniformly. Gen-
erally speaking, the uniform distribution of the nodes leads
to a better load balancing and shorter delays. Furthermore,
in case of RDM, the PDR is critically low, while the number
of re-transmissions is high. This implies that disconnections
occur frequently in this model. Therefore, those nodes in the
RDM, who have successfully made a connection to the sink,
are mostly facing a quiet network with no or only a few
congestions in the network. Hence, their transmitted packets,
which could make their way through the destination will
be passed quickly. This issue could be very controversial,
because in case of demanding fast infrastructures in certain
mobile IoT applications, focusing on the latency individually
would not be a wise decision, and we should consider the
provided reliability in the network as well; Because, there
might be situations such as what we have seen in the RDM,
where the latency is pretty low, while there aren’t many
packets received by their destinations. Based on the provided
information in Fig. 46, the amount of latency in RDM is
nearly 69% lower than the average value.

In addition, in the MMM model, the nodes move within a
n×n grid, in which they are distributed uniformly. Therefore,
the probability that a group of nodes accumulate in a certain
region is relatively low. As it has been represented in Fig. 12,
when the nodes come upon each other at an intersection, they
will rapidly spread out in four different directions, which
causes the traffic to be balanced across the network. The
effective load balancing as a result of the movement pattern
of the nodes and also the parent selection policies, which
is a responsibility of the OFs in RPL, reduces the overall
delay in the network. Nevertheless, since the structure of
MAOF in RPL does not consider any sort of load balancing
policies, the observed load balancing is completely related
to the intrinsic motion of nodes in the MMM. However,
in MMM, the disconnections are not as frequent as in RDM,
which implies that more number of nodes would be able to
forward their data packets towards the sink simultaneously.
Therefore, the higher congestion in the DODAG under the
presence ofMMMmodel has led into higher delays compared
to the RDM mobility model by more than 32%.

By taking a deeper insight into Fig. 9, it could be observed
that in the GMM model, sudden changes of direction and
velocity do not occur. Unlike models, in which the nodes
suddenly change their direction and speed, in the GMM, the
nodes tend to turn and move gradually towards their new
area. This causes the selection of the preferred parent to be
more graceful and stable. Therefore, the nodes are provided
with sufficient time for selecting the most appropriate candi-
date as their preferred parent and stay connected to it for at

least an acceptable amount of time with higher probability.
Furthermore, with having MAOF in the structure of RPL,
which employs the hop-count as one of its parent selection
metrics, as the nodes stay in the transmission range of their
parents for longer periods, they will better take advantage of
their parents that are only a few hops away from the sink.
This has provided this opportunity for the packets to have
relatively low E2E delays in the network under the presence
of GMM. Meanwhile, the nodes in the GMM are distributed
less uniformly compared to the MMM and RDM models.
Accordingly, due to the gradual motion of the nodes, when
they come together in a small part of the simulation area, they
will spread out more slowly compared to the MMM. This
slow reactions would create zones prone to congestion and
consequently higher delays compared to the MMM mobility
model. According to Fig. 46, with having the exponentially
increasing trickle timer in the structure of RPL, the type of
the mobility model could affect the amount of E2E delay in
the DODAG by nearly 86%.

Based on the provided information in Fig. 46, in case of
having a constant trickle timer instead of the exponential
version, the PMM, DAM, and MSLAWmodels still have the
highest amount of delay. But this time, the E2E delay in the
PMM is quite lower than the DAM. As it was mentioned
earlier, the modifications made in the RPL’s trickle algorithm
would significantly take into effect if the nodes have a chance
to pass through the transmission range of the anchor nodes or
those nodes, who have an active connection to anchors for a
sufficient amount of time. Consequently, if the nodes are less
motional or they always remain near the same anchor node,
the constant trickle will be be less effective. This is because
the nodes that travel around the same anchor node would
already choose this stationary node as their preferred parent,
whether the transmission frequency of the DIO messages has
been increased or not. Accordingly, in the DAMmodel, most
of the nodes have low mobility as they usually move within
their confined area or they would travel between two adjacent
areas, and thus, a majority of the nodes remain connected to
the same anchor node. As a result, although the amount of
delay has been improved by nearly 17% in the DAM, but the
new changes has not made this model to have less E2E delays
compared with the other existing mobility models. Based on
the results, in case of having a constant trickle timer in RPL,
the DAM has faced with more than 56% of more E2E delay
compared with the average value.

