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Introduction - English

In this work we focus on two main topics "Geometric Surface Processing"

and "Virtual Modeling". The inspiration and coordination for most of the

research work contained in the thesis has been driven by the project New

Interactive and Innovative Technologies for CAD (NIIT4CAD), funded

by the European Eurostars Programme. NIIT4CAD has the ambitious

aim of overcoming the limitations of the traditional approach to surface

modeling of current 3D CAD systems by introducing new methodologies

and technologies based on subdivision surfaces in a new virtual mod-

eling framework. These innovations will allow designers and engineers

to transform quickly and intuitively an idea of shape in a high-quality

geometrical model suited for engineering and manufacturing purposes.

One of the objective of the thesis is indeed the reconstruction and model-

ing of surfaces, representing arbitrary topology objects, starting from 3D

irregular curve networks acquired through an ad-hoc smart-pen device.

The thesis is organized in two main parts: "Geometric Surface Process-

ing" and "Virtual Modeling". During the development of the geometric

pipeline in our Virtual Modeling system, we faced many challenges that

captured our interest and opened new areas of research and experimen-

tation. In the first part, we present these theories and some applications

to Geometric Surface Processing. This allowed us to better formalize and

give a broader understanding on some of the techniques used in our latest

advancements on virtual modeling and surface reconstruction.

The research on both topics led to important results, briefly summarized

in this thesis introduction, that have been published and presented in

articles and conferences of international relevance.
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Part 1: Geometric Surface Processing

The application of mathematical models based on Partial Differential

Equations (PDE) to image processing and computer graphics problems

has been extremely successful over the past 20 years. In particular, ge-

ometric surface flows have been extensively used in mesh processing.

While a large part of the image processing community solve the PDE

models using an Eulerian methodology (typically, with level sets), La-

grangian representations of surfaces based on triangle meshes are most

common in graphics. In this Lagrangian setting, discretization of con-

tinuous flows is usually achieved through the use of discrete differential

operators or using finite element techniques. In this thesis, we follow the

former approach and we propose differential models on evolving mani-

fold and numerical solutions to surface processing problems such as re-

construction, smoothing, remeshing, simplification and deformation.

Let M0 = Image(X0) := {X0(u), u ∈ [0, 1]× [0, 1]} be a compact, closed

immersed orientable surface in R
3 and X0 be the corresponding param-

eter map. A geometric surface evolution consists of finding a family

M(t) = Image(X(·, t)), t ∈ [0, T), T > 0 of smooth, closed, immersed

orientable surfaces in R
3 which evolve according to the flow equation

(geometric flow)
∂X

∂t
= −β

−→
N + α

−→
T ,

where
−→
N is the unit normal vector to the surface, β is a velocity applied

along the normal direction and α is the velocity in the tangent direction−→
T .

The family of manifolds M(t) ∈ R
4 moves along the normal direction

driven by a normal velocity β which may be a function, for example,

of the curvature and spatial position. The normal motion controls the

geometry of the surface while the role of the tangential velocity is a sort

of redistribution of the nodes which improves the accuracy of the surface

representation.

In order to numerically approximate the PDEs on the evolving surface

M(t), we define a discrete setting. The spatial approximation ofM(t) is

an evolving interpolated polyhedral mesh consisting of a union of faces

whose vertices X(t) lie on M(t), and X(t) represents the parameteri-
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zation of the surface itself. We can define, discretize and approximate

differential evolutive PDE models based on local operators such as the

Laplace-Beltrami, the intrinsic gradient and divergence.

We consider both discrete geometric flows, i.e., flows based on discrete

analogous of continuous differential geometry quantities, see for example

[69, 94], and variational methods. Different approaches are based on the

classical discretization of continuous models by finite volume and finite

elements schemes. For example, in [25] and [6] finite element approaches

are considered.

In this thesis, numerical solutions to the fairing or smoothness problem

are presented. Such problem is formulated in terms of variational or

energy based models in order to derive a nonlocal approach that performs

smoothing by evolving the surface according to a fourth order Non Local

Surface Diffusion Flow (NL-SDF) onM. Results are summarized in [78].

Remeshing refers to the redistribution of the sampling and connectiv-

ity of the geometry in order to satisfy mesh property requirements while

maintaining surface features. In this thesis, we present an adaptive remesh-

ing method that uses the mean curvature as an intrinsic measure of regu-

larity. We propose an adaptive remeshing method which consists of a two

steps PDE model where in the first step the vertex area function A(X) de-

fined on M is diffused over the mesh, influenced by the mean curvature

map. In the second step the vertex position is tangentially relocated to

obtain edges on element stars approximately of the same size. Results are

reported in [75].

Mesh simplification is the process of reducing mesh complexity while

preserving the topology and a good approximation to the original geom-

etry. Mesh simplification is a fundamental step in common 3D acquisition

system and in multiresolution deformation. In this thesis we focus on in-

cremental algorithms and present a new approach to multilevel surface

mesh simplification based on the evolution of surfaces under p-Laplacian

flow. The p-Laplacian flow is used to clusterize vertices toward region

of high curvature while an incremental decimation process orderly re-

moves the shorter and less feature-representative edges from the polygo-

nal mesh. Results have been presented in [77].

Interactive shape deformation allows intuitive manipulation of a 3D ob-
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ject global and local aspect. The Reverse Engineering and Virtual Model-

ing system (described in Part 2 of the thesis), allows for interactive shape

manipulation through energy-based deformation methods. The main re-

quirement for physically-based surface deformation is an elastic energy

that measures how much an object has been deformed from its initial

configuration. We present a new proposal for global and local shape

deformation methods based on the minimization of the Total Curvature

energy of a surface.

Combining the developed approach with our multiresolution simplifi-

cation method we can provide a complete multiresolution deformation

framework for surface meshes.

Part 1 is organized as follows. After a brief introduction PDE models

on surfaces in Chapter 1, we introduce the notation and the geometric

setting used Section 1.1. In Section 1.2 and 1.3 we describe the intrin-

sic geometric operators. Then we discuss energy-based continuous geo-

metric flows (Section 1.4) and discrete geometric flows (Section 1.5). In

Chapter 2 we describe in details our advances and results in the solution

of common problems in the field of Computer Graphics and Computer

Vision through variational methods. In particular, smoothing, remeshing,

deformation and simplification will be the subjects of Sections 2.1, 2.2, 2.3

and 2.4, respectively.

Part 2: Virtual Modeling

In the second part we introduce and discuss in details a new method

of reverse engineering for acquisition and reconstruction of a virtual 3D

model representing an existing physical object. The proposed Fast Inter-

active Reverse Engineering System (FIRES)[9] exploits a pen-based active

stereo acquisition system supported by a reconstruction and visualization

layer based on subdivision surfaces. By simply dragging a smart-pen de-

vice in space, the user draws and refines arbitrary 3D style-curves that

define an outline of the desired shape. The 3D curve sketching process is

achieved by an active stereo vision system made of two infrared cameras

and a smart-pen device. The curve sketching process is integrated with
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the surface reconstruction step into an iterative and incremental process

that allows the user to have a real-time visual feedback on the ongoing

work. The process of interactively and incrementally drawing the irreg-

ular curve network is called Interactive Surface Sketching (ISS).The raw

data gathered both from the smart-pen and from the cameras is processed

in an acquisition pipeline where the projected led image points of both

cameras are first matched and then triangulated.Then, after identification,

the 3D points are used to estimate the position of the pen-tip and the se-

quence of 3D pen-tip positions traces a curve that is shown to the user

after a real-time smoothing and sampling step.

The ISS produces a curve network which is represented as a polyline

mesh that is, a mesh with faces, vertices and edges augmented with poly-

lines associated to each edge. Irregular curve networks can lead to asso-

ciated polyline meshes with n-sided, non-planar, and non-convex faces.

During the development of FIRES we strived for the design of a flexi-

ble and robust tool for reconstructing surfaces from irregular and noisy

curve networks. Our first approach consisted in a multi step process

involving bilinearly blended Coons patches that interpolated points on

given curves. More recently, further studies in geometric surface process-

ing allowed us to introduce an alternative reconstruction approach based

on a surface diffusion flow. This latter approach greatly improved the

reliability of the reconstruction system and opened new interesting area

of research and experimentation. Results have been presented in [76].

The reconstruction method is based on a preliminary step where we con-

struct a sufficiently refined mesh X0 by a flat tessellation (grid) of each

polygon in the base mesh. Then we solve a global optimization problem

by applying directly to the coordinate maps X a curvature based fourth

order flow. The proposed surfaced diffusion flow is able to reconstruct

a smooth surface, but can also reproduce the sharp feature of the object

(creases, corners and edges).

Part 2 is organized as follows. Section 3.1 presents some related works

and Section 3.2 is an overview on FIRES. The data structure layer of FIRES

is presented in Section 3.3. Then, following the main stages of the reverse

engineering pipeline, we describe in Section 4.1 the acquisition phase,

in Section 5 the interactive surface sketching methodology, and in Sec-
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tion 6 the surface reconstruction method adopted in FIRES. Examples in

Section 7 illustrate the performance of the reconstruction method when

applied to a few object reconstructions.

Summary of key contributions.

• A novel smoothing method based on a two-step algorithm that

solves a nonlocal surface diffusion flow PDE. The method is able

to remove spurious oscillations while preserving sharp features and

is discussed in Section 2.1.5.

• A new adaptive remeshing scheme based on the idea of improving

mesh quality by a series of local modifications of the mesh geometry

and connectivity. We contribute to the family of parametrization-

free remeshing techniques with a curvature-based mesh regulariza-

tion. The new approach allows for the control of both triangle qual-

ity and vertex sampling over the mesh, as a function of the surface

mesh curvature. The adaptive remeshing proposal is discussed in

Section 2.2.1

• A new approach to simplification based on the evolution of surfaces

under p-Laplacian motion that provides a natural geometric clus-

tering process where the spatial effect of the p-Laplacian allows for

identifying suitable regions that need to be simplified. Discussed in

Section 2.4.

• A Fast Interactive Reverse Engineering System (FIRES) enabling

real-time acquisition and manipulation of complex geometrical shapes

through wireless and interactive input devices. The developed project

represents a low-cost solution to the challenging Reverse Engineer-

ing problem. We demonstrated that, by means of FIRES and the pro-

posed virtual modeling tools, we can achieve optimal reconstruction

results in terms of balncing cost and accuracy, as discussed in Part

2.

• A novel differential model for reconstructing free-form surfaces from

sketched irregular curve networks. The proposed surfaced diffusion

flow is able to reconstruct a smooth surface, while reproducing the

sharp feature of the object (creases, corners and edges) as discussed

in 6.4.
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Introduzione - Italiano

In questa tesi sono trattati due argomenti principali "Geometric Surface

Processing" e "Virtual Modeling". L’ispirazione e la coordinazione di gran

parte del lavoro di ricerca contenuto nella tesi e’ dovuta al progetto New

Interactive and Innovative Technologies for CAD (NIIT4CAD), finanziato

dall’European Eurostars Programme. NIIT4CAD ha l’ambizioso obiettivo

di superare le limitazioni degli approcci tradizionali alla modellazione di

superfici dei moderni sistemi di progettazione assistita al calcolatore, in-

troducendo nuove metodologie e tecnologie basate su superfici di suddi-

visione in un nuovo framework virtuale di modellazione. Tali innovazioni

permetteranno progettisti ed ingegneri a trasformare velocemente ed in-

tuitivamente l’idea di una forma in un modello geometrico ad alta qualita’

adatto per scopi ingegneristici e di produzione. Uno degli obiettivi della

tesi e’ proprio la ricostruzione e modellazione di superfici, rappresentanti

oggetti a topologia arbitraria, partendo da curve 3D irregolari acquisite

tramite un dispositivo smart-pen sviluppato ad-hoc.

La tesi e’ organizzata in due parti: "Geometric Surface Processing" e "Vir-

tual Modeling". Durante lo sviluppo della pipeline geometrica del nostro

sistema di modellazione virtuale, abbiamo affrontato diverse problem-

atiche che hanno attratto il nostro interesse ed aperto nuove aree di ricerca

e sperimentazione. Nella prima parte, presentiamo tali teorie ed alcune

applicazioni nell’ambito di Geometric Surface Processing. Questo ci per-

mette di formalizzare meglio e dare una visione piu’ ampia ad alcune

delle tecniche usate nelle ultime versioni del nostro sistema ricostruzione

di superfici e modellazione virtuale.

Il lavoro di ricerca per entrambi gli argomenti ha portato al raggiungi-

mento di importanti risultati, brevemente riassunti in questa introduzione,

che sono stati pubblicati e presentati in articoli e conferenze di rilevanza
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internazionale.

Parte 1: Geometric Surface Processing

L’applicazione di modelli matematici basati su equazioni alle differenze

parziali (PDE) a problemi di image processing e computer graphics e’

stata estremamente proficua negli scorsi 20 anni. In particolare, flussi ge-

ometrici di superfici (geometric surface flows) sono stati estensivamente

usati per l’elaborazione di mesh. Mentre una larga parte della comunita’

scientifica in ambito di visione risolve modelli PDE basandosi su una

metodologia Euleriana (tipicamente con level sets), rappresentazioni La-

grangiane di superfici basate su mesh triangolari sono piu’ comuni in am-

bito di computer graphics. Nel setting Lagrangiano, la discretizzazione

di flussi continui e’ normalmente realizzata attraverso l’uso di operatori

differenziali discreti oppure utilizzanto tecniche agli elementi finiti. In

questa tesi, seguiremo il primo approccio e proporremo modelli differen-

ziali su manifold e soluzioni numeriche a problemi di elaborazione di

superfici quali ricostruzione, smoothing, remeshing, semplificazione e de-

formazione.

Sia M0 = Image(X0) := {X0(u), u ∈ [0, 1] × [0, 1]} una superfice com-

patta, chiusa e orientabile immersa in R
3 e sia X0 la corrispondente

mappa parametrica. Una evoluzione geometrica della superfice consiste

nel trovare una famigliaM(t) = Image(X(·, t)), t ∈ [0, T), T > 0 di super-

fici continue, chiuse e orientabili in R
3 che evolvono secondo l’equazione

del flusso (geometric flow)

∂X

∂t
= −β

−→
N + α

−→
T ,

dove
−→
N e’ il vettore unitario normale alla superfice, β e’ la velocita’ lungo

la direzione normale ed α e’ la velocita’ lungo la direzione tangente
−→
T .

La famiglia di manifolds M(t) ∈ R
4 si muove lungo la direzione nor-

male guidata dalla velocita’ normale β dipendente, per esempio, dalla

curvatura e posizione spaziale. Il moto normale ha un effetto di controllo

sulla geometria della supeficie, mentre il moto tangenziale ha un effetto

di ridistribuzione dei nodi.
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Per approssimare numericamente le PDEs sulla superfice M(t), defini-

amo un setting discreto. L’approssimazione spaziale diM(t) e’ una mesh

poliedrica che consiste nell’unione di facce i cui vertici X(t) giacciono su

M(t), e X(t) rappresenta la parametrizzazione della superfice stessa. In

questo setting, possiamo definire, discretizzare ed approssimare modelli

differenziali basati su operatori locali come il Laplace-Beltrami, il gradi-

ente e la divergenza intrinsica.

Noi consideriamo sia flussi geometrici discreti, cioe’ flussi basati sul cor-

rispondente discreto di quantita’ differenziali geometriche continue, vedi

per esempio [69, 94], che metodi variazionali. Altri approcci sono basati

sulla classica discretizzazione di modelli continui tramite schemi a volumi

finiti ed elementi finiti[25], [6].

In questa tesi, presentiamo soluzioni numeriche al problema del fair-

ing. Tale problema e’ formulato in termini variazionali per derivare un

approccio nonlocal che esegue il processo di smoothing della superfice

seguendo un flusso di diffusione nonlocal (NL-SDF) su M. I risultati

sono raccolti in [78].

Remeshing significa ridistribuire e manipolare la connettivita’ in modo

da soddisfare specifiche proprieta’, mantenento inalterate le caratteris-

tiche importanti della superfice. In questa tesi presentiamo un metodo

di remeshing adattivo che fa uso della curvatura media come misura in-

strinseca di regolarita’. Il metodo consiste in un modello PDE a due passi

dove, nel primo passo la funziona area associata ai vertici A(X), definita

su M, e’ diffusa sulla mesh, influenzata dalla curvatura media. Nel sec-

ondo step rilochiamo tangenzialmente i vertici in modo da ottenere edge

approssimativamente della stessa lunghezza. I risultati sono esposti in

[75].

La semplificazione di mesh e’ il processo di riduzione della complessita’

della mesh, preservandone topologia ed una buona approssimazione della

geometria originale. La semplificazione di mesh e’ un passaggio fonda-

mentale nei sistemi di acquisizione 3D e nella deformazione multiresolu-

tion. In questa tesi presentiamo un nuovo approcio alla semplificazione di

mesh basato sull’evoluzione della superficie con un flusso p-Laplaciano.

Il flusso p-Laplacian e’ usato per raggruppare i vertici verso regioni ad

alta curvatura, mentre un processo di decimazione incrementale rimuove

in modo ordinato gli edge piu’ corti e meno rappresentativi. I risultati

xiii



sono stati presentati in [77].

La deformazione interattiva permette di manipolare intuitivamente un

oggetto 3D in modo locale e globale. Il sistema di Reverse Reverse En-

gineering e modellazione virtuale (descritto nella Parte 2 della tesi), per-

mette la manipolazione interattiva di forme attraverso metodi di defor-

mazione basata su minimizzazioni di energie. Il requisito principale

per deformazioni physically-based di superfici e’ un’energia elastica che

misura di quanto un oggetto si e’ deformato rispetto alla sua configu-

razione iniziale. Noi presentiamo una nuovo metodo di deformazione

globale e locale basato sulla minimizzazione della Curvatura Totale di

una superfice.

Part 2: Virtual Modeling

Nella seconda parte discutiamo in dettaglio un nuovo metodo di reverse

engineering per l’acquisizione e ricostruzione di modelli virtuali 3D rap-

presentanti oggetti fisici esistenti. Il sistema proposto, chiamato Fast In-

teractive Reverse Engineering System (FIRES)[9], sfrutta un sistema di

acquisizione stereo attivo basato su un dispositivo tipo penna e suppor-

tato da un sistema di ricostruzione e visualizzazione basato su super-

fici di suddivisione. Semplicemente trascinando il dispositivo smart-pen

nello spazio, l’utente disegna e raffina curve di stile 3D che definiscono

l’outline della forma desiderata. Il processo di sketching di curve 3D e’

realizzato tramite un sistema di stereovisione attiva costituito da due tele-

camere ad infrarossi ed un dispositivo smart-pen. Lo sketching di curve

e’ integrato con la ricostruzione in un processo iterativo ed incrementale,

chiamato Interactive Surface Sketching (ISS), che permette all’utente di

avere un feedback in tempo reale sul risultato del lavoro in corso. I dati

grezzi ricevuti sia dalle camere che dalla smart-pen sono interpretati in

una pipeline di acquisizione dove le proiezioni delle immagini dei led

sono prima associati e triangolati. Poi, dopo essere identificati, i punti 3D

sono usati per stimare la posizione della punta della penna, e la sequenza

di tali punti traccia una curva che e’ mostrata all’utente dopo un passo di

smoothing e campionamento in tempo reale.

L’ISS produce un network di curve rappresentato da una Polyline Mesh,
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cioe’, una mesh con facce, vertici ed edge e ad ogni edge e’ associata

una polyline. Network di curve irregolari possono generare una polyline

mesh con faccie ad n lati, non planari e non convesse.

Durante lo sviluppo di FIRES, abbiamo dedicato molte attenzioni al de-

sign di uno metodo di ricostruzione di superfici flessibile e robusto, ca-

pace di lavorare su network di curve irregolari e rumorosi. Il nostro

primo approccio usava un metodo a piu’ passi basato su patch di Coons

che interpolano dati punti sulle curve. Piu’ recentemente, dopo i risul-

tati ottenuti nella Parte 1 sul processing geometrico di superfici, abbiamo

introdotto un metodo di ricostruzione alternativo basato su un flusso di

diffusione. In particolare viene prima costruita un mesh sufficientemente

raffinata X0 tramite una tassellazione dei poligoni nella mesh iniziale e

poi viene applicato un flusso di diffusione del quarto ordine basato sulla

curvatura. Tramite tale flusso il sistema di ricostruzione riesce a ripro-

durre superfici smooth ma anche angoli e spigoli degli oggetti. I risultati

sono stati presentati in [76].
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Part I

Geometric Surface Processing
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Chapter 1

Geometric Flow on Surfaces and

Variational Approaches

In this chapter we introduce geometric flows on surfaces. In the context of

this thesis, we are interested in the study of how differential continuous

models defined on manifolds can be approximated to discrete geometric

flows on triangular meshes and applied to computer graphics and geo-

metric modeling problems of our interest.

Traditional methods for surface design and processing have been focused

on achieving specific levels of inter-element continuity via a combination

of heuristics and constructions to achieve an ultimate shape. The final

shape lacks, in general, of fairness, defined as smooth and minimal vari-

ation of curvature[71]. Pioneer works in [71, 72, 73, 105] introduced new

techniques for curve and surface design based on a variational approach,

that is a constrained optimization of a fairness functional.

Since then, many problems in surface processing has been reformulated

as variational problems, i.e. minimizing a certain kind of energy func-

tional. This leads to the solution of PDEs deriving from the Euler-Lagrange

equations associated to the variational problem. Sometime the behavior

of a particular phenomenon is well known and this makes it possible to

directly "design" PDE models that suits a particular phenomenon without

passing through the minimization of an energy functional.

The solution of PDE models on surfaces is strictly tied with the repre-

sentation used to define the surface. The two common surface represen-
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Table 1.1: Solving variational problems with different methods on differ-
ent surface representations.

Representation Method Principle Comments

Implicit Level set approach The surface is represented
by the zero set of a level
set function and the PDE
on the surface is extended
to a PDE that is defined on
a narrow band of the sur-
face.

Easy to handle topological
changes.

Parametric Surface parameterization The surface is
parametrized to a sim-
ple domain such as the
2D rectangle. Differential
operators on the surface
are expressed within the
coordinates system.

Not easy to obtain
parametrization for an
arbitrary topology surface.

Lagrangian Discretization on surface
triangulation

Discrete differential geom-
etry

Hard to handle topological
changes. Can deal with
any surface without pre-
processing.

tations and corresponding approaches to variational problem and PDE

models are described below and summarized in Table 1.1.

From a high level point of view, there are two major classes of surface

representations: parametric representations and implicit representations.

Parametric surfaces are defined by a vector-valued parametrization func-

tion f : Ω →M, that maps a two-dimensional parameter domain Ω ∈ R
2

to the surface M = f (Ω) ∈ R
3. In contrast, an implicit (or volumetric)

surface is defined to be the zero-set of a scalar-valued function called

signed distance function, F : R
3 → R, i.e.,M = {x ∈ R

3|F(x) = 0}.
Parametric and implicit representations have their particular strengths

and weaknesses, such that for each geometric problem the better suited

one should be chosen. Geometric operations can be classified in the fol-

lowing three categories:

Evaluation:

sampling of the surface geometry or of other surface attributes.

Query:

spatial queries are used to determine whether or not a given point

p ∈ R
3 is inside or outside of the solid bounded by a surfaceM.
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Modification:

a surface can be modified in terms of geometry, or in terms of topol-

ogy.

Variational problems or PDEs on surfaces can be solved by parameter-

izing the surface onto the 2D parameter domain. In this case, classi-

cal differential geometry provides a well-known support to define and

compute differential operators on the surface with respect the parametric

domain[33].However, the computation of a parametrization is a compli-

cated pre-processing for arbitrary given surfaces that can require the use

of atlas in case of arbitrary topology. Another common approach is to

solve the PDE on the implicit manifold, which is based on the level set

method.In this approach, the surface is the zero set of level set function

defined in R
3, in which the surface is embedded in. The PDE on the

surface is extended to be defined on a narrow band of the surface. In the

Lagrangian representation, the surface M is explicitly represented as a

piecewise-linear mesh M.The differential operators are approximated on

surfaces by combining the standard Euclidian differential operators with

projection along the normal direction. The biggest advantage of implicit

representation of surfaces is that one can easily handle topological change

under surface evolution. However, it has its own limitations. For instance,

for open surfaces or surfaces with complicated structures it is not easy to

obtain their implicit representations. In addition, the cost of the implicit

representations is the pre-step to extend all data on the definition domain

of implicit function. These additional increasing data might decrease the

computation speed.

The above methods mainly focus on converting problems on surfaces to

problems in Euclidean space. They require pre-processing, either extend-

ing data to the narrow band of the given surface or finding a parametriza-

tion of the given surface. Different numerical approaches to the approx-

imation of continuous PDE models on meshes are based on the classical

discretization of continuous models by finite volume, finite differences

and finite elements schemes. For example, the authors in [108] use finite

difference schemes, while in [25] a finite element approach is considered.

Over the last decade, a popular method to approach geometry process-

ing and evolving surfaces has consisted of a Lagrangian setup where the

surface M is explicitly represented as a piecewise-linear mesh M, and
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vertices are moved so as to achieve the desired deformation[14]. Great

success with this approach has been reported for editing, smoothing, and

parameterization, often using variational formulations[88, 96]. In this

approach, the variational models are directly solved on the given sur-

face mesh instead of converting the models to be problems in Euclidean

spaces.

Lagrangian methods have their own drawbacks including mesh element

degeneracies, self-intersections, and topology changes, all of which re-

quire delicate treatment. Some of the shortcomings of solving PDEs or

variational problems in a Lagrangian settings are not as noticeable for

"short living" evolutions, that will be the case for most of our applications

and examples.

In conclusion, since our focus is going to be primarily on PDE models that

describe geometric flows for Computer Graphics and Computer Vision

applications, where the Lagrangian surface representation is prevalently

used, in this chapter we will delve into the process of discretization of

differential operators for the purpose of solving discrete geometric flows,

i.e., flows based on discrete analogous of continuous differential geome-

try quantities[69, 94].

1.1 Notation and geometric setting

We assume that the surface M is a 2-dimensional manifold of arbitrary

topology embedded in R
3. For some index setA, we denote by (Ωα, X)α∈A

a chart of M, that can be viewed as a piecewise parametrization of M,

where Ωα ⊂ R
2 is an open reference domain and

X : Ωα →M; ξ 7→ X(ξ),

is the corresponding coordinate map (that is, the parametrization of M
at a given point). We denote the local coordinates Ωα as (ξ1, ξ2).

For a given point x ∈ X(Ωα) ⊂M, the tangent space TxM at x is spanned

by { ∂X(x)
∂ξ1

,
∂X(x)

∂ξ2
}. We use TM to denote the set of the tangent vector

fields. For easy of notation, we from now on drop the subscript α.

Let M be a triangular mesh which is a piecewise-linear approximation
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of the smooth manifold M with arbitrary topology, M is defined by a

set T of triangles Ti, i = 1, . . . , Nt, that cover M, and a set X of vertices

Xi, i = 1, . . . , Nv. We define an area element Ai around each vertex Xi.

More precisely, if N(i) is the set of 1-ring neighbor vertices of vertex Xi,

then the associated area Ai, is defined by connecting the midpoints of

each 1-ring edge with the barycenter of the elements. Note that, with an

abuse of notation, we are defining X as the parametrization of M and

also defining X as a set of vertices in the discrete setting.

1.2 Intrinsic Gradient and divergence discretiza-

tion

In this section we define a discretization of the differential operators in-

trinsic gradient (∇M) and intrinsic divergence (divM) for the space dis-

cretization ofM given by the mesh M.

LetM ⊂ R
3 be a surface, we can naturally consider the three coordinate

functions characterizing the parametrization X as three scalar functions

on the surfaceM. From now on we consider a generic function f :M→
R, f ∈ C1(M), and we apply∇MX by computing∇Mx,∇My and∇Mz.

The intrinsic gradient operator ∇M of a function f is a vector field ∈ TM
that can be written in local coordinates

∇M f =
2

∑
i,j=1

gij ∂ f

∂ξ j

∂

∂ξi
, (1.1)

where gij =
∂

∂ξi
· ∂

∂ξ j
(· indicates the inner product) are the coefficients of

the metric matrix G and (gij)i,j=1,2 are the elements of the inverse matrix

G−1.

The intrinsic divergence operator divM on M of a vector field V ∈ TM
defined in local coordinates V = v1

∂
∂ξ1

+ v2
∂

∂ξ2
can be written in local

coordinates

divMV =
1√

det(G)

2

∑
i=1

∂

∂ξi
(
√

det(G)vi). (1.2)

7



where

∂
∂ξ1

v1 = g11(V(Xj1)−V(Xi)) · ∂
∂ξ1

+ g12(V(Xj1)−V(Xi)) · ∂
∂ξ2

,
∂

∂ξ2
v2 = g21(V(Xj2)−V(Xi)) · ∂

∂ξ2
+ g22(V(Xj2)−V(Xi)) · ∂

∂ξ2
.

