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Abstract 

The present paper investigates the use of different knot placement techniques for isogeometric analysis of 

spatial curved beams, to enhance analysis results in cases when geometries are given in terms of data points. 

Focusing on analysis-aware modeling for structural static and vibration simulations of spatial free-form 

curved beams, the knot placement techniques based on uniformly spaced knots as well as on De Boor’s and 

Piegl and Tiller’s algorithms are studied. For this purpose, an isogeometric formulation for linear Euler–

Bernoulli beams based on the Euler–Rodriguez transformation rule is implemented. Different case studies 

and numerical examples are presented and the results are validated against “overkill” solutions computed 

with a commercial finite element software. The results show that the De Boor’s knot placement algorithm 

typically leads to better approximation errors and is therefore the suggested strategy for this kind of 

problems. 

Keywords: Isogeometric analysis; analysis-aware modeling; curve approximation; knot placement 

techniques; spatial free-form curved beams 

1 Introduction 

Computer-aided design (CAD) and finite element analysis (FEA) are two important aspects of the 

mechanical design of solids and structures. CAD geometries developed by designers and architects need to 

be converted to appropriate models for numerical analyses. However, constructing analysis-suitable models 

for FEA is the most time-consuming procedure that generally requires several remodeling steps. The 

concept of isogeometric analysis (IGA), first introduced by Hughes et al. [1], tries to bridge the gap between 

CAD and FEA by employing spline basis functions (already used to create CAD geometries) as finite 

element shape functions. Thanks to the accurate and efficient geometry representation of this framework, 
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IGA has been successfully implemented in various engineering applications such as solid mechanics [2-6], 

fluid mechanics [7-10], heat transfer [11, 12] and eigenvalue problems [13, 14].  

Isogeometric static and vibration analyses of curved beam structures have been taken into consideration by 

many researchers in recent years. We can categorize these research works into the two main groups of 

planar (see, e.g., [15-21]) and spatial (see, e.g., [22-27]) curved beam representations where the latter is 

more applicable in real-world engineering problems but needs a more complex formulation. Reviewing 

some recent works in this area, Bauer et al. [23] have proposed a continuum element formulation for static 

analysis of geometrically nonlinear space curved beams assuming Euler–Bernoulli theory. They have 

adopted the Euler–Rodriguez transformation law between undeformed and deformed beam configurations. 

Zhang et al. [24], considering locking issues, have proposed a linear element formulation for spatial beams 

based on the Frenet–Serret orientation frame. Radenković and Borković [25] have presented a linear elastic 

IGA for large displacement and small strain theories considering a new coordinate line that is orthogonal 

to the normal plane of the beam axis at each point. Isogeometric collocation of geometrically exact shear 

deformable beams and Cosserat rods are also studied by Marino [28] and Weeger et al. [29], respectively. 

The present paper contributes to the field of IGA of space free-form curved beams. For this purpose, we 

implement a linear IGA formulation for Euler–Bernoulli beams based on Euler–Rodriguez transformation 

rule [23]. The main focus of this research is however on constructing suitable isogeometric 

parameterizations which can be categorized in the field of “analysis-aware modeling” (proposed by Cohen 

et al. [30] and extensively used in IGA by, e.g., Xu et al. [31-33], Casquero et al. [34] and Aigner et al. 

[35]). It is important to notice that the beam geometry for isogeometric analysis can be obtained either by 

direct input from commercial CAD software (like, e.g., Rhino) or by fitting a curve to a set of data points 

(which is the typical case in a number of applications [36]). In the case of direct geometry input, all 

necessary information such as the coordinates of control points and the parameterization of the curve are 

imported from the CAD system. For this type of problems, Hosseini et al. [37] recently employed a curve 

reparameterization technique to resolve the probable ill-conditioning issue of nonlinearly parameterized 

input B-spline geometries. On the other hand, when the beam geometry is given only in terms of input data 

points, in order to construct the geometry for IGA, the unknown control points need to be found by a curve 

fitting approach through interpolation or approximation through, e.g., a least-squares minimization. Two 

main steps that must be considered before fitting a curve to the input dataset are parameter selection and 

knot vector generation [38], that may significantly affect the constructed geometry and, therefore, the IGA 

solution outputs (e.g., the beam deflection and natural frequencies). The effect of different parameterization 

schemes on IGA results of planar curved beams has been investigated in detail by Hosseini et al. [39] where 

the chord-length parameter selection method – that results in an almost linear parameterization – is shown 

to be the most accurate approach. Cottrell et al. [40] presented the control point placement method to 

improve the IGA results of straight structures. The importance of one-to-one correspondence between 

parameterizations of the geometry, loading and rigidity of planar free-form curved beams are also addressed 

in [41]. In the aforementioned researches, it is shown that linear parameterization can lead to accurate IGA 

results. However, until very recently, the effect of different knot vector generation strategies on the IGA 
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results has not been discussed in the literature. Employing different knot vector generation or so-called 

