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Abstract
Technologies for 3D data acquisition and 3D printing have enormously developed in the past few years, and, consequently,
the demand for 3D virtual twins of the original scanned objects has increased. In this context, feature-aware denoising,
hole filling and context-aware completion are three essential (but far from trivial) tasks. In this work, they are integrated
within a geometric framework and realized through a unified variational model aiming at recovering triangulated surfaces
from scanned, damaged and possibly incomplete noisy observations. The underlying non-convex optimization problem
incorporates two regularisation terms: a discrete approximation of the Willmore energy forcing local sphericity and suited
for the recovery of rounded features, and an approximation of the �0 pseudo-norm penalty favouring sparsity in the normal
variation. The proposed numerical method solving the model is parameterization-free, avoids expensive implicit volume-
based computations and based on the efficient use of the Alternating Direction Method of Multipliers. Experiments show
how the proposed framework can provide a robust and elegant solution suited for accurate restorations even in the presence
of severe random noise and large damaged areas.

Keywords Variational surface restoration · Willmore energy · Sparse non-convex optimization · Surface denoising · Surface
inpainting · Context-aware mesh completion

1 Introduction

In spite of the remarkable progresses achieved in the fields
of 3D scanning and 3D printing technologies, the available
digitizing techniques often produce defective data samples
corrupted by random noise and often subject to a local lack
of data. Typically, this is mainly due to occlusions, surface
reflection, scanner placement constraints, etc. In the con-
text of digital restoration of cultural heritage art-works, for
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instance, the scanned object itself (e.g. the archaeological
findings) may be incomplete and damaged due to the fact that
some of its (missing) parts have been ruined over time due
to wear and tear. In these cases, to facilitate the downstream
processing of its digital content, the object shape needs to be
denoised and repaired. Generally speaking, desirable prop-
erties of a surface repair toolkit shall include:

• Feature-aware denoising: the removal of undesirable
noise or spurious information from the data, while pre-
serving original features, including edges, creases and
corners, with special care on the robustness for defective
and incomplete point sets.

• Smooth hole filling inpainting: the process of recover-
ing a missing or damaged region in the surface by filling
it in a plausible way using available information. The
result of a surface-inpainting operation depends on spe-
cific application considered. In digital cultural heritage
restoration, for instance, surface inpainting is understood
as the recovering of the holes in the data or the removal
of the scratches/cracks possibly present in the scanned
objects. In prototype manufacturing, the goal is shifted
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towards a waterproof virtual reconstruction, so that the
related operation is rather interpreted as a smooth hole
filling. Either case, all damaged areas should be filled in
a seamless way that is minimally distinguishable from
their surrounding regions.

• Context-aware completion: when a priori knowledge
on the missing/damaged parts of the scanned model
is known, it is desirable that the completion of the
damaged areas occurs by pasting known data—such as
template patches—automatically or semi-automatically
under user guidance. This allows, for example, to repair
a damaged part of an artefact by filling the region of inter-
est with a patch taken from a valid/undamaged region of
the model itself or even from other 3D geometric models.

An example of the three geometric tasks processed by
the proposed geometric variational framework is illustrated
in Fig. 1. The original noisy and incomplete scanned angel
mesh (see Fig. 1(left)) is denoisedwhile keeping all the holes,
see Fig. 1(center, first row). Then, the inpainting tool filled
the holes smoothly, as shown in Fig. 1(center, second row)
driven by the inpaintingmask illustrated on the left. The large
damaged region on the head is recovered by replacing a hair
curl patch selected from a different, undamaged, mesh, see
the recovered mesh in Fig. 1(center, third row). Finally, the
completion of the damaged part together with hole filling is
performed and illustrated in Fig. 1(right).

We propose a unified approach for these challenging geo-
metric tasks by defining a variational problem encoding a
priori knowledge of the particular problem (i.e. the mask
operators) directly in the cost functional.

Here, it is assumed that a corrupted surface S embed-
ded into R

3 and possibly characterized by the presence of a
damaged (incomplete) region SD ⊂ S, is represented by a

triangulated mesh M0 = (V0, T0) with V0 ∈ R
nV ×3 being

the set of nV vertices, and T0 ∈ R
nT ×3 being the set of nT

triangle faces, sharing nE edges.
The aforementioned three geometry processing tasks are

addressed by means of the following unified variational
formulation

V ∗ ∈ argmin
V

J (V ; ME ),

J (V ; ME ) := λχS\SDF(V ; V0) +
+R1(V ; ME ) + R2(V ; Mc

E ), (1)

where χS\SD : S → {0, 1} denotes the characteristic func-
tion of the subset S\SD , while the binary mask operators
ME ∈ {0, 1}nE andMc

E = 1nE −ME characterize the specific
surface geometry considered. As a result of the discretization
on the triangulated mesh, the role of the characteristic func-
tion is played by a mask operator MV ∈ {0, 1}nV whose zero
values identify the region SD .

The set of vertices V ∗ solution of the unconstrained opti-
mization problem (1) defines a restored triangulated surface
M∗ = (V ∗, T ∗) which provides a solution of the three
surface geometry tasks, depending on the particular setup
considered.

In case of surface completion, the region identified by SD
is replaced by a given template patch P with boundary bP .
In this case, the only compatibility assumptions required is
that the boundary of SD in M0, named b0, and bP have the
same number of vertices. If this is not the case, a suitable
subdivision process can be preliminarily applied. The tem-
plate patch P can be identified on the object itself as well as
on other objects, thus allowing a mesh editing process.

The proposed approach does not need any global or even
local 2D parameterization, nor any sophisticated octree data
structures to efficiently solve implicit volumetric compu-

Fig. 1 Applications of the
proposed surface geometry
framework: incomplete and
noisy surface input M0 (left);
denoised surface M∗ (center,
first row), inpainting mask MV
and inpainting result M∗
(center, second row),
context-aware completion of the
curly hair detail without
inpainting (center, third row);
context-aware completion result
M∗ with preliminary inpainting
(right). The SD region is
represented in blue in the masks
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tations [1,2]. The data are explicitly treated as connected
samples of a surface embedded in R3.

The functional J (V ; ME ) in (1) is characterized by the
presence of the sum of two regularization terms: the sparsity-
promoting term R1(V ; ME ) and the sphericity-inducing
penaltyR2(V ; Mc

E ). Furthermore, a fidelity termF(V ; V0),
weighted by the scalar parameter λ ≥ 0, is used to control the
trade-off between fidelity to the observations and regularity
in the solution V ∗ of (1).

The regularizerR1 favours solutions with piece-wise con-
stant normal map and sharp discontinuities. Such regularizer
can be designed in away to penalize ameasure of the “rough-
ness” or bumpiness (curvature) of a mesh, or, equivalently,
to promote sparsity on this measure. A natural bumpiness
measure for a surface is the normal deviation measuring the
normal variation between adjacent triangles.