(1.3)

Since
√

det(G) is constant on each triangle, on a given triangle T we have

divTV =
2

∑
i=1

∂

∂ξi
vi. (1.4)

We consider a weighted average in the first ring neighbors, in terms of

the triangle area, thus we use the following discretization,[60]

∇M f (Xi) =
1

∑j∈N(i) Aj
∑

j∈N(i)

Aj∇Tj
f (Xi) (1.5)

with Aj area of the triangle jth in the first ring neighbor of vertex Xi, and

∇Tj
f (Xi) = ( f (Xj1)− f (Xi), f (Xj2)− f (Xi))G

−1

(
Xj1 − Xi

Xj2 − Xi

)
.

(1.6)

For a triangle T of vertices Xi, Xj1 , Xj2 , with j1 ∈ N(i), j2 ∈ N(i) we define

−→ω Xj1
T = g11(Xj1 − Xi) + g12(Xj2 − Xi)

−→ω Xj2
T = g21(Xj1 − Xi) + g22(Xj2 − Xi)

−→ω Xi
T = −(−→ω Xj1

T +−→ω Xj2
T ).

(1.7)

Then (1.6) can be rewritten as

∇Tj
f (Xi) = ∑k∈i,j1,j2≺Tj

−→ω Xk
Tj

f (Xk). (1.8)

In matrix form, the discretization of the intrinsic gradient operator ∇M
is given by:

∇M f ≈ −→W f (1.9)
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with
−→
W = D

−→
Ws, D is a diagonal matrix Dii =

1
∑j∈N(i) Aj

, and

−→
Wsij =





−∑j∈N(i) Aj
−→ω Xi

Tj
i = j

(AR
−→ω Xj

TR
+ AL

−→ω Xj

TL
) i 6= j, j ∈ N(i)

0 otherwise

(1.10)

where TL and TR are the two triangle which share the edge Xi, Xj (see Fig.

1.1).

We next discretize the divergence operator for a given vector field V,

following [60]

divMV(Xi) =
1

∑j∈N(i) Aj
∑

j∈N(i)

AjdivTj
V(Xi). (1.11)

In matrix form

divMV ≈ −→W ·V (1.12)

where in right-hand side, since
−→
W consists of three matrices (Wx,Wy,Wz),

and V consists of three vectors (Vx,Vy,Vz), by
−→
W ·V we denote the sum

of three matrix-vector products WxVx + WyVy + WzVz.

1.3 Laplacian discretization

The Laplace operator or Laplacian is a differential operator given by the

divergence of the gradient of a function f on Euclidean space Thus if f

is a twice-differentiable real-valued function, then the Laplacian of f is

defined by

△ f = div∇ f . (1.13)

In a Cartesian coordinate system, the Laplacian is given by sum of sec-

ond partial derivatives of the function with respect to each independent

variable.

The Laplace-Beltrami operator extends this concept to functions defined

on manifolds:

△M f = divM∇M f . (1.14)
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Xi Xj

Xl

Eij

Tj

αij

βij

Figure 1.1: Stencil of the first ring neighborhood of the vertex Xi. The
triangle Tj is defined by the vertices Xi,Xj, and Xℓ.

Like the Laplacian, the Laplace-Beltrami operator is defined as the di-

vergence of the gradient, and is a linear operator taking functions into

functions.

Let us focus on the discretization of △M f on a spatial approximation of

M represented by the mesh M with vertex set X.

A vertex Xi ∈ X, usually defined by Cartesian coordinates Xi = (xi, yi, zi),

can be represented in differential coordinates (δ-coordinates) as δi =

(δx
i , δ

y
i , δ

z
i )[79], where

δi =
1

di
∑

j∈N(i)

Xj − Xi =
1

di
∑

j∈N(i)

(Xj − Xi), (1.15)

and di is the number of one-ring vertex neighbors of Xi, also called the

valence of Xi. Note that (1.15) represents the offset vector of a vertex Xi

from its gravity center weighted w.r.t. its neighbors Xj.

In a general form

δi = ∑
j∈N(i)

wij(Xj − Xi), i = 1, · · · , Nv, (1.16)

where the weights wij are positive numbers and satisfy the normalization

condition ∑j∈N(i) wij = 1. For uniform weights wij =
1
di

we get (1.15).
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In matrix-vector form, the linear transformation (1.16) is expressed by

Lx = δx, Ly = δy, Lz = δz, (1.17)

where x, y, z ∈ R
Nv are vectors containing the Cartesian coordinates of all

the vertices X, while the matrix L ∈ R
Nv×Nv represents the connectivity of

the mesh and it is called the topological Laplacian of the mesh. It is more

convenient to consider the decomposition L = D L, where D ∈ R
Nv×Nv

is a diagonal matrix with Dii = 1/Ai, which represents the inverse area

term.

The elements of the L matrix depend on the choices of the weights in Eq.

(1.16) and provide different geometric discretizations of the Laplacian.

However, the accuracy of the approximation of the Laplace-Beltrami op-

erator on an arbitrary triangulated surface depends on the quality of the

mesh.

In the following we present the common choices for weights in Eq. (1.16).

Cotangent weights[69]

Lij =





−∑j∈N(i)(cot αij + cot βij) i = j

+(cot αij + cot βij) i 6= j, j ∈ N(i)

0 otherwise

(1.18)

αij and βij are the two angles opposite to the edge in the two trian-

gles sharing the edge (Xj, Xi), see Fig. 1.1.

L is a symmetric matrix, and the D matrix used is: Dii = 1/2Ai. Im-

posing the normalization condition we have Dii = 1/(2Ai ∑j∈N(i)(cot αij +

cot βij)). For a scalar function η defined on M, Meyer et al. dis-

cretization [69] leads to

△Mη(Xi) ≈
1

2Ai
∑

j∈N(i)

(cot αij + cot βij)(η(Xj)− η(Xi)). (1.19)

Umbrella Uniform[99]

Lij =





−di i = j

1 i 6= j, j ∈ N(i)

0 otherwise

(1.20)
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For the umbrella discretization Dii = 1/di, and L is a symmetric and

semi-def. pos. matrix.

Umbrella Scaled[40]

Improved umbrella operator proposed in [99] using the relaxation

that the edge length are not supposed to be constant.

Lij =





−∑j∈N(i)
1

‖Xi−Xj‖ i = j
1

‖Xi−Xj‖ i 6= j, j ∈ N(i)

0 otherwise

(1.21)

In the scaled − umbrella discretization Dii = 2/ ∑j∈N(i) ‖Xi − Xj‖,
and L is symmetric and semi-def. pos.

Mean Value[39]

Lij =





−∑j∈N(i)
(tanγij/2+tan ηij/2)

‖Xi−Xj‖ i = j

(tanγij/2+tan ηij/2)

‖Xi−Xj‖ i 6= j, j ∈ N(i)

0 otherwise

(1.22)

where γij and ηij are the two angles at Xi in the two triangles sharing

the edge (Xj, Xi).

In mean− value discretization D = I, and L is not symmetric.

Given any choice of weights, for a given function η onM the discretiza-

tion of k-th order Laplacians △k
M can be obtained recursively with:

△k
Mη(Xi) ≈ Lk(X) = wi ∑

j∈N(i)

wij(△k−1
M η(Xj)−△k−1

M ηXi) (1.23)

and the corresponding matrix representation Lk is simply the k-th power

of the Laplacian matrix L.

Note that every row of L sums up to zero, and

rank(L) = Nv − k, (1.24)

with k number of connected components of the mesh. A connected

component of a mesh consists of a submesh with a number of vertices

greater than one where each vertex is connected to the others by a path

of edges. Therefore a connected mesh, with or without boundaries, has
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Figure 1.2: Results of applying umbrella weights (1.20) on the left and
cotangent weights (1.18) on the right.

rank(L) = Nv − 1. The connectivity matrix L representing a mesh with N

connected components, consists of a block matrix with N blocks.

The kernel of L consists of constant vectors, that is Ker(L) = {cI ∈
R

Nv×1}, c scalar value, thus we have

dim(Ker(L)) + rank(L) = Nv, (1.25)

which is the dimension of the matrix L.

Unfortunately, L is symmetric and semi-definite positive only for some

choices of geometric discretizations, however, the matrix L D L is a sym-

metric positive definite matrix and ker(L D L) = ker(L), and we can use

this result for further developments.

In [107] has been shown that all the discretizations L presented above are

not convergent in the general cases to the Laplace-Beltrami operator △M
applied to f ∈ C2(M). Only Meyer et al. [69] is convergent for some

special cases.

The cotangent discretization (1.19) leads to vectors δi with normal com-

ponents only, unlike the other discretizations which also have tangential

components and may be nonzero on planar one-ring neighbors (see Fig.

1.2).
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From differential geometry we know [33] that the Laplace-Beltrami oper-

ator is strictly related to the concept of curvature. Let Xi be a point on a

differentiable manifold M. Every curves on M passing through Xi has

an associated curvature value κj. The maximum and minimum values of

curvature, κ1 and κ2 respectively, are known as the principal curvatures

of M at Xi. The mean curvature at Xi is then the sum of the principal

curvatures:

H(Xi) = κ1 + κ2. (1.26)

while the Gaussian curvature is the product of the principal curvatures:

KG(Xi) = κ1κ2. (1.27)

The mean curvature normal vector, denoted by
−→
H (X), equals the Laplace-

Beltrami operator (△M) applied to the identity id on a surfaceM:

−→
H (X) = H(X)

−→
N (X) = −△MX, (1.28)

where H(X) is the corresponding mean curvature scalar field and
−→
N (X)

is the unit outward normal of the surface at point X. Thus from a differen-

tial geometry point of view the δ-coordinates in (1.17) can be considered

as a discretization of the continuous Laplace-Beltrami operator.

Therefore the differential coordinate vector δ is characterized by a direc-

tion which approximates the local normal direction and by a magnitude

which is proportional to the local mean curvature.

The mean curvature
−→
H (X) can be also expressed by

−→
H (X) = divM(∇M(X)) (1.29)

using the discretized operators (1.5) and (1.11) described in Section 1.2.

The discretization of the Laplace, gradient and divergence operators at

the vertex Xi depends on the elements of its first ring neighborhood while

the measure of mean curvature at the vertex Xi depends on its 2-ring

neighbors. The discretized mean curvature (1.29) is more reliable than the

discretized mean curvature obtained through the relation (1.28), mostly

because it is computed on a wider stencil which allows to better identify

the features of the mesh.
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Given the δ coordinates, in order to recover the Cartesian coordinates of

the vertices of the mesh M we solve the linear systems (1.17). However the

matrix L is singular, since rank(L) is given by (1.24).Thus for a connected

mesh M the linear systems (1.17) are not full-rank.

In order for the L matrix to be non-singular (and for the geometric flow

to have a well-defined solution), suitable boundary constraints have to

be employed. At this aim the values at a set of constrained vertices Xi

are prescribed (so-called Dirichlet constraints) and their corresponding

columns are moved to the right hand side[13].

Remark

The volume V of the mesh M can be approximated by the formula

V =
1

6

Nt

∑
k=1

γk ·
−→
N k, (1.30)

where
−→
N k is the normal vector to the face k characterized by the vertices

Xk
1, Xk

2, Xk
3, and γk = (Xk

1, Xk
2, Xk

3)/3.

Two essentially different models that have found wide recognition in sur-

face processing are the variational approach according to some function-

als and the approach via nonlinear diffusion PDEs.

1.4 Geometric flow based on energy minimiza-

tion

The basic idea of the variational design approach is to measure the quality

of a surface in terms of its bending energy. A pioneer work in this field

has been introduced by Moreton in [71]. Let us denote by M a two-

manifold surface, parametrized by a function X : Ω ⊂ R
2 → M ⊂ R

3.

The most common functional, which approximates the bending energy of

a thin plate, is the total curvature energy

E(M) :=
1

2

∫

M
k21 + k22dM, (1.31)

15



where k1 and k2 are the principal curvatures which depend non-linearly

on the surface M. Let us call the surfaces minimizing (1.31) elastica

surfaces because they generalize the famous Euler’s elastica curves.

However, since the principal curvatures and the area element depend

non-linearly on the surface M, this functional is difficult to minimize.

The total curvature is therefore replaced, that is "linearized", by the so-

called thin plate energy:

EBEND(X) =
1

2

∫

Ω
X2

uu + 2X2
uv + X2

vvdudv, (1.32)

which is a standard measure used for the global surface quality in geo-

metric modeling. When the parametrization is isometric, then (1.32) turns

out to be equal to (1.31).

The membrane energy is defined by the functional

ESTRETCH(X) =
1

2

∫

Ω
X2

u + X2
vdudv =

1

2

∫

Ω
|∇X|2dudv. (1.33)

In order to keep the parametrization of the surfaceM as close to isometric

as possible, Ω is typically chosen equal to the initial surface M, As a

consequence, the gradient turns into the intrinsic gradient, the Laplace

operator △ w.r.t. the parametrization X turns into the Laplace-Beltrami

operator △M w.r.t. the manifoldM, and the functionals (1.32) and (1.33)

becomes

EBEND(M) =
1

4

∫

M
(k1 + k2)

2dM =
∫

M
H2dM =

∫

M
|△MX|2dM,

(1.34)

and

ESTRETCH(M) =
1

2

∫

M
|∇MX|2dM, (1.35)

respectively. The minimization of these functionals can be performed effi-

ciently by applying variational calculus, which yields their Euler-Lagrange

PDEs, which are

−△MX = 0, (1.36)

for (1.35), so-called mean curvature, and

△M ◦ △MX = △2
MX = 0, (1.37)
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for (1.34), so-called bi-Laplacian, which involve Laplacian and bi-Laplacian

operators, respectively, and

△MH + 2H(H2 − KG) = 0, (1.38)

for (1.31), so-called discrete elastica where KG is the Gaussian curvature.

Considering an artificial time evolution variable t, PDEs (1.36), (1.37)

and (1.38) turn into the geometric flow defined as mean curvature flow,

bi-Laplacian flow and Euler discrete elastica flow, respectively.

Solving △M2 X = 0, with suitable boundary conditions securing its non-

trivial solution, produces the so-called thin-plate surface while solving

△M X = 0 with suitable boundary conditions produces the so-called

minimal area surface.

1.5 Discrete Geometric Flows

Let M0 = Image(X0) := {X0(u), u ∈ [0, 1]× [0, 1]} be a compact, closed

immersed orientable surface in R
3. Here X0 denotes the corresponding

parameter map. A curvature-driven geometric evolution consists of find-

ing a family M(t) = Image(X(·, t)), t ∈ [0, T), T > 0 of smooth, closed,

immersed orientable surfaces in R
3 which evolve according to the flow

equation (Geometric flow)

∂X
∂t = −β

−→
N , with initial condition

X(0) = X0,
(1.39)

where
−→
N is the unit normal vector to the surface, and β is a velocity

applied along the normal direction. The parameter t can be considered

as the time duration of the evolution.

The family of manifolds M(t) ∈ R
4 moves along the normal direction

driven by a normal velocity β which may be a function, for example, of

the curvature and spatial position. Eq. (1.39) represents the evolution of

the surface X(t) along its normals with speed equal to β. Note that in

Eq. (1.39) the tangential contribution is not considered. The normal mo-

tion controls the geometry of the surface while the role of the tangential

velocity is a sort of redistribution of the nodes which improves the accu-
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racy of the surface representation. Considering a tangent movement, the

geometric flow becomes

∂X

∂t
= −β

−→
N + α

−→
T , (1.40)

where α is the velocity in the tangent direction
−→
T . The vertex tangent

movement is used to improve the regularity of the mesh, that is the mesh

vertex distribution.

Considering a uniform discretization of the time interval [0, T], T > 0, and

using a temporal time step τ = T/n , the approximation of an evolving

surface at the n-th time step is denoted by a spatial position vector Xn.

This system of PDEs can be discretized in time using a variety of explicit

or implicit time integration schemes. In our computational framework,

we use a simple time integration method that is the forward Euler scheme

∂X

∂t
≈ Xn+1 − Xn

τ
, (1.41)

which yields a first order scheme in time. For solving (1.39) we can apply

explicit schemes:

Xn+1 = Xn + τβ
−→
N n, (1.42)

or implicit schemes

(I − τβ
−→
N n+1)Xn+1 = Xn. (1.43)

In the explicit scheme the numerical stability is conditioned by a time

step bounded by

τ ≤ (min‖e‖)2
2

, (1.44)

where ‖e‖ is the edge length. The implicit scheme is unconditionally

stable, but the time step is chosen according to the geometric criterium

τ =
e

max ‖δi‖
, (1.45)

where e is the average edge length and the denominator represents the

maximum norm value of the Laplacian vectors.
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1.6 Linear system solvers for discrete geometric

flows

The discretization of PDE models mainly leads to the solution of one

or several linear systems. These linear systems are always of very large

dimensions since the size of the linear systems corresponds at least to the

number of vertices in the mesh. The coefficient matrix is characterized by

a band structure, sparsity and can be symmetric positive definite.

Since the differential operators in the geometric flow are locally defined,

the discretization of PDEs typically leads to sparse linear systems, in

which the ith row contains non-zero values only in those entries corre-

sponding to the topological neighborhood of a vertex Xi. We are inter-

ested in iterative solvers that exploit this sparsity in order to minimize

both memory consumption and computation time.

In particular, for the class of sparse linear systems that are also symmet-

ric def. pos. we apply a preconditioned conjugate gradient solver with

incomplete Cholesky as preconditioner. Such systems frequently occur

when we deal with a discrete Laplace-Beltrami operator, Bi-Laplacian,

etc., discretized as in section 1.3. If this is not the case we use the GMRES

iterative solver[92]. Finally, all linear problems Ax = b that require to be

approximated in the least-squares sense, can be solved using the normal

equations AT Ax = ATb which result again in a sym. def. pos. linear

system that we solve by the LSQR iterative method [87]. A very popular

source of this systems are the minimizations of energy functional for sur-

face deformation. The stopping criteria used in our experimental work is

10−6.

Furthermore, we observe that most discrete geometric flows are separable

w.r.t. the coordinate components, that is, they can be solved component-

wise for x, y and z with the same system matrix.

More elaborate surveys on how to efficiently solve general large linear

systems can be found in[11].

REMARK: In the evolution flow the geometry of the mesh changes, thus

also L should change accordingly, apart when L does not depend on

the geometry of the mesh (e.g. umbrella discretization). Following the

literature, when the measures involved (edge length, cotangent, . . . ) do
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not change dramatically during a typical iteration, the same initial L can

be maintained.
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Chapter 2

Differential Models for Computer

Graphics and Geometric

Modeling

The 3D geometry commonly used for shape representation in geometric

modeling, physical simulation and scientific visualization is mainly based

on meshes. The 3D scanning devices, medical equipments and com-

puter vision systems often perform a dense uniform acquisition of points

on the surface without any a priori knowledge of the surface structure.

This may lead to raw meshes with a sampling quality usually far away

from the desired sampling distribution needed for subsequent process-

ing. Algorithms for mesh simplification, denoising (fairing), decimation

and remeshing represent fundamental preliminary steps in mesh process-

ing. In the following, we present original proposals for these problems

based on geometric differential flows.

2.1 Smoothing

A surface smoothing method, in the following named fairing, removes

undesirable noise and uneven edges from discrete surfaces. The fairing

problem arises mainly when creating high-fidelity computer graphics ob-

jects using imperfectly-measured data from the real world, captured for

example from 3D laser scanner devices. Fairing can be applied either be-

21



fore or after generating the mesh from sampled data. The advantage of

denoising a mesh rather than a point-cloud, is that the connectivity infor-

mation implicitly defines the surface topology and can be exploited as a

means for fast access to neighboring samples.

The goal is to remove noise from a surface while keeping features, e.g.

sharp edges, corners and ridges. Explicit surface representations such as

meshes offer an easy way to discretize differential operators, but topo-

logical changes are harder to handle. However, for smoothing processing

driven by PDE models, the evolution is sufficiently slow to avoid both

topological modifications and triangle flips in triangular meshes.

The most common surface degradation model, when the observed data

X0 ∈ R
3×Nv are corrupted by a random variation of the vector field, is

X = X0 +
−→
E , (2.1)

where
−→
E ∈ R

n3
accounts for the vector perturbations with Gaussian dis-

tribution.

Variational and PDE-based surface denoising models have had great suc-

cess in the past ten years. Several authors presented isotropic/anisotropic

denoising of surfaces applying image processing methodology based on

linear/nonlinear diffusion equations [25][108][98][84][74].

We first introduce some of the most common PDE based smoothing mod-

els, like the mean curvature, the bi-Laplacian flows and the anisotropic

mean curvature flow, then we discuss an original two step approach

which implements a nonlocal surface diffusion flow on meshes. First,

we smooth the mean curvature normal map of a surface, and next we

manipulate the surface to fit the processed smoothed curvature normal

vector field. We show that we can efficiently implement geometric fourth-

order flow by solving a set of second order PDEs discretized on the mesh

M. Inspired by [42] we integrate a nonlocal approach into this frame-

work driven by a mean curvature based local geometric descriptor. Our

proposal and its results have been published in [78].
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2.1.1 Mean curvature flow (MCF)

According to the geometric flow (1.39), considering (1.28) and β = H in

(1.39), an initial surface represented by the position vector X0, evolves

with speed
∂X

∂t
= △MX

−→
N (X), X(0) = X0, (2.2)

which is a second order PDE. Applying an explicit scheme and Laplacian

discretization, we get:

Xn+1 = Xn + τLXn. (2.3)

Implicit scheme leads to

(I − τL)Xn+1 = Xn, (2.4)

where I is the identity matrix.

The mean curvature flow is known to have a strong regularization effect,

because it is the gradient flow for the area functional. In a discrete setting,

the mean curvature flow moves every vertex in the normal direction with

the speed equal to a discrete approximation of the mean curvature at the

vertex. It is also well known that the mean curvature flow performs well

in smoothing (fairing) but produces uneven distribution of vertices.

In [35] the authors present finite element schemes for MCF on triangu-

lated surfaces, similarly in [31] implicit and explicit discretizations are

considered.

Unfortunately MCF not only decreases the geometric noise due to im-

precise measurements, but also smooths out geometric features such as

edges and corners of the surfaces. Recently, several authors presented

anisotropic denoising of surfaces applying image processing methodol-

ogy based on nonlinear diffusion equations [25][108][98][84].

We want to consider novel or different strategies for introducing anisotropy

to the diffusion process.
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2.1.2 Bi-Laplacian flow (BLF)

According to the geometric flow (1.39), considering (1.28) and the bi-

Laplacian β = △2 in (1.39), an initial surface represented by the position

vector X0, evolves with speed

∂X

∂t
= −△2

MX
−→
N (X), X(0) = X0. (2.5)

Applying an explicit scheme and the discretization △2
MX ≈ L(L(X)), we

get:

Xn+1 = Xn − τL(LXn). (2.6)

Implicit scheme gives

(I + τL2)Xn+1 = Xn. (2.7)

Since L2X = D L(D L X) with L D L a matrix s.d.p., in order to obtain a

symmetric linear system we rewrite (2.7) as:

(D−1 + τ L D L)Xn+1 = D−1Xn. (2.8)

and choose τ such as the matrix is def.pos.

2.1.3 Anisotropic MCF (AMCF)

The simple model (2.2) can be extended considering an isotropic scalar

function f : X → R+ for the motion in the normal direction. Thus each

point of the surface mesh is moved, at each iteration, proportionally to its

local curvatures. Using, for example, the monotonic decreasing function

f (s) =
1

1+ (ν/s)2
, (2.9)

where s represents the local value of curvature of the mesh, points with

large curvature (compared to ν) move faster than points on locally flat

area.

According to the geometric flow (1.39), considering (1.28) and β = −divM( f∇MX))
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in (1.39), an initial surface represented by the position vector X0, evolves

with speed

∂X

∂t
= (divM( f∇MX) · −→N )

−→
N , X(0) = X0. (2.10)

To avoid tangential velocity components in the evolution we projected

the velocity in equation (1.39) in normal direction. Equation (2.10) can be

rewritten as

∂X

∂t
= (( f △M X−∇M f · ∇MX) · −→N )

−→
N , X(0) = X0. (2.11)

An anisotropic version of the model (2.10) can be obtained by replacing

the feature-preserving geometric function f with an anisotropic diffusion

tensor in terms of the principal curvatures, see for a detailed analysis [25],

[26] and [27]. Let’s introduce an anisotropic tensor

F =

(
f (k1) 0

0 f (k2)

)

in equation (2.10), where k1 and k2 are the principal curvature directions.

This tensor leads to a surface classification as follows: smooth parts of

the surface can be characterized by F = diag[1, 1].An edge can be defined

via the relation F = diag[1, 0]. In this case, the direction along the edge

is given by e2 where we assume here |k1| >> |k2|. In this setting, corners

are given by the relation F = diag[0, 0].We may introduce as an edge-

indicator the function η(x) = tr(F). Depending on the parameter η edges

and corners are given by η < 1.

Let us construct a matrix D0 from the system of orthonormal eigenvectors,

v1‖∇MX, v2⊥∇MX, v3⊥∇MX and v3⊥v2 (2.12)

which has the following form

D0 = [ v1 v2 (v1 × v2) ]




λ1 0 0

0 λ2 0

0 0 λ2






vT
1

vT
2

(v1 × v2)
T


 . (2.13)
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Here v1 and v2 denote the embedded tangent vectors corresponding to

Xj − Xi and Xk − Xi for the triangle XiXjXk.

The corresponding eigenvalues are computed so that diffusion along edges

is preferred over diffusion across them, that is, by

λ1 = f (k1)

λ2 = f (k2)
(2.14)

where f (·) is defined in (2.9) and suitably adapts its values to the anisotropy,

and ν has the role of a threshold parameter. The diffusion tensor is a

smooth, symmetric and positive definite matrix. The positive definite-

ness of the matrix D0 follows easily from (2.14) and from the positivity of

f (·).
In local homogeneous areas the diffusion is reduced to be the isotropic

mean curvature motion driven by (2.2), in fact, following (2.14), D0 is

replaced by f .

2.1.4 Total variation diffusion flow (TVF)

For a given surface M the total variation of a C1 function φ : M → R is

defined as

TV(φ) :=
∫

M
|∇Mφ|ds, (2.15)

and it is equivalent to the L1 norm of the derivative and hence it is some

measure of the amount of oscillation found in the function φ. The Rudin

Osher Fatemi (ROF)[91] image denoising model can be generalized to sur-

faces. In this case, the surface analogous form of the total variational ROF

model is represented as unconstrained optimization problem as follows

min
φ∈L2(M)

∫

M
|∇Mφ|ds +

µ

2

∫

M
(φ− f )2ds, (2.16)

where f :M→ R is a function on the surfaceM and µ ≥ 0 is a Lagrange

multiplier. The first term in (2.16) is a regularization term, and the second

one is the L2 fitting term which could be replaced with the L1 fitting term∫
M |φ− f |ds.
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The equation that minimizes energy (2.16) is its gradient descent flow:

∂φ

∂t
= (divM(

∇Mφ

‖∇Mφ‖ ) ·
−→
N )
−→
N + µ( f − φ), φ(u, 0) = f . (2.17)

According to the geometric flow (1.39), considering (1.28) and β = −divM( ∇MX
‖∇MX‖ )

in (1.39), an initial surface represented by the position vector X0, evolves

with speed

∂X

∂t
= (divM(

∇MX

‖∇MX‖ ) ·
−→
N )
−→
N , X(0) = X0. (2.18)

here we considered µ = 0.

Since (2.17) is difficult to solve numerically and it is slow, the dual method

(Chambolle’s projection method)[20] to solve the total variational prob-

lem (2.16) on surface can be applied. The procedure iterate the following

steps. Set V0 = 0.

Solve for V:

Vn+1 =
Vn + τ∇M(divMVn − µ f )

1+ τ|∇M(divMVn − µ f )|
where τ < 1/‖divM‖ is the time step which guaranties the convergence

of the iterative scheme.

For a more sophisticated version of TV, see [37], where the authors pro-

pose to minimize the energy

∫

M
|KG|ds (2.19)

where KG is the Gaussian curvature ofM.

2.1.5 The nonlocal surface diffusion flow (NL-SDF)

We propose a new variational model for surface fairing. We extend non-

local smoothing techniques for image regularization to surface smoothing

or fairing, with surfaces represented by triangular meshes. Our method

is able to smooth the surfaces and preserve features due to geometric
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similarities using a mean curvature based local geometric descriptor. We

present an efficient two step approach that first smooths the mean cur-

vature normal map, and then corrects the surface to fit the smoothed

normal field. This leads to a fast implementation of a feature preserving

fourth order geometric flow. We demonstrate the efficacy of the model

with several surface fairing examples.

In [32] the authors propose a point cloud nonlocal denoising using the

signed distance function as local surface descriptor in a point-wise pro-

cess. Similar descriptors are used in the nonlocal denoising method pro-

posed in [111] where instead of the moving least square representation,

the authors used local radial basis functions. In [42] a nonlocal diffusion

process is derived as steepest descent of a nonlocal quadratic functional

of weighted differences. This formulation is an excellent framework for

nonlocal variational image denoise, Bregman iterations, and segmenta-

tion. A nonlocal heat equation for denoising surfaces has been introduced

in [34], where the signed distance function is used to define the similarity

weights, and the PDE evolution is solved using a level set formulation on

an implicitly defined surface.