Furthermore, in the PMMmobility model, while the nodes
spend a considerable amount of time away from the anchor
nodes, they have higher degree of freedom and mobility com-
pared to the DAM. Therefore, during the time that the nodes
are in the transmission range of the anchor nodes, the modi-
fications could assist them to establish a faster connection in
comparison with the DAM. More precisely, with employing
the modified version of the trickle timer along with the PMM
mobility model, whenever the entire group moves away from
an anchor node towards another anchor, a part of the group,
which is closer to the new anchor could become aware of
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FIGURE 47. A comparison between the imposed RPL control overhead to the network in presence of different mobility models.

its existence sooner and they could choose the new station-
ary node as their preferred parent. Accordingly, the total
amount of forwarded traffic to a single anchor node will be
reduced, and it will be distributed among the existing con-
nected anchors. While this specifications has resulted in less
probability of congestion and less delay against DAM, but
the overall latency in the PMM is still very high. On the other
hand, the RDM mobility model still has the lowest amount
of E2E delay by nearly 62% of less latency compared with
the average value, while the BSA and the MRW have been
placed in the following places. Generally speaking, based on
our experiments, in case of utilizing the constant trickle timer
in the structure of RPL, the type of the mobility pattern could
affect the amount of latency by nearly 83%.

4) CONTROL OVERHEAD
Due to the severe fluctuations in the quality of the links and
the frequent variations in the rational distance between the
mobile objects, RPL is facing with many inconsistencies,
e.g., parent switches, loop creation, and global repairs by the
sink, and it must disseminate numerous amount of control
packets to maintain the stability and communications of the
DODAG. In addition to the OF’s policies, the structure of
the trickle timer has also a pivotal role in maintaining this
stability. Although, the trickle tries to mitigate the amount
of control packet overhead by exponentially increasing the
period between consecutive transmission of control packets,
but due to the frequent inconsistencies in mobile infrastruc-
tures, the trickle will be reset to its initial values, and the
control packets (DIO, DIS, DAO, and DAO-Ack) will be
transmitted throughout the network with higher frequency to
bring back the stability to the network [264]–[266]. More
control packets results in more resource consumption in the
nodes (especially energy and bandwidth) as well as possibly
more number of collisions and lower reliability [267]. With
respect to this issue, as it was mentioned before, we decided
to conduct our experiments in both, the original version of
the trickle timer in RPL, and also a modified version of
it, which tries to propagate the RPL control packets in a
periodical manner with a constant interval. This modifica-
tion improves the efficiency of the DODAG in terms of
power consumption, lifetime, reliability and E2E delay. Nev-
ertheless, based on our experiments, employing the constant
trickle timer would increase the amount of control packet

overhead in the network, which will be discussed in the next
section.

Generally speaking, in case of using a constant trickle in
the structure of RPL, with considering very small intervals for
the control packet dissemination, not only the control packet
overhead will be significantly increased, but it will also have
a negative impact on the nodes power consumption, reliabil-
ity of the network, and latency of the packets [34], [268].
Therefore, we have carefully selected the control packet
transmission interval (equal to the average time interval that
the control packets were transmitted in the exponentially
increasing trickle), to avoid facing this issue, and as it has
been illustrated in Fig. 47, while we have observed only 3%
of more control packet overhead compared with the original
version, the other attributes of the network were significantly
improved. Accordingly, the mentioned interval should be
selected carefully to get the best out of it in RPL-based
mobile IoT applications. Meanwhile, in order to determine
the amount of control packet overhead in the RPL in presence
of different mobility models, we have utilized the ratio of the
control packets to the favorable packets (including the UDP
data packets) in the network.