“knot placement” techniques not only leads to different least-squares errors in curve approximation, but 

also affects the mesh quality and the accuracy of IGA results. Considering the control point placement 

approach described in [40], it should be noted that, in the case of spatial free-form curved beams, the control 

points are obtained by a curve fitting process and any manipulation of their positions (like what is presented 

in [40]) will change the shape of the beam geometry which is not of interest for the context herein 

considered. It is also to be noted that an integrated approximation and knot placement approach with the 

aim of improving the fitting quality may need a relatively expensive optimization procedure with both 

control points and knots as unknowns (see Hashemian and Hosseini [42]) which is beyond the scope of this 

work. 

The objective of this paper is to thoroughly address the different knot placement techniques in geometry 

construction for the isogeometric framework when the geometry is in terms of input data points. In this 

regard, three well-known knot placement techniques are studied – namely, uniformly spaced knots, De 

Boor’s algorithm, and Piegl and Tiller’s algorithm –, and their effects on isogeometric vibration and 

structural analysis results of spatial free-form curved beams are investigated. Hence, the remainder of the 

paper is organized as follows. In Section 2, the definition of B-spline curves (including the considered curve 

approximation procedure) is presented. The different knot vector generation approaches are presented in 

this section as well. The isogeometric formulation of spatial curved beams is introduced in Section 3. In 

Section 4, different case studies and numerical examples are presented along with comprehensive remarks 

on the accuracy of the results. Some supplementary investigations are performed in Section 5 to 

demonstrate how the knot placement techniques can deal with different geometric aspects of the IGA 

framework. Finally, Section 6 draws the conclusions.  

2 Geometry Construction by B-spline Curves 

B-splines can model a rich variety of free-form geometries and play a central role in the isogeometric 

analysis of free-form curved structures, where they are used both for representing the geometry and for 

expressing the displacement fields. They are also well consistent with commercial CAD software and 

employed in different engineering problems. 

2.1 B-spline Curve Definition 

A three-dimensional B-spline curve of degree 𝑝, is expressed as a piecewise continuous parametric function 

with 𝑛 + 1 control points 𝑷𝑖 = [𝑋𝑖 , 𝑌𝑖, 𝑍𝑖] as follows [38]: 

𝒓(𝜉) =∑𝑁𝑖
𝑝(𝜉) 𝑷𝑖

𝑛

𝑖=0

          (0 ≤ 𝜉 ≤ 1) (1) 

where 𝒓(𝜉) = [𝑥(𝜉), 𝑦(𝜉), 𝑧(𝜉)] is a vector-valued function whose components are represented separately 

as mappings of the parameter 𝜉 ∈ [0,1] onto the 3D space. The univariate parameter space is characterized 
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by the knot vector 𝚵 as defined by Eq. (2). In addition, 𝑁𝑖
𝑝(𝜉) is the 𝑖-th B-spline basis function of degree 

𝑝 as expressed by Eq. (3) [38]: 

𝚵 = [0, 0,⋯ , 0⏟      
𝑝+1

, 𝜉𝑝+1, 𝜉𝑝+2,⋯ , 𝜉𝑛, 1,1,⋯ , 1⏟    ]
𝑝+1

 
(2) 

𝑁𝑖
0(𝜉) = {

 1
 0

𝜉𝑖 ≤ 𝜉 < 𝜉𝑖+1
otherwise

 

𝑁𝑖
𝑝(𝜉) =

𝜉 − 𝜉𝑖
𝜉𝑖+𝑝 − 𝜉𝑖

 𝑁𝑖
𝑝−1(𝜉) +

𝜉𝑖+𝑝+1 − 𝜉

𝜉𝑖+𝑝+1 − 𝜉𝑖+1
 𝑁𝑖+1

𝑝−1(𝜉)   

(3) 

For example, Fig. 1 depicts a 3D B-spline curve of degree three with eight control points and five uniformly 

spaced knot spans based on the knot vector  𝚵 = [0, 0, 0, 0, 0.2, 0.4, 0.6, 0.8, 1, 1, 1, 1], noting that for the 

case of non-repetitive and increasing internal knots (i.e., 𝜉𝑖 < 𝜉𝑖+1), we have 𝑛 − 𝑝 + 1 non-zero knot 

spans. This curve can be thought of as the geometry of a spatial curved beam. The 𝐶2-continuous cubic 

basis functions and respective knots are shown in Fig. 2.  