Nonlocal means image denoising

Nonlocal denoising is an algorithm for image denoising introduced in

[18]. The algorithm aims to denoise a gray-scale image I, defined over a

rectangular bounded domain Ω, by replacing each pixel with a weighted

mean of the neighborhoods. The new value of the image pixel is

NL[I](x) =
∫

Ω
W(x, y)I(y)dy, (2.20)

where the convolution kernel W(x, y) is given by

W(x, y) = 1
C(x)

e−D(I(x),I(y))/c

D(I(x), I(y)) = ‖I(x)− I(y)‖22, y ∈ N(x)
(2.21)

with a normalization factor C(x) =
∫

Ω
W(x, y), N(x) represents a neigh-

borhood of x, and c is a filtering parameter which is related to the noise

level. The similarity between pixels is measured by the similarity ker-
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nel D in (2.21) and depends on the similarity of gray-level intensities in

the neighborhood of x and y, that is, the algorithm not only compares the

(color) value at a single pixel but the geometrical configuration in a whole

neighborhood. The algorithm gives excellent results in image denoising

(see [52],[18]). For a more detailed analysis on the NL-means algorithm

see [18].

The nonlocal variational fairing

We propose a variational formulation in order to derive our nonlocal ap-

proach to surface fairing.

For a surface parameterization X ofM on a domain Ω, and a given vector

field f ∈ R
Nv×3, we consider the minimization of the following functional

minX

∫

Ω
|∇wMX|2 + λ

2
(X− f )2dω, (2.22)

where λ > 0 is a regularization parameter and ∇wM is a weighted gra-

dient operator. The corresponding Euler-Lagrange descent flow can be

written as

∂X

∂t
=
∫

Ω
(X(y)− X(x))W(x, y)dω + λ( f − X), (2.23)

with x, y ∈ Ω, (see [34] for a similar definition). Here W(x, y) is the

weight function, which satisfies W(x, y) ≥ 0, and is symmetric W(x, y) =

W(y, x). For image processing the weight function can be defined as in

(2.21). The spatial discretization of (2.23) on the mesh M, is

∂Xi

∂t
= ∑

j∈N(i)

Wij(Xj − Xi) + λ( fi − Xi), (2.24)

where Xi denotes the value of X at the ith vertex, i = 1, . . . , Nv, and N(i)

is the set of 1-ring neighbor vertices of the ith vertex.

Let f (x) := ( f 1, f 2, f 3)(x) be a vector field on M, W(x, y) is the same

for all vector components. Let X(x) := (X1, X2, X3)(x) be the coordinate

function vector on M, where X1 is the scalar function that defines the first

coordinate of point x ∈ M, and analogously for the second and the third
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coordinate scalar functions. Then the regularizing formulation (2.24) for

each vector component Xk, k = 1, 2, 3, is

∂Xk
i

∂t
= ∑

j∈N(i)

Wij(Xk
j − Xk

i ) + λ( f k
i − Xk

i ), (2.25)

by initializing, e.g., each component k of X as Xk|t=0 = f k.

If we let Wij = wij, with wij defined by (1.18), then the regularized PDEs

(2.25) can be interpreted as the spatial discretization on M of the well

know mean curvature flow (MCF)

∂X

∂t
= △MX + λ(X0 − X), X|t=0 = X0, (2.26)

with initial surface X0. The first term in (2.26) is the regularization term,

while the second one is the fidelity term.

We propose the following nonlocal weighted Laplace-Beltrami operator on M,

LwXi = ∑
j∈N(i)

(Xj − Xi)Wijwij, (2.27)

where wij is defined as in section 1.3, while Wij depends on a similar-

ity measure between ith and jth vertex. A proposal of similarity weight

functions in surface processing is discussed in the next Section.

By initializing X|t=0 = X0 and using the nonlocal operator (2.27), then

(2.24) can be rewritten as

∂Xi

∂t
= LwXi + λ(X0i

− Xi). (2.28)

In the next Section, we apply the nonlocal variational approach to mesh

fairing and develop a new mesh smoothing method which solves a fourth

order surface diffusion equation onM.

Nonlocal surface diffusion flow (NL-SDF)

Replacing X with the mean curvature normal vector
−→
H in (2.25), and

considering a uniform discretization of the time interval [0, T], T > 0, with
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a temporal time step τ, then (2.28) can be fully discretized using a variety

of explicit or implicit time integration schemes. In our computational

method, we used the forward Euler scheme which yields a first order

scheme in time. Therefore, applying an implicit scheme to (2.28), without

the fidelity term, we get the iterative scheme

(I − τLw)
−→
H n+1

i =
−→
H n

i ,
−→
H |t=0 =

−→
H 0, (2.29)

where Lw is computed as given in (2.27), with initial condition
−→
H 0 deter-

mined from X0.

The number of time iterations n is chosen by the user; from our experi-

mental work we tuned up nMAX ≤ 20.

For image processing the weight function is defined by image features

and represents the similarity between two pixels, based on features in

their neighborhood, see [18]. Working with surfaces, the way of choosing

weight Wij in (2.27) should characterize the similarities between two local

surface patches. We propose to use the mean curvature values. Therefore,

according to (2.21), we define the weights as follows

Wij =
1

∑j∈N(i) Wij
e−D(Xi,Xj)/σ,

D(Xi, Xj) = ‖H(Xi)− H(Xj)‖22, j ∈ N(i).
(2.30)

The parameter σ controls the decay of the exponential function and there-

fore the decay of the weights as function of the Euclidean distance be-

tween mean curvature values. Since H(X) is normalized to one, we can

fix the value for σ in order to identify a significant change in the curva-

ture between vertices Xi and Xj. For example, for σ = 0.1 we identify as a

curvature change when the mean curvature values in the two vertices dif-

fer more than 10%. The use of smaller σ leads to the detection of sharper

features.

The two-step strategy first smooths the normal vectors allowing the mean

curvature normals to diffuse on M, then the second step refits the param-

eterization X according to a given mean curvature distribution. The mean

curvature smoothing (2.29) is "nonlocal". By this we mean that a "nonlo-

cal" operator is used which includes weights that penalize the similarity

between patches.
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(a) (b)

(c) (d)

Figure 2.1: (a) The noise-free sphere mesh; (b) the perturbed sphere; (c)
the smoothed mean curvature vector field obtained by step 1; (d) recon-
structed sphere by step 2.

The nonlocal approach is described by the following algorithm, where in

step 1 we solve (2.29) by a sequence of linear systems, the smoothed mean

curvature normal vector field is then plugged into the constrained least

square problem in step 2. Here L is defined by (1.16) and Lw as in (2.27).

Non Local SDF Algorithm

Given an initial position vector X0,

STEP 1: SOLVE FOR H:

For each n = 1, · · · , nMAX

(I − τLw)
−→
H n+1 =

−→
H n

end for

STEP 2: PLUG IN
−→
H AND SOLVE FOR X:

minX‖LX−−→H ‖22 + λ‖X0 − X‖22

Fig. 2.1 shows how the two step NL-SDF algorithm works. A noise-free

sphere mesh together with the associated mean curvature normal field

is shown in (Fig. 2.1 (a)). The mesh is perturbed by a randomly chosen

noise vector field. The perturbed sphere is illustrated in Fig. 2.1(b). The

smoothed mean curvature vector field obtained by applying 10 iterations

of step 1 is shown in Fig. 2.1 (c), while the recovered sphere resulting
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from applying step 2 using the smoothed normal vector field, is shown

in Fig. 2.1 (d).

We shall assume a certain level of connectivity in the mesh such that

there will not be any disjoint regions where no information is exchanged

between them throughout the evolution. Thus we assume that M consists

of only one connected mesh. The matrix L has rank(L) = Nv − k, where

k is the number of connected components of M, and it is positive semi-

definite. Since we imposed that M is connected, that is k = 1, then L

has a zero eigenvalue with multiplicity 1. The linear system derived from

solving step 2 is uniquely solvable by fixing a vertex to have an assigned

value.

When the perturbation on the initial mesh affects only the magnitude

of the normal field, that is
−→
E in (2.1) are in the normal directions, we

can replace
−→
H with H in step 1 and step 2, thus processing the mean

curvature scalar field instead of the mean curvature normal vector field.

In the following we theoretically justify the NL-SDF algorithm, which

approaches to the solution of a fourth-order PDE representing a nonlocal

surface diffusion flow onM.

Let us suppose that the weight functions W(x, y) are defined as in (2.30),

and λ = 0. Then the sequence {X(n)}, generated by the NL-SDF algo-

rithm is convergent to the solution X∗ of the fourth order Non Local

Surface Diffusion Flow (NL-SDF) onM

∂X

∂t
= △wMH(X), X(0) = X0, (2.31)

where △wM is a nonlocal Laplace Beltrami operator, and M is the piece-

wise linear representation ofM.

Theorem 1 Let
−→
V (X) := ∆MH(X)N(X). Discretizing (2.31) in time, with

time-step τn, we get

Xn+1 = Xn + τn
−→
V n+1(X). (2.32)

Solving the system of two second order PDE

∂
−→
H

∂t = △M
−→
H (X),

△MX =
−→
H ,

(2.33)
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (l)

Figure 2.2: fandisk mesh: (a) Noise-free mesh and its curvature map
(e); (b) noisy mesh and its curvature map (f); (c) restored mesh by the
two step SDF and its curvature map (g); (d) restored mesh by NL-SDF
algorithm and its curvature map (h); (i) and (l) zoomed details from (c)
and (d), respectively.

that is, evaluating the corresponding discretizations

−→
H n+1−−→H n

τn
= △M

−→
H n+1

△MXn+1 =
−→
H n+1,

(2.34)

produces a sequence of iterates {Xn+1} which converges to the solution of (2.32),

that is to the solution X∗ of the fourth order surface diffusion flow (SDF) on

M (2.31).
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(a) (b)

Figure 2.3: fandisk mesh: (a) restored mesh by BLF; (b) restored mesh
by NL-SDF.

Proof 1 Replacing X given by (2.32) in
−→
H = △MX at time step n, we have

−→
H n+1 = △M(Xn + τn

−→
V n+1(X)),

−→
H n+1 = △MXn + τn△M

−→
V n+1(X),

that is −→
H n+1 − τn△M

−→
V n+1(X) = −△MXn

which leads to the first equation in (2.34). To relate position X and curvature−→
H , we recall from basic differential geometry the relation

−→
H n+1 = −△MXn+1, (2.35)

which is the second equation in (2.34). ✷

The nonlinear parabolic PDE (2.33) can be interpreted as a diffusion flow

for the vectors
−→
H i. The unknown mean curvature vectors at the vertices

are determined by an implicit scheme which leads to a non-singular linear

system (I − dtLw), with the matrix Lw defined as in (2.27) that discretizes
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Mesh Faces Vertices Volume c1 c2

fandisk 51784 25894 0.234024 -0.6 -0.6
oilpump 82176 41090 0.184494 -0.8 -0.8
igea 268686 134345 0.376882 0.8 0.8

Table 2.1: Data for the meshes used in the examples.

△wM. The computed mean curvature normals
−→
H i, i = 1, . . . , Nv are then

used to move each vertex ith, according to the well known relation (2.35).

On the other hands, considering the similarity weights Wij = 1, ∀i, j, and

λ = 0, then the NL-SDF algorithm approaches to the solution of the

Surface Diffusion Flow (SDF): ∂X
∂t = △MH(X).

Moreover, if M(t) is a closed surface then the volume of the bounded

domain computed by both NL-SDF and SDF is preserved.

In [94] the two step method is applied to solve the elliptic fourth order

PDE△MH = 0. A pioneer approach to the two-step denoising procedure

with a fourth order model is introduced in [66]. A level set formulation

of a two step geometric denoising via normal maps is also presented in

[98].

Fairing Results

The results of the proposed algorithm are demonstrated applying pertur-

bations to the meshes shown in Fig. 2.2(a), Fig. 2.4(a) and Fig. 2.6(a). The

meshes present different characteristics in terms of details, "sharpness",

and level of refinement, as summarized in Table 2.1.

The meshes are corrupted by adding a perturbation vector
−→
Ei for each

vertex i of the mesh according to (2.1). We let
−→
Ei be a weighted sum of

the normal vector
−−−→
N(Xi), and a random-direction unitary vector −→v ,

−→
Ei =

c1
−−−→
N(Xi) + c2

−→v
ē

, c1, c2 ∈ [−1, 1], (2.36)

where ē is a scaling factor determined by the edge length average of the

mesh, and c1 and c2 are assigned scalar parameters that control the max-
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Mesh Algorithm τ nMAX ∆V(%) σ

fandisk MCF 0.013 10 8.11× 10−4 -
fandisk SDF 0.139 10 0.89× 10−4 -
fandisk NL-SDF 0.139 10 0.92× 10−4 0.6
oilpump MCF 0.013 10 5.93× 10−4 -
oilpump SDF 0.077 10 0.32× 10−4 -
oilpump NL-SDF 0.022 10 0.32× 10−4 0.5
igea MCF 0.146 20 3.90× 10−4 -
igea SDF 0.141 20 0.02× 10−4 -
igea NL-SDF 0.141 20 0.02× 10−4 0.6

Table 2.2: Data for the examples shown in Fig. 2.2, 2.4, 2.5 and 2.6.

Figure 2.4: oilpump mesh: (a) noise-free mesh; (b) noisy mesh

imum length of the corresponding vectors.

The amount of noise added to the meshes is then controlled by param-

eters c1 and c2, whose values are reported in Table 2.1. The perturbed

versions of the meshes in the examples are shown in Fig. 2.2(b), Fig.

2.4(b) and Fig. 2.6(b).

Table 2.2 summarizes the experiments illustrated in this section. We com-

pared the performance of the proposed NL-SDF method with MCF and

SDF algorithms. The parameter λ for the fidelity term in step 2 of the

algorithm is set to be 0.5. In Table 2.2 for each mesh (first column), the al-

gorithm applied is shown in the second column, the corresponding time

step used (τ) is provided in the third column, while the number of itera-

tion steps (nMAX) is in the fourth column. The differences in volume are

labeled by ∆V%, and σ is the parameter in the weight functions (2.30).
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(a) (b) (c)

(d) (e) (f)

Figure 2.5: oilpump mesh: (a) restored mesh by the MCF algorithm; (b)
restored mesh by the SDF algorithm; (c) restored mesh by NL-SDF algo-
rithm; (d), (e) and (f) zoomed details from (a), (b) and (c), respectively.

The three models compared NL-SDF, MCF and SDF are all discretized

by implicit schemes to avoid stability conditions on the time step. The

time step τ for the iterative process is automatically chosen using Eq.

1.45 in order to produce a good quality denoised mesh using about 5 to

20 iterations, independently on the mesh characteristics or the Laplacian

weights in (1.16).

In Fig. 2.2 and Fig. 2.5 we compare the recovered fandisk and oilpump

meshes by applying algorithms MCF, SDFand NL-SDF. In Fig. 2.2, sec-

ond row, by false colors we represented the value of the norm of the mean

curvature vector associated to each vertex of the corresponding mesh in

the first row. In Fig. 2.6 we compare the recovered igea meshes by ap-

plying algorithms MCF, BLF and NL-SDF. The example shown in Fig. 2.6

demonstrates that the proposed method can produce better results even

on more naturally smooth meshes. From a visual inspection of Fig. 2.2

and Fig. 2.5, we can observe that, while the SDF and MCF algorithms

well accomplish the task of denoising the surface, they fail in distinguish-

ing the edges and sharp corners from the noise. The NL-SDF algorithm

clearly enhances sharp features of the object while removing the noise in
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the flat areas. This is also noticeable if the NL-SDF result is compared

with the Bi-Laplacian flow result as in 2.3. The overhead of computa-

tional effort for NL-SDF with respect to SDF, is negligible and it consists

in computing the weights Wij in (2.30). The superiority of the NL-SDF

method can be better appreciated in the more detailed and sharp areas of

the mesh, where the features are reconstructed preserving the sharpness

of the original noise-free mesh.

In Table 2.2 we labeled by ∆V(%) the difference between the volume of

the noise-free mesh (see Table 2.1, column marked by Volume), and the

volume of the restored mesh. The NL-SDF algorithm ensures that the

volume of the mesh is preserved after each smoothing iteration.

Numerical experiments seem to confirm that our algorithm is promis-

ing. We plan to extend the variational framework to general weighted

operators.

2.2 Remeshing

Remeshing refers to the improvement process of the mesh quality in

terms of redistribution of the sampling, connectivity of the geometry, and

triangle quality, in order to satisfy mesh property requirements while

maintaining surface features.

Some remeshing techniques are parameterization-dependent, i.e. they

associate the mesh with a planar parameterization, and apply the algo-

rithms on this plane. For arbitrary genus objects, this involves also the

creation of an atlas of parametrization, a well known complex process

that inevitably introduces some metric distortion and may lead to the

loss of important feature information [4],[2].

In contrast, parameterization-free methods avoid these problems by work-

ing directly on the surface mesh and performing local modifications on

the mesh. A parameterization-free method has been proposed in [12] for

directly remeshing using area-equalizing weights in multiresolution mod-

eling, and in [74], several tangential velocity strategies are introduced to

regularize geometric surface flows.

Isotropic remeshing methods based on Centroidal Voronoi Tessellation
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(a) (b)

(c) (d) (e)

Figure 2.6: igea mesh: (a) Noise-free mesh; (b) noisy mesh; (c), (d) and
(e) the MCF, BLF and SDF-NL restoration respectively.

(CVT) require to repeatedly compute a geodesic Voronoi diagram which

is a complex and time-consuming step in this approach [2]. Several in-

teresting proposals have been presented for this type of methods, both

parameterization-based strategies [3], which compute the CVT on the 2D

parametric domain, and parameterization-free methods, based on the in-

tersection between a 3D Voronoi diagram and an input mesh surface, see

[109]. An anisotropic remeshing method based on CVT for capturing

sharp feature has been proposed in [61].

Another anisotropic remeshing approach for parametric surfaces where
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the metric tensor is computed based on the surface curvature has been

proposed in [95].

An interesting solution to the remeshing problem has been presented in

[58] where polygonal surfaces are converted into meshes with subdivision

connectivity through a simulation of the shrink wrapping process.

In [5] the remeshing methods are classified by their end goal rather than

by the algorithmic strategy they employ. The techniques are classified into

five categories: structured, compatible, high quality, feature and error-

driven remeshing. The structured and compatible remeshing methods

aim to obtain a given connectivity structure, the main goals for the high

quality remeshing methods are the shape of the elements as well as the

vertex distribution, while the end goal of feature remeshing is to preserve

sharp features when producing the resulting meshes.

The proposed remeshing strategy is an adaptive, parameterization-free

technique designed to produce a good compromise of high quality and

feature remeshing techniques. High quality remeshing amounts to gen-

erating a mesh with well-shaped elements, uniform or isotropic sampling

and smooth gradation sampling. Good quality elements mainly lead to

minimizing numerical instabilities in subsequent computations. How-

ever, we relaxed the uniform sampling property in order to adapt the size

of the elements to the underlying surface features.

The proposed remeshing algorithm alternates equalization of edge lengths

and vertex valence, which generate a new connectivity, with mesh regu-

larization, which modifies the distribution of the vertices on the surface

to satisfy given mesh quality requirements. While the techniques that ex-

plicitly modify the connectivity, such as e.g. edge split, collapse, and flip,

are widely used, the potential of the regularization step is still not much

investigated.

We present a new method to regularize a triangle mesh M, which de-

fines a piecewise linear approximation of a curved surface M, with the

purpose of having an accurate representation of M: the density of the

vertices should correlate with the regularity of M. We cannot rely on

parameterization to quantify regularity ofM because this concept would

not be invariant under reparameterization and furthermore we do not

assume any parameterization is given. Therefore, we used the mean cur-
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vature as a measure of regularity. To improve the regularization of the

mesh M, the points X(t) on the surface M are geometrically evolved

using a tangential flow
∂X

∂t
= γ

−→
T , (2.37)

where γ is the velocity in the tangent direction
−→
T . The new resulting

sampling adapts itself to the sharper features of the surface. This moti-

vates us to name the proposed method adaptive remeshing (AR).

In order to satisfy high quality remeshing we investigate the design of

tangential velocities that aim to keep all edges on element stars approxi-

mately of the same size and all areas proportional to the surface features.

To this aim, we use a two-step approach. First, we compute an area dis-

tribution function driven by a mean curvature map of the surface mesh.

Then the mesh vertices are moved on the tangential plane to satisfy edge

equalization and area distribution quality requirements. The process is

iterated until a significant improvement in triangle shape is obtained.

2.2.1 Adaptive Mesh Regularization

The AR method alternates equalization of edge lengths and vertex va-

lence, which generate a new connectivity, with adaptive mesh regulariza-

tion, which modifies the distribution of the vertices on the surface.

In the following we focus on a new adaptive mesh regularization method,

while the mesh connectivity regularization is briefly discussed in Section

2.1.5 since it is based on classical tools for meshes.

The mesh regularization method consists of a two-step PDE model. In the

first step, the vertex area distribution function A(X) defined on the mesh

M with vertex set X = {Xi}nv
i=1, is diffused over the mesh, constrained

by the mean curvature map. In the second step, the vertex position is

tangentially relocated to obtain edges on element stars approximately of

the same size, and all the vertex areas proportional to the surface features.

Let A0 be the initial vertex area distribution function computed as the

Voronoi area at each vertex on the mesh M, with vertex set X0. Then in

STEP 1, the vertex area distribution function A(X) is diffused on M by
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solving
∂A

∂t
= △wH

M A(X), A(0) = A0. (2.38)

In (2.38) the operator △wH
M is the weighted Laplace-Beltrami operator dis-

cretized on the mesh M by the matrix LwH
with elements

L
ij
wH

=
1

∑j∈N(i) wij





−∑j∈N(i) wijWij i = j

+wijWij i 6= j, j ∈ N(i)

0 otherwise

(2.39)

The weight Wij defined as in (2.30) depends on a similarity measure be-

tween the ith and the jth vertex, and it is defined in terms of mean curva-

ture values H on the mesh M

The mean curvature attribute H(X) in (2.30) tends to be dominated by

the maximum curvature and consequently it is visually similar to it. We

chose the mean curvature attribute to determine the characteristics of the

underlying surface, rather than the Gaussian curvature attribute, since

many shapes cannot be differentiated by Gaussian curvature alone.

The weights (2.30) used in (2.38) prevents the area diffusion in high cur-

vature regions. The method tends to adapt the areas to the object features:

high curvature regions will be covered by small area elements, while flat

regions will be covered by faces with larger areas. Fig. 2.7 shows the ben-

efit of the weights in STEP 1 of the Adaptive Remeshing (AR) algorithm.

The result of applying a few time steps of (2.38) without the help of the

weights (2.30) on the irregular initial mesh shown in Fig. 2.7(a), is illus-

trated in Fig. 2.7 (b), while the contribution in (2.38) of the weights (2.30)

is shown in Fig. 2.7 (c). The area diffusion function is represented by false

colors, red colors for big areas, blue color for small areas. Increasing the

number of time steps, the diffusion of (2.38) without weights converges

to a constant area all over the entire mesh.

In STEP 2 of the AR algorithm the vertex position X is updated, taking

into account the resulting A(X) area distribution obtained in STEP 1, by

solving the following constrained curvature diffusion equation

∂X

∂t
= ∇wA

M · (g(|H(X)|)∇wA
MX), X(0) = X0, (2.40)
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(a) (b) (c)

Figure 2.7: Area diffusion in AR STEP 1: (a) the flat shaded mesh; (b)
vertex area distribution function without weights (2.30); (c) vertex area
distribution function with weights (2.30).

where the function g(·), referred to as the diffusivity, is defined as

g(s) :=
1

(1+ sα)
, (2.41)

where α > 0 is a small positive constant value. The geometric evolu-

tion driven by (2.40) constrains the movement of vertices with high mean

curvature values, that is, belonging to sharp creases and corners.

At each vertex Xi, linearizing (2.40) by evaluating g(|H(Xi)|)with Xi from

the previous time-step, the right-hand side of (2.40) reduces to

g(|H(Xold
i )|)△wA

MXnew
i . (2.42)

We denote by LwA
the discretization of the weighted Laplace Beltrami

operator △wA
M at vertex Xi defined as in (2.39) with wij given in (1.18) and

the equalization weights WA
ij defined by the sigmoid function

WA
ij = 1

∑j∈N(i) WA
ij

1

1+e
− f (Xi ,Xj)/σ (2.43)

f (Xi, Xj) = λ1
∆A(Xj)−∆A(Xi)

A
+ λ2(

Eij−Ei

E
), (2.44)

where ∆A(X) = A(X)− Ad(X) is the offset between the vertex area A(X)
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and the ideal vertex area Ad(X) resulting from STEP 1, A is the mesh

average vertex area, Ei is the local average edge length, and E is the mean

of the mesh edge length. The coefficients λi > 0,i = 1, 2, sum up to 1 and

determine how much respectively the area gap and the local edge length

difference influence the movement of vertex Xi toward the neighborhood

vertex Xj. In other words, considering only the area gap influence (i.e.

λ1 = 1), the vertex Xi is attracted by Xj when the area of Xi needs to

grow more than the area of Xj. On the other hand, the vertex Xi does

not move towards Xj when the area of both vertices do not need either to

shrink or to grow or when they both need to shrink or grow by the same

amount.

Finally, the displacement of the vertex Xi is in the tangent plane if we

replace (2.40) with

∂Xi

∂t
= (I −−→N i

−→
N T

i )g(|H(Xi)|)△wA
MXi, X(0) = X0, (2.45)

where
−→
N i is the unit normal to the surface at Xi.

2.2.2 Adaptive remeshing (AR) algorithm

The AR algorithm iterates on the two stages of mesh connectivity regular-

ization and adaptive mesh regularization approaching to a mesh with a

smooth gradation of vertex density depending on mean curvature values

and represented by well-shaped triangles.

We terminate the process and accept X(i) as the resulting mesh as soon

as the difference of area variance between consecutive iterations is suffi-

ciently small; specifically, we accept X(i) when for the first time

∆Var(A) := |Var(A(X(i)))−Var(A(X(i−1)))| < 1 · 10−6.

The regularization of mesh connectivity (named STEP 0) aims to perform

an adjustment of edge lengths and vertex valences, and is implemented

by applying the following basic tools:

1. specify target edge length l ∈ [lmin, lmax]

2. split all edges longer than lmax
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3. collapse all edges shorter than lmin

4. flip edges to promote valence 6 (or 4 on boundaries).

These are commonly used tools to obtain mesh connectivity regulariza-

tion, and we refer the reader to [12] for more details.

The adaptive mesh regularization stage is a two-step process which im-

plements the PDEs (2.38) and (2.45), named in the sequel STEP 1 and

STEP 2, to relax the vertex position according to a computed area distri-

bution.

The following algorithm summarizes the computations required by our

method.

Adaptive Remeshing Algorithm

Given an initial position vector X0,

Compute LwH
(X0), A(X0), set X(0) = X0, i=1

While ∆Var(A) < 1 · 10−6

STEP 0: MESH CONNECTIVITY REGULARIZATION

STEP 1: AREA REGULARIZATION:

Set A(0) = A(X(i−1))

(I − τLwH
)A(i+1) = A(i)

Compute LwA
(X(i−1)), g(|H(i−1)|)

STEP 2: VERTEX TANGENTIAL UPDATE:

Set X(0) = X(i−1)

For n = 1, · · · , nMAX

X(n+1) = (I + τ(I −−→N−→N T)g(|H(i−1)|)LwA
)X(n)

end for

i=i+1

end while

Considering a uniform discretization of the time interval [0, T], T > 0,

with a temporal time step τ, then (2.38) and (2.45) can be fully discretized

using the forward Euler scheme which yields a first order scheme in time.

We applied an implicit time scheme to (2.38), and an explicit time scheme

to (2.45) with initial condition A(0) determined from X0. From our exper-

imental work we tuned up the maximum number of time iterations to be

nMAX ≤ 10.

The tangential smoothing approach used in several remeshing algorithms

is a simple Laplacian smoothing discretized as in (1.16) applied to the
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three vertex coordinates components X = (x, y, z) and then projected

back into the tangent plane, see [108],[84]. Thus the tangential movement

γ
−→
T in (2.37) at the surface vertex Xi is given by (I − −→N i

−→
N T

i )L(Xi). In

[12] the authors proposed an improvement, considering the tangential

movement γ
−→
T in (2.37) at the surface vertex Xi as

(I −−→N i
−→
N T

i )Lw(Xi) (2.46)

with

Lw(Xi) =
1

∑j∈N(i) A(Xj)
∑

j∈N(i)

A(Xj)(Xj − Xi), (2.47)

and A(Xj) represents the Voronoi area of vertex Xj. Vertices with large

Voronoi area have a higher weight (’gravity’) and attract other vertices,

thereby reducing their own area. We call this method the Laplacian Flow

(LF) scheme and we compare LF with our proposal in Section 2.2.3.

The LF scheme presented in [12] is integrated into an iterative remeshing

procedure similar to the AR algorithm which alternates mesh connec-

tivity regularization (like the STEP 0 in AR method) with the LF mesh

regularization given in (2.47) (which is replaced by STEP 1 and STEP 2 in

AR method).

Both the LF scheme and the STEP2 of the AR algorithm are discretized

in time using explicit integration schemes. If we let τ satisfy the stability

criterion for the diffusion PDE in (2.45), then τ ≤ min(|e|)2
2 , that is, it de-

pends on the square of the smallest edge length, which is a very restrictive

criterion involving an enormous number of integration steps [31].