As it could be observed from Fig. 47, in case of employing
the modified version of the trickle algorithm, the amount
of control overhead has not significantly increased com-
pared with the original version. This is because, when we
use the periodical dissemination of the RPL control packets
in the mobile network, the nodes will have more updated
routing information throughout their lifetime and therefore,
by enhancement of the stability of the DODAG and estab-
lishment of more reliable and long lasting communications
in the network, the number of beneficial packets, e.g., data
UDP packets, which are successfully delivered to their des-
tinations will be also increased in the network. Accordingly,
based on the utilized method for measuring the control packet
overhead, by increment of the both, the transmitted control
packets and the favorable packets in the network, their ratio
will stay relatively the same compared with the exponentially
increasing trickle but with marginal increment. On the other
hand, comparing the models only based on the transmitted
control packets is not a wise decision. Because at it was
mentioned earlier, with increasing the control packets up
to a certain threshold, the performance of the network and
the PDR would be enhanced. Hence, we should consider
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the number of transmitted control packets along with the
propagated beneficial packets in the network to indicate how
much control packets has been employed for sending a packet
successfully.

In case of having the exponentially increasing trickle timer,
based on the provided information in Fig. 47, among the
mobility models, the RPGM, PMM and NCM have the high-
est amount of control packet overheadwith nearly 3%ofmore
overhead compared with the average value, respectively. All
of these mobility models share one similar feature, i.e., they
are all considered as group models. In Group models, the
network is divided into several groups and the nodes that
belong to the same group move together. Accordingly, when
node Amoves with several other nodes, all of those nodes will
remain in the transmission range of node A. However, their
distance from node A is continuously changing. Therefore,
the closest node to node A would be changed frequently.
According to the employed OF in the structure of RPL, the
priority of neighbor nodes for becoming the preferred parent
will be changed as their distance from node A fluctuates. This
causes the node A to change its parent frequently, which is
considered as an inconsistency by the RPL and the trickle
timer will be reset to its initial values and the broadcasting of
DIO messages will be accomplished with higher frequency
for enabling the node A to quickly select its new parent and
keep the stability of the DODAG. As a result, the control
overhead in group models is relatively high. In addition to the
mentioned models, the CMM, which is also a group-based
model, and the DAM are also facing with high amounts
of control overhead. In the DAM, each node belongs to a
specific subarea, which is relatively small. Therefore, there
are lots of nodes moving within a small area, which leads
to the similar effect encountered in group models. Indeed,
whenever a group of nodes remain close to each other, the
control packets being sent by these nodes will be increased
compared to those models, where the nodes are distributed
uniformly within the simulation area.

According to Fig. 47, the MRW has the lowest amount
of control overhead among all of the mobility models with
nearly 4% of less overhead compared with the average value.
In this model, the node’s movement is more deterministic
compared to the other random mobility models. Each node
can only travel in eight directions and they will continue
moving in their current direction with higher probability. The
more a new direction is diverted from the current line of
motion, the less is the probability of selecting that direction
in the next time step. Therefore, if two nodes are moving
closely and in the same direction, they will remain close to
each other for a while. Consequently, if one of the nodes is
chosen the other node as its preferred parent, it could remain
connected to the same parent for a relatively long period of
time. Furthermore, the MRW is one of the models in which
the distribution of the nodes is more similar to uniform. Thus,
unlike group models in which the nodes move collectively,
each node has lower number of neighbors in its surrounding
and thus, they cannot change their parent as frequently as they

did in group models. It should be mentioned that even in case
of group-based mobility models, the frequent parent switches
is completely dependent on the routing decision makings that
are being made by the OFs in the structure of RPL, and with
employing wise threshold values in the RPL, the frequent
parent switches could be avoided. Last but not least, in MRW,
the nodes often move with a constant velocity. In each time
step, a node can either move in the X or Y directions or both.
If we consider each time step to be 1 second, the nodes’
velocity is either 1 or

√
2. The nearly constant velocity of

the nodes causes the distance between the nodes moving in
the same direction to remain constant. This nearly unvarying
distance between the nodes, further causes the node’s priority
in the neighbor list to change less frequently and as explained
previously leads to fewer inconsistencies and consequently
lower control overhead.