The ideal sparse-recovery term one would like to con-
sider is the non-convex, non-continuous �0 pseudo-norm,
but its combinatorial nature makes the minimization of (1)
an NP-hard problem. We then rather consider as regularizer
R1(V ; ME ) a sparsity-promoting parametrized non-convex
term, whose form provides an effective control on the spar-
sity of the normal deviation magnitudes being more accurate
than the �1 norm, while mitigating the strong effect and the
numerical difficulties of �0 pseudo-norm. Numerical exper-
iments will show its efficiency in handling high levels of
noise, producing good-shaped triangles and faithfully recov-
ering straight and smoothly curved edges.

As far as the R2 regularization term is concerned, we
choose it so as to encode a geometric energy, aimed to force
local sphericity in correspondence of rounded regions. We
considered here the Willmore energy, which has to be pre-
ferred over standard approaches based on mean curvature
flow due to its scale invariance nature. Such energy is a quan-
titative measure of how much a given surface deviates from
a round sphere, and it is defined by the following curvature
functional

Ew(S) = 1

2

∫
S
(h2 − k)dA, (2)

where d A is the area element, and h and k are the mean
and Gaussian rigidities, respectively. The Willmore energy
Ew(S) is non-negative andvanishes if andonly if S is a sphere
[3]. For compact and closed surfaces, and surfaces whose
boundary is fixed up to first order, i.e. positions and normals
are prescribed, finding the minima of (2) is equivalent to
minimize the Willmore bending energy Eh(S) = 1

2

∫
S h

2d A
since the two functionals differ only by a constant (the Euler
characteristic of the surface S), [4]. In this paper, we present
a discrete Willmore energy, which, in contrast to traditional
approaches, follows an edge-based discrete formulation.

Compared to the earlier version of this work [5] which
focused only on surface denoising, this work further inte-
grates the Willmore energy term in (1) to promote fairness
and extends the model usability to more tasks.

From an algorithmic point of view, we solve the (non-
convex) problem (1) by means of an Alternating Direction
Method of Multipliers (ADMM) scheme. This allows us
to split the minimization problem into three more tractable
sub-problems. Closed-form solutions for two of these prob-
lems can be found, while for the third, non-convex, one
different optimization solvers can be used. For this sub-
step, we compare standard gradient descent, with heavy ball
and Broyden–Fletcher–Goldfarb–Shanno (BFGS) schemes,
endowed with suitable backtracking strategy applied to guar-
antee the convergence to stationary points of the sub-problem
considered.

Numerical experiments will demonstrate the effectiveness
of the proposed method for the solution of several exemplar
mesh denoising, inpainting and completion problems.

The rest of the paper is organized as follows. In Sect. 2, we
review themainmathematical approaches related to the three
geometry tasks considered. In Sect. 3, the proposed geomet-
ric variational model is presented; details on its numerical
optimization by means of the ADMM-based scheme are
described in Sect. 4. In Sect. 5, we briefly discuss the details
on how each of the three task can be realized by solving the
optimization problem (1). Experimental results and compar-
isons are given in Sect. 6. We draw the conclusion in Sect. 7.

2 RelatedWorks

Standard numerical approaches solving the mesh denois-
ing problem can be, essentially, divided into three classes.
The first class inherits PDE-based techniques from analo-
gous problems arising in image processing and addresses the
task by using linear/nonlinear diffusion equations, see, e.g.
[6,7], with particular care to preserve local curvature fea-
tures [8]. Recently, also thanks to their considerable impact
in the image processing field, two further major approaches
have started to be investigated: data-driven and optimization-
based methods. Approaches belonging to the former class
aim to learn the relationship between noisy geometry and the
ground-truth geometry from a training dataset, see, e.g. [9].
Optimization-based mesh denoising methods formulate the
mesh restoration problem as aminimization problemwhere a
denoised mesh best fitting to the input mesh while satisfying
a prior knowledge of the ground-truth geometry and noise
distribution is sought. These approaches grew their popu-
larity more and more also thanks to rapid development of
studies on sparsity-inducing penalties. Among them, penalty
terms aimed at approximating the �0 pseudo-norm have been
directly applied for denoisingmesh vertices in [10] and noisy
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point clouds in [11]. However, the strong geometric bias
favoured by the use of the �0 pseudo-norm can produce
spurious overshoots and fold-backs; hence, these methods
may become computationally inefficient, even under small
amounts of noise. Alternatively, an �1 penalty can be used.
This is very frequent in recent sparse image/signal processing
problems as well as in the mesh processing community, see,
e.g. [12], where �1-sparsity was adopted to denoise point sets
in a two-phase minimization strategy. As it is well-known,
the �1 norm tends to underestimate high-amplitude values,
thus struggling in the recovery under high-level noise and
presenting undesired staircase and shrinkage artefacts.

In this work, we focus on an optimization-based approach
formesh denoising and exploit a non-convex penalty approx-
imating the �0 pseudo-norm so as to induce sparsity without
artefacts and promoting fairness.

As far as the hole filling or repairing problem is concerned,
standard approaches range from fourth-order surface diffu-
sion PDE methods [13], to volumetric approaches mainly
based on signed distance functions to implicitly represent
the surface [14,15]. Other popular non-polygonal methods
rely on Radial Basis Functions implicit interpolations [16],
and Moving Least Squares [17]. A commonly adopted fair-
ness prior is ‖�V ‖22, proposed for smooth hole filling with
the so-called least squares meshes, see [18].

Our penalty function also favours smoothness. However,
unlike least squares meshes, we adopt a nonlinear curva-
ture measure—the Willmore energy—which leads to a more
rounded shape filling.

When some a priori knowledge on the missing part is
available, we can do more than simply fill the hole as we can
complete/repair the hole geometry with a context-aware tem-
plate patch, with aminimally distinguishable transition zone.
Many efforts have been devoted to the automatic selection of
the template patch in the object itself, under a best-matching
assumption in a context-sensitive manner [1,2], or by simi-
larity between synthesizing geometry features [19].

Our completion proposal is rather based on the assumption
that the patch to be pasted has been pre-selected and placed
at the desired position by the user.

3 Variational Recovery Model

Solving the variational problem (1) on surfaces requires the
definition of the discrete manifold representing the underly-
ing object of interest as well as the discrete approximation
of the first-order differential operators involved.