We instead propose a "geometric" criterion on τ, which is defined by the

formula

τ = 0.1
E

maxi(‖LwA
Xi‖2)

. (2.48)

Using (2.48) each vertex will never be moved by a distance greater than

10% of the average edge length e. Even if the time step computed by

the geometric criterium is slightly larger than the τ obtained by stability

requirements, in our computational experiments we always converged to

an acceptable solution.

The implicit integration scheme used in the discretization of STEP 1 of

47



the AR algorithm does not suffer from numerical instability problems,

anyway to avoid triangle flips τ is chosen such that:

τ = 10
A

maxi(‖LwH
A(Xi)‖2)

.

This choice makes the remeshing procedure independent on the mesh

area distribution.

2.2.3 Remeshing results

To our knowledge, there are no standard measures for evaluating and

comparing the efficacy of remeshing techniques. Instead, comparison

is often based on a qualitative evaluation of the final results and it is

strictly related to the specific end goal the remeshing is used for. In [97]

the authors measure the quality of a remeshed model by measuring the

geometric properties of the resulting triangles, but this approach slightly

limits the global overview on the benefits of the remeshing algorithm.

In our work, to assess the quality of the mesh generated by the proposed

AR algorithm, we introduce the following measures:

Area Variance,

Var(A(X)) :=
Nv

∑
i=1

(A(Xi)− A)2, (2.49)

where A is the average vertex area for a mesh with Nv vertices,

Mean curvature variation,

∆H = ‖H − H0‖2/‖H0‖2, (2.50)

where H and H0 are the mean curvature maps of the remeshed and

the original meshes, respectively, For each vertex Xi on the original

mesh, the difference H(Xj) − H0(Xi) is computed with respect to

the nearest vertex Xj on the remeshed mesh.

Variation of local edge length variance,

∆Var(E) = ‖Var(E)−Var(E0)‖2/‖Var(E0)‖2, (2.51)
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Table 2.3: Quality measurements for the remeshing tests.

Mesh Method # its ∆H% ∆Var(E)% ∆Var(A)% ∆Var(H)% dh

hand AR 5 17.8 77.2 61.2 5.9 0.002

hand LF 5 40.3 78.4 51.6 47.1 0.003

gargoyle AR 10 26.4 63.7 47.5 14.3 0.007

gargoyle LF 10 69.0 81.6 48.0 59.7 0.016

fandisk AR 20 4.7 51.7 55.2 0.8 0.005

fandisk LF 20 30.3 74.4 31.0 5.9 0.013

igea AR 20 12.9 57.3 41.4 5.2 0.004

igea LF 20 27.5 64.9 41.5 34.3 0.005

foot AR 10 13.1 92.8 65.4 3.7 0.007

foot LF 10 28.2 93.0 62.7 22.5 0.008

where the local edge length variance of the vertex Xi is computed

as

Var(E)i =
1
di

∑j∈N(i)(Eij − Ei)
2.

Hausdorff distance,

dH(X0, X) = max{ sup
x∈X0

inf
y∈X

d(x, y), sup
y∈X

inf
x∈X0

d(x, y) }, (2.52)

is a measure of distance between the remeshed and the original

meshes, see [23].

The goal of our remeshing strategy is to minimize the area variance

(Var(A(X))), while preserving the mean curvature values and the shape

of the original mesh, that is minimizing (∆H) and the average one-sided

Hausdorff distance dh. Moreover, the variation of mean curvature vari-

ance (∆Var(H)) is a value that should be preserved, and the variation

of area variance (∆Var(A)) and the variation of edge variance (∆Var(E))

provide a measure of the quality of the resulting mesh.

The parameters α in the diffusion function g(·) in (2.41), and σ in (2.30)

are chosen to be 0.05, while the parameter σ in (2.43) is 0.1.

We compare the AR algorithm with the LF method defined in [12], when

applied to the meshes shown in Fig. 2.8(a), Fig. 2.10(a), Fig. 2.11(a), Fig.

2.12(a) and Fig. 2.13(a). In the reported experiments we omit the mesh
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(a) (b)

(c) (d)

(e) (f)

Figure 2.8: (a)-(b) the original mesh and a zoomed detail; (c)-(d) the result
of LF and a zoomed detail; (e)-(f) the result of AR and a zoomed detail
from the rightmost part of fandisk mesh.

50



Figure 2.9: The area variance Var(A) (left) and the mean curvature chang-
ing ∆H (right) as function of the remeshing iterations.

(a) (b) (c)

Figure 2.10: (a) the original mesh with area distribution function super-
imposed using false color; (b) LF remeshing (c) AR remeshing.

(a) (b) (c)

Figure 2.11: (a) the original mesh with area distribution function super-
imposed in false color; (b) LF remeshing and (c) AR remeshing.
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connectivity regularization stage integrated in both AR (STEP 0) and LF

methods in order to effectively point out the performances of the mesh

regularization stage in the AR algorithm. Moreover, we noticed that the

features of the mesh get easily compromised if the operations involved

in the mesh connectivity stage are not performed adaptively, as we do in

STEP 0 of the AR algorithm. In particular, in STEP 0 of the AR method

the flip tool is applied only when the deviation in curvature normals

is acceptable. This improves further on the results obtained by the AR

method, but it makes more difficult to distinguish the benefit of the mesh

regularization stage inside the entire iterative process.

A qualitative comparison is illustrated in Fig. 2.8, Fig. 2.10, Fig. 2.11,

Fig. 2.12 and Fig. 2.13. In Fig. 2.8, Fig. 2.10, Fig. 2.11, and Fig. 2.12 the

area distribution function A is visualized using false colors superimposed

onto the meshes. In Fig. 2.13 the curvature map is superimposed on

the gargoyle mesh using false colors where red colors represent high

curvatures and blue colors low curvature values. Fig. 2.8 and Fig. 2.13

show two examples of applying our AR method to meshes with sharp

features to highlight the weaknesses of the LF remeshing when applied

to regions with high curvature values and high triangle density.

The fandisk mesh, illustrated in Fig. 2.8(a), presents a medium qual-

ity vertex area distribution, sharp edges and corners which allow us to

demonstrate the capacity of our AR algorithm to adaptively distribute the

vertex areas in zones of high curvature, preserving the sharp features of

the mesh. The superiority of the AR approach w.r.t. the LF method can

be visually appreciated in Fig. 2.8 comparing the resulting mesh by 20

remeshing iterations of LF algorithm (Fig. 2.8(c)) and the mesh obtained

by 20 remeshing iterations of AR (Fig. 2.8(e)). A detail of the rightmost

part (see the dashed rectangular box in Fig. 2.8(a)) is shown to enhance

the area equalization and preservation of features obtained by the AR

method.

In the gargoyle model of Fig. 2.13 the wings of the gargoyle are com-

pletely ruined by the LF method (see Fig. 2.13(b)) while they are well

preserved by the AR method (Fig. 2.13(c)).

The irregular models illustrated in Fig. 2.10, Fig. 2.11 and 2.12 are char-

acterized by a vertex area distribution particularly corrupted and many

badly shaped triangles. In all the examples AR performs better than LF
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in both the task of area distribution and mean curvature preservation.

Table 2.3 summarizes the quality measurements obtained by the illus-

trated experiments. In Table 2.3 for each mesh (first column) the applied

algorithm is shown in the second column and the corresponding number

of remeshing iterations (its) is in the third column. The results reported

in Table 2.3 show that the AR method successfully produces well-shaped

triangles while preserving the mean curvature map of the original mesh

better than the LF method.

The plots in Fig. 2.9(left) and Fig. 2.9(right) show the area variance

Var(A) and the mean curvature variation ∆H as functions of the num-

ber of remeshing iterations when the LF method and the AR method are

applied to the fandiskmesh. When the AR algorithm is applied, the area

variance Var(A) rapidly decreases, while the mean curvature of the mesh

is preserved. The comparison with the LF method highlights a strong ef-

fect on the mean curvature of the resulting mesh and a non-convergent

behavior in the minimization of the area variance. This aspect requires

further theoretical investigation.

2.3 Deformation

The classical mathematical foundations of deformable models represent

the confluence of geometry, physics, and approximation theory. Geome-

try serves to represent object shape, physics imposes constraints on how

the shape may vary over space and time, and optimal approximation the-

ory provides the mechanisms for fitting the models to measured data[67].

Deformable curve, surface, and solid models gained popularity after they

were proposed for use in computer vision and computer graphics in the

mid 1980s[101][102]. A deformable model that has attracted the most

attention to date is popularly known as snakes[56]. Snakes are planar

deformable contours that are useful in several image analysis tasks. In

its basic form, the mathematical formulation of snakes draws from the

theory of optimal approximation involving functionals.

We start from a similar mathematical formulation to derive an interac-

tive deformation framework for 3D Meshes. For a more comprehensive
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(a) (d)

(b) (e)

(c) (f)

Figure 2.12: First column: area distribution function superimposed on the
original mesh (a), the LF (b) and AR (c) remeshing respectively. Second
column: the mean curvature map on the same meshes.
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(a) (b) (c)

Figure 2.13: (a) the original mesh, (b) LF remeshing and (c) AR remeshing.
Red represents high curvature, blue represents low curvature.

review on Lagrangian deformation models see [100] and [15].

The main requirement for physically based surface deformation is an elas-

tic energy that measures how much an object has been deformed from its

initial configuration. While for solid objects this energy basically con-

siders local stretching within the object, for two-manifold surfaces (so

called thin-shells) an additional bending term is required to approximate

the change of surface curvature.

Let us denote by M a two-manifold surface, parametrized by a func-

tion X : Ω ⊂ R
2 → M ⊂ R

3. This surface is to be deformed to M′

by adding to each point X(u, v) a displacement vector d(u, v), such that

M′ = X′(Ω), X′ = X + d.

A standard measure used for the global surface quality in geometric mod-

eling is the thin plate energy:

EBEND(d) =
1

2

∫

Ω
d2

uu + 2d2
uv + d2

vvdudv, (2.53)

which approximates, that is, it is a "linearized" version, of the total cur-

vature energy of a surface M defined by (1.31), which is equal to (2.53)

when the parametrization is isometric. The total curvature (1.31) approx-

imates the elastic bending energy of a thin plate manifold.
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The membrane energy is defined by the functional

ESTRETCH(d) =
1

2

∫

Ω
d2

u + d2
vdudv. (2.54)

The minimization of these functionals can be performed efficiently by

applying variational calculus, which yields their Euler-Lagrange which

are

− (d2
uu + d2

vv) = −△d = 0, (2.55)

for (2.54), and

duuuu + 2duuvv + dvvvv = △ ◦△d = △2d = 0, (2.56)

for (2.53), which involve Laplacian and bi-Laplacian operators.

In order to keep the parametrization of the surfaceM as close to isomet-

ric as possible, Ω is typically chosen to be equal to the initial surfaceM,

such that d : M → R
3 is defined on the manifold M itself. As a con-

sequence, the Laplace operator △ w.r.t. the parametrization X turns into

the Laplace-Beltrami operator △M w.r.t. the manifold M, and the PDEs

(2.55) and (2.56) becomes:

−△Md = 0, (2.57)

and

△2
Md = 0, (2.58)

respectively.

Combining stretching and bending together, The variational deformation

on the thin plate is then given by

− ks△Md + kb△2
Md = 0, (2.59)

where the parameters ks and kb are the stretching and bending factors,

respectively. The order m of partial derivatives in the energy or in the

corresponding PDE (−1)m△m
Md = 0 defines the maximum continuity

Cm−1 for interpolating displacement constraints. Hence, solving (2.59)

provides C1 continuous surface deformations.

Note that in surface smoothing similar functionals are applied to X itself
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instead of their displacements.

The minimization of the total curvature energy

E(M) :=
1

2

∫

M
k21 + k22dM, (2.60)

leads to the Euler-Lagrange equation

−△MH(d)− 2H(d)(H2(d)− KG(d)) = 0, (2.61)

which is a fourth-order partial differential equation, (the term △MH(X)

involves fourth-order surface derivatives) satisfied for an elastica surface.

The elastica flow has been proposed for surface fairing and repairing in

[110].

In a modeling application, one can be interested either to a dynamic time

dependent simulation, or directly to solve the rest state of the deforma-

tion process. The latter means solving the PDE subject to user-defined

boundary constraints. This typically means to fix certain surface parts

F ⊂ M, and to define displacements for the so-called handle (target) re-

gions H ⊂M. In an interactive applicationM′ has to be recomputed by

solving the PDE each time the user manipulates the boundary constraints,

for instance by moving the handle region H.

Considering both the energy and linear or nonlinear constraints repre-

sented by a generic Φ(X), the constrained deformation can be modeled

by

mindE(d) subject to Φ(X). (2.62)

2.3.1 Discretization

Considering that the displacement vector is d = X′−X and the discretiza-

tions L of the Laplace-Beltrami operator, then the deformation models on

the surface represented by the mesh M lead to the following linear sys-

tems
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ESTRETCH (2.57) Ld = 0 LX′ = LX

EBEND (2.58) L2d = 0 LT LX′ = LT LX

ECOMBO (2.59) ksLd + kbL2d = 0 (ksL + kbL2)X′ = (ksL + kbL2)X

ETOTAL (2.61) L2d− 2LGd = 0 (L2 + 2LG)X′ = (L2 + 2LG)X

G = H2 − K

Each of these models leads to a generic linear system AX = b with a

sparse Nv × Nv coefficient matrix.

The positional constraints may be either incorporated as hard or soft con-

straints.

Hard constraints are incorporated into the system by moving each col-

umn corresponding to a constraints vertex Xi ∈ F
⋃H to the right-hand

side, and removing the corresponding rows from the system. This yields

a non-zero right-hand side b ∈ R
Nv−n, for n constraints, and leads to an

Nv − n× Nv − n system ArX = b that is solved for the x,y,z components.

We should remark that the original mesh without the constrained vertices

F and H is a reduced mesh with, in general, more than one connected

components. The associated connectivity matrix should be a reduced

rank matrix. However, the Ar matrix is not the connectivity matrix of

such a reduced mesh since the elements of Ar are the same of the original

connectivity matrix, that is computed on the entire mesh.

Note that hard positional constraints are preferred in classical editing

tools where the exact position should be achieved, while in a sketch-

based system soft constraints are actually advantageous, since they allow

the user to place imprecise locations to hint the desire shape, but not

specify it exactly.

In this case we forced the constrained vertices to lie in the exact pre-

scribed location, thus eliminating them from the system, if instead we

want to consider soft constraints, they are added as additional terms to

the discrete energy functional

minX′E(X′) +
λ

2
||X′ − C||2 (2.63)

with the Lagrangian parameter λ ∈ R
n, and C is the vector of prescribed

vertex positions.
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Replacing the bending energy (1.32) in (2.63) and solving the minimiza-

tion problem lead to

LT LX′ − LTδ + λ(X′ − C) = 0

(LT L + λI)X′ = LTδ + λC
(2.64)

In matrix-vector form, using L = D L and Dii = 1/Ai, the solution of

(2.64) for the new mesh vertices X′, is given by solving the overdeter-

mined system [ √
D−1L

0
√

λIn

]
X′ =

[ √
D−1δ√
λC

]
(2.65)

where In ∈ R
n×n is the identity matrix which requires a resorting of the

rows of L, and C ∈ R
n is a vector of elements ci for each of the n positional

constraint. The system has dimension (Nv + n)× Nv and it is full rank,

thus it has a unique solution in the least-squares sense

X′ = (LTD−1L + λI)−1(LTD−1δ + λC). (2.66)

In order to approach to interpolation of the constraints ci, the parameter λ

has to be chosen sufficiently large. However, the condition number of the

matrix grows with λ, then a higher weight can cause numerical problems.

2.3.2 Nonlinear deformation

This deformation framework tries to preserve the orientation of the Lapla-

cian vectors w.r.t. the global coordinate system, whereas in reality they

should rotate with the deformed surface. A correct deformation should

retains the local surface features, that is their relative orientation and pos-

sibly their size. Therefore, the local transformation Ti should be restricted

to rotation and isotropic scaling which transform the differential repre-

sentations of the input mesh X: δ̂i = Tiδi, where δi is the Laplacian coor-

dinate in the rest pose, and Ti transforms it into the deformed pose.

Introducing the local transformations, the deformed positions of the mesh

vertices X′ are then obtained by solving the following minimization prob-

lem:

minX′E(X′) +
λ1

2
||X′ − C||2 + λ2

2
||LX′ − δ̂(X′)||2 (2.67)
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The term δ̂(X′) is a nonlinear function of the vertex positions because

it includes the effects of local rotations, thus (2.67) is a nonlinear least-

squares problem, while (2.63) is a linear least-squares problem. We im-

pose the nonlinear constraints on the set X \ F ∪H.

2.3.3 Solution method 1: alternating

Solution for (2.67) can be obtained by alternating two simple and more ef-

ficient least-squares steps which are respectively responsible for improv-

ing the estimation of the local transformations, and vertex positions. That

is, we treat X′ and Ti as separate variables and allows for alternating

optimization:

• STEP 1: Fix X′, find Ti using local shape matching,

• STEP 2: Fix Ti, find X′ solving linear least-squares (2.67) problem.

2.3.4 Solution method 2: Inexact Gauss-Newton

We want to solve the nonlinear deformation problem using the inexact

Gauss-Newton method.

Given a non-linear equation r(x) = b(x)− Ax, the unconstrained nonlin-

ear least squares problem

minx
1

2
‖r(x)‖22,

is solved by the Gauss-Newton method as follows. First, it approximates

r(x) by a linear model in a neighborhood of a given point xc:

rc(x) = r(xc) + J(xc)(x− xc), (2.68)

where J represents the Jacobian, then it solves the linear least-squares

problem

minx‖r(xc) + J(xc)(x− xc)‖22.

The Gauss-Newton algorithm at each iteration k, computes a correction
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sk to the current approximation xk, as a solution of the LS problem

mins‖r(xk) + J(xk)sk‖22, xk+1 = xk + sk. (2.69)

The Gauss-Newton algorithm iterates until convergence.

The inexact Gauss-Newton method for nonlinear least squares (Steinhaug

1985) solve by an iterative method the LS system of equations

JT Jsk = −JTrk

derived from (2.69).

Let us consider first the nonlinear deformation constraints,

minX′
1

2
‖LX′ − δ̂(X′)‖22. (2.70)

Similarly to (2.68), we can linearize r(x) = LX′ − δ̂(X′), at a given itera-

tion k, as follows

LX′(k+1) − δ̂(X′(k+1)) ≈ LX′(k) − δ̂(X′(k)) + (J(X′(k))− L)(X′(k+1) − X′(k))
(2.71)

with J Jacobian of δ̂.

In [48] an approximation for (2.71) is proposed which uses the simplifica-

tion J = 0 in (2.71) at each steps:

LX′(k+1) − δ̂(X′(k+1)) ≈ LX′(k) − δ̂(X′(k)) + (L− J(X′(k)))(X′(k+1) − X′(k))
≈ LX′(k) − δ̂(X′(k)) + L(X′(k+1) − X′(k))
= LX′(k+1) − δ̂(X′(k)).

(2.72)

Thus the approximation in (2.72) is accurate only when ‖J(X′(k))‖ ≪ ‖L‖.
At each Gauss-Newton iteration k, δ̂(X′(k)) is known at previous step, and

(2.72) is solved as a least-squares problem

minX′(k+1)‖LX′(k+1) − δ̂(X′(k))‖22. (2.73)

The solution proposed for (2.70) applies (2.73) which is an approximation

of (2.69) which uses the further simplification of J = 0 in (2.71).
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To update δ̂(X′(k)) in (2.73) at each step we follow the two-phase proce-

dure:

• (STEP 1) For each vertex Xi with N(i) neighbors, solve for µi =

(µi
1, µ

i
2, . . . , µ

i
N(i)):

∑
j∈N(i)

µi
j((Xj − Xi)⊗ (Xj−1 − Xi)) = δi, (2.74)

where δi are the Laplacian coords. before deformation, and (Xj −
Xi)⊗ (Xj−1− Xi) is the normal vector to the triangle Xi, Xj, Xj−1 on

Xi. The overdetermined linear system (2.74) can be represented in

matrix-vector form as

Aiµ
i = δi (2.75)

where A has dimension 3× N(i) and solved by SVD method.

• (STEP 2) Plug the computed µi
j in

di(X′) = ∑
j∈N(i)

µi
j((X′j − X′i)⊗ (X′j−1 − X′i)), (2.76)

with X′ vertices of the deformed mesh M′. Since the µi are the same

before and after deformation, we can show that di(X) = Riδi for

local rotations Ri. Finally the Laplacian coordinates are normalized

as follows:

δ̂(Xi) =
‖δi‖
‖di‖

di. (2.77)

Let us consider the more general nonlinear deformation model (2.67). The

minimization of (2.67), where E(X) is given by (2.61), is

(L2 − 2LKG + λ1 I + λ2(LT − J)L)X′ = (L2 − 2LKG)X + λ1C+

+ λ2(LT − J)δ̂(X′),
(2.78)

which is still in the nonlinear form Ax = b(X). Using a linearization

similar to (2.72), and a simplification J = 0, we can apply a Gauss-Newton

procedure which solves at the step k, the least squares problem

minX′(k+1)‖AX′(k+1) − b(X′(k))‖22, (2.79)

62



where A = L2 − 2LKG + λ1 I + λ2LT L and b = (L2 − 2LKG)X + λ1C +

λ2LT δ̂(X′(k)).

The algorithm for nonlinear deformation using inexact Gauss-Newton

method is here summarized:

Algorithm: Nonlinear Deformation using Inexact Gauss-Newton Method

INPUT: the initial mesh with vertex set X0,

OUTPUT: the deformed vertex set X

Set X(0) = X0, δ̂(X(0)) = L(X0), k=0

STEP 1: Compute for each vertex Xi ∈ X0 the set µi by solving (2.74)

Repeat

Solve the linear LS problem (2.79)

STEP 2: Compute δ̂(X(k+1)) by solving (2.76) and (2.77)

k=k+1

until ‖X(k) − X(k−1)‖ < 1 · 10−6

2.3.5 Deformation based on Differential surface represen-

tations

The main idea behind surface deformation approaches based on differ-

ential surface representations is to use a surface representation that puts

the local differential properties in focus, and to preserve these differen-

tial properties under deformation, aspiring to obtain an intuitive, detail-

preserving deformation result.

In Laplacian-based representation the surface is represented by the dif-

ferential coordinates, obtained by applying the Laplacian operator to the

mesh vertices, that is δi = △M(Xi). In the continuous setting the surface

mesh deformation is obtained by minimizing the energy

minX′
1

2

∫

Ω
‖△X′ − δ‖2dudv. (2.80)

The Euler-Lagrange equation derived is

△2X′ = △δ. (2.81)

Taking the input surface as the parameter domain, and considering the
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Original ESTRETCH ECOMBO ETOTAL

Figure 2.14: Deformation of the bumpy-plane mesh.

discretization of the Laplace-Beltrami operator, we get

L2X′ = Lδ, (2.82)

which is constrained by the positional constraints Xi = ci for the fixed

vertices in F and the handle vertices in H. Note that (2.81) and (2.58) are

equivalent, since X′ = X + d. We can also obtain (2.82) by minimizing the

discretization of the continuous energy (2.80):

minX′ ∑
i

Ai|LX′i − δi|2. (2.83)

Eq. (2.83) forces each new vertex position to resemble its undeformed

Laplacian as closely as possible, that is, in view of the fact that △MXi =

−HiNi, where Hi is the mean curvature at Xi, it preserves the local cur-

vatures of the undeformed mesh.

The minimization of (2.83) leads to the normal equations:

LTDLX′ = LTDδ, (2.84)

with Dii = 1/Ai, and using L = D L, (2.84) can be rewritten as the bi-

Laplacian equation (2.82).

2.3.6 Deformation results

Fig. 2.14, Fig. 2.15 and Fig. 2.16 show the result of some example defor-

mations. In particular we considered the deformation models ESTRETCH

(2.57), ECOMBO (2.58) and ETOTAL (2.61), the latter augmented with the In-

exact Gauss-Newton Method presented in Section 2.3.4. The first column
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Original ESTRETCH ECOMBO ETOTAL

Figure 2.15: Deformation of the cylinder mesh.

Original ESTRETCH ECOMBO ETOTAL

Figure 2.16: Deformation of the cube mesh.

of each figure shows the boundary constraints on the undeformed mesh:

the red areas are the fixed constraints F ; the green areas are the handle

(target) constraintsH; the blue area contains the remaining unconstrained

vertices X \ F ∪H.

2.4 Simplification

A multiresolution mesh provides several mesh-based approximations of

a 2-manifold representing the boundary of a solid object. The accuracy

of the approximations is related to the mesh resolution, i.e., to the den-

sity (size and number) of its faces. Multiresolution meshes are a common

basis for building representations of a large and complex object model at

different levels of refinement. In a multiresolution modeling environment

we need tools to coarsen a given fine mesh as well as tools for refining
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a coarse mesh. Mesh refinement approaches range from multiresolution

wavelet-based methods to subdivision schemes, where the quality of the

generated mesh is dependent on the subdivision mask used. From fine

irregular meshes, produced for example by 3D scanning devices, several

approaches have been proposed to obtain a coarser/smoother mesh that

meets user-defined quality criteria, i.e. mesh simplification, progressive

meshes, and surface fairing. There are many applications for multireso-

lution meshes [24]. They are used to adjust the complexity of a geometric

data set (i.e. oversampled 3D scan data). Differently complex models

can be easily adapted to hardware with different capabilities. Further-

more, simplified models can be used in level-of-detail rendering, where

the mesh resolution is proportional to the distance of the object to the

camera [65].

We present a new approach to multilevel surface simplification based on

the evolution of surfaces under p-Laplacian regularization. Such an evo-

lution can be understood as a natural geometric filter process applied

to an initial high resolution mesh, approximating a 2D-manifold, which

leads to a coarse surface mesh of high approximation quality. This en-

ables to reach different level of simplification, while preserving structural

details. Simplification may be regarded as a cascadic iteration scheme,

where one iteratively alternates between a spatial clusterization phase

based on a weighted p-Laplace operator, and a decimation phase. Our

proposal and its results is presented in [77].

The simplification approach thus combines the advantages of incremental

decimation (arbitrary topology, local control and efficiency) with those of

variational design (high quality surfaces).

The basic idea behind this strategy is to apply, at each simplification level,

a spatial clustering diffusion flow to determine the potential candidates

for deletion, followed by a decimation process to update the vertex mesh

locations in order to decrease the overall resolution. We considered the

minimization of energy which involves a regularization and a data fi-

delity in term of the initial mesh. The corresponding evolution problems

would lead to p-Laplacian flow, which is a second order nonlinear Par-

tial Differential Equation (PDE) problem. Moreover, to better preserve

the surface features we introduce a weighted p-Laplacian strategy which

involves curvature quantities. The numerical approximation of the varia-
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tional p-Laplacian flow on the mesh is based on differential discrete oper-

ators following an implicit time discretization scheme, and one confines

to a small number of diffusion steps within the corresponding iterative

linear solver.

For the decimation step we followed the incremental quadric-based mesh

decimation originally introduced by Garland in [41]. Instead of applying

the quadric error metric both for sorting and for the computation of the

new vertices for all collapsed edges, we propose to use the quadric error

only to compute the optimal vertex position by combining it with the

edge length penalty carried out by the spatial clusterization flow.

In the literature the different simplification approaches are basically clas-

sified into: vertex clustering algorithms, incremental decimation algo-

rithms, and resampling algorithms [13]. The first class of algorithms is

usually very efficient and robust, however, the quality of the resulting

meshes is not always satisfactory and they can suffer from lack on the

original topology. A popular vertex clustering method was proposed by

J. Rossignac and P. Borrel [90], where the three dimensional space is di-

vided into small cubes, the so-called cluster. Incremental algorithms in

most cases lead to higher quality meshes, but suffer from large compu-

tational complexity overhead especially when a global error threshold is

to be respected. Finally, resampling techniques select new samples more

or less freely distributed over the original surface and construct a com-

pletely new mesh by connecting these samples [47]. The major advantage

for resampling techniques is to satisfy special connectivity structure, i.e.

subdivision connectivity (or semi-regular connectivity). In [6] a resam-

pling method is proposed to compress triangulated surfaces, which is

based on the PDE geometric diffusion equation where the finite element

method is directly applied on the triangular mesh. A substantial improve-

ment over classical decimation methods is the generation of progressive

meshes during the decimation proposed in a paper by H. Hoppe [45]

which is the first algorithm that employed the edge collapse operator.

Most of the simplification algorithms use a distance metric to estimate

the error which would result in the deletion of a vertex. A very popular

choice is the quadric error metric, proposed by M. Garland [41], and a

new quadric error metric described in [46]. The distance metric is very

efficient in measuring geometric errors, but it has difficulties distinguish-
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ing important shape features such as a high-curvature regions.metric. In

[57] the authors suggest a discrete curvature norm to measure geometric

error for such features.

2.4.1 The p-Laplacian flow

The variational p-Laplacian is defined by

∆p f := ∇ · (|∇ f |p−2∇ f ), (2.85)

where f : Ω → R is a real function defined on the domain Ω ⊂ R
n,

and usually p ≥ 1. In the special case when p = 2, (2.85) reduces to

the regular Laplacian operator ∆ f = div(∇ f ), while for p = 1, we get

∆1 f = ∇ · ( ∇ f
|∇ f | ) = −H, where H is the mean curvature operator.

