68 research outputs found

    Geometric Surface Processing and Virtual Modeling

    Get PDF
    In this work we focus on two main topics "Geometric Surface Processing" and "Virtual Modeling". The inspiration and coordination for most of the research work contained in the thesis has been driven by the project New Interactive and Innovative Technologies for CAD (NIIT4CAD), funded by the European Eurostars Programme. NIIT4CAD has the ambitious aim of overcoming the limitations of the traditional approach to surface modeling of current 3D CAD systems by introducing new methodologies and technologies based on subdivision surfaces in a new virtual modeling framework. These innovations will allow designers and engineers to transform quickly and intuitively an idea of shape in a high-quality geometrical model suited for engineering and manufacturing purposes. One of the objective of the thesis is indeed the reconstruction and modeling of surfaces, representing arbitrary topology objects, starting from 3D irregular curve networks acquired through an ad-hoc smart-pen device. The thesis is organized in two main parts: "Geometric Surface Processing" and "Virtual Modeling". During the development of the geometric pipeline in our Virtual Modeling system, we faced many challenges that captured our interest and opened new areas of research and experimentation. In the first part, we present these theories and some applications to Geometric Surface Processing. This allowed us to better formalize and give a broader understanding on some of the techniques used in our latest advancements on virtual modeling and surface reconstruction. The research on both topics led to important results that have been published and presented in articles and conferences of international relevance

    Graph Spectral Image Processing

    Full text link
    Recent advent of graph signal processing (GSP) has spurred intensive studies of signals that live naturally on irregular data kernels described by graphs (e.g., social networks, wireless sensor networks). Though a digital image contains pixels that reside on a regularly sampled 2D grid, if one can design an appropriate underlying graph connecting pixels with weights that reflect the image structure, then one can interpret the image (or image patch) as a signal on a graph, and apply GSP tools for processing and analysis of the signal in graph spectral domain. In this article, we overview recent graph spectral techniques in GSP specifically for image / video processing. The topics covered include image compression, image restoration, image filtering and image segmentation

    Numerical analyses and optimizations on the flow in the nacelle region of a wind turbine

    Get PDF
    The present study investigates flow dynamics in the hub region of a wind turbine focusing on the influence of nacelle geometry on the root aerodynamics by means of Reynolds averaged Navier–Stokes simulations with the code FLOWer. The turbine considered is a generic version of the Enercon E44 converter incorporating blades with flat-back-profiled root sections. First, a comparison is drawn between an isolated rotor assumption and a setup including the baseline nacelle geometry in order to elaborate the basic flow features of the blade root. It was found that the nacelle reduces the trailed circulation of the root vortices and improves aerodynamic efficiency for the inner portion of the rotor; on the other hand, it induces a complex vortex system at the juncture to the blade that causes flow separation. The origin of these effects is analyzed in detail. In a second step, the effects of basic geometric parameters describing the nacelle have been analyzed with the purpose of increasing the aerodynamic efficiency in the root region. Therefore, three modification categories have been addressed: the first alters the nacelle diameter, the second varies the blade position relative to the nacelle and the third comprises modifications in the vicinity of the blade–nacelle junction. The impact of the geometrical modifications on the local flow physics are discussed and assessed with respect to aerodynamic performance in the blade root region. It was found that increasing the nacelle diameter deteriorates the root aerodynamics, since the flow separation becomes more pronounced. Possible solutions identified to reduce the flow separation are a shift of the blade in the direction of the rotation or the installation of a fairing fillet in the junction between the blade and the nacelle.</p

    Minimizing Movements for Anisotropic and Inhomogeneous Mean Curvature Flows

    Full text link
    In this paper we address anisotropic and inhomogeneous mean curvature flows with forcing and mobility, and show that the minimizing movements scheme converges to level set/viscosity solutions and to distributional solutions \textit{\`a la} Luckhaus-Sturzenhecker to such flows, the latter holding in low dimension and conditionally to a convergence of the energies. By doing so we generalize recent works concerning the evolution by mean curvature by removing the hypothesis of translation invariance, which in the classical theory allows to simplify many arguments

    A Unified Surface Geometric Framework for Feature-Aware Denoising, Hole Filling and Context-Aware Completion

    Get PDF
    Technologies for 3D data acquisition and 3D printing have enormously developed in the past few years, and, consequently, the demand for 3D virtual twins of the original scanned objects has increased. In this context, feature-aware denoising, hole filling and context-aware completion are three essential (but far from trivial) tasks. In this work, they are integrated within a geometric framework and realized through a unified variational model aiming at recovering triangulated surfaces from scanned, damaged and possibly incomplete noisy observations. The underlying non-convex optimization problem incorporates two regularisation terms: a discrete approximation of the Willmore energy forcing local sphericity and suited for the recovery of rounded features, and an approximation of the l(0) pseudo-norm penalty favouring sparsity in the normal variation. The proposed numerical method solving the model is parameterization-free, avoids expensive implicit volumebased computations and based on the efficient use of the Alternating Direction Method of Multipliers. Experiments show how the proposed framework can provide a robust and elegant solution suited for accurate restorations even in the presence of severe random noise and large damaged areas

    Studies on knot placement techniques for the geometry construction and the accurate simulation of isogeometric spatial curved beams

    Get PDF
    The present paper investigates the use of different knot placement techniques for isogeometric analysis of spatial curved beams, to enhance analysis results in cases when geometries are given in terms of data points. Focusing on analysis-aware modeling for structural static and vibration simulations of spatial free-form curved beams, the knot placement techniques based on uniformly spaced knots as well as on De Boor’s and Piegl and Tiller’s algorithms are studied. For this purpose, an isogeometric formulation for linear Euler–Bernoulli beams based on the Euler–Rodriguez transformation rule is implemented. Different case studies and numerical examples are presented and the results are validated against “overkill” solutions computed with a commercial finite element software. The results show that the De Boor’s knot placement algorithm typically leads to better approximation errors and is therefore the suggested strategy for this kind of problems
    • …
    corecore