We thus assumeM := (V , T ) to be a triangulated surface
(mesh) of arbitrary topology approximating a 2-manifold S
embedded in R

3, with V = {vi }nVi=1 ∈ R
nV ×3 being the

set of vertices, and T ∈ N
nT ×3 the set of face triangles,

T = {τi }nTi=1. Implicitly, we further denote by E ⊆ V ×

V ∈ N
nE×2 , E = {e j }nEj=1 the set of edges. We denote

the first disk, i.e. the triangle neighbours of a vertex vi , by
D(vi ) = {τm | vi ∈ τm}. Let N : R

nV ×3 → R
nT ×3 be

the mapping computing the piecewise-constant normal field
over the triangles of the mesh, where the m-th element is the
outward unit normal at face τm = (vi , v j , vk), defined as

Nm(V ) :=
(

(v j − vi ) × (vk − vi )

‖(v j − vi ) × (vk − vi )‖2
)T

∈ R
3 ,

m = 1, . . . , nT . (3)

Notice that the normal vector’s sign depends on the orienta-
tion of the face. The desire for consistently oriented normals
is that adjacent faces have consistent orientation. Under this
discrete setting, the scalar functions x, y, z : � ⊂ R

2 → R

defined on S are sampled over the vertices vi = (xi , yi , zi ) ∈
V of the mesh M and are understood as piecewise linear
functions.

We now introduce the discretization of the gradient opera-
tor on a 3Dmesh. Since the normal field is piecewise-constant
over themesh triangles, the gradient operator vanishes to zero
everywhere but the mesh edges along which it is constant.
Therefore, the gradient operator discretization is represented
by a sparse matrix D ∈ R

nE×nT defined by

Di j =
⎧⎨
⎩

li if τ j
⋂

τk = ei , k > j,
−li if τ j

⋂
τk = ei , k < j,

0 otherwise ,

(4)

where li = ‖ei‖2, i = 1, . . . , nE is the length of i th edge.
The matrix D can be decomposed as D = L D̄, with

L = diag{l1, l2, . . . , lnE } being the diagonal matrix of edge
lengths, whose values may be updated during the iteration
scheme considered, and D̄ ∈ R

nE×nT an edge-length inde-
pendent sparse matrix.

Key ingredients of the proposed formulation (1) are the
two operator masks MV and ME . The role of the mask ME is
to adapt the recovery according to the surface morphology,
while MV selects the region to be preserved in the inpainting
and completion tasks.

ME is a sharp detection mask represented by a binary
vector ME ∈ {0, 1}nE which has 1s in correspondence with
sharp edges. Recalling that the dihedral angle associatedwith
the edge ei is the angle between normals to the adjacent
triangle faces τ� and τs which share ei , we classify ei as a
sharp edge if the dihedral angle θ�s ∈ [0, 360) is greater than
a given threshold th. In formulas

(ME )i =
{
1 if (θ�s > th)

0 otherwise .
(5)

Given ME , its complementary mask is the vector Mc
E =

1nE − ME . Figure 2 shows ME for three different surface
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Fig. 2 Examples of ME mask for three different meshes: blue colours
represent values 1, while red colours represent 0 values

meshes, where we empirically set th = 30, which typically
produces good results.

The influence of the choice of themaskME in realizing the
denoising task is shown in Fig. 3. The perturbed sharp sphere
is illustrated in Fig. 3 on the left panel, and the denoised
meshes on the right panel, obtained by applying the proposed
method under the choice ME = 0nE , ME = 1nE , in Fig. 3b
and e, respectively. The space-variant mask ME obtained
with th = 30 and illustrated in Fig. 3c is applied to obtain
the denoised mesh in Fig. 3d.

Stemming from the consideration by which a general
scanned surface is characterized by sharp as well as rounded
features, we specify the form of problem (1) to determine
solutions V ∗ which are close to the given data V0 according
to the observation model,

V ∗∈ arg min
V∈RnV ×3

J (V ; ME , λ, a)

J (V ; ME , λ, a) := λ

2

nV∑
i=1

((MV )i (Vi − (V0)i ))
2 +

+
nE∑
j=1

{
(ME ) jφ

(∥∥(DN (V )) j
∥∥
2 ; a)+

+(Mc
E ) j‖(DN (V )) j‖22

}
, (6)

where ‖ · ‖2 denotes the Frobenius norm. The functional
in (6) involves three terms designed to meet three different
and competing requirements that arise quite naturally from
the intuitive concept of surface recovery: (1) fidelity to the

known data; (2) a parametric (defined in terms of the param-
eter a ∈ R+) discontinuity-preserving smoothing favouring
piece-wise constant normals; (3) smooth connection between
parts and inside unknown regions. The functional is com-
posed by the sum of smooth convex (quadratic) terms and a
non-smooth non-convex regularization term; thus, the func-
tional J in (6) is bounded from below by zero, non-smooth
and can be convex or non-convex depending on the values of
ME and a.

3.1 Sparsity-Inducing Penalty

We aim at constructing a parameterized sparsity-promoting
regularizer characterized by a tunable degree of
non-convexity a ∈ R+ inducing sparsity on the vector of
components ‖(DN )i‖2, i = 1, . . . , nE , which represent the
normal variation between adjacent triangles sharing the i-th
edge.

A substantial amount of recent works has studied the class
of sparsity-promoting parametrized non-convex regularizers,
given their provable theoretical properties and practical per-
formances [20,21].Weconsider here oneof themost effective
representative of this class, i.e. the Minimax Concave (MC)
penalty φ(·; a) : [ 0,+∞) → R, introduced in [22] and
used previously in [23] applied to ‖(DN )i‖2 in the context
of mesh editing, defined by:

φ(t; a) =
{

−a

2
t2 + √

2a t for t ∈ [
0,

√
2/a

)
,

1 for t ∈ [√
2/a,+∞ ) (7)

which, for any value of the parameter a, satisfies the follow-
ing assumptions:

• φ(t; a) ∈ C0(R) ∩ C2(R\{0})
• φ′ (t; a) ≥ 0 ,
• φ′′(t; a) ≤ 0, ∀ t ∈ [0,∞) \ {√2/a}
• φ(0; a) = 0, inf

t
φ′′(t; a) = −a.

Fig. 3 Effect of the mask ME on the denoising task: original noisy mesh (a); setting ME = 0nE (b); using a space-variant ME mask (c)–(d); setting
ME = 1nE (e). The perturbed sharp sphere on the left panel has been corrupted according to (32) with γ = 0.15
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We denoted by φ′(t; a) and φ′′(t; a) the first-order and
second-order derivatives of φ with respect to the variable
t , respectively.

The parameter a allows to tune the degree of non-
convexity, such that φ(· ; a) mimics the asymptotically
constant behaviour of the �0 pseudo-norm for a → ∞,
while behaves as an �1 regularization term, for values a
approaching to zero. For values of a in between, the MC
penalty function in (7) is a sparsity-inducing penalty which
preserves sharp features in normal variations better than
�0-pseudo-norm regularizer, and more accurate than �1 reg-
ularizer which tends to produce shrinkage effects.

This motivated us to use it in the construction of the reg-
ularizer R1(V ; ME ).