Needless to say, the p-Laplace equation with Dirichlet boundary condi-

tions

∇ · (|∇ f |p−2∇ f ) = 0

is the minimizer in a domain Ω of the variational integral

J( f ) =
1

p

∫

Ω
|∇ f |p dΩ (2.86)

among all functions in the Sobolev space W1,p(Ω) satisfying the boundary

conditions in the trace sense, where p is allowed to range over 1 < p < ∞.

We refer the reader to [82] for detailed note on the p-Laplace equation.

In image and surface processing contexts, a typical inverse problem con-

siders the restoration of a function f δ which represents an observation of

an unperturbed function corrupted by noise. To recover the uncorrupted

function the following form of regularization has proved to be successful:

min
f

{
J( f ) +

λ

2

∫

Ω
( f − f δ)2dΩ

}
, (2.87)

where the first term is the regularization functional, the second integral

is seen as a fidelity term, since f has required to be close enough to f δ,

and λ ≥ 0 a regularization parameter. When p ≥ 1 the energy in (2.87) is

a convex functional, and there exists a global minimum for the minimizer
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(2.87).

The Euler-Lagrange equation associated with (2.87), supplied with a gra-

dient descent, which gives the solution of (2.87) as t → ∞, is of the form

∂ f

∂t
= △p f + λ( f − f δ), f 0 = f δ, (2.88)

where f 0 denotes the initial function. When p = 1, (2.88) gives the pop-

ular Total Variation (TV) model [21], a very popular choice in image pro-

cessing for regularization, originally introduced for noise reduction [91],

and also used for image deblurring [62] and super-resolution image re-

construction [81]. For p = 2, (2.88) gives the classical Tikhonov regular-

ization. We are interested in the extension of these well known cases for

p approaching to zero. We observe that for p < 1 , J( f ) is nonconvex,

and the global minimum of (2.87) is not insured. Nevertheless, this case

is also considered in this paper since it leads to interesting p-Laplacian

flows. The variational p-Laplacian evolution (2.88) is a continuous model,

thus we have to discretize it in time and space in order to integrate it in

the iterative process of clusterization and decimation as described in Sec-

tion 2.4.2.

In the following we first address the problem of discretizing the p-Laplacian

flow in time, then a good spatial discretization is proposed on a 2-dimensional

manifoldM without boundary which is approximated by a picewise lin-

ear triangular mesh M, and functions on the manifold are sampled at the

vertices.

Semi-discretization in time

Considering a uniform discretization of the time interval [0, T], T > 0,

with a temporal time step dt, then (2.88) can be semi-discretized using

the forward Euler scheme which yields a first order scheme in time. An

explicit time scheme applied to (2.88) gives

f t+1 = f t + dt(△p f t + λ( f t − f δ)), f 0 = f δ. (2.89)

For large problems sizes the explicit method is prohibitively slow since

it may be nonrobust for relatively large time steps. The advantage of the
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Xi Xjeij

Figure 2.17: Vertex neighborhood stencil.

implicit time scheme given by

(I − dt△p) f t+1 = f t + dtλ( f t − f δ), f 0 = f δ, (2.90)

is that the convergence rate does not depend on the size of the problem.

We decided to follow the implicit time scheme (2.90) to avoid instability

problems and to obtain better performances.

Fully discretization in space

Finite element and finite difference approximations of the p-Laplacian

have been proposed in literature, see [82, 49] for some most recent works.

Finite element discretization of the p-Laplacian results in highly nonlin-

ear and degenerate algebraic systems [1, 64], therefore in this work we

adopt a special finite difference scheme. In fact, since we are dealing with

differential equation models over 2-manifolds M embedded in R
3, the

classical finite difference schemes will be replaced by discretized differ-

ential geometric operators over the mesh M which is a triangulated linear

approximation to the manifoldM. The mesh M consists of a finite set of

vertices X, together with a subset E ⊆ X× X of edges. Functions on the

manifold are sampled at the vertices Xi of a mesh: each point Xi has im-

mediate neighbors Xj to which it is connected, see the stencil illustrated in

Fig.2.17. Let us first address the problem of discretizing the p-Laplacian

for a smooth function f for which we know the samples f (Xi) at points

of the set X in R
3, with the mesh structure explained above. In the fol-

lowing we use a variant of the gradient and divergence definitions on

graphs given in the context of machine learning [114, 115]. In our case,

the weights are not normalized pointwise. Recently, in [16] and [36] the

authors proposed a regularization framework on graphs which also uses

similar operators.
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At this aim we approximate the directional derivative or edge derivative of

f at a vertex Xi ∈ X along an edge e = (Xi, Xj) ∈ E with the difference

operator d f (Xi, Xj):

∂ f

∂e
|Xi
≈ d f (Xi, Xj) :=

√
w(Xi, Xj)( f (Xj)− f (Xi)), (2.91)

where 0 ≤ w(x, y) < ∞ is a positive measure defined between points

x and y which is symmetric. The weigthed gradient ∇ f (Xi) at a vertex

Xi, is defined as the vector of all partial derivatives d f (Xi, Xj), ∀j ∈ N(i).

Since for a given function b(X) ≥ 0, the divergence operator may be written

as

div(b(Xi)∇ f (Xi)) =
1

2 ∑
j∈N(Xi)

∂

∂eij
(b(Xi)

∂ f (Xi)

∂eij
), (2.92)

replacing (2.91) and (2.92) in (2.85) we get a spatial discretization of the

p-Laplacian operator

Lw
p f (x) = 1

2 ∑j∈N(Xi)

√
w(Xi, Xj)(b(Xj)d f (Xj, Xi)− b(Xi)d f (Xi, Xj))

= 1
2 ∑j∈N(Xi)

w(Xi, Xj)(b(Xj)( f (Xi)− f (Xj))− b(Xi)( f (Xj)− f (Xi)))

= 1
2 ∑j∈N(Xi)

w(Xi, Xj)(b(Xi) + b(Xj))( f (Xi)− f (Xj)).
(2.93)

Let b(X) = |∇ f (X)|p−2, if we define

γ(Xi, Xj) = w(Xi, Xj)(|∇ f (Xj)|p−2 + |∇ f (Xi)|p−2) (2.94)

then the weighted p-Laplacian (2.93) is approximated as

Lw
p f (x) =

1

2 ∑
j∈N(Xi)

γ(Xi, Xj)( f (Xi)− f (Xj)). (2.95)

Note that (2.95) reduces to the classical Laplace Beltrami discretization on

mesh when p = 2 and the weights are the cotangential proposed in [69].

For the p-Laplacian discretization in case p ≤ 1 we use a smoothed

version |∇ f (Xj)|2,ǫ of |∇ f (Xj)|2 in (2.94). To this end, let us define

|v|2,ǫ :=
√

∑i |vi|2ǫ, with |vi|2ǫ := v2
i + ǫ for any vi ∈ R and ǫ > 0, a

small regularization parameter.

When f is a vector valued function f : X ⊂ R
3 → R

3, where f (X) =
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[ f1, f2, f3]
T and f1, f2, f3 are the three vertex coordinate components (x, y, z)

respectively, the p-Laplace operator is different for each component and

in particular, γ represents a different weight for each component. Since

vector-valued data needs to be driven by equivalent geometric attributes,

we have to take the coupling between vector components into account,

this is achieved by using the same vectorial variation defined by

|∇ f (X)|2 =

√√√√ 3

∑
i=1

|∇ fi(X)|2. (2.96)

Therefore, instead of having a component-wise value for γ in (2.95) we

have the same value (2.96) in (2.95) for all components fi, i = 1, 2, 3,

thus obtaining a component coupling representation. The accuracy of

the p-Laplacian discretization in (2.95) is O(h), where h is the spatial

resolution defined as the maximum length of the neighbors edges, hi =

maxj∈N(i) |eij|. In practice, we obtain acceptable accuracy using a rela-

tively narrow neighborhood. This motivates us to apply more time steps

of the p-Laplacian flow for meshes with a relatively small h.

The effects of the p exponent for several values of the fidelity parameter λ

in (2.88) are illustrated in Fig. 2.18 for p = 2, Fig. 2.19 for p = 1, and Fig.

2.20 for p = 0.1, and the color coded modulus of the mean curvature of

the surface is depicted. On the top of Fig.2.18 the initial mesh is shown.

The full discretization of the functional (2.88) is obtained replacing (2.95)

in (2.90),

(I − dtLw
p ) f t+1 = f t + dtλ( f t − f δ), f 0 = f δ. (2.97)

The proposed spatial adaptive model

We consider a spatial adaptivity of λ in (2.88) in order to locally con-

trol the extent of diffusion over mesh regions according to their content.

At this aim, we proposed to modify (2.97) to the following adaptive p-

Laplacian regularization model

(I − dtLw
p ) f t+1 = f t + dtΛ( f t − f δ), f 0 = f δ. (2.98)
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λ = 1 λ = 0.1 λ = 0.01

Figure 2.18: p-Laplacian flow with p = 2 and several λ values.

λ = 1 λ = 0.1 λ = 0.01

Figure 2.19: p-Laplacian flow with p = 1 and several λ values.

where Λ = diag(λ1, . . . ,λN) is a diagonal matrix of order N, where N is

the number of vertices, with λi representing the regularization parameter

for the ith vertex. In order to enforce the fidelity to data which represent

surface features, we define the λi =
√

Hi + ǫ, where Hi represents the

mean curvature associated to the vertex Xi.

Effects of spatial adaptivity are illustrated in Fig.2.21, where we applied

the p-Laplacian flow (2.98) to the cube mesh shown in Fig.2.21(a). The
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λ = 1 λ = 0.1 λ = 0.01

Figure 2.20: p-Laplacian flow with p = 0.1 and several λ values.

(a) original (b) λ = 0 (c) constant λ (d) adaptive λ

Figure 2.21: Spatial adaptivity effects.

benefit of the fidelity term is clear in Fig.2.21(b) where λ = 0, while

applying a constant λ = 0.1 to every vertex of the cube mesh results

in a mesh where the features are not well preserved, as illustrated in

Fig.2.21(c). Finally, the adaptive Λ matrix allows for enforcing the fidelity

at vertices representing significant local features, as shown in Fig.2.21(d).

The weights w(Xi, Xj) in (2.94) incorporate a intercomponent information

on the local shape of the mesh, we propose the following choices:

w1 w(Xi, Xj) = 1,

w2 w(Xi, Xj) = 1/(ǫ + |eij|),
w3 w(Xi, Xj) =

1
∑j∈N(i) w(Xi,Xj)

e−‖H(Xi)−H(Xj)‖22/σ.

The parameter σ in w3 controls how much the similarities of two local

neighbors are penalized. Larger σ preserves sharper features. By using

w3 we get a good measurement of similarity, which penalizes in (2.98) the

spatial clusterization flow of the vertices with different curvature features.

More details on the weights defined in w3 are provided in [78], where the

authors apply a weighted Laplace-Beltrami operator to surface fairing.
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2.4.2 The Numerical Algorithm

The simplification algorithm is simple. The multilevel framework allows

a progressive simplification of the mesh. The number of levels can be cho-

sen to satisfy special application-dependent requirements. The stopping

criterion at each level is specified as a percent reduction of the original

mesh (or equivalent) to reach a given maximum simplification value for

the entire multilevel process. This percent reduction decreases for in-

creasing levels, motivated by the fact that the mesh size h increases for

increasing levels. Therefore, the first levels can better support a more

aggressive removal of edges without significant loss of information.

At each level, the algorithm operates by combining iteratively a spatial

clustering phase with a subsequent edge decimation phase driven by de-

tected quadratic error metrics and surface features. The three steps of the

algorithm are: characterize the local vertex geometry and surface features,

clusterize the vertices through a p-Laplacian based flow, and simplify ver-

tices through incremental mesh decimation.

The following algorithm summarizes the computations required by our

method. It’s able to produce a sequence of simplified meshes X(k) from

three input parameters: the original fine resolution mesh with vertex set

X0, the desired Percentage of the total Edges to Remove (PER) and the

number of levels nlev, that is the number of intermediate meshes inbe-

tween.

Algorithm: Multilevel Mesh Simplification

INPUT: X0, nlev, PER

OUTPUT: the set of simplified mesh X(k), k=1,2,...

Set X(0) = X0,

for k=0:nlev - 1

Hk=MeanCurvature(X
(k))

X̃(k)=Clusterize(X(k),Hk)

X(k+1)= Decimate(X̃(k),PER,k,Hk)

end

The decimate procedure at the simplification level k, determines the num-

ber of edges to be removed by the linearly decreasing function

PERk =
3(nlev− 1)− 2k

2nlev(nlev− 1)
∗ PER (2.99)
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(a) Original (b) Decimated (c) Clusterized + Decimated

Figure 2.22: fandisk mesh: (a) original mesh; (b) decimation only; (c)
spatial clusterization and decimation.

Figure 2.23: edge collapse operation.

that ensures ∑
nlev−1
k=0 PERk = PER.

The aim of the spatial clusterization phase is to help the selection of the

edges candidates to be removed and to maintain an appearance of the

resulting mesh more natural and less faceted than as they would appear

if it was applied the only part of decimation. It exploits the fact that the

p-Laplacian operator has different behaviors depending on the exponent

p provided. In fact, if p > 1 then it behaves as a normal operator for

smoothing (∆p, with p = 2 , is in fact the classic Laplace-Beltrami flow

already successfully used in surface fairing applications, [78]), but when

p < 1 then the p-Laplacian flow tends to clusterize the vertices towards

the areas of high curvature, and this is precisely the case we need and

is used in this algorithm. The benefits of the spatial clusterization flow

are illustrated in Fig.2.22 where the results of the decimation phase ap-

plied to the mesh in Fig.2.22(a) without spatial clusterization are shown

in Fig.2.22(b), while the structure preserving effects of applying the p-

Laplacian flow before decimation, are clearly observed in Fig.2.22(c).

76



For the Decimation step we followed the incremental quadric-based mesh

decimation originally introduced by Garland in [41]. The base opera-

tion is the edge collapse. An edge collapse is an operation that reduces

an edge into a single vertex, i.e. two vertices are merged into one, see

Fig.2.23. When this is done all edges and faces connected to the removed

vertices have to be reconnected to the new vertex. The problem is to know

where to position the new vertex while minimizing the change in overall

appearance. When working with quadric-based mesh decimation the er-

ror for a vertex X is defined as XTQX, where the 4× 4 matrix Q measures

the distance between the vertex and its connecting faces. The incremental

decimation procedure thus follows the two steps:

• Put edges into a sorted queue,

• Orderly perform a series of edge collapses.

We propose to use the following sorting criteria driven by a penalty pe

associated to an edge e with vertices Xi and Xj

pe = (1+
pQe

maxe∈XpQe

)α + (1+
|e|

maxe∈X|e|
)β, (2.100)

which depends on the quadric error pQe
= X

T
(QXi

+QXj
)X computed on

the optimal vertex position X and on the edge length |e|. The exponents

α and β can be used to tune the effect of the quadric error and the effect

of the edge length on the ordering of the edge collapse operations.

Every time a decimation has been executed, the surface geometry in the

vicinity changes. Therefore, the penalty measure have to be re-evaluated

on the affected edges.

2.4.3 Experimental results

We illustrate the performance of the multilevel mesh simplification Algo-

rithm applied to the simplification of several high resolution meshes with

different structural characteristics, arbitrary topology, and regular/irreg-

ular vertex distributions.

Good algorithms for simplifying triangle meshes are available in com-

mon modeling packages like Maya, and freely-available software pack-
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Figure 2.24: Example 1. The original meshes. From left to right:
cube-hole (Number of edges 7680),fandisk (Number of edges 19419)
and mechpart (Number of edges 5712).

ages such as Blender or MeshLab [23]. We compared the simplification re-

sults with the decimation method integrated as a tool in MeshLab which

is mainly based on the Garland algorithm [41].

Typical criteria to judge the results of a simplification methods are based

on geometric distance (e.g. Hausdorff-distance) or visual appearance (e.g.

tesselation quality, feature preservation, ...). In order to evaluate and com-

pare the efficacy of our simplification algorithm we both provide images

for visual inspection of the simplified meshes and numerical results. In

order to quantitatively assess the quality of the mesh generated by the

simplification algorithm we propose the following measures based on the

Hausdorff distance error estimate, which is defined to be the maximum

minimum distance.

In particular, let dH(x0 ∈ X0, X) be the distance between a point x0 ∈ X0

and the mesh X defined by

dH(x0, X) = inf
y∈X

d(x0, y). (2.101)

We considered unidirectional Hausdorff distance instead of the classical

bidirectional definition since we measure the distance between an origi-

nal fine resolution mesh with a coarse simplification mesh. Therefore we

avoid the inaccurate sampling of the coarse mesh to compute the distance

to the fine mesh. The distance is carried out by MeshLab software pack-

age. We define the following related measures of approximation error:
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Maximum Hausdorff distance

dmax
H (X0, X) = maxx∈X0

dH(x0, X) (2.102)

that is, a measure of the maximum error that the simplification al-

gorithm performs in simplifying the original mesh X0 into X.

Mean Hausdorff distance

dmean
H (X0, X) =

1

|X0| ∑
x∈X0

dH(x0, X) (2.103)

that is, a measure of the average simplification error.

RMS Hausdorff distance

dRMS
H (X0, X) =

√
1

|X0| ∑
x∈X0

d2
H(x0, X) (2.104)

that is, a measure of the error introduced by the simplification algo-

rithm.

The goal of our simplification algorithm is to minimize the error intro-

duced by the simplification, i.e., to minimize the proposed distances.

With the following three examples we demonstrate how our algorithm

improves the tessellation quality while reducing mesh complexity and

maintaining the arbitrary topology of the initial fine resolution mesh.

Moreover, the numerical results in terms of Housedorff distances show

a better performance with respect to the MeshLab simplification tool.

Example 1. In this example, we demonstrate the efficacy of how when

dealing with meshes characterized by many sharp features. The high res-

olution meshes considered are illustrated in Fig 2.24. In Fig. 2.25, 2.26 and

2.27 the simplified meshes are shown for increasing percentages of final

simplifications. From a qualitative comparison we can visually appreciate

the improvement with respect to the MeshLab simplifications where the

tesselation quality is poor and the global shape is badly preserved. In par-

ticular, for the meshes cube-hole and fandisk our algorithm noticeably

improves the simplification results providing a reduced mesh that per-

fectly preserves sharp features, but also provides well shaped triangles.

The quality of the triangulation represents a fundamental requirement for

successive mesh processing tasks.
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80% 90% 95% 97%

Figure 2.25: Example 1. Simplification of the cube_hole_tri mesh. Top
row: MeshLab simplification. Bottom row: our algorithm.

Table 2.4 reports results obtained by the simplifications of meshes in

Fig.2.24 which are visualized by using bar-plots in Fig. 2.28. Compar-

isons between the results of the two simplification methods in Table 2.4

demonstrate the improvements obtained by our method and confirm the

visual inspection of Fig. 2.25, 2.26 and 2.27. For all the simplification

experiments the parameters α and β in (2.100) have been set to 1 and we

always performed three level of simplifications (nlev = 3), although, for

comparison purposes, we only showed the final level.

Example 2. In this example we evaluate the size-quality tradeoff results

on input meshes of large sizes by performing aggressive simplifications

to 99% and 99.9% of the original mesh.

Fig. 2.29 (horse), Fig. 2.30 (dinosaur), Fig. 2.31 (hand), Fig. 2.32(foot)

and Fig. 2.33(igea), illustrate original and decimated versions generated

by the multilevel simplification algorithm applied to different models of

different complexities. The multilevel mesh simplification algorithm is

capable of reducing an initial mesh to an extremely low number of faces

well preserving the global mesh shape. Moreover, even after decimating

99% and 99.9% of the edges, the simplified models still show a very good

tesselation quality independently on the regularity of the input mesh.

Consider, for example, the dinosaurmodel depicts in Fig. 2.30. In spite of

a 99.0% reduction in size, the resulting simplified mesh keeps the overall
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80% 90% 95% 97%

Figure 2.26: Example 1. Simplification of the fandisk mesh. Top row:
MeshLab simplification. Bottom row: our algorithm.

80% 90% 95% 97%

Figure 2.27: Example 1. Simplification of the mechpart mesh. Top row:
MeshLab simplification. Bottom row: our algorithm.

appearance of the original model and preserve many visually important

parts like the skeleton details on the back and the foot fingers.

A numerical assessment is given in Table 2.5, where a comparison with

the MeshLab simplification tool is also shown. It is apparent that our

algorithm performs better than MeshLab in terms of Hausdorff distance

geometric errors.

Example 3. In this example we illustrate the multilevel capabilities of

the proposed algorithm. We applied the Multilevel Simplification Al-
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Cube-hole

Fandisk

Mechpart

Figure 2.28: Comparison of max, mean and RMS Hausdorff distances for
meshes in Fig. 2.24 and simplification percentages. Black bars are Mesh-
Lab results while red ones are obtained by the Multilevel Mesh Simplifi-
cation Algorithm. Lower is better.

gorithm with nlev = 7 to reduce the original mesh hand shown in Fig.

2.31(left). The method produces a sequence of increasingly simplified

meshes, where at each level k the percentage of edges to remove is de-

fined by PERk in (2.99), in order to obtain a final simplification of 99.0%.

Instead of collapsing a constant number of edges at each level the de-

creasing function (2.99) allows for a decimation which is proportional to

the size of the mesh. Fig. 2.34 shows the simplified models at each level

k which maintain a very good tesselation quality, throughout all levels of

simplification.
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Mesh Algo. Simp.(%) dmax dmean dRMS

cube-hole MeshLab 80 0.451881 0.020130 0.057686

cube-hole Our 80 0.041205 0.000515 0.001484

cube-hole MeshLab 90 0.312231 0.008965 0.032611

cube-hole Our 90 0.021760 0.000822 0.001798

cube-hole MeshLab 95 0.418654 0.015544 0.046249

cube-hole Our 95 0.014150 0.000815 0.001572

cube-hole MeshLab 97 0.522198 0.019978 0.060159

cube-hole Our 97 0.009750 0.000937 0.001454

fandisk MeshLab 80 0.052219 0.000163 0.001662

fandisk Our 80 0.007219 0.000331 0.000728

fandisk MeshLab 90 0.054350 0.000450 0.003027

fandisk Our 90 0.007670 0.000505 0.000976

fandisk MeshLab 95 0.054343 0.000536 0.002795

fandisk Our 95 0.013716 0.000855 0.001540

fandisk MeshLab 97 0.098489 0.001068 0.006474

fandisk Our 97 0.020589 0.001210 0.002178

mechpart MeshLab 80 0.004266 0.000380 0.000633

mechpart Our 80 0.011192 0.001768 0.002482

mechpart MeshLab 90 0.010306 0.001085 0.001842

mechpart Our 90 0.021135 0.003309 0.005000

mechpart MeshLab 95 0.026714 0.003438 0.005651

mechpart Our 95 0.036440 0.005390 0.008207

mechpart MeshLab 97 0.083372 0.011076 0.017769

mechpart Our 97 0.068840 0.010379 0.016617

Table 2.4: Example 1. Simplifications of the fine resolution meshes in
Fig.2.24 by applying our algorithm and MeshLab simplification tool.

original 99.0% 99.9%

Figure 2.29: Example 2. Simplification of the horse mesh (Number of
edges 145449, 1449, 144).

83



original 99.0% 99.9%

Figure 2.30: Example 2. Simplification of the dinosaur mesh (Number of
edges 168576, 1680, 168).

original 99.0% 99.9%

Figure 2.31: Example 2. Simplification of the hand mesh (Number of
edges 152169, 1518, 150).

original 99.0% 99.9%

Figure 2.32: Example 2. Simplification of the foot mesh (Number of
edges 30714, 303, 24 ).
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original 99.0% 99.9%

Figure 2.33: Example 2. Simplification of the igea mesh (Number of
edges 403029, 4023, 396).

Mesh Algo. Simp.(%) dmax dmean dRMS

horse MeshLab 99.0 0.028324 0.002269 0.003014

horse Our 99.0 0.023522 0.002283 0.002976

horse MeshLab 99.9 0.161733 0.018871 0.027483

horse Our 99.9 0.161740 0.020073 0.027316

dinosaur MeshLab 99.0 0.022501 0.003289 0.004312

dinosaur Our 99.0 0.018831 0.003295 0.004232

dinosaur MeshLab 99.9 0.125394 0.018922 0.024967

dinosaur Our 99.9 0.134250 0.018896 0.025031

foot MeshLab 99.0 0.023356 0.003518 0.004635

foot Our 99.0 0.017761 0.003127 0.004170

foot MeshLab 99.9 0.110770 0.024386 0.031521

foot Our 99.9 0.090827 0.025222 0.030887

hand MeshLab 99.0 0.015215 0.002073 0.002715

hand Our 99.0 0.017967 0.001979 0.002536

hand MeshLab 99.9 0.121775 0.017971 0.024672

hand Our 99.9 0.085372 0.017085 0.022208

igea MeshLab 99.0 0.012795 0.001324 0.001753

igea Our 99.0 0.011045 0.001340 0.001759

igea MeshLab 99.9 0.046810 0.008417 0.010807

igea Our 99.9 0.042718 0.008091 0.010267

Table 2.5: Example 2. Simplifications of the fine resolution meshes in
Fig.2.29, 2.30, 2.31, 2.32 and 2.33 by applying our algorithm and MeshLab
simplification tool.
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k = 0, PERk = 21.21% k = 1, PERk = 18.86% k = 2, PERk = 16.50% k = 3, PERk = 14.14%

k = 4, PERk = 11.79% k = 5, PERk = 9.43% k = 6, PERk = 7.07% k = 7

Figure 2.34: Example 3. Multilevel simplification of the hand mesh.
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Part II

Virtual Modeling
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Chapter 3

Reverse Engineering and Virtual

Modeling

3.1 Introduction

In the field of Computer-Aided Design (CAD), reverse engineering has

become an effective method to create a 3D virtual model of a physical ob-

ject for later use in software for computer aided design and manufactur-

ing. Reverse engineering has many applications in different fields, such as

medical imaging, entertainment, cultural heritage, web commerce, collab-

orative design and obviously engineering; all these applications can take

advantage in different ways from the reconstructed 3D virtual model. Tra-

ditional reverse engineering involves two main steps (see Figure 3.1a), the

measurement of the physical object and its reconstruction as a 3D virtual

object. The physical object can be measured using 3D scanning technolo-

gies such as coordinate measuring machines or computed tomography

scanners, which provide outputs in the form of an unstructured point

cloud, i.e. a large set of vertices in a three dimensional coordinate sys-

tem, which lacks topological information and therefore is generally not

directly usable in most 3D applications. The point cloud is then usually

converted to a mesh model, NURBS (Non Uniform Rational B-Spline)

surface model, or CAD model through a process commonly referred to

as 3D reconstruction so that it can be used for various purposes. This sec-

ond step of reconstruction of the virtual 3D object from the dense point
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cloud is an inverse problem and generally does not admit a unique so-

lution. Most proposed approaches to reconstruction from unstructured

data points build polygon meshes that interpolate or approximate the in-

put points. The fundamental difficulties of reconstruction arise from the

lack of topological information in the data but also from the noise and

inaccuracies of the measuring process, the presence of obstructions and

holes and consequently, additional assumptions and requirements on the

input data are generally needed to make the problem tractable. As a re-

sult, most reconstructed models need to be post-processed for simplifica-

tion and optimization introducing another step in the reverse engineering

process.

The steps of measuring and reconstruction could be achieved by using

different techniques and devices, and all of them have strengths and

weaknesses. Regarding the alternative 3D scanning methods, we can

outline the following quality measures: accuracy and resolution, environ-

mental sensitivity, repeatability, speed, and cost. A reconstruction process

is usually required to be automatic, sensible to the object topology, time

and space efficient, and robust (with respect to noisy data). All current

reverse engineering solutions suffer from some common limitations. For

example, the overwhelming number of points acquired and the lack of

topological information in this data, combined with the presence of noise

and inaccuracies, usually require complex and time-consuming solutions.

Moreover, the strict separation of the two fundamental steps of measuring

and reconstruction makes this process a non-iterative and non-interactive

process.

In this thesis, we introduce a new method of reverse engineering for

fast, simple and interactive acquisition and reconstruction of a virtual

3D model representing an existing physical object that exploits a pen-

based active stereo acquisition system supported by a reconstruction and

visualization layer based on subdivision surfaces.

The design and development of 3D spatial tracking devices together with

digital sketch-based interfaces represents a powerful way to combine the

natural and intuitive human expression with the power of computation.

However, the potential of these sketch-based systems strongly depends

on the effectiveness of the input devices, on the facilities provided by the

user interface as well as on the underlying algorithms to create digital 3D
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(a)

(b)

Figure 3.1: (a) Traditional reverse engineering pipeline, (b) Fast and In-
teractive Reverse Engineering pipeline
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models from the input.

The goal of this thesis is to enable real-time interactive designing/edit-

ing of a 3D shape, by sketching a 3D network of curves that approxi-

mate the desired shape. To achieve this goal we developed an acquisition

and reconstruction framework for arbitrary network of 3D curves and

we designed and developed a low cost, low power consumption wireless

pen-like device with the capability of drawing and selecting points and

curves, which introduces a natural way to draw and edit the style-lines

of a physical object.