After MRW, the MMM has faced with the lowest amount
of overhead. Similar to the MRW, the nodes have a restricted
direction selection and they can only move in four directions
and also they could retain their current direction of motion
with higher probability. Thus, if two nodes are moving in the
same direction they will stay near each other for a while and if
one of the nodes has been chosen to be the parent of the other
node, it could remain its parent for a relatively long period of
time. In addition, the nodes are distributed uniformly in a grid,
which represents the streets and their intersections. If two
nodes are not in the same street or at the same intersection,
they will probably be out of the transmission range of each
other (depending on the transmission range of the nodes).
The uniform distribution of the nodes on the grid along with
the restrictions posed to the mobile nodes to move along the
streets have caused them to have lower number of options
as candidate parents in their neighbor list and consequently,
lower probability of parent switches. Therefore, the nodes
will change their parents less frequently and the control
packet overhead would be reduced. However, based on the
algorithm of the MMM model, the probability of two nodes
entering the transmission range of each other for the second
time after they have been separated is pretty low. Thus, if a
child becomes separated from its parent at an intersection,
it has to change its parent as soon as possible (This could be
even considered in the RPL OFs, which are being designed
to be employed in IoT applications with Manhattan as their
mobilitymodel). On the other hand, in theMRW, it is possible
for a node to temporarily divert from its current state and
return to its previous direction of movement after a short
period time. This eliminates the need for switching to a new
parent. Hence, the control packet overhead in MRW would
be lower than the MMM mobility model.

The third model that has represented the lowest amount of
control packet overhead is RDM. As it could be seen from the
trajectory of the nodes in this model (Fig.5), the distribution
of the nodes is highly uniform. The uniform distribution
of the nodes results in smaller neighbor list. Hence, unlike
the group-based mobility models in which the nodes have
many options to be selected as their preferred parent and the
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best option frequently changes, there are less options in the
nodes under the presence of RDM. Sometimes, the nodes
might have only one neighbor or even no neighbors at all,
specially when they are near the boundaries. Nonetheless, the
control overhead in this model is higher than the MRW and
MMM mobility models. The reason is that the direction of
movement in RDM is completely random, which it could take
any values. This brings a higher chance to the neighboring
lists of the nodes to changemore frequently, whichmight lead
into switching to a new parent. Generally speaking, in case of
having the exponentially increasing trickle timer, the type of
the mobility model could affect the amount of control packet
overhead by up to 7%.

After applying the modifications to the trickle timer of the
RPL, based on the provided information in Fig. 47, the SLAW
mobility model has faced with the highest ratio of control
packet overhead. As it could be observed from the trajectory
of the nodes in the SLAW mobility model (Fig.24), a large
number of waypoints have been located near the anchor
nodes. Accordingly, when the mobile nodes are traveling
between these waypoints, they will continuously receive DIO
messages from the nearby anchor nodes. As it was mentioned
earlier, since the stationary nodes have higher priority in the
RPL’sMAOF, they will be chosen as the preferred parent with
more probability. In this regard, as soon as the node travels
away from its current parent towards another anchor node,
due to the frequent transmission of control packets in the
new trickle timer, it periodically receives a new DIO from
the approaching anchor node, and detects that their distance
is getting decreased. Therefore, it will change its parent to
the new anchor node. In other words, in case of having the
constant trickle algorithm, accumulation of waypoints near
the anchor nodes and the movement of the nodes in that
area causes a frequent fluctuation in the distance between the
mobile and anchor nodes and consequently, leads into more
parent switches in the network. Thus, the imposed control
packet overhead to the network will be intensified.