 

 

Fig. 1.  A cubic B-spline curve in 3D space with eight control points and four internal knots 

 

 

Fig. 2.  Cubic basis functions and respective knots on the knot vector of B-spline curve of Fig. 1 
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2.2 B-spline Curve Fitting 

It is interesting to note that if only a set of data points representing the geometry of a space curve is available, 

the B-spline expression of the curve can be found by a curve fitting technique that is typically performed 

by curve interpolation, approximation or a combination of them [38]. There are some other optimization-

based approximations which rely on the conditions imposed on data points and/or on the overall curve 

profile (see, e.g., [42, 43]). As one of typical curve fitting approaches, interpolation guarantees the curve 

passes through all data points by setting the number of control points equal to data points. The fitted curve, 

however, may fluctuate rather than being smooth, especially for a noisy set of data points (see, e.g., [44]). 

The problem of fluctuating can be overcome in curve approximation by relaxing the strict requirement that 

all data points must be crossed by the curve. Except for the first and last points, the curve does not 

necessarily contain any other data point, but must track them with a minimum error. Finally, when the curve 

should exactly cross some data points, while other points can be tracked without the need of being exactly 

passed, a mixed interpolation–approximation procedure can be employed. 

Focusing on curve approximation in this paper, given a set of ℎ + 1 data points 𝑫𝑘 = [𝐷𝑥
𝑘 , 𝐷𝑦

𝑘 , 𝐷𝑧
𝑘] where 

𝑘 = 0, 1,⋯ , ℎ, the curve is to be constructed in such a way that the control points are the output of a global 

curve fitting problem. In this regard, the first step is to associate the parameter 𝜉𝑘̅ to the 𝑘-th data point 𝑫𝑘 

by imposing one of the uniformly spaced, chord-length, or centripetal parameter selection schemes 

described by Eqs. (4) to (6), respectively [38]: 

𝜉𝑘̅ =
𝑘

ℎ
     (𝑘 = 0, 1,⋯ , ℎ) (4) 

𝜉0̅ = 0    ,     𝜉𝑘̅ =
∑ ‖𝑫𝑖 −𝑫𝑖−1‖𝑘
𝑖=1

∑ ‖𝑫𝑖 −𝑫𝑖−1‖ℎ
𝑖=1

      (𝑘 = 1, 2,⋯ , ℎ) (5) 

𝜉0̅ = 0    ,     𝜉𝑘̅ =
∑ ‖𝑫𝑖 −𝑫𝑖−1‖

1/2𝑘
𝑖=1

∑ ‖𝑫𝑖 −𝑫𝑖−1‖1/2ℎ
𝑖=1

      (𝑘 = 1, 2,⋯ , ℎ) (6) 

In the next step, an appropriate knot vector should be generated (see §2.3) and data points need to be 

approximated by a curve with 𝑛 + 1 control points (𝑛 ≤ ℎ) where the first and last control points are simply 

determined as 𝑷0 = 𝑫0 and 𝑷𝑛 = 𝑫ℎ. Finally, the remaining control points 𝑷 = [𝑷1, 𝑷2,⋯ , 𝑷𝑛−1]𝑇 can 

be computed in the least-squares sense through the minimization of the fitting objective function (i.e., 𝐿2-

norm fitting error) 𝑓 = ∑ ‖𝑫𝑘 − 𝒓(𝜉𝑘̅)‖𝐿2
2ℎ−1

𝑘=1 . In this case, the number of control points is to be determined 

such that the desirable fitting error is achieved. By setting the derivatives 𝜕𝑓/𝜕𝑷𝑖 equal to zero, and 

employing standard matrix algebra, one obtains the control points as [38]: 

𝑷 = (𝑩𝑇𝑩)−1𝑩𝑇𝑯 (7) 

where 
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𝑩 =

[
 
 
 