We named our approach Fast Interactive Reverse Engineering System

(FIRES).

FIRES integrates the 3D curve sketching and the surface construction step

into an iterative and incremental process that allows the user to have a

real-time visual feedback on the ongoing work.

The 3D curve sketching process (see Acquisition in Fig. 3.1b) is sup-

ported by an active stereo vision system made of two infrared cameras

and (at least) one infrared light emitter mounted on a pen-like device. The

pen 3D position is tracked by the stereo rig and the user can intuitively

draw and refine the style lines of the object. The user sketches arbitrary

3D curves, and interactively, at each traced curve, the system adapts the

shape so that the sketch becomes a feature line on the model. The process

of interactively and incrementally drawing the irregular curve network

is called Interactive Surface Sketching (ISS). When a designer defines a

shape with 3D curves, it is often the case that these curves indicate the

curvature features of the surface. Intuitive and aesthetically pleasing sur-

faces are obtained by the system using a curve not only as a series of

positional constraints but also taking into account the sharpness informa-

tion given by the user on the characteristic lines.

Although the resulting 3D model does not have the accuracy of classi-

cal Reverse Engineering systems our approach allows us to significantly

shorten acquisition and integration time of the real model directly into

the virtual environment up to an interactive feedback.
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3.1.1 Related work

Computer modeling of 3D geometry using alternative three-dimensional

user interfaces (3D UIs) and interaction techniques has received consid-

erable attention in recent years. While a number of techniques involving

3D UIs, 3D devices, haptic devices, and VR systems have been proposed,

the usability of 3D UIs in many real world applications is still surpris-

ingly low. For example, the digitizer 3D Microscribe, interfaced to the

Rhinoceros commercial CAD software, is limited by its wired short con-

nection, low usability and poor shape reconstruction support. Research

in 3D UIs has addressed both the design of novel 3D input or display

devices, and the development of design and/or evaluation approaches

specific to 3D UIs. An in-depth survey on new directions in 3D user

interfaces is given in [17].

Much of the early work on 3D user interfaces focused on systems for

inferring plausible 3D free-form shapes from visible-contour sketches,

which involves the difficulty of interpreting 3D information from 2D in-

put. Some works on generating 3D geometry by inflating 2D silhouettes

has been proposed in [50, 55]. The emphasis in such systems is to quickly

generate a reasonable 3D shape rather than a precise modeling of the

object. In gesture-based techniques designers’ strokes are used for edit-

ing exiting primitive objects into the desired shape, [112]. A number of

template-based methods have also been proposed, where the desired 3D

form is obtained by deforming an underlying 3D template, such as for

example a six-faced topological template,[70, 54, 30], or a given network

of curves, [43, 86]. Recently, a system for designing free form surfaces

from a collection of projected 3D curves inserted through a 2D line draw-

ing sketching system has been presented in [80]. This approach lacks

from a direct control on the object shape since a functional optimization

is used to construct the smoothed surface. A real 3D sketching system is

instead presented in [106] using a projection-based virtual environment.

The resulting surface is created stitching together pieces of spline patches

with C0 or G1 continuity. The development of 3D input devices is of

great interest not only for sketching and modeling, but also for computer

animation and interactive control [85].

Authors does not know any other pen-based reconstruction approach,
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but literature papers present several other applications based on pen-

like hardware; they are focused on handwritten, gestures recognition and

HCI. These approaches involved two main information sources: off-line

(video-based) and in-line recognition (inertial sensors). An interesting

work about 3 axes digital (3D) accelerometer-based recognition is pre-

sented in [22] where an Hidden Markov Model recognizes Arabic numer-

als. Dynamic Time Warping technique normalizes temporal windows al-

lowing data templates comparison while PCA is used to under-sampling

the data. The poor dataset acquired doesn’t permit to quantify the classi-

fication performance. In [83] the system is improved with a 3D gyroscope

and taking advantage from the use of an ensemble recognizer consisting

of 3 FDA (Fisher Discriminant Analysis) it reaches the generalization rate

of 95.04% with a dataset of 4,945 samples acquired on 16 people. Also

[51] present a pen system comprising accelerometer and gyroscope, both

3D, to reproduce the sign trace. In [7] a dual 3D accelerometer configu-

ration is used; furthermore a pressure transducer permits to compensate

the accelerometer offset voltage.

On the market different products are also available. Most of the solutions

are off-line handwriting recognition where a tiny video sensor is embed-

ded inside the pen. Instead VPen from OTM Technologies includes a

laser diode, detectors and optics to converts handwriting to ASCII text

supporting Latin and Asian characters but it is also capable of 3D detec-

tion.

The reconstruction problem in our domain can be generalized as the fit-

ting of a surface mesh which interpolates a given curve network. These

methods can be roughly classified into two categories: methods which

use smoothly stitching parametric patches, like Bézier, spline patches, or

subdivision surfaces [93],[63], and, more recent approaches, which con-

struct a smooth surface embedding by applying functional optimization.

In this thesis we followed both approaches. The first version of our re-

verse engineering system FIRESV1 is based on bilinearly blended Coons

patches, while the second version FIRESV2 constructs a surface using a

surface diffusion flow.
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3.2 System Overview

In this section we present the FIRES architecture which integrates the

steps of measuring and reconstruction into an iterative and incremental

process that allows the user to have a real time visual feedback on the

ongoing work.

Experimental equipment during a typical FIRES work session is shown

in Figure 3.3b. The measuring step (see Acquisition block in Figure 3.1b)

is achieved through an active stereo vision system made of two infrared

cameras and (at least) one infrared light emitter usually mounted on a

pen-like device. The pen 3D position is tracked by the stereo rig and the

user can intuitively draw and refine the style lines of the object, i.e. the

lines and curves that mainly characterize the object shape. We note that

traditional design is mostly based on drawing characteristic curves for de-

signing a surface. This set of 3D curves is called the Curve Network and

the process of interactively and incrementally drawing the curve network

is called Interactive Surface Sketching (ISS).

Active involvement of the user in the acquisition process has different

advantages. For example, it allows for a fast interaction by adding, modi-

fying or discarding measures right during the acquisition process, and the

detection of features of the objects like creases, corners and symmetries.

Moreover, using a specific set of modeling tools, described in Section 5,

the user naturally provides topological information on the object to be

reconstructed. As a consequence of this, the reconstruction step is sim-

plified with respect to the classical RE reconstruction.

The ISS produces a curve network which is internally represented as a

polyline mesh, described in Section 3.3, that is, a mesh with faces, vertices

and edges augmented with polylines associated to each edge.

The surface reconstruction step (see Reconstruction in Figure 3.1b) pro-

duces meshes and subdivision surface representations that, due to their

intrinsic recursive nature, perfectly fit in FIRES real time process provid-

ing a fast, multiresolution method for the representation and visualiza-

tion of surfaces. To this aim, FIRES implements the three following steps

(see Figure 3.2):

1. triquadrification: from polyline mesh to Base Mesh
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(a) (b)

Figure 3.2: The multi-step reconstruction process in FIRESV1(a) and
FIRESV2(b).

2. basic refinement: from Base Mesh to Refined Mesh

3. subdivision refinement: from Refined Mesh to Smooth Surface.

Since the curve network can be irregular, that is, the curves can intersect

each other without any restriction on the number of curves intersecting

at a given point, its associated polyline mesh can contain n-sided, non-

planar, and non-convex faces. Then, the objective of the triquadrification

step is to find a good splitting for each n-sided face in three and four

sided polygons in order to construct a Base Mesh. The Base Mesh is

however very coarse, especially at the beginning of the reconstruction

process. We exploit bilinearly blended Coons patches in FIRESV1 and a

surface diffusion flow in FIRESV2 to refine the Base Mesh into a resulting

Refined Mesh which interpolates points on the polylines, thus to supply

sufficient data to the last step of reconstruction through subdivision. The

Refined Mesh is finally refined by a subdivision scheme that produces a

smooth surface interpolating or approximating the given curve network.

In Figure 3.3a the hardware and software layers of FIRES are illustrated.
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(a) (b)

Figure 3.3: (a) Hardware and software layers in FIRES, (b) Experimental
equipment and visual device during a work session aimed to reconstruct
an old telephone

Figure 3.4: The minoru stereoscopic camera (a) and the new smart-pen
(b) used in FIRESV2.

The minimal required hardware devices in FIRES could be any active

stereo vision system capable of real-time Infra Red (IR) 3D tracking of

a wireless led emitter. The crucial aspect pursued in FIRES is a low-

cost technology strategy to achieve an optimal compromise between ac-

curacy and cost. In fact we have equipped FIRESV1 with two Nintendo

Wii remote controllers (wiimotes) and an ad-hoc developed pen-like de-

vice which communicates with the software layers via a bluetooth inter-

face. The data available on the wiimote cameras are obtained through the

wiiuse[59] open-source C library built on top of the OS bluetooth stack. In

FIRESV2, we upgraded the stereo rig to use the Minoru cameras (shown

in Fig. 3.4a) and an improved pen device, called the smart-pen (shown in

Fig. 3.4b).
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The hardware devices in FIRES, besides their use for acquisition and re-

construction purposes, are used as a system for navigation in the workspace.

That is, the user can intuitively control the virtual camera of FIRES di-

rectly moving the smart-pen around the scene pointing the pen tip to-

wards the region of interest. Automatically, the system takes the position

and direction of the smart-pen as respectively the origin and the virtual

camera direction and provides a visual feedback of the reconstruction.

This additional feature of FIRES enhances the system usability.

3.3 Polyline Mesh Data Structure

The 3D acquisition and reconstruction layers are internally supported by

an ad-hoc designed data structure called Polyline Mesh which expands

a general mesh data structure for storing the acquired curve network.

The design of this data structure has been tailored to provide an efficient

and easy-to-use way to store the acquired curve network and to support

the development of the reconstruction and visualization algorithms that

need to be executed with strict time requirements to provide a real-time

visual feedback on the ongoing process. During the process of reconstruc-

tion from curve network, summarized in Figure 3.2, different algorithms

modify the geometric and topological information contained in the poly-

line mesh. Therefore the data structure should offer facilities for storing,

accessing and modifying the information contained in it.

The polyline mesh is the geometrical representation of the model under-

lying the curve network created by the user during the process of ISS.

While the curve network is only a visual representation of the object in

terms of curves in the 3D space, the polyline mesh contains also topo-

logical information. The Base Mesh and the Refined Mesh are successive

manipulations that alter only the geometry of the virtual model.

A polyline mesh M is a collection of vertices, polylines, edges and faces

defined asM = (V , E ,F ,P) where:

V is a set of points v ∈ R
3 called vertices

P is a set of polylines P. A polyline is a series of line segments connecting

consecutive vertices p
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Figure 3.5: Access relations among polyline mesh components. Polylines
are represented in curved solid, edges in straight solid and the vertices of
the polyline mesh as solid dots. The dashed lines represent bidirectional
references available in the data structure. The elements are represented
by rhombus marks for edges and empty dots for faces. The references
edge-polyline, not shown here, are unidirectional

E is a set of edges e. An edge is identified by a pair of vertices v and a

polyline P

F is a set of faces f . A face is a closed sequence of edges

Between the elements of E ,V ,F ,P the following relations must be re-

spected:

1. Every e ∈ E edge connects exactly two vertices and is shared at most

between two faces.

2. Every e ∈ E has a single associated polyline P ∈ P . The starting

and ending vertices of the edge coincide with the first and the last

vertex of P.

3. Every v ∈ V is shared by at least two edges.

4. Every f ∈ F is closed, i.e. the starting vertex of the first edge

coincide with the ending vertex of the last edge.

An important issue in the design of a polygon mesh data structure is

the choice of the appropriate access relations between faces, edges and

vertices. The implementation of the polyline mesh provides the following

access relations illustrated in Figure 3.5: every face has a reference to an

ordered list of edges, every edge has exactly two reference to vertices, at

most two reference to faces and exactly one reference to a polyline, every

vertex has a reference to an unordered list of edges. If we describe these

relations using the notation used by Rossignac[89] we have:
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{
F , E ,V ,P : F ⇒ E 2→ V , V → E 62→ F , E 1→ P

}

100



Chapter 4

Curve Acquisition

The acquisition framework, illustrated in Fig. 4.1 and Fig. 4.2, consists in

a set of techniques that, combining a custom designed smart-pen and a

stereo optical tracking system, allow the user to draw 3D curves in space,

to navigate the scene and to easily interact with the system.

The smart-pen is provided with four collinear IR led emitters, and is

further equipped with a 3-axis accelerometer, a 3-axis gyroscope, a mag-

netometer, four mode buttons, a vibrating motor and a speaker, and it

has been designed and prototyped for satisfying the main requirements

in terms of 3D tracking and Human Computer Interaction. Its wireless

capability, small dimensions and low-weight allow to move the pen nat-

urally in the workspace. The inertial sensors gather information about

the acceleration and orientation of the device and, together with the 4 IR

led emitters, provide the hardware support for the tracking system. The

4-mode buttons equipped on the device allow to interact with the system

without the need of using the keyboard and mouse. These characteristics

allow to maintain the attention and effort of the user onto the object to be

Figure 4.1: 3D curve acquisition pipeline.
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Figure 4.2: Software architecture of the acquisition system.

reconstructed, rather than the screen or the keyboard.

In FIRESV1, the stereo optical tracking system exploits commercial in-

frared cameras available in the NintendoWii Remote, which are equipped

with a 128× 96 IR monochrome camera that includes a built-in processor

capable of tracking up to 4 moving IR sources, and, with further process-

ing, provides an image plane (u, v) with a virtual resolution of 1024× 768

pixels. The wiimotes were chosen because of their wide availability, their

accessible price, and their technical specifications that allow us to perform

a real-time 100Hz tracking of four IR led emitters. Both the wiimotes and

the smart-pen communicate with the software layers via a bluetooth in-

terface.

In FIRESV2, we switched to an improved stereo setup based on the Mi-

noru stereo cameras, equipped with a 640 × 480 sensor. Processing of

the 4 moving IR sources is implemented in software via OpenCV and the

cvBlob library. Limitations in the Linux drivers allow us to stream only

at 15Hz.

The raw data gathered both from the smart-pen and from the cameras

is processed according to the acquisition pipeline described in Fig. 4.1.
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The projected led image points of both cameras are first matched and

then triangulated in order to reconstruct at most four 3D point locations

representing the position in space of the leds mounted on the smart-pen.

After identification the 3D points are used to estimate the position of the

pen-tip. The sequence of 3D pen-tip positions traces a curve that is shown

to the user after a real-time smoothing and sampling step.

Using the sensor inertial data, the pen orientation is estimated and used

by the matching process to correctly order the image points on the camera

plane. The triangulation step then outputs the coordinates of the 3D

points computed from the ordered pairs of corresponding image points.

Calibration must be performed before each acquisition session.

Due to the limited resolution of the IR cameras, the pen-tip position is

in general perturbed by noise. Inertial data from the smart-pen sensors

is combined with the vision system data in a Kalman filter to detect the

correct pen orientation, used to compute the pen-tip position. The smart-

pen sensor’s accelerometric data could also be useful in the estimation

of the pen-tip location when more than two leds are occluded and the

pen-tip is hidden to the stereo vision system. In these cases, the pen-

tip position can be obtained through integration of the pen acceleration

in time starting from the last known position computed by the vision

system.

4.1 3D Tracking

In the following section we describe the stereo vision triangulation tech-

nique used to compute the 3D coordinates corresponding to each pair of

matched image points on the two cameras.

4.1.1 Stereo vision triangulation

The objective of the stereo vision triangulation is to find the coordinates

of a 3D point p starting from two corresponding image points ml,mr

and the projection matrices Ml, Mr of the left and right cameras such

that p = M−1
l ml, p = M−1

r mr. Different triangulation methods exists

in literature for solving this issue, see [44]. In FIRES, different methods
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have been implemented and are available to the user. The calibration

method described in [113] has been used to calibrate the stereo rig, i.e. to

determine the matrices Ml, Mr.

Given a pair of homogeneous normalized image coordinates ml = [ul vl 1]
T , mr =

[ur vr 1]
T corresponding to the unknown 3D point p = [x y z 1]T and po-

sitioning the reference system in the left camera center we have:

p = M l =




xl

yl

zl

1


 and M̃r =




xr

yr

zr


 = R(M̃ l − Cr) (4.1)

Using the pinhole camera model and considering normalized image co-

ordinates we can write

M̃ l = zlml , M̃r = zrmr (4.2)

and then

zrmr = R(zlml − Cr) ⇒




zrur

zrvr

zr


 =




zl(r
1T ·ml)− r1TCr

zl(r
2T ·ml)− r2TCr

zl(r
3T ·ml)− r3TCr


 (4.3)

Equation (4.3) could be rewritten in a linear system Az = b with un-

knowns zl, zr:




ur − (r1T ·ml)

vr − (r2T ·ml)

1− (r3T ·ml)



[

zr

zl

]
=



−r1TCr

−r2TCr

−r3TCr


 (4.4)

that can be solved in the least squares sense by solving the normal equa-

tions:

AT Az = ATb (4.5)

The current version of the FIRES system offer other two different trian-

gulation techniques, the linear and midpoint triangulations.
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In the linear triangulation the equations of projection ml = Pl p and mr =

Pr p are combined into a linear equation in the form Ap = 0, where

A =




ul p
3T
l − p1T

l

vl p
3T
l − p2T

l

ur p3T
r − p1T

r

vr p3T
r − p2T

r


 (4.6)

where pi
l , pi

r are the rows of Pl, Pr. The homogeneous system Ap = 0

can be solved for example by using the SVD decomposition of A.

While the linear triangulation works better respect to the previously used

solution, it doesn’t have a geometrical interpretation. A common and

intuitive solution for solving the triangulation problem in a geometrical

way is the midpoint triangulation.

Let us define the rays rl, rr respectively from the two camera centers Cl,Cr

passing through the two image points ml,mr as rl = Cl + tl , rr = Cr + tr

with t ∈ [0,∞). Considering noise and inaccuracies in the vision system,

the two rays rl, rr ,in general, do not intersect with each other.

The midpoint triangulation computes the point p that lies at the middle

of the shortest line segment orthogonal to both rays. Knowing that the

shortest line segment has direction d = l∧ r we can define the two planes:

πl(nl,Cl), nl = l ∧ d, (4.7)

πr(nr,Cr), nr = r ∧ d (4.8)

then the points p1, p2 are respectively defined by:

p1 = (πl ∩ rr) = Cr +

(
(Cl − Cr) · nl

r · nl

)
r, (4.9)

p2 = (πr ∩ rl) = Cl +

(
(Cr − Cl) · nr

l · nr

)
l. (4.10)

The midpoint p is then obtained as the average p = 1
2(p1 + p2).

The midpoint triangulation process is repeated to compute the 3D points

p̄i , i ≤ 4 from the ordered pairs of corresponding image points provided

by the cameras.
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4.1.2 Tracking the pen-tip

The objective of the 3D tracking of the smart-pen tip is to associate to

the 3D points p̄i , i ≤ 4, obtained by triangulating the ordered output

of the tracking system, a label corresponding to a specific led emitter in

order to locate the pen tip in the 3D space. Unfortunately, in presence

of occlusions or interferences, it is difficult to distinguish between the

light from the emitters on the smart-pen and interferences produced by

the sunlight or the reflection of the emitters on the acquired object or on

nearby surfaces. Moreover, it is also not trivial to distinguish among the

emitters themselves.

At this aim we developed an interferences filtering and an emitter iden-

tification procedure which are executed after computing the 3D points

p̄i, rather then relying on classical filtering and identification methods

performed on the 2D image plane. We can always identify which leds

are visible when at most two leds are occluded, by comparing the real

distances of the emitters mounted on the smart-pen with the computed

relative distances among p̄i. This relies on the fact that the distances

between each pair of leds is different from each other (see Figure 4.3).

Moreover, the pairs of 3D points for which the computed distance does

not match with any of the real distances among the emitters, are consid-

ered as interferences and thus discarded.

Concerning with the smart-pen tip estimation we will proceed as follows.

The redundancy of the number of leds on the smart-pen has been de-

signed in order to guarantee that even in case of occlusion of the pen tip

we are always able to estimate its position. This estimate can be evalu-

ated by knowing at least the position of two leds which allow to identify

the direction of the pen. The fourth led has been included to handle the

occlusion of at most two leds.

In particular, given the distances d1, d2, d3 among the four leds and the

distance between the pen tip and the tip led (see Figure 4.3), we call

l1, l2, l3, l4 the cumulative distances among the leds starting at the tip led,

in other words the coordinates of the leds in a mono-dimensional refer-

ence system with center in l1. In this reference system we have:

l1 = 0 , l2 = d1 , l3 = d1 + d2 , l4 = d1 + d2 + d3 (4.11)
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Figure 4.3: (top) A schematic representation of the smart-pen, (bottom)
image of the smart-pen in case the pen tip coincides with the tip led

At each frame the number of led for which the 3D position in space is

known depends on occlusions, reflections, matching errors or triangula-

tion errors, and can vary frame by frame. Let’s call δi the discrete value:

δi =

{
1 if i-th led is visible

0 otherwise
(4.12)

For each quadruplet with at least two δi = 1, which represent a particular

configuration of at least two visible and identified leds, we preliminary

compute and store the centroid C ∈ R of the led positions li, that is

C = ∑
4
i=1 liδi/∑

4
i=1 δi, and its distance T from the pen tip.

At each frame, we estimate the position p of the pen tip as

p = C′ + vpen(C + T), (4.13)

where C′ ∈ R
3 is the centroid of the computed 3D points p̄i, given by:

C′ =
∑

4
i=1 p̄iδi

∑
4
i=1 δi

,

and vpen is the direction of the smart-pen. When more than two leds are

visible, vpen is given by the direction of the least squares line.

At any moment in time, due to occlusions, on each camera we could see

0 to 4 dots. In order to identify to which led a pair of visible dots belongs

(if any), we triangulate the pairs and check if the distance between the

computed 3D led positions (called distSample in Fig. 4.4) matches any

of the 6 possible physical distances (called readlDisti in Fig. 4.4). Such

procedure allow to identify the visible leds, compute their 3D positions,
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Figure 4.4: Led identification based on the visibility in the cameras.

and also allows to filter any interference due to external light sources or

reflexes. All possible configurations of at least 2 visible dots per camera

are listed in Fig. 4.4. For each category, we have to perform a variable

number of triangulations to establish which led are actually visible.

4.1.3 Raw data filtering

The sequence of the tracked pen tip p positions gives rise to the curve

drawn by the user. Unfortunately noise and inaccuracies in the acquisi-

tion procedure lead to a noisy curve which needs to be suitably filtered.
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Noise and inaccuracies in the data received from the IR cameras are due

to different factors but primarily related to the limited resolution of the

camera devices and to the desynchronization between the two cameras

i.e. pairs of image points on the two cameras are never captured in the

same time instant. Both these factors strongly depend on the distance of

the smart-pen from the camera and on its velocity. We addressed these

problems through a real time smoothing and a post-processing step, the

latter includes sampling, spline approximation and resampling.

Real Time Smoothing

The real-time smoothing is primarily executed to give the user a denoised

visual feedback about a smoother curve. In the FIRES system the real time

smoothing is performed by default using a convolution of the data with

a Gaussian kernel. In the experimental results, shown in Section 7, we

considered a discretization of the Gaussian kernel in 300 points and we

repeated the filtering 3 times. The acquisition is performed at a frequency

100Hz. The temporal window in which the data is filtered could also vary

and be chosen based on the expected distance of the work area from the

cameras.

The acquired smoothed data is further post-processed by a sampling pro-

cedure in which a distance threshold is used to select the set of raw points

which relative distance is higher than the given threshold.

The post-processed points will be the vertices of the new polyline in-

cluded in the curve network. The effect of the post-processing steps can

be appreciated in the example of Figure 7.2 by comparing the second

with the third row where the curve networks before and after the post-

smoothing are shown respectively. The weighted and constrained least

squares spline approximation in the post-smoothing step guarantees the

best fit to the manual sketch input given by the user while offering great

flexibilities leaving to the system enough degrees of freedom to suitably

filter the curve network.

109



4.1.4 Sensor Fusion

Sensor fusion means combining data generated by multiple sensors with

the purpose of improving a measured quantity with respect to what we

can achieve using the sensors by themselves.

In this section we will introduce the Kalman filter[53][104] and define

multiple state-space models which allow us to combine inertial data com-

ing from the pen sensors with vision data obtained from the stereo camera

in order to improve the pen-tip position estimation.

The discrete Kalman filter

The Kalman filter addresses the general problem of trying to estimate the

state x ∈ R
n of a discrete-time controlled process that is governed by the

linear stochastic difference equation

xk = Axk−1 + Buk + wk−1 (4.14)

with a measurement z ∈ R
m that is

zk = Hxk + vk (4.15)

The random variables wk and vk represent the process and measurement

noise (respectively). They are assumed to be independent (of each other),

white, and with normal probability distributions

p(w) N(0, Q) (4.16)

p(v) N(0, R) (4.17)

The n× n matrix A in the difference equation (4.14) relates the state at the

previous time step k− 1 to the state at the current step k, in the absence

of either a driving function or process noise. The n× l matrix B relates

the optional control input u ∈ R to the state x. The m× n matrix H in the

measurement equation (4.15) relates the state to the measurement zk.
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Sensor fusion through Kalman filter

To exploit the Kalman filter for sensor fusion we need to define a state-

space model that combines information from the stereo-vision system and

inertial data from the smart-pen sensors.

Since both the vision system and the inertial data provide us the pen

direction, we can combine them through the equations

{
α(t) = α(t− 1) + ω(t− 1)dt + Qα

ω(t) = ω(t− 1) + Qω
(4.18)

{
αv(t) = α(t) + Rv

αa(t) = α(t) + Ra
(4.19)

where α ∈ R
2 is the pen direction θ,γ (pitch e roll) while ω is the angular

veolocity. The measurement equation (4.19) links the vision system mea-

surement αv with the inertial system measurement αa through the state

variable α.

We can now define the state transition matrix A and the measurement

matrix H 


αθ(t)

αγ(t)

ωθ(t)

ωγ(t)


 =




1 0 dt 0

0 1 0 dt

0 0 1 0

0 0 0 1




︸ ︷︷ ︸
A




αθ(t− 1)

αγ(t− 1)

ωθ(t− 1)

ωγ(t− 1)


+ Q (4.20)




αv
θ(t)

αv
γ(t)

αa
θ(t)

αa
γ(t)




︸ ︷︷ ︸
m

=




1 0 0 0

0 1 0 0

1 0 0 0

0 1 0 0




︸ ︷︷ ︸
H




αv
θ(t− 1)

αv
γ(t− 1)

αa
θ(t− 1)

αa
γ(t− 1)


+ R. (4.21)
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Chapter 5

Interactive Surface Sketching

The ISS represents the process that actively supports the user in drawing

3D curves. From the system point of view, the key feature of this process

is to infere the topology and the connectivity of the mesh underlying

the curve network from the curves drawn by the user. In this chapter

we will first consider the ISS from the user perspective and then we will

reconsider the same issues from the system internal logic point of view.

Aiming at the development of a powerful sketching design system usable

through a simple and intuitive interface, we provide a limited number

of tools which offer multiple functionalities transparently managed by

FIRES. For example, while the creation of the boundary of the object or

the closure of the mesh or the border gluing are very different operations

in terms of modification of the mesh connectivity, from a user perspective

they all appear as an operation of curve insertion and in fact all of them

can be started by clicking the same button. Moreover, every tool has

been designed to require the minimum user intervention to perform the

operations on the polyline mesh. The low number of tools and their

simplicity facilitate the user in the refining process and speed up the

acquisition.
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(a) (b) (c)

Figure 5.1: Curve insertion tool scenarios

5.1 ISS tools from the User perspective

FIRES put at user disposal different tools for ISS which allow the user to

add new curves, create holes, connect more than one surface and create

a surface by curve skinning. Starting from the basic curve insertion we

describe the ISS tools in the remaining subsections.

5.1.1 Curve insertion tool

The basic tool used for interactively constructing the 3D virtual model of

the object is the “curve insertion” tool that allows to intuitively draw new

3D curves by means of the smart-pen device.

Initially, the user traces a closed polyline which defines the boundary

of the object to be reconstructed. Then the user updates the model by

adding new curves. Each curve has to start and end on already given

points of the curve network respecting the following rules:

1. the starting and ending points should not belong to the same poly-

line (see Figure 5.1a for a violation of this rule);

2. in case the drawn curve crosses another curve, then the two curves

must intersect (see Figure 5.1b and Figure 5.1c for respectively a

wrong and correct curve insertion).

To be precise, with intersection we mean an intersection between two

curves under a defined distance threshold.

An example of reconstruction of an object using only the curve insertion

tool is shown in Figure 5.2. In Figure 5.2(column a) three subsequent
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curve insertion steps are shown while in Figure 5.2(column c) is shown

the real time feedback that the system visualizes to the user at each step.