3.2 Edge-Based Discretization of theWillmore
Energy

Numerical approximations of the Willmore energy in digi-
tal geometry processing and geometric modeling are mainly
based either on finite element discretization and numeri-
cal quadrature [24,25], or on discrete differential geometry
approaches ab initio. Discrete isometric bending models,
derived fromanaxiomatic treatment of discreteLaplace oper-
ators [26], the discrete conformal vertex-based energy well-
defined for simplicial surfaces using circumcircles of their
faces [3,27], and the integer linear programming approach
[28] all fall into the latter class.

Here, we consider an alternative edge-based discrete
approximation of the Willmore energy (2) for open trian-
gulated surfaces M represented by polygonal meshes. This
energy is a sum over contributions from individual edges

E(M) = 1

2

nE∑
j=1

‖e j‖2‖(DN ) j‖2, (8)

where (DN ) j measures how the surface “curves” near e j .
To derive the continuum limit of (8) in the limit of vanishing
triangle size,we assume that S is a two-dimensionalmanifold
of arbitrary topology embedded in R3 and parameterized by
(X ,�) with � ⊂ R

2, an open reference domain and define

X : � → S; ξ �→ X(ξ),

the corresponding coordinate map (that is, the parametriza-
tion of S at a given point). We denote the local coordinates in
� as (ξ1, ξ2). For a given point x ∈ X(�) ⊂ S, the tangent

space Tx S at x is spanned by
{
r1 := ∂X(x)

∂ξ1
, r2 := ∂X(x)

∂ξ2

}
,

the induced metric is given by gi j = ri · r j , its inverse is

denoted by gi j , so that gikgk j = δ
j
i , or in matrix notation

[gi j ] = [gi j ]−1, and its determinant is defined as

det(g) ≡ |g| = 1

2
εikε jl gi j gkl = 1

2
(gi j gkl − gikg jl).

The second fundamental form I I : Tx S × Tx S → R is
the symmetric bilinear form represented by the coefficients
Li j = −ri · ∂ j n, 1 ≤ i, j ≤ 2.

When the grid size of the triangulationM is sent to 0, the
energy (8) approximates the Willmore energy as stated by
the following Proposition 1.

Proposition 1 Let S ⊂ R
3 be a two-dimensional manifold,

M an underlying flat triangulated approximation of S. Let
M j be regular flat triangulated surfaces M j ⊂ R

3 with
size(M j ) → 0 andM j → S for j → ∞. Then, the discrete
energy (8) approximates the Willmore energy of S, i.e.

lim
j→∞ E(M j ) = 1

2

∫
S
(h2 − k)dS. (9)

Proof Let us first consider the integrand of (2) in the contin-
uum, with h = κ1 + κ2 = tr(Li

k) being the mean curvature
and k = 1

2κ1κ2 = det(Li
k) the Gaussian curvature where κ1,

κ2 represent the principal curvatures. The second fundamen-
tal form with components Li j relates with the linear map Lk

i
with respect to the basis of Tx S, according to thematrix equa-
tion: [gi j ][Li j ] = [Li

j ], and we denote Li j = ∑
k gik L

k
j ,

1 ≤ i, j ≤ 2. Following notations in [29], we use the
identity

gi j gkl = gikg jl + εilεmng
mj gnk

in the integrand of (2) as

h2 − 2k = (Li
i )
2 + εilεmnLm

l L
n
i= (gik Lik)

2 + εilεmn(gmj L jl)(gnk Lki )

= gi j gkl Lik L jl .

(10)

Substituting in (10) the Weingarten equations ∂i n = Lk
i rk

and Lk
i , i = 1, 2, we have

gi j gkl Lik L jl = L j
k L

k
j g

k j g jk

= L j
kr j L

k
j rkg

k j

= ∂kn · ∂ j n gk j
(11)

which is the gradient of the normal vector field. Therefore,
replacing (10)–(11) in (2), we get

∫
S
∂kn · ∂ j n g

k j dS. (12)

For sufficiently fine, non-degenerate tessellations M j

approximating S, we consider a partition of the undeformed
surface S into the disjoint union of diamond-shaped tiles, T̄ ,
associated with each mesh edge e. Following Meyer et al.
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[30], one can use the barycenter of each triangle to define
these regions or, alternatively, the circumcenters. Over such
a diamond partition, the integral (12) is defined as the sum
over all the diamond tiles, which reads

∫
S
∂kn · ∂ j n g

k j dS =
nE∑
i=1

∫
(T̄ )i

|∂i n|2 dT̄ . (13)

If the triangles do not degenerate, we can approximate
the area of the diamond related to the edge ei in M j by
‖ei‖2, i.e. dT̄ ≈ ‖ei‖2, which implies that |∂i n|2 dT̄ ≈
‖(DN )i‖2‖ei‖2. ��

The result of the limiting process depends on the triangula-
tions considered. In particular, we assume the triangulations
of S consist of almost equilateral triangles. For our purposes,
the discreteWillmore energywill be used based on the obser-
vation that (2) is invariant under rigid motions and uniform
scaling of the surface, which implies that E(S) itself is a
conformal invariant of the surface S, see [3].

Remark 1 Even if the introduced discrete formulation is
very simple when compared with the ones introduced in
[3,31], it practically produces good results. In order to val-
idate the effective applicability of the proposed discrete
Willmore energy, we evaluated E(M) in (8) on a uni-
formly tessellated sphere, for decreasing average edge-size
h = {0.1208, 0.0308, 0.0076}. The achieved energy val-
ues E(Mh1) = 0.1182, E(Mh2) = 0.0075, E(Mh3) =
0.00047, tend to zero, as theoretically expected from (2).

4 Numerical Solution of the Optimization
Problem

In this section, we illustrate the ADMM-based iterative algo-
rithm used to compute the numerical solution of (6).

In order to define the ADMM iteration on triangular mesh
surfaces, we first consider a matrix variable N ∈ R

nT ×3 with
row components defined as in (3) and resort to the variable
splitting technique bydefining t ∈ R

nE×3 as t := DN , where
D is defined in (4). The optimization problem (6) can be thus
reformulated as

{
V ∗, N∗, t∗

}

∈ arg min
V ,N ,t

{
λ

2

nV∑
i=1

((MV )i (Vi − (V0)i ))
2 +

+
nE∑
j=1

[
(ME ) jφ

(‖t j‖2; a) + (Mc
E ) j‖t j‖22

] ⎫⎬
⎭ ,

s.t. t = DN , N = N (V ) . (14)

We define the augmented Lagrangian functional associ-
ated with problem (14) as

L(V , N , t, ρ1, ρ2; λ, β1, β2, a)

:= λ

2

nV∑
i=1

((MV )i (Vi − (V0)i ))
2 +

+
nE∑
j=1

[
(ME ) jφ

(∥∥t j∥∥2 ; a) + (Mc
E ) j‖t j‖22−

− 〈
ρ1 j , t j − (DN ) j

〉 + β1

2
‖t j − (DN ) j‖22

]
+

+
nT∑
m=1

[
− 〈

ρ2m , Nm − Nm(V )
〉

+β2

2
‖Nm − Nm(V )‖22

]
, (15)

where β1, β2 > 0 are scalar penalty parameters, and ρ1 ∈
R
nE×3, ρ2 ∈ R

nT ×3 represent the matrices of Lagrange mul-
tipliers associated with the constraints. We now consider the
following saddle-point problem:

Find (V ∗, N∗, t∗, ρ∗
1 , ρ

∗
2 ) ∈ R

nV ×3×
× R

nT ×3× R
nE×3× R

nE×3× R
nT ×3

s.t. L(V ∗, N∗, t∗, ρ1, ρ2) ≤
≤ L (V ∗, N∗, t∗, ρ∗

1 , ρ
∗
2 ) ≤ L (V , N , t, ρ∗

1 , ρ
∗
2 ),

∀(V , N , t, ρ1, ρ2) ∈ R
nV ×3×

× R
nT ×3× R

nE×3× R
nE×3× R

nT ×3. (16)

An ADMM-based iterative scheme can now be applied to
approximate the solution of the saddle-point problem (15)–
(16). Initializing to zeros both the dual variablesρ(0)

1 ,ρ(0)
2 and

setting N (0)
m = Nm(V (0)) , m = 1, . . . , nT , the kth iteration

of the proposed alternating iterative scheme reads:

t (k+1) = arg min
t∈RnE×3

L(V (k), N (k), t; ρ
(k)
1 , ρ

(k)
2 ) , (17)

N (k+1) = arg min
N∈RnT ×3,
‖Nτ ‖=1

L(V (k), N , t (k+1); ρ
(k)
1 , ρ

(k)
2 ) , (18)

V (k+1) = arg min
V∈RnV ×3

L(V , N (k+1), t (k+1); ρ
(k)
1 , ρ

(k)
2 ) ,

(19)

ρ
(k+1)
1 = ρ

(k)
1 − β1

(
t (k+1) − DN (k+1)

)
, (20)

ρ
(k+1)
2 = ρ

(k)
2 − β2

(
N (k+1) − N

(
V (k+1)

))
. (21)

The updates of Lagrangian multipliers ρ1 and ρ2 have closed
form. In the following, we show in detail how to solve the
three minimization sub-problems (17), (18) and (19) for the
primal variables t , N and V , respectively.
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Sub-problem for t .
The minimization sub-problem for t in (17) can be explicitly
rewritten as:

t (k+1) = arg min
t∈RnE×3

nE∑
j=1

[
(ME ) jφ

(∥∥t j∥∥2 ; a)+

+(Mc
E ) j‖t j‖22 − 〈

ρ1 j , t j − (DN ) j
〉+

+β1

2
‖t j − (DN ) j‖22

]
, (22)

where we omitted the constant terms in (15). Due to the
separability property of φ(·; a), problem (22) is equivalent
to nE independent, three-dimensional problems for each t j ,
j = 1, . . . , nE in the form

t (k+1)
j = arg min

t j∈R3

{
φ
(∥∥t j∥∥2 ; a) + α

2
‖t j − r (k+1)

j ‖22
}

,

(23)

where

r (k+1)
j := 1

β1 + 2(Mc
E ) j

(
β1

(
DN (k)

)
j
+
(
ρ

(k)
1

)
j

)

and α = β1+2(Mc
E ) j

(ME ) j
. where we conventionally set x

0 = 0.
Necessary and sufficient conditions for strong convexity

of the cost functions in (23) are demonstrated in [32]. In
particular, problems (23) are strongly convex if and only if
the following condition holds:

β1 + 2(Mc
E ) j

(ME ) j
> a,∀ j = 1, . . . , nE �⇒

�⇒ β1 = εmax
j

{
(ME ) j a − 2(Mc

E ) j
}
, for ε > 1.

(24)

We noticed that the sub-problem is always convex when t j
has associated (ME ) j = 0, as it eliminates φ(·; a) from the
sub-problem.

Whenever (24) holds, the unique minimizers of (23) can
be obtained in closed form as

t (k+1)
j = min(max(ν − ζ/‖r j‖2, 0), 1) r j ,

where ν = α

α − a
and ζ =

√
2a

α − a
.

We remark that the condition on β1 in (15) only ensures
the convexity conditions (24) of t-subproblem (23), but does
not guarantee convergence of the overall ADMM scheme.

Sub-problem for N . Theminimization sub-problem (18) for
N can be reformulated as:

N (k+1) = arg min
N∈RnT ×3,
‖Nτ ‖=1

{
β1

2
‖t (k+1) − DN‖22+

+
〈
ρ

(k)
1 , DN

〉
−
〈
ρ

(k)
2 , N

〉
+

+β2

2

∥∥∥N − N
(
V (k)

)∥∥∥2
2

}
.

The first optimality conditions lead to the following three
linear systems, one for each spatial coordinate of N ∈ R

nT ×3

(
DT D + β2

β1
I

)
N

= β2

β1
N

(
V (k)

)
+ ρ

(k)
2

β1
+ DT

(
t (k+1) − 1

β1
ρ

(k)
1

)
.

(25)

Since β1, β2 > 0, the linear system coefficient matrix is
sparse, symmetric, positive definite and identical for all three
coordinate vectors. The systems can thus be solved efficiently
by applying, e.g. a unique Cholesky decomposition. At each
iteration, the edge lengths diagonal matrix L in D = L D̄,
defined in (4), needs to be updated as the vertices V move to
their updated position. For large meshes, an iterative solver
warm-started with the solution of the last ADMM iteration
is rather preferred. A normalization is finally applied as N
represents a normal field.

The reconstructed normal map N∗ obtained by solving
(14) via the proposed ADMM satisfies the orientation con-
sistency, as proved in [5], thus reducing the foldovers issue.
This property is not trivially satisfied bymost of the two-stage
mesh denoising algorithms (normal smoothing and vertex
update). They present the normal orientation ambiguity prob-
lem in the vertex updating stage, which provokes ambiguous
shifts of the vertex position due to direction inconsistency of
the normal vectors [33,34]. In [35], this issue is solved by an
orientation-aware vertex updating scheme.
Sub-problem for V . Omitting the constant terms in (15), the
sub-problem for V reads

V (k+1) = arg min
V∈RnV ×3

JV (V )

JV (V ) := λ

2

nV∑
i=1

((MV )i (Vi − (V0)i ))
2

+
nT∑
m=1

[〈
ρ

(k)
2m

,Nm(V )
〉

+β2

2

∥∥∥N (k+1)
m − Nm(V )

∥∥∥2
2

]
. (26)

The functional JV (V ) is proper, smooth, non-convex and
bounded from below by zero. A minimum can be obtained
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applying the gradient descent (GD) algorithm with back-
tracking satisfying the Armijo condition or using the BFGS
algorithm. In order to balance between the slow convergence
properties of GD and the high computational costs required
to compute the operators involved in the BFGS method, we
also considered a heavy-ball type rule, following [36], and
its extension with backtracking (covering also non-smooth
problems) given in [37]. In particular, the heavy-ball method
is a multi-step extension of gradient descent, which, starting

from V
(0) = V (k), iterates over V as follows

V
( j+1) = V

( j) − α j ∇ J (V
( j)

) + δ j (V
( j) − V

( j−1)
),

j = 1, 2, . . . (27)

where α j > 0 is a step-size parameter and 0 ≤ δ j < 1. Note
that for δ j = 0, (27) reduces to the gradient descent method.
In [37], convergence of the scheme above to stationary points
is proved in the context of non-convex cost functions as the
one in (26), with an extension also to non-smooth scenarios.