Prior to employing the constant trickle algorithm in RPL,
the nodes, including the anchors, were supposed to transmit
their control packets in an exponentially increasing manner
(in case of reaching a stable topology). This issue could have
made the moving nodes unaware of their neighboring anchors
in case of passing aside of them. In contrast, with using the
constant trickle, the moving objects would have receive the
RPL control packets in a periodic manner, which enables
them to update their routing tables and possibly select one of
the neighboring anchor nodes as their preferred parent. This
issue by itself could increase the control overhead. Mean-
while, one of the mobility models that has mostly got affected
by this modification, is the RDM mobility model. Since the
moving objects in presence of RDM should move along their
selected direction until they reach one of the boundaries and
then try to select another direction, the nodes in this mobility
model would behave like a ping-pong ball, and they must fre-
quently move from one side of the simulation area to another.
This issue along with the pure random decision makings in

RDM has caused the nodes to frequently get disconnected
from their mobile parents, connect to an anchor, disconnect
from an anchor and connect to another mobile node again.
Hence, the amount of parent switches and inconsistencies
in RDM has been significantly increased, and based on our
observations, the amount of control overhead in RDM in
the modified version of the trickle timer has increased by
nearly 7%, which is the highest among the other models.
Accordingly, as it was represented in Fig. 42, the employment
of the constant trickle timer has not been able to improve the
energy efficiency of the nodes under the presence of RDM
and the new timer has showed a negative impact on the power
consumption of the nodes, and based on our observations, the
amount of consumed power has been increased by nearly 6%
compared to the original version of the RPL.

After RDM, the PMM mobility model has faced with the
highest amount of control overhead. As it could be seen
from Fig. 47, the amount of control overhead in group-based
models has not increased as much as the entity models and
even in some cases, it has been reduced, i.e, NCM, and
RPGM. Generally, in multi group-based models, since the
nodes move collectively, the nodes of the groups are more
likely to become aware of the presence of the nearby anchor
nodes. Furthermore, since in MAOF, the stationary nodes
have more priority over mobile nodes, all of the existing
nodes in the group will select the nearby anchor node as
their parent. As a result, the closeness of the mobile nodes
that belong to the same group, and fluctuation of the distance
between them does not lead into parent switch. Indeed, while
the priority of the neighboring mobile nodes is still changing,
as long as there is a stationary node nearby, the continuous
change of metrics in lower priority nodes would not lead into
any parent switches. Therefore, in many group-based models,
the increment of DIO messages sent by the anchor nodes
is fairly balanced out by the decrease in the DIO messages
broadcasted by the mobile nodes due to parent switch and
inconsistencies. Accordingly, with employing the new trickle
algorithm, the amount of control packet overhead in NCM
and RPGM models has been decreased. Nevertheless, the
control overhead in the PMMmodel has been increased and it
still remains high compared to the other mobility models. The
reason is that unlike other group-based models, there is only
one group in the PMM model. Accordingly, all of the nodes
move together and thus, they all become disconnected from
the stationary nodes when the group is out of the transmission
range of these anchor nodes. While away from the stationary
nodes, all of the mobile nodes in the group have no other
option but to select the other existing mobile nodes in their
group as their parent. Therefore, the fluctuations in their
distances and the other routing metrics would get effected
and we would have frequent parent switches, which leads
into higher control packet overhead as mentioned previously.
Furthermore, the high number of group members leads to
larger neighboring lists (in many cases the neighboring lists
of the nodes are limited and in such situations, the lists will
be full filled, which requires adopting novel neighboring table
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management techniques in RPL [269]) and therefore, due to
the sever fluctuations in the quality of the links, distances
and other metrics, the best option will be frequently changing
from the RPL point of view. This implies that in case of
having only one group in the area, there would be higher
chances of being far away from the anchors compared with
other group-based models with more number of groups. This
issue has caused the overhead to remain high in the PMM
model by nearly 2% above the average value.