 
𝑁1
𝑝
(𝜉1̅) 𝑁2

𝑝
(𝜉1̅)

𝑁1
𝑝
(𝜉2̅) 𝑁2

𝑝
(𝜉2̅)

⋯
𝑁𝑛−1
𝑝
(𝜉1̅)

𝑁𝑛−1
𝑝
(𝜉2̅)

⋮ ⋱ ⋮
𝑁1
𝑝
(𝜉ℎ̅−1) 𝑁2

𝑝
(𝜉ℎ̅−1) ⋯ 𝑁𝑛−1

𝑝
(𝜉ℎ̅−1)]

 
 
 
 

 (8) 

and  

𝑯𝑘 = 𝑫𝑘 − 𝑁0
𝑝
(𝜉𝑘̅) 𝑫

0 −𝑁𝑛
𝑝
(𝜉𝑘̅) 𝑫

ℎ        (𝑘 = 1, 2,⋯ , ℎ − 1) (9) 

2.3 Knot Placement Techniques for Geometry Construction  

In order for the geometry to be appropriately approximated by B-spline curves, the position of the internal 

knots of the knot vector is of central importance. Moreover, considering that elements in the isogeometric 

framework are corresponding to non-zero knot spans on the curve, the constructed geometry will affect the 

solution output as well. There are different knot vector generation techniques for curve/surface 

approximation in the literature (see, e.g., [42, 45-47]) where some well-known algorithms are revisited here. 

It should be pointed out that all mentioned knot placement techniques result in non-repetitive increasing 

internal knots on the knot vector (i.e., 𝜉𝑖 < 𝜉𝑖+1). However, if multiple knots are of interest to lower the 

continuity at specific locations, the designer could add appropriate knots in a post-processing step. 

Geometries with sharp corners, which need 𝐶0 continuity (i.e., multiplicity of order 𝑝) at the corner, may 

require additional considerations as discussed in [21, 39]. 

2.3.1 Uniform Knot Placement 

In the uniform knot placement technique, the internal knots are equally spaced in the [0, 1] interval. This is 

the easiest knot placement technique in curve approximation, which may result in some difficulties such as 

numerical instability of the geometry construction. In this method, referring to Eq. (2), the arrangement of 

the internal knots is simply [38]: 

𝜉𝑝+𝑗 =
𝑗

𝑛 − 𝑝 + 1
       (𝑗 = 1, 2,⋯ , 𝑛 − 𝑝) (10) 

2.3.2 Knot Placement by De Boor’s Algorithm 

The De Boor’s algorithm is one of the most frequent knot placement techniques in curve reconstruction 

from input data that can bring in a stable and appropriate curve fitting. This method entails that, to guarantee 

every knot span contains at least one parameter 𝜉𝑘̅, the internal knots should be defined as follows [38]:  

𝜉𝑝+𝑗 = (1 − 𝛼)𝜉𝑖̅−1 + 𝛼𝜉𝑖̅       (𝑗 = 1, 2,⋯ , 𝑛 − 𝑝) (11) 

where by defining 𝑖𝑛𝑡(. ) as the floor function, we have: 
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𝛼 = 𝑗𝑑 − 1 

𝑖 = 𝑖𝑛𝑡(𝑗𝑑) 

𝑑 =
ℎ + 1

𝑛 − 𝑝 + 1
 

(12) 

2.3.3 Knot Placement by Piegl and Tiller’s Algorithm 

The third knot placement technique reviewed in this article is the algorithm presented by Piegl and Tiller 

[47]. This algorithm first groups (ℎ + 1)/(𝑛 + 1) consecutive parameters and averages them to find 𝑛 + 1 

representative values 𝑤𝑖 (𝑖 = 0, 1,⋯ , 𝑛). Then, 𝑝 consecutive values are averaged to yield the knots. Based 

on this algorithm, the internal knots can be determined as: 

𝜉𝑝+𝑗 =
1

𝑝
∑ 𝑤𝑖

𝑗+𝑝−1

𝑖=𝑗

       (𝑗 = 1, 2,⋯ , 𝑛 − 𝑝) (13) 

where 

𝑤𝑖 =
1

𝛼𝑖 − 𝛽𝑖 + 1
∑ 𝜉𝑘̅

𝛼𝑖

𝑘=𝛽𝑖

       (𝑖 = 0, 1,⋯ , 𝑛) (14) 

and 

𝛼𝑖 = 𝑖𝑛𝑡(𝑑𝑖 + 0.5)                