All the numerical optimization methods here considered
rely on a easily computable formula for the gradient of the
functional JV in (26), which is derived in the following.

Proposition 2 Let sτm := ‖(v j − vi ) × (vk − vi )‖2/2 be the
area of the triangle τm = (vi , v j , vk) with updated vertices
in V , andNm(V ) = ((v j − vi ) × (vk − vi ))/(2sτm ). For all
triangles m = 1, . . . , nT ,

∇viJV (V )

= λ(MV )i (vi − v0i )+
+

∑
τm∈D(vi )

1

2sτm

[(
ρ

(k)
2m

− β2N
(k+1)
m

)
−

−
〈
ρ

(k)
2m

− β2N
(k+1)
m ,Nm(V )

〉
Nm(V )

]

× (vk − v j ). (28)

Proof The gradient of JV (V ) in (26) w.r.t vertex vi ∈ V ,
i = 1, . . . , nV is nonzero only over the triangles sharing vi
which are contained in the first disk D(vi ). Therefore, the
sum in (26) is reduced to

∇viJV (V ) = λ(MV )i (vi − v0i ) +
∑

τm∈D(vi )τm=(vi ,v j ,vk )

× ∇vi

⎛
⎜⎜⎜⎝
〈
z

q
, (v j − vi ) × (vk − vi )

〉
︸ ︷︷ ︸

gi

⎞
⎟⎟⎟⎠ ,

where z = ρ
(k)
2m

− β2N
(k+1)
m , q = ‖(v j − vi ) × (vk − vi )‖2,

and the third term in (26) reduces to the scalar product gi
since both N (k+1)

m andNm(V ) have unitary norm. In order to

compute ∇vi (gi ), we resort on the following two properties,
which hold for every constant vectors w, u ∈ R

3 and can be
easily proved:

1. ∇vi

(〈w, (v j − vi ) × (vk − vi )〉
) = w × (

vk − v j
)
;

2. ∇vi

(〈
w

‖(v j − vi ) × (vk − vi )‖2 , u

〉)

= −〈w, u〉 (v j − vi ) × (vk − vi ) × (vk − v j )

‖(v j − vi ) × (vk − vi )‖32
. (29)

To evaluate the product rule derivative, we apply property
1, with w = z/‖(v j − vi ) × (vk − vi )‖2 for the left-side
term constant, while property 2 is applied with w = z and
u = (v j −vi )× (vk −vi ) for a right-side term kept constant.
Combining the results leads to the explicit formula for∇vi gi :

∇vi gi (V ) =
(
ρ

(k)
2m

− β2N
(k+1)
m

)
× (vk − v j )

‖(v j − vi ) × (vk − vi )‖2〈
ρ

(k)
2m

− β2N
(k+1)
m , (v j − vi ) × (vk − vi )

〉

−
[
(v j − vi ) × (vk − vi ) × (vk − v j )

]
‖(v j − vi ) × (vk − vi )‖32

, (30)

which reduces to (28). ��

In Fig. 4 (first and second rows), we report the graphs
showing both the energy decay and the gradient norm decay
for the three different algorithmsused, i.e.GD(with andwith-
out backtracking), BFGS and heavy-ball with backtracking.
The plots are related to the meshes twelve (first column) and
block (second column) as representative of the entire set of
meshes analysed in the experimental section.

We remark that the use of Armijo-type backtracking rule
is justified by the difficult expression (28), which makes
the accurate estimation of the Lipschitz constant LJV of
∇JV (V ) quite challenging. In the proposed strategy, a (typ-
ically) initially large step-size α0 is then reduced depending
on whether the following inequality is verified:

JV (V
( j+1)

) ≤ JV (V
( j)

) − c1 α ‖∇JV (V
( j)

)‖22 (31)

with c1 ∈ (0, 1) and where V
( j)

denotes the j-th update of
V given by (27).

From the convergence plots, we notice that upon a manual
selection of a sufficiently small constant step-size α the con-
vergence of plain GD without backtracking is as good as the
one of the heavy-ball algorithm combinedwith backtracking.
However, the former choice is problem-dependent; hence, a
backtracking strategy automatically adjusting the value of α

to an appropriate size is preferred.
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Fig. 4 First and second rows: plots of the energyJV (first row) and gra-
dient norm (second row) decay for sub-problem (26) with GD (with and
without backtracking), heavy-ball update with backtracking and BFGS.
Third row: energy decay for GD with backtracking and heavy-ball with
backtracking, for three different initializations V (0). First column mesh
twelve and second column mesh block corrupted by noise level
γ = 0.2

The graphs in Fig. 4 (third row) show the robustness to

the initialization V
(0)

and show that both GD and heavy-ball
with backtracking are consistent, regardless of the chosen
initialization. However, the natural and most efficient choice
for V

(0)
is a warm start given by the matrix V (k) obtained

as a solution of the problem (26) in the previous ADMM
iteration.

The rigorous analysis of the convergence properties of our
proposed three block ADMM scheme following, e.g. [38] is
not easy to derive. However, we will provide some evidence
of the numerical convergence in Sect. 6.

5 A Practical Use of the Geometry Repair
Framework

In the following, we provide some details for the practical
use of the geometric framework introduced above in view of
its application to the three different tasks we are interested
in.

Feature-aware mesh denoising. The goal of a surface
denoising algorithm is to remove undesirable noise or spu-

rious information on a 3D mesh, while preserving original
features, including edges, creases and corners. The restored
surface is a 3D mesh that represents as faithfully as possible
a piecewise smooth surface, where edges appear as discon-
tinuities in the normal field. To achieve this goal, the natural
choice is to set in (6) MV = 1nV and define ME as in (5),
so as to distinguish salient edges from smooth regions. In
case of severe noise, the estimate of the mask ME may be
affected by false edge detections. In such case, we suggest to
recompute the edge mask ME along the ADMM iterations.