Curve Network Polyline Mesh Smooth Surface

(1a) (1b) (1c)

(2a) (2b) (2c)

(3a) (3b) (3c)

Figure 5.2: Example of successive updates of the curve network by the
curve insertion tool (column a), the effect of the face splitting algorithm
on the corresponding polyline mesh(column b) and the real-time visual
feedback shown to the user (column c). The example refers to the physical
object shown in Figure 7.2a

Moreover, FIRES offers also a curve delete tool and a mirroring tool for

curves which replicates a curve with respect to a symmetry axis. The

drawn curve is projected onto the least squares plane of the curve itself

with the symmetry axis identified by the extremities of the curve thus

determining a closed curve.

The major limitation of the curve insertion tool is that it allows only for

building open orientable manifolds with genus zero and one border, i.e.
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(a) (b)

(c) (d)

Figure 5.3: Hole creation tool: (a) (b) in case of zero intersections, (c) (d)
with more than one intersections

the same topology of a single non-trimmed spline patch. For the recon-

struction of objects with arbitrarily complex topology, we have to provide

the user with other tools for executing different operations like creating

holes, gluing borders, closing meshes etc.

For the modeling of arbitrary topology surfaces we need at least the fol-

lowing basic operations:

1. hole creation: which corresponds to a surface trimming by a single

closed curve;

2. border gluing: which is used both for connecting two surface bor-

ders by a tubular surface (i.e. open, connected, oriented 2-manifolds

with two boundaries) and for adding a handle to a single surface.

5.1.2 Hole creation tool

After the selection of the hole creation tool by keyboard or smart-pen but-

ton, the user proceeds with the drawing of a convex closed curve which

represents the boundary of the hole. The drawn curve can intercept zero

or more existing curves. Automatically, if necessary, the system connects

the hole to the existing curve network by inserting n new curves. In case

of zero intersections (see Figure 5.3 first row) n represents the number of
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(a) (b)

Figure 5.4: Border gluing tool

curves that enclose the hole (n = 5 in the example of Figure 5.3b).

In case of intersection with at least one existing curve, then n = 0, that is

the system does not generate any new curve but simply connects the hole

to the curve network using the parts of curves intersecting the boundary

hole. We refer the reader to Figure 5.3, second row, for an example of

hole creation in case of intersection with two already given curves.

5.1.3 Border gluing tool

The border gluing is one of the fundamental operations in the recon-

struction process and allows for joining two boundary curves belonging

to either one surface or two not-connected surfaces. A boundary curve

can be defined as a boundary of the open manifold represented by the

curve network.

From a user perspective the border gluing tool is very similar to a simple

curve insertion. When the user draws a new curve that starts and ends

on two different boundary curves (see Figure 5.4a), the system asks the

user to insert the missing information to construct a tubular surface in-

between. At this aim the user has to insert a second curve, which permits

to separate in two halves the tubular surface, and select one curve on

one border and the associated one on the other border which identify the

same half. In Figure 5.4b the two selected half curves are marked by a

cross symbol.

The border gluing can be used together with the hole creation tool to

increase the genus of the surface by creating a handle. An example of
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(a) (b)

(c) (d)

Figure 5.5: Example of handle creation using the hole creation tool (b)
and border gluing tool (c)

handle creation is illustrated in Figure 5.5. Starting from the boundary

curve in Figure 5.5a, the user traces two holes as shown in Figure 5.5b,

then, using the border gluing tool, the user connects the holes, see Fig-

ure 5.5c. The system thus produces the result shown in Figure 5.5d.

5.1.4 Skinning tool

The skinning tool allows for the creation of tubular surfaces, using an

approach similar to the procedure of skinning used for creating NURBS

surfaces. The skinning tool involves the user in a two steps process in

which the user first inserts n ≥ 2 closed curves (called profiles), then

draws 2 spine curves which intersect the same sequence of profile curves.

In Figure 5.6 we illustrate the skinning process using two spine curves

and three profile curves.

5.2 ISS tools internal logic

In this section we consider the ISS process from a system development

point of view. Therefore all the tools described in Section 5.1 which affect
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Figure 5.6: A schematic example of the skinning process

the curve network are revisited as operations on the associate polyline

mesh.

5.2.1 Curve insertion internals

Using the curve insertion tool, the curve drawn by the user will be in-

serted into the polyline mesh data structure through a face splitting pro-

cess. The face splitting requires that the starting and ending edges asso-

ciated to the starting and ending polylines of the new drawn curve, lie

on the same face f . The system splits the face f into two new faces as-

sociating the polyline inserted by the user to the new shared edge. Then

the starting and ending edges, and the associated polylines, are split into

two new edges and two new polylines. To be precise, the new polyline

drawn by the user is approximated by a weighted and constrained least

squares spline and then resampled before updating the polyline mesh.

In the simple case of zero intermediate intersections with other existing

curves, the curve insertion tool leads to a single face splitting.

When the curve insertion involves a drawn curve which intersects more

than one face of the polyline mesh, a sequence of face splitting steps is

instead required and automatically performed by the system.

A simple example shown in Figure 5.7 illustrates the curve insertion tool

in the latter case. Starting from the curve network (and its associated

119



(a) (b)

(c)

Figure 5.7: Curve insertion tool

polyline mesh) (Figure 5.7a) the user draws the curve represented in Fig-

ure 5.7a from e0 to e3. The system needs to perform two face splitting

steps and thus needs to determine the intersections of the drawn curve

with the existing polylines. The ordered sequence of these intersections

defines the input data for each face splitting. In our example the curve

crosses three different edges: e0, e6 and e3 (see Figure 5.7a). In order to de-

termine each intersection point, the system finds the pair (new point, old

point) using a shortest distance criterion, where new point represents a

point on the new inserted curve, while old point is a point on an existing

polyline. In Figure 5.7b these pairs are (p0, p̃0), (p1, p̃1), (p2, p̃2). These

pairs can now be used to invoke the face splitting step passing to it sub-

sequent pairs of points, the edges to split and their shared face in order

to produce the polyline mesh shown in Figure 5.7c. In the Figure 5.2(col-

umn b) the effect of the face splitting algorithm on the polyline mesh is

shown for the reconstruction of the object illustrated in Figure 7.2a.

When the user needs to insert a curve starting and/or ending on pre-

existent vertices FIRES offers a “vertex snapping mode” in which the

system forces the intersection to coincide with the nearest vertex when

the starting/ending/intermediate pair (new point, old point) is under a

threshold distance from a vertex on the edge.

We observe that more sophisticated techniques for vertex picking can be
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implemented; the reader is referred to [28] for details.

The curve insertion tool also handles the insertion of closed curves but

only when this curve crosses at least one existing curve.

5.2.2 Hole creation internals

As described in Section 5.1.2, the hole creation procedure is performed

differently according to the number of intersections between the hole

boundary curve drawn by the user and the existing curve network.

In case of zero intersections the hole lies on a single n-sided face and, in

order to automatically generate the needed polylines (see Figure 5.3b), the

system determines the Coons patch x(u, v) associated to the n-sided face,

as will be described in Section 6.1.2, and then computes the parametric

coordinates (ū, v̄) associated to the hole centroid C̄ ∈ R
3. This is achieved

by using a hybrid Newton method[29] to solve the nonlinear system:

{
(x(u, v)− C̄) · xu(u, v) = 0

(x(u, v)− C̄) · xv(u, v) = 0
,

where xu(u, v), xv(u, v) denotes respectively the partial derivatives of the

Coons patch x(u, v) with respect to the parametric coordinates u, v. The

distance between C̄ and x(u, v) is minimized when the nonlinear system

is satisfied[103]. In case C̄ does not belong to the patch the procedure

returns the parametric coordinates of the projection point of C̄ on x(u, v).

The initial guess is estimated by evaluating the Coons patch x(u, v) on

a regular grid and then performing a search for the point on the patch

nearest to C̄.

In order to generate the n new polylines, the Coons patch is evaluated

along the lines that connect (ū, v̄) to the parametric coordinates associ-

ated to each vertex of the n-sided face. Then, the system computes the

intersections between the hole boundary curve drawn by the user and the

generated polylines and creates n new edges from the vertices of the face

to these intersections. Finally, the system updates the mesh connectivity

deleting the old face and creating n new faces.

In case the hole boundary curve intersects existing polylines (see Fig-
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ure 5.3c), then the system modifies the polyline mesh by splitting faces

as in the case of curve insertion with multiple intersections, and by delet-

ing the faces and edges internal to the hole curve (see in Figure 5.3d the

updated polyline mesh).

5.2.3 Border gluing internals

As described in Section 5.1.3, the border gluing tool requires that the user

draws two curves, and identifies the pair of associated pieces of curves

to unambiguously determine the correct half of the tubular surface to be

construct.

These are just the minimal data requested to the user to reconstruct the

shape of a handle (or a connection between two borders), that is, the min-

imal data necessary to the system to build the correct underlying topol-

ogy and connectivity without ambiguities. Afterward, more details can

be added using the curve insertion tool and the other available tools. The

system is able to reconstruct the tubular surface in-between by inserting

two faces f1, f2 into the polyline mesh, as depicted in Figure 5.4b, that

have exactly the same vertices but their edges have different associated

polylines. Then, using this new polyline mesh the Basic refinement in the

reconstruction step automatically builds the desired tubular surface.

5.2.4 Skinning tool internals

In FIRES the skinning surface can be interpreted as a sequence of tubu-

lar surfaces between consecutive profile curves. Therefore, as described

in Section 5.1.3, we are facing with the same problem of identifying the

two halves which form the correct tubular surface between consecutive

profiles. Unlike from the border gluing tool, in this case the system does

not require the user intervention, but it makes the assumption that suc-

cessive profile curves lay on planes with dihedral angle < 90◦. Exploit-

ing this assumption we can construct the correct mesh connectivity us-

ing the following mechanism (see Figure 5.6). For each section between

two consecutive profile curves Pi,Pj, the system computes the directions
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di0, di1, dj0, dj1 of the half profiles Pi0,Pi1,Pj0,Pj1 as:

d′ :=
(pstart + pend)

2
− pmiddle , d =

d′

‖d′‖

where pstart, pend and pmiddle belong to each of the half profiles and pmiddle

is estimated by the cord-length strategy. The best candidate pair of asso-

ciated half curves is the one with the maximum scalar product value

among: di0 · dj0, di0 · dj1, di1 · dj0, di1 · dj1.

Results of skinning reconstruction can be appreciated in Figure 7.3 and

Figure 7.4.

5.3 Alignment procedure

The alignment or registration procedure refers to the integration of mul-

tiple scans of the same object into a unique reference frame. The align-

ment procedure can be used both when multiple scans are acquired to

reconstruct the whole object surface or when the user loads a previous

working session. In these cases of reciprocal repositioning of the object

and the stereo rig, the alignment is used to realign the reference frames

in a common coordinate system in order to continue the work session.

In literature different approaches exist, such as mechanical tracking, opti-

cal tracking, interactive alignment, and automatic alignment; we refer the

reader to [10] for more details.

The alignment in FIRES is available through an interactive, semi-automatic

procedure that allows for a real-time alignment which seamlessly fits into

the ISS process and does not require any additional mechanical or optical

device.

To perform the alignment the system requires that, when the object and/or

the cameras have been relocated, the user selects a curve corresponding

to an already inserted curve in a previous scan session. Suppose the user

has drawn the simple curve network, shown in Figure 5.8a, and now, for

avoiding occlusion or for other reasons, the user wants to move and rotate

the object in order to complete the acquisition. To perform the alignment,

the procedure requires that the user selects a curve Cre f on the display and
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(a) (b)

Figure 5.8: An example of alignment procedure: (a) the original curve
network; (b) the selected reference curve Cre f , the objective curve Cobj

drawn on the moved object, the aligned curve network with the trans-
formed curve C′re f

then draws the corresponding curve Cobj on the moved object, as depicted

in Figure 5.8c. The objective of the alignment procedure is to determine

the rigid transformation Malign that will move and rotate the reference

curve Cre f in a way to overlap the objective curve Cobj. The transforma-

tion Malign has to minimize the distances between corresponding points

on the curve.

The solution used is based on the Principal Component Analysis and the

Iterative Closest Point (ICP) algorithm[68] of the two curves interpreted

as two sets of 3D points and the alignment matrix Malign is computed as

follows:

1. consider the 4× 4 homogeneous matrices Fobj =
[
b1 b2 b3 c̄obj

]
,

Fre f =
[

p1 p2 p3 c̄re f

]
where b1, b2, b3 and p1, p2, p3 are the

eigenvectors of the covariance matrices associated to the sets of

points of Cobj and Cre f respectively, and c̄obj, c̄re f are the centroids

of Cobj,Cre f ;

2. compute the transformation that takes the frame Fre f into Fobj:

Malign = FobjF−1
re f ;

3. transform by the Malign matrix all the points of the curve network

into the new aligned positions.

Actually, since the ordering of the points is unknown, we have eight dif-

ferent alignment transformation matrices that can be computed depend-

ing on the direction of the axis of the frames. To solve this issues the
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algorithm computes all eight transformations Mi
align , i ∈ 1, 2, . . . , 8 and

choose the one that minimize the sum of squared distances of the curve

Cobj from C′re f = Mi
alignCre f .

The best alignment determined by this procedure could be the input

guess of the ICP procedure. The current software implementation of the

FIRES system consider this input guess as the final solution.
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Chapter 6

Surface Reconstruction

As shown in Figure 3.2, the reconstruction process FIRES takes as input

the polyline mesh produced by the ISS and builds on it a smooth sur-

face using three steps. In the following sections we explain in details

the reconstruction process used in the in FIRESV1 and then present the

novelties introduced in FIRESV2.

6.1 Triquadrification: from polyline mesh to Base

Mesh

The ISS procedure produces a polyline mesh with some n-sided non-

convex non-planar faces, with n ≥ 5. The objective of the triquadrification

step is to produce a mesh containing only 3 and 4-sided faces, choosing

among all possible splittings of each n-sided face. Every n-sided face is

thus split-up into n′ faces and thus n′ − 1 new polylines have to be gen-

erated. Independently on the chosen splitting criterion, these polylines

will affect considerably the resulting surface because the Basic refinement

step in the reconstruction pipeline interpolates some points on such poly-

lines. At this aim the triquadrification procedure first associates to each

n-sided face a single quad-face Q′, then determines a good face splitting

for the n-sided face, as described in Section 6.1.1, and finally generates

the necessary new polylines associated to the new edges exploiting the

parametrization of Q′, as described in Section 6.1.2.
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(a) (b)

Figure 6.1: Triquadrification: (a) A 7-sided face. The quad-face Q′ is
identified by the circled vertices; (b) parametric domain of Q′ and the
parametric values associated with the vertices of the new polylines

The strategy to associate to each n-sided face a quad-face Q′ is illus-

trated by the example in Figure 6.1 which maps the 7-sided face (see

Figure 6.1a) into a quad-face Q′ of vertices v0, v1, v3, v4. The system con-

siders as vertices of Q′ those in-between the pairs of edges whose internal

angle is the smallest. Therefore, we have 4 resulting edges and associated

polylines constructed by joining consecutive polylines curves, these are

P0, P1 and P2, P3, P4 and P5 and P6.

6.1.1 Finding a good face splitting

For each n-sided face we have to choose among all the possible splitting

solution which is the best with respect to a chosen criterion. We could

base our choice on different parameters, for example the planarity of the

new polygons, their areas, the angles, the number of triangles versus

quads, valence of vertices, etc. The criterion considered in FIRES is based

on a measure of planarity computed as the angle between the normal

vector of the least squares plane of the n-sided face and the normal vector

of least squares plane of the tri-quad face under evaluation.

All the possible splittings generate a decision tree (see Figure 6.2 for an
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Figure 6.2: Starting from a 7-sided face as root, at the first level we have 7

different ways of splitting the face. From each one, the remaining 5-sided
face could be split in 5 different ways with a total of 35 different face
splittings

.

example) in which we search for a solution using a greedy search strat-

egy which allows for an easy and fast implementation, very good per-

formance and a sub-optimal solution. In particular, our search strategy

works in a recursive fashion as follows.

Given an n-sided face, for each of the possible different 4-sided faces, each

made of a sequence of 4 subsequent vertices which does not belong to the

same edge of Q′, the system computes the planarity measure and choose

the best solution (see q7 in the first level in Figure 6.2). In this example q7
is chosen and the greedy search restarts with the remaining (n− 2)-sided

face (in the example 5-sided face). Recursion ends when the termination

condition n < 5 is reached.

6.1.2 Generating new polylines

The method used for generating the new polylines exploits the Coons

patches [38]. Coons patches are used to find a surface that interpolates

four given boundary curves. In particular, the bilinearly blended Coons
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patch is given by:

x(u, v) =
[
1− u u

] [x(0, v)

x(1, v)

]

+
[
x(u, 0) x(u, 1)

] [1− v

v

]

−
[
1− u u

] [x(0, 0) x(0, 1)

x(1, 0) x(1, 1)

] [
1− v

v

]

where x(0, v), x(u, 1), x(1, v), x(u, 0) are four curves which form a closed

loop.

Each polyline in the polyline mesh can be represented as a piecewise

linear parametric curve defined in [0, 1] and the value of P(t̄), where

t̄ ∈ [tj, tj+1] ⊂ [0, 1] is computed by:

P(t̄) = pj + (t̄− tj)(pj+1 − pj).

In the example shown in Figure 6.1a a generic non-planar non-convex

face with 7 edges e0, . . . , e6 and 7 vertices v0, . . . , v6 is shown together

with its associated quad-face Q′. The triquadrification algorithm needs to

generate the two new polylines from vertex v5 to vertex v2 and from v0

to v2. The new polylines will be obtained by evaluating a finite number

of points on the constructed Coons patch x(u, v) associated with Q′. In

the example of Figure 6.1b, we evaluate the patch x(u, v) along tv5tv2 and

tv0tv2 .

6.2 Basic refinement: from Base Mesh to Refined

Mesh

The Base Mesh, output of the triquadrification process, is iteratively re-

fined to produce the Refined Mesh exploiting Coons patches through the

process that we called basic refinement. The objective is to obtain a polyg-

onal mesh which best fits the curve network given by the user. Experi-

mentally we estimated that 2 steps of basic refinement are sufficient to

obtain a good Refined Mesh. In case the polylines associated to the edges
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of the Base Mesh contain a very high number of points, then the system

can perform more basic refinement steps.

Each basic refinement step consists in subdividing the face into 4 new 4-

sided faces interpolating the central point of the bilinearly blended Coons

patch and connecting this vertex to the middle points of each polyline

thus creating 4 new edges. The 4 new polylines associated to the 4 new

edges are then generated by evaluating the Coons patch in a number of

points dependent on the number S of refinement iterations. In particular,

at each refinement step s, s = 1, 2, . . . , S, the patch is evaluated along the

directions u, v in

x(
i

ns + 1
,
1

2
), x(

1

2
,

j

ns + 1
), i = 0, . . . , ns + 1, j = 0, . . . , ns + 1

where ns is recursively defined as

ns = 2ns+1 + 1, nS = 1.

The Coons patch can be adapted to the case of triangular faces by simply

associating a degenerate edge and relative polyline to one of the vertices

of the triangle. In this case we only need to create 3 new polylines from

the central point of the patch to each edge of the triangle.

6.3 Subdivision refinement: from Refined Mesh

to Smooth Surface

After the basic refinement step we obtained a Refined Mesh which is a

good piecewise linear reconstruction of the shape defined by the curve

network. The Refined Mesh consists of 4-sided faces with eventually

extraordinary vertices, i.e. with more than four incident edges. Our

next objective is to produce a smooth surface exploiting a subdivision

surface scheme which naturally provide a unique representation of the

arbitrary topology reconstructed object. For our reconstruction purposes

we experimented with both interpolatory and approximating subdivision

schemes. In particular, we used the well-known approximating Catmull-

Clark subdivision scheme[19] and an adapted version of the NULISS in-
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(a) (b) (c) (d)

Figure 6.3: (a) The original curve network; (b) Catmull-Clark subdivision
reconstruction; (c) NULISS reconstruction with polyline interpolation and
the original face point rule; (d) NULISSmod reconstruction

terpolatory subdivision scheme[8]. While the former takes into account

only the vertices of the Refined Mesh, the latter also integrates its asso-

ciated polylines drawn by the user. This provides two different levels of

control on the accuracy of the design process. Control curves used as han-

dles for deformation right after their definition are approximated by the

subdivision surface, while characteristic curves drawn to define specific

features of the object to be reconstructed are interpolated. Moreover, the

subdivision rules have been enriched by special rules for reconstructing

sharp edges or corners.

In Figure 6.3 we show the results of the reconstructions obtained start-

ing from the curve network in Figure 6.3a and applying respectively the

Catmull-Clark subdivision scheme (Figure 6.3b), the NULISS subdivision

scheme with polyline interpolation and the original face point rule (Fig-

ure 6.3c) and the modified NULISS subdivision scheme (Figure 6.3d).

6.3.1 NULISS Subdivision for polyline meshes

NULISS is the acronym for Non-Uniform Local Interpolatory Subdivision

Surfaces. The NULISS subdivision process acts on quadrilateral meshes

and, at each iteration, splits each existing face into four new faces, by in-

serting one vertex in correspondence of each vertex, at the middle of each

edge and at the middle of each face of the current mesh. Thus, the newly

inserted points are called either vertex, edge or face points respectively

and for each of them we will have the corresponding insertion rule. After

each refinement, the computed vertices are connected in the obvious way
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Vertex points Edge points Face points 1-4 face split

Figure 6.4: Points insertion and splitting of a single face through the
NULISS scheme

to form four new faces out of each existing face, as illustrated in Fig. 6.4.

The NULISS algorithm includes refinement rules for both regular and

extraordinary vertices, thus it works on meshes of arbitrary topology.

Oppositely to other interpolating subdivision schemes, the NULISS re-

finement algorithm is non-uniform. This means that the refinement rules

may vary from one region of the mesh to another and they are computed

according to the local configuration of vertices so as to minimize interpo-

lation artifacts.

While the NULISS subdivision scheme produces a surface that interpo-

lates the vertices of the Refined Mesh, all information contained in the

polylines associated to the edges are discarded. The FIRES allows for

both using the NULISS subdivision scheme as originally proposed in [8],

and its modified version for better exploiting all the information at our

disposal. In fact we adapted the NULISS subdivision scheme, and in

particular the rules for computing edge points and face points, in order

to handle polyline points interpolation. We will refer to this modified

NULISS scheme as NULISSmod.

The solution adopted for computing the edge point epi associated to the

edge ei in NULISSmod will first compute the edge point ep′i, as usual, and
then replace it with the nearest point on the polyline pi associated to ei.

The rule described for computing the face point fpi associated to the face

fi is based on the position of the neighborhood vertices. If we don’t

take into account the modified edge points, the resulting surface does

not fit well the shape defined by the underlying curve network, as can

be seen in Figure 6.3c. To solve this issue we exploited Coons patches by
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defining the face point fpi through evaluation of the Coons patch in x(ū, v̄)

where: ū = 1
2(tep0

+ tep2
), v̄ = 1

2(tep1
+ tep3

) and tepi
are the parameter

values corresponding to each edge point.

Apart from the first subdivision refinement, the modified edge point rule

is applied only to the polylines of the original Refined Mesh, not to the

edges created in a subdivision step.

6.4 Surface Reconstruction improvements in FIRESV2

FIRESV2 introduces a novel simple surface construction procedure based

on functional optimization, which, for a given 3D curve network, auto-

matically constructs a smooth surface preserving sharp features defined

by the user.

The FIRESV2 surface construction step (see Reconstruction in Fig. 3.1b) is

a multi-step process illustrated in Fig. 3.2b for a synthetic curve network

with sharp (blue colored) curves and non-sharp (red colored) curves. The

system first generates a Base Mesh from the polyline mesh, then a surface

mesh constructor transforms the Base Mesh into a Refined Mesh taking

into account also the user sharpness constraints, which can eventually

be represented as Subdivision surface Mesh. Any of the different model

representation forms (curve network/coarse mesh/surface mesh) can be

integrated in a CAD system for further processing.

The basic refinement step first tessellates each n-sided face in four-sided

polygons by following the same splitting rules as of a generalized Catmull-

Clark subdivision, i.e., for each face a new vertex is placed at the face cen-

troid and is connected with the midpoint of each edge. The tessellation

can be repeated iteratively as necessary. The Base Mesh is however very

inaccurate because it does not take into account the global shape of the

model outlined by the curve network. Therefore, in the basic refinement

step, we apply a functional optimization to transform the Base Mesh into

a resulting refined quadrilateral mesh which interpolates points on the

polylines and well represents the shape defined by the curve network.

Eventually, the resulting mesh can be refined by a few steps of a subdi-

vision scheme that produces a smooth surface interpolating or approxi-

mating the given curve network.
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The approach we follow for surface construction is based on the surface

diffusion flow

△MH = 0. (6.1)

Equation (6.1) can be derived as a simplification of the Euler-Lagrange

equation (1.38) which results from minimizing the total curvature func-

tional (1.31) which leads to a minimal energy surface.

The idea in fact is to produce the simplest shape which interpolates a

given curve net. Moreover, since constant mean curvature surfaces satisfy

equation (6.1), important basic shapes as spheres, cylinders and minimal

surfaces with H = 0 can be reconstructed.

The resulting surface has to satisfy both geometric constraints, given by

a set X0 of points on the 3D curve network, and sharpness constraints

associated at each given curve, while preserving the topology defined

by the polyline-mesh. The process of sharpness tagging is performed by

simply selecting the curves on the object and a sharpness value.

In this section we present the construction process for a mesh M. Let

X0 be an initial surface which interpolates the set X0 of points on the

3D given curves and preserves the topology defined on the base-mesh,

then we solve a global optimization problem by applying directly to the

coordinate maps X the following fourth order flow

∂X

∂t
= △M

−→
H + λ(X− X0), X(0) = X0, (6.2)

where λ is a positive parameter which controls the effect of the data fi-

delity term that places positional constraints on all vertices of the 3D

curves.

The construction method is based on a preliminary step (named basic re-

finement in Fig. 3.2b where we construct a sufficiently Refined Mesh X0,

which includes X0, by tessellating each polygon in the Base Mesh follow-

ing the same splitting rules of the generalized Catmull-Clark subdivision

and iterating so that each n-sided face is subdivided into 16n quads. The

newly introduced vertices move according to (6.2) towards a minimal en-

ergy surface which satisfies the given geometry and feature constraints.

We propose a splitting strategy for solving the fourth order flow (6.2),

which involves two coupled second order PDEs. The first PDE diffuses
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the mean curvature normals onM preserving the sharp features defined

on the curve network, and the second PDE refits the parameterization X

according to the computed mean curvature distribution. In the first step

we solve:
∂
−→
H

∂t
= △w

M
−→
H (X), H(0) = H0. (6.3)

where △w
M is the weighted Laplace-Beltrami, whose weights are related

to the sharpness of the curve network.

In the second step the obtained mean curvature vector field
−→
H is used to

solve:

△MX = −H
−→
N (X) + λ(X− X0), (6.4)

where the data fidelity term forces the fitting of the X0 points on the 3D

curve network.

To create sharp features along the curve network, a weighted Laplace-

Beltrami operator is introduced in (6.3). The weights depend on a similar-

ity measure between surface patches derived by the sharpness constraints

along the curve network. The mean curvature diffusion is then penalized

where creases and corners should be reproduced.

To this end, the interactive sketching process allows the user to specify

a sharpness measure for each 3D curve of the curve network. Typically,

it could be 0 or 1, where 1 indicates a sharp feature. The mesh edges

constructed along sharp curves are labeled as sharp edges. Thus curves

with vanishing sharpness values lead only to geometric constraints on

the vertex positions, while curves labeled as sharp, lead to both vertex

and curvature constraints. Let S(Xi) be the sharpness of the vertex Xi

defined as the sum of the number of adjacent sharp edges. The vertex

Xi will represent a corner if S(Xi) > 2, a crease if S(Xi) = 2, or a dart if

S(Xi) = 1.

Our proposal of similarity weight functions, based on sharpness values,

defines the weights as follows

Wij =
1

Z(i)
e−D(Xi,Xj)/σ2

,

D(Xi, Xj) = |S(Xi)− S(Xj)|, j ∈ N(i),
(6.5)

where N(i) is the set of 1-ring neighbor vertices of vertex Xi, and Z(i) is
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the normalizing constant Z(i) = ∑j e−D(Xi,Xj)/σ2
. The parameter σ con-

trols how much the similarities of two patches are penalized. Larger σ

gives results with sharper features. By using (6.5) the contribution of the

vertices with different curvature features in △w
M is strongly penalized.

Moreover, this is a rotationally invariant measure.

6.4.1 Discretization

The surface reconstruction algorithm iterates on the two steps implement-

ing the PDEs (6.3) and (6.4), named in the sequel STEP 1 and STEP 2,

converging to a mesh approximating the given 3D curve network and

preserving the sharpness features defined by the user. From our exper-

imental work we tuned up the maximum number of iterations to be be-

tween 5 and 10.

We discretize△w
M on M the weighted Laplace-Beltrami operator used in (6.3),

analogously to (1.16) with weights wij replaced by

wijWij, (6.6)

where wij is defined as in (1.18), while Wij depends on a similarity mea-

sure between ith and jth vertex and are given by (6.5).

Since the mesh consists of quadrilateral faces, relation (1.28) is used to

compute curvature normals
−→
H , where the computation at each vertex

involves a local triangulation suitably built around the vertex itself.