On the other hand, after introducing the changes to RPL,
the BSA has faced with the lowest amount of overhead. As it
was illustrated in the BSA’s trajectory (Fig.11), the nodes
move smoothly without any long straight flights. In addition,
they move around the same region for a considerable amount
of time before moving to a new area. When the nodes enter
the transmission range of an anchor node, they will become
aware of its presence shortly and choose it as their preferred
parent. Since the mobile nodes move around the same area for
a long time, they can remain connected to the same anchor
node for a significant amount of time without the need to
switch to a new parent. Hence, the periodic transmission of
control packets would not significantly help the nodes in
selecting their parents. The lower the number of handovers,
the lower the number of DIO messages broadcasted by the
mobile nodes due to inconsistencies. Therefore, while the
BSA mobility model was the fifth mobility model in terms
of the lowest control overhead before introducing the mod-
ifications to the RPL; The movement pattern of the nodes
in BSA has caused them to take more advantage of the new
modifications to the trickle timer as the control overhead has
increased for only 0.9% compared with the original version.
Afterwards, there is MRW, which has the lowest amount of
overhead due to the reasons mentioned earlier.

The RWM has the lowest amount of control packet over-
head after the BSA and MRW mobility models. Similar to
the BSA, the nodes in RWM remain in the same area for
a considerable amount of time and they have low tendency
to explore new areas. This is mainly due to the short flights
accompanied with random directions, which makes it diffi-
cult for a node to continuously move in a constant direction so
as to advance towards a new area. As soon as a node receives
a DIO message from the nearby anchor node, it chooses
the corresponding stationary node as its preferred parent and
ignores the incoming DIO messages from the other nearby
mobile nodes. Accordingly, since the node stays in the same
region for a relatively long period, the anchor node is a
reliable choice, which can guarantee the node’s connectivity
for a while and temporarily eliminates the need for finding a
new parent. Based on our observations, in case of employing
the constant trickle timer in the structure of the RPL, the
type of the mobility model could affect the amount of control
packet overhead by up to 5%.

V. CONCLUSION AND FUTURE DIRECTIONS
While mobile IoT applications are getting more popular-
ity, since RPL was fundamentally designed for fixed-node

IoT applications, it could not well adjust with the dynamic
fluctuations in mobile infrastructures. While a number of
mobility-aware versions of RPL have been recently pro-
posed, but much more effort is required to reach a more
efficient version of this protocol, which could be adopted
by various mobile IoT applications. Prior to that, it is nec-
essary to determine and compare the performance of RPL
under the presence of various mobility models to pave the
way for researchers in academia or industry for designing
multi-purpose or application-specific versions of this proto-
col for mobile conditions. In this regard, this survey tries to
conduct a set of comprehensive experiments along with pro-
viding a complete explanation of themobility models to fairly
justify and compare the experimental results. According to
our evaluations, which were obtained via precise IoT simula-
tion tools, mobility models have different impacts on the per-
formance of the network and its nodes in RPL-based mobile
IoT infrastructures. Based on our evaluations, employment
of the constant trickle timer in the structure of RPL could
significantly help this protocol to get better adjusted with the
existing fluctuations in mobile environments. It should not
be forgotten that the control packet dissemination period has
to be determined with significant care to get the best out of
it from the power efficiency, reliability, latency and control
overhead perspectives.

As part of our future studies, we are aiming to conduct
a deep experimental evaluation on the functionality of dif-
ferent extensions of RPL, and OFs under the presence of
the surveyed mobility models to determine the importance
of employing appropriate policies in different parts of RPL
in confronting the existing dynamicity in mobile conditions.
Furthermore, due to the increasing trend in employing swarm
of Unmanned Aerial Vehicles (UAV) and FANETs, the con-
cept of 3 Dimensional (3D) mobility models has gained sig-
nificant popularity in recent years [270]–[272]. Hence, con-
ducting a survey on the existing 3Dmobility models and their
applicability to RPL-based infrastructures is a prospective
filed of study in future research efforts.
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