Smooth hole filling/inpainting. In contrast to techniques
for image inpainting, which make use of the given spatial
structure of the data (the regular grid of an image), surfaces
lack a natural underlying spatial domain, which brings an
additional degree of freedom in the setting of problem. At
the same time, vertices’ positions encode both function val-
ues and the domain of the function to be reconstructed. The
initial meshM0 = (V0, T0) thus has to be set as the original
(possibly noisy) incomplete mesh with trivially enclosed and
labelled disconnected holes—region SD—marked as zeros in
MV . On the other hand, the mask ME can still be defined as
in (5), by additionally forcing zero values on the edges in
SD . The proposed geometric repair algorithm then performs
simultaneously denoising, outside the holes, and smooth fill-
ing in the internal part of the holes, through the regularizer
R2.

Context-aware completion. In some applications, smooth
filling of holes is not sufficient: this is the case in archaeol-
ogy and in general cultural heritage applications where the
main goal is the reconstruction of a digital twin of a cultural
heritage object. Some parts of the original 3D model can be
damaged or missing but can be completed by means of char-
acteristic parts taken from the object under consideration or
from others. Given the original incomplete meshM0 with a
region of interest bounded by a curve b0 and characterized
by vertices V̄ ⊂ V0 and triangles T̄ ⊂ T0, together with a
template patch P = (VP , TP ), bounded by a curve bP , we
build a repaired meshM∗ by replacing (V̄ , T̄ ) by (VP , TP )

and blending the two parts through the proposed variational
model.

Note that, in case the region of interest onM0 that has to
be completed is a hole, then trivially (V̄ , T̄ ) are empty sets.

We assume that the template patch P is properly aligned
in the correct position and that both polygonals b0 and bP
are approximants of oriented, closed, simple curves in R

3

with the same number of vertices. The correct positioning
can thus be performed either automatically (by rigid body
transformation algorithms) or through user interaction.

A narrow band around b0, named strip(b0), containing
at least 2-disk of triangle neighbours adjacent to b0, plays
the role of SD . Hence, MV is the characteristic function of
M0\strip(b0), i.e. is zeros only on strip(b0).
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The operator mask ME has values one for each sharp edge
in bothM0\strip(b0) andP . According to the user desider-
ata, the blending can be performed in three different ways:
edges in strip(b0) all zeros in ME to force a smooth joint
with the template; edges in strip(b0) all ones, to keep a sharp
connection; edges in strip(b0) defined by the spatially adap-
tive ME in (5) to maintain geometric continuity G0/G1 over
the blended region.

The vertices V ∗ of the completed surfaceM∗ are obtained
byminimizing (6), properly initializedwithV (0) = (V0\V̄ )∪
VP , while maintaining the connectivity defined by T ∗ =
(T0\T̄ )∪TP . The connectivity T ∗ is automatically achieved
as we imposed b0 ≡ bP .

We refer the reader to Fig. 1 for visual representation of
the three different tasks performed. Moreover, Sect. 6 offers
additional insights.

6 Numerical Examples

We validate the proposed geometric framework both qual-
itatively and quantitatively on a variety of benchmark tri-
angulated surfaces characterized by different sharpness and
smoothness features and on some real datasets.

At the aim of a quantitative validation, meshes M0 =
(V0, T0) have been synthetically corrupted. The noisy ver-
tices in V0 correspond to underlying noise-free vertices VGT

by the following additive degradation model

V0 = VGT + η d , (32)

where the product η d accounts for the noise perturbations.
Namely, η ∈ R

nV is assumed to be at each vertex indepen-
dently and identically distributed as a zero-mean Gaussian
random variable, i.e. ηi ∼ Gauss(0, σ 2), i = 1, . . . , nV ,
with known variance σ 2, and d ∈ R

nV ×3 is a vector field
of noise directions with elements di ∈ R

3, i = 1, . . . , nV ,
which can be either random directions or the normals to the
vertices. The perturbations are thus characterized by a noise
level γ ∈ R+ defined by σ = γ l̄, with l̄ representing the
average edge length.

Quantitative evaluation is done in terms of the following
error metrics, which measure the discrepancy of the com-
puted V ∗, N∗ w.r.t. the noise-free mesh VGT , NGT :

• Mean squared angular error (MSAE)

MSAE = E[� (NGT , N∗)2] , (33)

• L2 vertex to vertex error (EV )

EV = ‖V ∗ − VGT ‖F
nV

. (34)

Fig. 5 Empirical convergence of ADMM algorithm for some recon-
structed meshes

For all the tests, the iterations of the ADMM algorithm
are stopped as soon as either of the two following conditions
is fulfilled:

k > 200 ,
∥∥V (k+1) − V (k)

∥∥
2 /

∥∥V (k)
∥∥
2 < 10−6. (35)

Figure 5 shows the energy decay curve versus the number
of iterations for some of the meshes reported in this sec-
tion. We observe that for all meshes considered the energy
converges to a stationary value. This represents an empiri-
cal validation on the numerical convergence of the proposed
ADMM-based minimization scheme. Having performed a
comparative analysis between inner solvers in Sect. 4, we
used the GD algorithm with backtracking for solving the
subproblem for V , with warm start strategy allowing us to
restrict to a few number (three in our experiments) of GD
iterations while achieving good relative accuracy.

With respect to the comparisons showed with competing
approaches for mesh repairing, we remark that most of them
are based on hierarchical data structures and combined with
various heuristic algorithms. On the contrary, the results pre-
sented in the following are directly derived from the solution
of the proposed unified mathematical optimization problem
and do not require any heuristic post-processing procedures.

All the meshes are rendered in flat shading model and
visualized using ParaView software.

Example 1: feature-aware denoising. To evaluate the per-
formance of the proposed method for mesh denoising, we
compared the results with other state-of-the-art variational
methods for mesh denoising, namely themethods introduced
in [10,33,34,39],which have been kindly provided by authors
of [39] at https://github.com/bldeng/Guided
Denoising, and a learning-based approach, presented in
[9]. For each method, we show their best results achieved by
tuning the corresponding set of parameters.

Figure 6 shows the denoised meshes coloured by their
mean curvature scalar map, with fixed range, together with
zoomed details on mesh edges. From a visual inspection, we
notice remarkable overlaps in the denoised meshes obtained
from the other compared methods and severe perturbations
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Fig. 6 Examples of denoising: results of noisy-free input meshes (first row) corrupted by noise levels γ = {0.15, 0.3, 0.3, 0.2, 0.2}, from left to
right
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γ = 0.2 (0.62;3.84) (2.11;8.96) (0.79;4.24) (1.37;5.53) (1.02;4.92)

γ = 0.2 (0.93;130) (2.40;170) (1.52;160) (2.99;210) (3.70;230)

γ = 0.3 (2.15;6.42) (3.05;7.15) (2.19;6.37) (4.82;14) (2.25;6.56)

γ = 0.4 (3.98;51.3) (13.56;72.6) (10.55;54.3) (7.97;93.7) (9.79;62.4)

γ = 0.5 (2.85;41.7) (9.84;74.4) (6.18;43.4) (10.7;71) (8.33;69.2)