Considering a uniform discretization of the time interval [0, T], T > 0,

with a temporal time step τ, then (6.3) can be discretized on time using

the forward finite difference scheme which yields a first order scheme

in time. Explicit time-stepping schemes are easily computable for every

time-step τ, but the stability condition determines an upper bound for

the time-step τ that guarantees stability of the evolution. The discrete

elliptic operator of a fourth order problem is known to be characterized

by a condition number O(h4), where h indicates the grid size. To ensure

stability of an explicit discretization we would be led to a severe restric-

tion of the type τ ≤ Ch4 for the time step size τ [94]. Explicit methods

therefore are computationally expensive.
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Our two-step method reduces to the solution of two second order PDEs,

and we used implicit time-stepping scheme in (6.3) which allows much

larger time steps. Numerical experiments show that time steps of the

order of the spatial grid size are still feasible with respect to the stability

of the approach.

The PDE model (6.2) is then fully discretized and solved by iterating the

alternate solutions of STEP 1 and STEP 2, as follows

STEP 1

(I − τLw)
−→
H n+1 =

−→
H n, n = 0, 1, .., nMAX

STEP 2

minX‖LX−−→H ‖22 + λ‖X− X0‖22.
The alternating iterations represent a key aspect of the algorithm, as the

initial rough approximation H0 is improved at each step, providing a

better accuracy to the entire process.

Decomposing Lw as Lw = DLs
w, where Ls

w is the symmetric matrix derived

from (1.16) with weights (6.6), and considering that Wij in (6.5) are sym-

metric, then STEP 1 can be rewritten as the following symmetric definite

positive system

(D−1 − dtLs
w)
−→
H n+1 = D−1−→H n.

The resulting mean curvature normal vector field is then plugged into the

constrained least square problem in STEP 2. The minimization problem

in STEP 2 is rewritten as the following linear least-squares problem,

minu‖Au− b‖2, (6.7)

where

A =

(
L

C

)
, u =

(
X

P

)
b =

( −→
H

X0

)
(6.8)

A ∈ R
(|X|+|X0|)×|X|, C ∈ R(|X0|×|X0|) is the positional constraint matrix,

rearranged as an Id matrix, b is the right-hand side, and u is the unknown

vector, with the matrix P containing the X0 ⊂ X constraint vertices.

The construction algorithm implemented by alternating STEP 1 and STEP

2 is a global process which involves the solution of sparse but large linear

systems whose dimension increases at increasing resolutions of the tes-
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sellation. In order to further improve the system performance we applied

STEP 1 and STEP 2 to a medium resolution base-mesh X0. A finer res-

olution mesh is eventually obtained, after the Surface Diffusion Flow, by

applying a few subdivision steps of a Catmull-Clark scheme, which also

preserves sharp features by ad hoc subdivision refinement rules.

6.4.2 Generating new polylines in FIRESV2

In Section 6.1.2 we presented a method for generating new polylines

through sampling of Coons patches. Such need arises when new edges

have to be created during the triquadrification phase, when splitting

n-sided faces into triangles and quads, and during interactive surface

sketching, when using the hole creation tool.

With the improved surface construction method presented in Section 6.4

we can simply generate the new polylines as linear interpolations of the

endpoints of the new edge. The surface construction will seamlessly take

care of evolving the shape of the polylines as points on the minimal sur-

face, according to the properties of the proposed surface diffusion flow.

Thanks to this improvement the implementation is more straightforward

and the polyline generation process is more predictable.
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Chapter 7

Experimental Results

7.1 Acquisition Results

Considering the real resolution of the wiimote camera image plane (u, v),

128× 96 pixels, and the horizontal field of view, which is about 45◦, we

can estimate approximately the maximum accuracy achievable during the

3D tracking. In fact, since each pixel “cover” an angle of θpix = 45
128

we can compute for each distance z from the camera the value dpix =

z tan(θpix) that roughly expresses the sensitivity of the camera, i.e. how

many millimeters we can move in the x directions until a change in the u

direction is detected. The value dpix varies linearly in z and we have that,

for example, at a distance of 0.5, 1, 1.5 and 2 meters from the camera the

sensitivity is respectively about 3, 6, 9 and 12 millimeters.

The experiments showed that in practice we can achieve slightly better

results in the 3D tracking. This is due thanks to both the virtual resolu-

tion (1024× 768 pixels) that mostly helps when the leds cover more than

one single pixel in the real image sensor, and thanks to the use of two wi-

imotes (so that the motion not detected by one wiimote could be detected

by the other).

In the first experiment we measured with the FIRES acquisition system a

test bar of width 81.0 millimeters with 2 IR leds mounted on the extrem-

ities. The length of the bar is then estimated as the 3D distance between

the result of two triangulations of the two pairs of image points produced

by the 2 IR leds on the 2 wiimote cameras. This estimate is acquired by
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(a) (b)

Figure 7.1: (a) Measured error, in millimeters, at different distances from
the cameras. Between 0 and 0.5 mt for a sequence of 2998 frames (red),
between 0.5 and 1 mt for 7223 frames (green), between 1 and 1.5 mt for
4397 frames (blue). (b) Smart-pen tip estimation error in millimeters for
about 18000 total frames

moving the bar in front of the cameras in the range [0, 1.5] meters for

about 15000 consecutive frames in order to compute the error as the dif-

ference between the width measured by the tracking system and the real

width of the bar.

We consider the results grouped according to distances from the stereo

rig. In particular, we considered when the test bar is less than 0.5 meter

(see Figure 7.1a red line), between 0.5 and 1 meter (see Figure 7.1a green

line), and between 1 meter and 1.5 meters (see Figure 7.1a blue line) from

the cameras.

This experiment has demonstrated that, for guaranteeing an accuracy in

the range [−2;+2] millimeters for 75% of time/frames, the working area

must not be behind 1 meter from the cameras.

In the second experiment we measured the accuracy of the method to

estimate the smart-pen tip 3D position described in Section 4.1.2. The

experiment aims at evaluating the error made when estimating the pen

tip position in the case of occlusion of the tip led. The leds on the smart-

pen used in this experiment are positioned at a distance of d1 = 70mm,

d2 = 40mm, d3 = 50mm. The experiment has been performed as follows.

Moving the smart-pen in a range of [0, 1.5] meters the system discards all

frames where both cameras do not detect all four IR led emitters on the
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smart-pen. Using an smart-pen where the pen tip coincide with the tip

led, we can consider the tip led position p̄1 as the ground truth value for

each frame. Forcing the system to detect only the three upper leds it per-

forms the pen tip estimation using the formula (4.13). The histogram of

Figure 7.1b shows the number of frames in which the error, computed as

the distance between the estimated pen tip and the ground truth, assumes

a given interval. This experiment demonstrates that the proposed method

is able to estimate the pen tip 3D position with an error below 2mm for

82% of the analyzed frames. Moreover, bigger errors are automatically

discarded by the FIRES led identification process.

Although we are not able to quantify the benefits in the use of the redun-

dancies of the number of the leds, the application of FIRES to solve real re-

verse engineering problems has demonstrated a significant improvement

in terms of system usability with respect to the case of a pen equipped

with a single led.

7.2 FIRESV1 Reconstruction Results

The quality of the reverse engineering results strongly depend on the

accuracy of our FIRES acquisition system. As said in Section 7.1 the

FIRES acquisition system is capable of measuring distances in 3D with an

error of around 2 millimeters if the object is located at most at 1 meter

from the cameras. Unfortunately the limited resolution of the wiimote

cameras used is not the only source of inaccuracy. In fact we have to

face also with the limited human accuracy. Since the user controls the

smart-pen we can not expect sub-millimetric precision.

In order to validate FIRES results related only to the reconstruction pipeline,

without the eventual inaccuracies of the previous acquisition step, we

generated the input as follows. Starting from a coarse mesh, a subdivi-

sion refinement is applied which generated a fine mesh useful to extract

vertices for the synthetic polylines, then the coarse mesh with the asso-

ciated synthetic polyline has been considered as the input polyline mesh

for the reconstruction. These experiments has demonstrated very good

quality reconstructions. An example is shown in Figure 3.2a for the re-

construction of a rock-arm dataset, the output of the single steps of FIRES
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(a) (b)

(c) (d) (e) (f)

(g) (h) (i) (j)

(k) (l) (m) (n)

Figure 7.2: (a) (b) The physical object, the stereo setup and the smart-
pen; (c) (d) (e) (f) The curve network after subsequent steps of ISS. (g)
(h) (i) (j) The curve network after spline approximation. (k) The Refined
Mesh after 1 step of basic refinement. (l) The first step of Catmull-Clark
subdivision. (m) (n) The Refined Mesh and the smooth Catmull-Clark
subdivision surface

reconstruction process are shown.

The first reconstruction experiment starts from the object (a battery charger)

shown in Figure 7.2a. The object has been acquired in a single scan-

ning session, without the need of repositioning the object or the cameras.

Moreover, we exploited the symmetry of the object to only acquire a half

of the object both for accelerating the sketching process and for ensur-
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(a) (b) (c) (d)

Figure 7.3: Reverse engineering process of an old telephone

ing that all the leds of the smart-pen will be visible most of the time to

achieve the maximum accuracy. In Figure 7.2b the stereo setup used for

the acquisition is illustrated together with the wiimotes in parallel stereo

configuration, the prototype smart-pen and the object to be reconstructed.

Some steps of the ISS process for the construction of the curve network of

the battery charger are illustrated from Figure 7.2c to Figure 7.2f. From

Figure 7.2g to Figure 7.2j the same curve networks are shown after the

spline approximation. In Figure 7.2k the polyline meshes after one step

of basic refinement is shown; while in Figure 7.2l the resulting Catmull-

Clark subdivision refinement is given. The final virtual model in the form

of a Refined Mesh is illustrated in Figure 7.2m, while the final smooth re-

construction is shown in Figure 7.2n.

In the second experiment we reconstructed the virtual 3D model of the

old-style telephone and its telephone receiver illustrated in Figure 7.3a.

The acquisition of the basement required a single alignment procedure

while the telephone receiver has been reconstructed using the skinning

tool and the mirroring tool. The curve network and the resulting polyline

mesh of the basement are illustrated in Figure 7.3b and Figure 7.3c respec-

tively. Using a hybrid subdivision procedure with 1 step of NULISSmod

and 2 steps of Catmull-Clark scheme the resulting smooth surface is re-

ported in Figure 7.3d.

In the third example FIRES is applied for the reconstruction of the vine-

gar bottle shown in Figure 7.4a. The skinning tool of the ISS is used

to produce the curve network of Figure 7.4b which results into the cor-

responding polyline mesh of Figure 7.4c. Finally the subdivision result

obtained by 3 Catmull-Clark subdivision steps is given in Figure 7.4d. In
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(a) (b) (c) (d)

Figure 7.4: Reverse engineering of a vinegar bottle

order to show the capability of FIRES to add virtual parts to an existing

object, in Figure 7.5 we designed a handle to add to the 3D model of Fig-

ure 7.4d. At this aim, we first used the hole creation tool (curve network

in Figure 7.5a and the associated polyline mesh in Figure 7.5b) and then

we applied the border gluing to produce the handle (curve network in

Figure 7.5c and the associated polyline mesh in Figure 7.5d). The final

result after 3 steps of Catmull-Clark subdivision is shown in Figure 7.5e.

The tools for ISS in the acquisition phase are easily triggered through

the buttons on the wireless smart-pen improving the system usability by

requiring only one hand to perform both the 3D tracking and the interface

with FIRES. Since the RE process in FIRES is interactive, the acquisition

and reconstruction are real-time and the visual feedback is instantaneous

the total time for a complete work session is primarily proportional to the

complexity of the object to be reconstructed and to the accuracy required

by the user.

7.3 FIRESV2 Reconstruction Results

In this section we provide some experiments to show the characteristics

of our RE system integrated with the new surface construction system

introduced in Section 6.4.

The outcome of the STEP 1 in the Surface Diffusion Flow depends on

four parameters that in our examples revealed to be rather constants,
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(a) (b) (c) (d) (e)

Figure 7.5: Adding a virtual handle to the geometric model illustrated in
Figure 7.4

(a) (b) (c)

Figure 7.6: The reconstruction of sharp features on a cube-shaped syn-
thetic curve network.

(a) (b) (c)

Figure 7.7: The reconstruction of a sphere starting from three orthogonal
circumferences.
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independently on the mesh. In particular, for optimal results the data

fidelity parameter λ in (6.2) is set to be 1. The similarity parameter σ

in (6.5) has been tuned to the value 0.2. The time-step τ is in the range

[0.1,1.0] and nMAX = 5.

Example 1: In the first example the reconstruction capabilities of our RE

system are evaluated on three synthetic curve networks: the cross-shaped

model in Fig. 3.2b, the sphere in Fig. 7.7 and the cube in Fig. 7.6.

The cross-shaped model in Fig. 3.2b presents different surface features

(smooth curves, corners, edges and darts). The proposed reconstruction

approach successfully creates an intuitive piece-wise smooth surface (Fig.

3.2b, bottom) starting from the simple 3D input curve network (Fig. 3.2b,

top). The two intermediate steps show the Refined Mesh, output of the

Basic Refinement process and the Refined Mesh after the Surface Diffu-

sion Flow.

Similarly to the cross-shaped example, the cube in Fig. 7.6(a) presents dif-

ferent surface features. Due to the penalization introduced by the weights

defined in (6.5) the face bounded by four sharp edges (marked in blue in

Fig. 7.6(a)), is reconstructed into a planar surface (Fig. 7.6(b)). In Fig.

7.6(c) the reconstructed piece-wise smooth surface is shown from a dif-

ferent point of view where crease and dart features are well visible. The

surface colors represent the surface curvatures, where green color indi-

cates low curvature and red color high curvature values.

The example in Fig. 7.7 shows the ability of our method to precisely

reconstruct a spherical surface starting from the three orthogonal circum-

ferences and the underlying polyline mesh illustrated in Fig. 7.7(a). In

this particular example we applied the Basic Refinement step to obtain a

very Refined Mesh, shown in Fig. 7.7(b). The surface diffusion process

evolves the Refined Mesh into the spherical mesh of Fig. 7.7(c), perfectly

fitting the initial curve network.

Example 2: In the second experiment we show the result of the complete

reverse engineering (RE) pipeline for two real objects shown in Fig. 7.8(a)

and 7.9(a): an old-style telephone and a phone charger for a wireless

telephone.

The reconstructed 3D virtual model (Fig. 7.8(e)) is the result of the multi-

step reconstruction process consisting of the Basic Refinement step (Fig.
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(a) (b) (c)

(d) (e)

Figure 7.8: The reconstruction of an old-style telephone.

(a) (b) (c) (d)

Figure 7.9: The reconstruction of an object with cavities.
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(a) (b) (c) (d) (e) (f) (g)

Figure 7.10: The reconstruction of a bottle ((a)-(d)), and the result of
adding a virtual handle to the bottle ((e)-(g)).

7.8(b)), the Surface Diffusion step (Fig. 7.8(c)), and the Subdivision Re-

finement (Fig. 7.8(d)). The final result of Fig. 7.8(e) clearly shows how a

complex model with a variety of different surface features can be success-

fully reconstructed starting from a very simple and rough curve network

(overlayed in Fig. 7.8(d)). The blue curves were marked as sharp during

the RE session using our smart-pen sketching device.

The second reconstruction of the physical object shown in Fig. 7.9(a), fol-

lowed the multi-step reconstruction process on a simpler physical object

with a pronounced cavity, a feature that often creates problems with op-

tical 3D scanner devices. Thanks to safe-occlusion characteristics of the

smart-pen device, the user is able to sketch curves inside any cavities. The

reconstruction system is then able to correctly build the smooth surface

illustrated in Fig. 7.9(d). The intermediate reconstruction steps of Basic

Refinement and Surface Diffusion Flow are shown in Fig. 7.9(b) and Fig.

7.9(c), respectively.

Example 3: In this example we describe an edit session performed using

our RE system to interactively sketch new curves on the free space in

order to add virtual parts to an object. In particular, in Fig. 7.10 the

users draws the minimal amount of curves (Fig. 7.10(b)) necessary to

reconstruct the basic shape of the bottle object in Fig. 7.10(a). The system

provides a real-time visualization of the reconstructed smooth surface

(Fig. 7.10(d)), created from the subdivision of the Refined Mesh of Fig.

7.10(c), output of the Surface Diffusion Flow.

The user then decides to add a handle to the virtual bottle. Using the

"hole creation tool" and "border gluing tool" from the smart-pen sketching
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interface (described in [9]) the user traces the 3D outlines representing the

handle. The system reconstructs the smooth surface of Fig. 7.10(g) by first

applying the Basic Refinement step (Fig. 7.10(e)) and then performing the

Surface Diffusion Flow that produces the mesh in Fig. 7.10(f).
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Conclusions and future works

In this dissertation, we focused on Geometric Surface Processing and Vir-

tual Modeling topics.

In Part 1, we studied mathematical models based on Partial Differential

Equations (PDE) applied to surface processing problems such as smooth-

ing, remeshing, simplification and deformation. In Part 2, we introduced

a Fast Interactive Reverse Engineering System enabling real-time acqui-

sition and manipulation of complex geometrical shapes through wireless

and interactive input devices. While Part 2 required a very technical and

algorithmic focus, the contribution of the first part has instead required

a deep study, understanding and research of new mathematical and nu-

merical solutions. Moreover, from the documented studies in Part 1, we

consolidated knowledge and tools that allowed us to tackle some of the

problems we faced in Part 2.

In particular, we presented a novel smoothing method which is based on

a two-step algorithm that solves a nonlocal surface diffusion flow PDE.

The method is able to remove spurious oscillations while preserving and

even restoring sharp features.

We also presented a new adaptive remeshing scheme based on the idea of

improving mesh quality by a series of local modifications of the mesh ge-

ometry and connectivity. Our contribution to the family of parametrization-

free remeshing techniques is a curvature-based mesh regularization tech-

nique which allows the control of both triangle quality and vertex sam-

pling over the mesh, as a function of the surface mesh curvature.

Then we presented a new approach to simplification based on the evo-

lution of surfaces under p-Laplacian motion. Such an evolution provides

a natural geometric clustering process where the spatial effect of the p-
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Laplacian allows for identifying suitable regions that need to be simpli-

fied. The concrete scheme is a multiresolution framework composed, at

each simplification level, of a spatial clustering diffusion flow to deter-

mine the potential candidates for deletion, followed by an incremental

decimation process to update the vertex mesh locations in order to de-

crease the overall resolution.

All the methods are based on solving evolutive PDE diffusion models

and required the use of discrete differential geometry operator suitably

weighted to preserve surface curvatures. The discretization lead to large

linear system of equations solved by iterative numerical methods.

For each novel proposals we demonstrated that we achieve better results

with respect to other well-known state of the art methods. As a drawback,

in general, our differential models introduce a performance penalty due

to the solution of large linear systems obtained by the discretization of the

differential models. The prototypical numerical implementation realized

in Meshviz can be definitely improved through advanced mathematical

optimization techniques and GPU implementations.

Finally, the differential models for mesh deformation based on variational

approach, gave preliminary satisfactory results, and certainly deserve fu-

ture investigations. Moreover, most proposed methods could be general-

ized to tri-quad meshes to satisfy a broader range of applications.

In Part 2 we presented a novel system for reconstructing free-form sur-

faces from sketched irregular curve networks that consists in a basic first

step which builds a low resolution base-mesh associated with the curve

network, and a second step in which the base-mesh is refined to produce

a smooth surface which preserves curvature features defined by the user

on the curve network. While the system is not perfectly accurate as, for

example, other, usually more expensive, laser scanning systems, it can be

effectively used in 3D curve/silhouette sketching tools in CAD system

environments. The developed project represents a low-cost solution to

the challenging Reverse Engineering problem and we demonstrated that

FIRES achieved an optimal compromise between accuracy and cost.

Several examples demonstrate the ability of the proposed method to pro-

duce complex 3D geometric models. A sensible improvement in the ac-

curacy of the system can be obtained by using higher-cost hardware tech-
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nologies such as higher resolution cameras. This would definitely im-

prove the quality and stability of the signal, nevertheless, the system still

suffers from intrinsic limitations due to human control of the pen device

and limitations of active stereovision-based RE systems.
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Appendix A: Meshviz

Meshviz User Interface

Meshviz is a GUI application developed in order to support experimen-

tation of the geometric surface processing theories and models presented

in Part 1.

The meshviz inteface is shown in Fig. 11 where we can see the main 4

areas:

1. The graphics window

2. The Display and Model menus in the left part of the window

3. The Selection Info tab and Log at the bottom.

4. The Main Menu bar at the top

The graphics window is an OpenGL view which shows the currently

loaded mesh according to the view settings configured in the left Display

tab. Navigation in the OpenGL view is performed via the three mouse

buttons: left click and drag for rotation, right click and drag for zooming

and middle-click and drag for panning.

Via the display tab, we can set the OpenGL camera to predefined views

(free, rotating, top and side view). In the top right, the checkboxes allow

to toggle the visibility of the mesh faces, edges, vertices, normals and

other features.

The dropdown menu at the top-left allows switching the OpenGL render-

ing to predefined settings:

• Wireframe

• Normals
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Figure 11: The meshviz interface

• Smooth

• Flat

• Operator

• Mean Curvature

• Gaussian Curvature

• Area

At the bottom, the SelectionInfo tab shows the mesh general properties,

like Mean Curvature max, min, average and variance. After selecting a
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vertex, it will also display specific vertex information like:

• mean curvature, gaussian curvature, area

• ID’s of neighobrhood faces, edges and vertices

• the row in the laplacian matrix and in the gradient matrix corre-

sponding to the selected vertex

• the value of the operator associated to the current model computed

at the vertex position

The most important part of the UI is the Model tab.There, in the App drop-

down menu we can select the primary application between Smoothing,

Remeshing, Deformation and Reconstruction.

Once a specific application and a model has been selected, dynamically

meshviz enables and disable specific control. Leaving the mouse for a

couple seconds on a control shows a tooltip (when available) describing

the effect of the control.

Development Envirnoment

Software development and experimentation for the implementation of the

algorithm presented in the thesis and their results have been performed

on different architectures ranging from low-end devices, such as a net-

book with an Intel atom N270 processor (1.6GHz), 1GB RAM and an

integrated graphic card, to more recent capable hardware such as a desk-

top pc with an Intel Core i7-2600 3.4 GHz processor, with 8 GB/RAM and

an Nvidia GeForce GTX 560 Ti graphics card.

The visualization is based on the OpenGL graphics library and the ap-

plications are written using the C language, and occationally using C++.

Numerical computations are performed using the "meschach" matrix li-

brary. Various small POSIX shell or python scripts have been developed

to support experimental data collection and visualization.
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Simplifcation in Meshviz

The current version of meshviz does not offer interactive experimenta-

tion with the simplification algorithm proposed in section 2.4. Instead a

command-line application called simplify has been developed. Thanks

to simplify and shell scripting, experimentation and data collection has

been completely automatized.

The simplify program has the following syntax.

usage: ./simplify --in FILE --percentage NUM [--iterations NUM] [--smoothing-iterations NUM]

[--ple FLOAT] [--lambda FLOAT] [--exp-length FLOAT] [--exp-garland FLOAT]

[--exp-curvature FLOAT] [--exp-valence FLOAT] [--exp-curvdiff FLOAT]

[--no-adaptive] [--out FILE] [--no-smoothing] [--no-decimation] [--no-sort]

[--keep-mc] [--no-optimal] [--dist] [--help]

The parameters are described by running ./simplify --help:

parameters:

--in mesh.obj

Specify the input mesh in obj format.

--percentage N

The percentage of edges to remove.

--iterations N

The number of "outer" iterations of the simplification algorithms. (Default: 2)

--smoothing-iterations N

The number of "inner" p-laplacian smoothing iterations. (Default: 3)

--ple FLOAT

The value of the p-laplacian exponent. (Default: 0.100)

--lambda FLOAT

Defines the fidelity parameter lambda in the solution of the smoothing model. (Default: 1.000)

--exp-length FLOAT

Defines how much the edge length influences the edge shape factor. (Default: 0.000)

--exp-garland FLOAT

Defines how much the garland quadric error influences the edge shape factor. (Default: 0.000)

--exp-curvature FLOAT

Defines how much the edge curvature influences the edge shape factor. (Default: 0.000)

--exp-valence FLOAT

Defines how much the edge valence length influences the edge shape factor. (Default: 0.000)

--exp-curvdiff FLOAT

Defines how much the edge local curvature difference influences the edge shape factor.

(Default: 0.000)
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--no-adaptive

Disable the curvature adaptivity of the fidelity parameter lambda in the solution of

the smoothing model.

--no-sort

Disable sorting of edges in decimation. Enable threshold-based decimation.

--no-smoothing

Do not perform the smoothing step in each simplification iteration.

--no-decimation

Do not perform the decimation step in each simplification iteration.

--keep-mc

Keep original curvatures after collapse without recomputing them after each outer iteration.

(Default: disabled)

--no-optimal

Keep original curvatures after collapse without recomputing them after each outer iteration.

(Default: optimal)

--dist

Will compute and print the hausdorff distance at the end of the simplification.

--out FILE

Secify the output mesh file.

For example, the following command:

example: ./simplify --in dinosaur.obj --percentage 80 --iterations 2 --out simplified.obj

simplifies the dinosaur.obj mesh by 80% in two levels, producing an

output mesh called simplified.obj.
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Appendix B: Smart-pen

The smart-pen has the following hardware characteristics:

• MCU: ST Microelectronics STM32F103VE

• Accelerometer: ST LIS3LV02DL

• Gyroscope: ST L3G4200D

• Magnetometer: Freescale MAG3110

• Pressure sensor: NOT present in current modules.

• Bluetooth: BlueGiga WT12

• Internal NAND flash memory (8 GBit)

• 3 color LED (red/green/yellow).

The device can be turned on by pressing the button. Once turned on, the

green led will turn on, then blink a couple of times during initialization

and then stay on while in the IDLE state. In the idle state there is a 2

minute time-out, after the expiration of which the device will turn off. It

is possible to turn off the device from every state by a long press of the

button (about 5 seconds). In both cases the led will turn off, signaling that

the device turned off. Once connected to the host, the device can receive

commands.

After receiving via bluetooth the command to start streaming (BT_START)

the green led blinks slowly to signal the operations. Operations can be

terminated by a stop command (BT_STOP).

The device provides a Serial Port Protocol (SPP) service, and the host, af-

ter pairing with the code 1234, can communicate with the device through

the corresponding serial port. The serial port settings are 230400, 8, 1, n

but being a virtual serial port emulated via Bluetooth, the Bluetooth stack

handles all the connection-related issues.
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Table 1: Smart-pen packet format.

Byte 0: 0x20

Byte 1: 0x0A

Byte 2: Packet Counter
Byte 3-8: Accelerometer ax, ay, az

Byte 9-14: Gyroscope ωx,ωy,ωz

Byte 9-14: Magnetometer γx,γy,γz

Byte 21: CheckSum

The device can receive the following commands, which are ASCII char-

acters sent via the serial connection.

Command (hex) Name Description

= (0x3D) BT_START Starts sampling and streaming data

: (0x3A) BT_STOP Stops sampling and streaming data

When streaming data from the devicethe sensor data are organized in

packets of 22 bytes as in Table 1. The first two bytes are fixed to identify

the packet. The Packet Counter is an 8 bit unsigned integer, incremented

by the device every packet transmitted. All the sensor data are repre-

sented by 16-bit signed integers. At the end the checksum is computed

by and ex-or of all the previous bytes.

Bluetooth communication

The Bluetooth Protocol Stack (see Figure 7.3) is a set of open protocols for

exchanging data over short distances from fixed and mobile devices. The

responsibilities of the layers in the bluetooth stack can be summarized as

follows:

The radio layer is responsible for transmitting and receiving packets of in-

formation on the wireless physical channel. The radio layer is controlled

by the baseband layer, which controls and sends data packets over the

radio link providing transmission channels for Synchronous Connection-

Oriented (SCO) links and Asynchronous Connectionless (ACL) links. The
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Figure 12: The bluetooth protocol stack

ACL links1 are point-to-point symmetric connections commonly used for

data transfers.

The Link Manager Protocol (LMP) uses the links set up by the base-

band to establish connections and manage networks of bluetooth devices

(called piconets). Responsibilities of the LMP also include authentication,

security services, and monitoring of service quality.

The Host Controller Interface (HCI) is the dividing line between software

and hardware. While the L2CAP and layers above it are usually imple-

mented in software, the LMP and lower layers are in hardware. The HCI

is the driver interface that connects these two components. The HCI may

not be required.

The Logical Link Control and Adaptation Protocol (L2CAP) receives ap-

plication data and adapts it to the Bluetooth format. Quality of Service

(QoS) parameters are exchanged at this layer. The L2CAP may be ac-

cessed directly by the application, or through certain support protocols

provided to ease the burden on application programmers.

An example of a support protocol is the RFCOMM protocol, a simple

transport protocols made on top of the L2CAP protocol that provides

emulated RS-232 serial ports via a reliable data stream similar to TCP.

RFCOMM is the protocol used by the bluetooth controller mounted on the

1Besides their misleading name, Asynchronous Connectionless links are not connec-
tionless
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smart-pen and we use it to connect to the device and exchange data using

the C programming language and the blueZ stack on a linux platform.
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