𝛽𝑖 = 𝛼𝑖−1 + 1       (𝛽0 = 0) 

𝑑𝑖 =
(𝑖 + 1)(ℎ + 1)

𝑛 + 1
− 1      

(15) 

Fig. 3 illustrates the effect of different knot placement techniques on fitting a cubic curve to a planar dataset 

noting that the quality of the fitted curve would increase by employing more control points. The least-

squares fitting errors are quantified as 2.734, 1.687, and 2.195 for uniformly spaced knots, De Boor’s and 

Piegl and Tiller’s algorithms, respectively. The figure shows that in addition to the quality of the fitting 

process, the positions of control points and the values of their respective basis functions, which are 

important in IGA, also depend on the knot placement technique adopted for the geometry construction. It 

should be also pointed out that a good curve fit does not guarantee an accurate IGA solution as it will be 

discussed later in Section 4. 
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 (a) 

 

(b) 

 

(c) 

Fig. 3.  Effect of different knot placement algorithms on curve fitting results and corresponding basis functions: (a) uniform, (b) 

De Boor, (c) Piegl and Tiller 
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3 Isogeometric Analysis of Spatial Curved Beams 

In this section, we present the adopted spatial curved beam formulation.  

3.1 Orientation Components in Space 

Given the parametric function 𝒓(𝜉) = [𝑥(𝜉), 𝑦(𝜉), 𝑧(𝜉)] representing the geometry of a curved beam in 

space, in order to describe the kinematics of deformation, the orientation components of the geometry 

should be specified. The most frequent orthonormal frame associated with the orientation of a space curve 

is the Frenet frame (Fig. 4) defined by three pairwise orthogonal unit vectors as follows [48]: 

𝓣(𝜉) =
𝒓′(𝜉)

‖𝒓′(𝜉)‖
 

𝓑(𝜉) =
𝒓′(𝜉) × 𝒓′′(𝜉)

‖𝒓′(𝜉) × 𝒓′′(𝜉)‖
 

𝓝(𝜉) = 𝓑(𝜉) × 𝓣(𝜉) 

(16) 

𝓣(𝜉), 𝓝(𝜉) and 𝓑(𝜉) are the unit tangent, normal and binormal vectors, respectively. Note that the 

binormal vector is perpendicular to the osculating plane of the curve spanned by the tangent and normal 

vectors. 

 

 

Fig. 4.  Orthonormal Frenet frame on a spatial curve 

 

In isogeometric formulation, it is necessary to compute the derivatives of the above-mentioned vectors 

which can be easily achieved by differentiating 𝓣(𝜉), 𝓝(𝜉) and 𝓑(𝜉) with respect to the curve parameter.  

3.2 Kinematics of Deformation 

In the current research, the convective curvilinear coordinate system, as described in Fig. 5, is employed 

for expressing the kinematics of spatial curved beams. The element formulation is based on Euler–Bernoulli 

beam theory assuming that the cross-section remains orthogonal to the centerline after deformation. It must 

        

 

 

 

 

 

  

                         𝓝 

 

 

                                                                                                            𝓣   

𝓑 
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be also noticed that the cross-section can undergo in-plane torsional shear deformation in spatial curved 

beams. Therefore, the deformed state of the beam can be characterized by four degrees of freedom (DOFs), 

which are three spatial displacement components and the in-plane cross-section rotation around the 

centerline.  

 

 

Fig. 5.  Reference (undeformed) vs. current (deformed) configurations of a spatial curved beam  

 

As shown in Fig. 5, the positions of an arbitrary point on the curve in the reference (undeformed) and 

current (deformed) configurations are: 

𝑿(𝜃1, 𝜃2, 𝜃3) = 𝑹(𝜃1) + 𝜃2𝑨2(𝜃
1) + 𝜃3𝑨3(𝜃

1) 

𝒙(𝜃1, 𝜃2, 𝜃3) = 𝒓(𝜃1) + 𝜃2𝒂2(𝜃
1) + 𝜃3𝒂3(𝜃

1) 
(17) 

where 𝜃𝑖 are curvilinear coordinates, 𝒓 and 𝑹 are the position vectors of the corresponding points on the 

centerline and vectors 𝑨𝑖 and 𝒂𝑖 are the base vectors in reference and current configurations, respectively. 