γ = 0.6 (3.17;88.0) (10.6;144) (11.8;150) (5.93;180) (6.45;143)

γ = 0.2 (2.5;5.9) (4.51;6.33) (6.16;6.87) (4.2;6.53) (5.34;6.56)

input V 0 ours [34] [33] [10] [39]

Fig. 7 Examples of denoising: comparison of our denoising framework with related works on meshes synthetically corrupted by noise levels γ .
Reported metrics: (MSAE × 10−2; EV × 10−6)
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of the triangle shapes in the reconstructed meshes. To further
demonstrate how robust our approach is w.r.t. to increas-
ing noise perturbation, in Fig. 7 we reported qualitative and
quantitative results for noise levels γ = {0.2, 0.2, 0.3, 0.4,
0.5, 0.6} - from top to bottom. In the last row, the mesh
has been corrupted by arbitrary perturbations on the noise
directions (di ) in (32). Below each recovered surface, we
report the quantitative evaluations according to the two error
metrics (MSAE × 102, EV × 106). Both quantitatively and
qualitatively the results confirm the effectiveness of the pro-
posed variational model in preserving sharp features while
smoothly recovering rounded parts. Finally, we can comment
on the efficiency of our algorithm which computational time
is, on average, one order less than the �2 − �0 denoising
method [11] which is the slowest, while it is comparable to
the other compared methods.

To improve the estimation of mask ME for severe noise,
we dynamically updated the edge mask ME every three
ADMM iterations.

Example 2: hole filling/inpainting. We applied our geo-
metric framework for the recovery of various meshes M0

which exhibit holes or damaged parts. Fig.2 illustrates the
basic workflow for the inpainting task on angel mesh which
takes as input the original eventually noisy meshM0 (Fig. 2,
left) and the inpainting mask MV , which can be of arbitrary
topology, in the figure the holes to be filled are marked as 0
in MV and blue coloured. The recovery of angelmesh using
smooth hole filling is illustrated in Fig. 2(second row).

Figure 8 (first row) shows the challenging Igea mesh
which presents a deep groove on the left side of the mouth
and a shallower one on the right cheek. Our geometric frame-
work was able to inpaint the shallower hole perfectly, while
the deep one was filled in a satisfactory, even if not com-
plete, way. This is justified by the different contribution of
Willmore vs sparsity-inducing penalties. The latter acts more
strongly with respect to the former, especially for high levels
of noise. Hence, adding suitable weights to the two penalties
could overcame to this disparity.

The data set minerva shown in Fig. 8 (second row, first
column) presents a few holes caused by the scanner acquisi-
tion, in the head and under the nose.Moreover, a vertical strip
has been intentionally added to the inpainting region SD in
order to remove the groove provoked by the gluing of the two
parts of the minerva’s face. This dataset has been provided
by ENEA, Bologna, Italy, and acquired by a VIVID laser
scanner. The dataset presents inherent noise due to the opti-
cal acquisition system. The result of repairing the damaged
geometry and filling surface holes is illustrated in Fig. 8c.

In Fig. 8 (third row), the inpainting framework has been
applied to repair a shard from neolithic pottery received by
the CEPAM laboratory (CNRS France), obtained by fusion
of more fragments. The inpainting region, shown in Fig.8

Fig. 8 Examples of surface inpainting: (a) original damaged object;
(b) inpainting mask MV ; (c) inpainted surface

(third row, second column), has been intentionally imposed
to eliminate obvious fractures between joined fragments.
Example 3: context-aware completion.We finally applied
context-aware completion as an editing tool for seamless
object fusion. Completion results for the meshes lion, screw-
driver, and igea are illustrated in Figs. 9 and 10. The
templates P smoothly complete the original surfaces.

A critical aspect in context-aware completion is the con-
tinuity imposed in the joint region, which we denoted by
strip(b0). Conditions for geometric continuity between
parametric surfaces are well assessed, while for meshes a
rigorous treatment on this topic is still missing. In our frame-
work, according to the user’s desiderata, the template P can
be joined toM0, both smoothly, by setting ME (strip(b0)) ≡
0, in a sharp manner by setting ME (strip(b0)) ≡ 1, or in
a blended fashion by simply using the ME mask of one of
the two meshes (or even a combination of them). Therefore,
imposing different continuity conditions for strip(b0) means
to define in a different way the mask ME in correspondence
to the strip(b0).

A typical example is shown in Fig. 11(left panel) where a
synthetically created hole on the fandisk mesh M0 is filled
with a similar corner patch—template P cyan coloured.
In the right panel, we report details onto the completion
area M0 ∪ P (a), output M∗ for ME (strip(b0)) ≡ 0 (b),
M∗ for ME (strip(b0)) ≡ 1 (c), M∗ for ME (strip(b0))
estimated from dihedral angles (d). Note that the initial
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Fig. 9 Examples of context-aware completion: M0 with template patch P , output M∗ for two different incomplete meshes

Fig. 10 Example of context-aware completion:M0 with template patch P (left); mask MV (middle); outputM∗ from two different camera points
of view (right)

Fig. 11 Examples of different
continuity conditions for
strip(b0) in ME for
context-aware completion: M0
with a hole bounded by b0 and
template P (left). Right, zoom
onto the completion area
M0 ∪ P , i.e. V (0) (a), output
M∗ for ME (strip(b0)) ≡ 0 (b),
M∗ for ME (strip(b0)) ≡ 1 (c),
M∗ for ME (strip(b0)) estimated
from dihedral angles (d)

boundary bP was larger than b0 and slightly shifted. Never-
theless, the feature-adaptive regularization perfectly respects
the continuity of strip(b0), as illustrated in Fig. 11d, while
a smooth mask—Fig.11b—destroys the sharp edges, and a
non-smooth joint—Fig. 11c—creates artefact features.

7 Conclusions

We presented a novel geometric framework for denoising,
inpainting and context-based completion for the recovery

of damaged and incomplete scanned data. In contrast to
volumetric approaches which use complex data structures
and sophisticated procedures, we formulate the solution
of the three tasks in terms of a single variational prob-
lem which is parameterization-free and normal consistent.
The proposed approach is intended to repair damaged and
incomplete meshes resulting from range scanning as well
as for all modeling operations aiming at replacing damaged
or missing parts of the surface. Future investigations will
focus on the study of the theoretical convergence of the pro-
posed numerical algorithm, which minimizes a functional
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that is spatially variant and characterized by a convex-
non-convex structure: it varies spatially from being convex
(due to the presence of the Willmore energy) to non-convex
(MC penalty) according to the mask operator ME . Never-
theless, the algorithm demonstrates empirical convergence
and very satisfying practical performance. The encouraging
results can further be extended to the completion of miss-
ing part of objects and template patches with boundaries of
different topology in order to validate the process on more
realistic cases. Finally, a future direction will be to couple the
proposed approach with image inpainting models favouring
the completion of texture-like regions.
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