It should be pointed out that the vectors 𝑨𝑖 are related to the tangent 𝓣, the normal 𝓝, and the binormal 

𝓑 vectors of the geometry in its undeformed state, introduced in §3.1, as follows: 

𝑨1 = 𝓣
𝜕𝜉

𝜕𝜃1
 

𝑨2 = 𝓝  

𝑨3 = 𝓑 

(18) 

Using Eq. (17), the deformation vector 𝒖 is then expressed as: 

       Reference configuration                  Current configuration 

  

                                                
 
                                               
                                              𝜃2 
                                                 

                                              𝑨2 
                                                                                              𝒖 
                                                                                                                    
                                                                       𝒗 
                                                                                                    

                                                                                    𝜃1                         
                                                               𝑨1 
                                 𝑨3                                          
 

                       𝜃3               𝑿      𝑹 

                                                           𝒆2 
 
 
 

                                                                            𝒆1 
 

 
                                                𝒆3 
 

                                                       𝜃2 

                                                      𝒂2 
 

 
                                                                           𝜃1 
 

                                                                       𝒂1  

                                        𝒂3 

𝒙                                  𝜃3                                
                                   
𝒓 
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𝒖 = 𝒙 − 𝑿 = (𝒓 − 𝑹) − 𝜃2(𝒂2 − 𝑨2) + 𝜃
3(𝒂3 − 𝑨3) (19) 

or, 

𝒖 = 𝒗 − 𝜃2(𝒂2 − 𝑨2) + 𝜃
3(𝒂3 −𝑨3) (20) 

where 𝒗 is the centerline displacement vector that contains the unknown DOFs. In order to express the 

displacement field, a two-step mapping–rotation procedure adapted from [23] is employed. This procedure 

first aligns the tangent vectors in deformed and undeformed configurations by applying the mapping 

operator 𝚲, resulting in the 𝚲𝑨2 and 𝚲𝑨3 vectors, which are then rotated by the rotation matrix 𝑸 around 

the tangent vector to align them with 𝒂2 and 𝒂3, respectively (see Fig. 6). This mapping–rotation procedure 

amounts to finding 𝒂2 and 𝒂3 in the deformed state as follows (where 𝜙 is the rotational DOF): 

𝒂2 = 𝑸(𝜙) 𝚲(𝑨1, 𝒂1) 𝑨2 

𝒂3 = 𝑸(𝜙) 𝚲(𝑨1, 𝒂1) 𝑨3 
(21) 

 

 

Fig. 6.  Aligning base vectors in the deformed configuration by means of mapping–rotation procedure 

 

In the above-mentioned expressions, the mapping and rotation matrices 𝚲 and 𝑸 are described using the 

Euler–Rodriguez formula as: 

𝚲(𝑨1, 𝒂1) = 𝒆̂ ⨂ 𝒆̂ + cos(𝜙) (𝑰 − 𝒆̂ ⨂ 𝒆̂) + sin(𝜙)(𝒆̂ × 𝑰) 

𝑸(𝜙) = 𝑰 cos(𝜙) + sin(𝜙) (𝒂1 × 𝑰) 
(22) 

where 

𝒆̂ =
𝑨1 × 𝒂1
‖𝑨1 × 𝒂1‖

 

cos(𝜙) = 𝑨1 ⋅ 𝒂1 

sin(𝜙) = ‖𝑨1 × 𝒂1‖ 

(23) 

                 

                                                                     

                                                         𝜙 

                                              𝒂2           
                                                            𝚲𝑨2      
 
 
 

 

                                                                             𝒂1 
 
                   𝚲𝑨3 

                        𝜙        𝒂3 
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and 𝑰 is the 3×3 identity matrix. It is to be noted that in a linear assumption, cos(𝜙) ≅ 1 and sin(𝜙) ≅ 𝜙, 

resulting in the following simplified forms of 𝚲 and 𝑸: 

𝚲 = 𝑰 + (𝑨1 × 𝒂1) × 𝑰 

𝑸 = 𝑰 + 𝜙(𝒂1 × 𝑰) 
(24) 

In addition, 

𝒂1 = 𝑨1 + 𝒖,1 = 𝑨1 + 𝒗,1 (25) 

where the subscript ( ),1 refers to differentiation with respect to 𝜃1. The derivatives of 𝒂2 and 𝒂3 with 

respect to 𝜃1 will be also needed and can be obtained using the relations: 

𝒂2,1 = 𝑸,1𝚲𝑨2 +𝑸𝚲,1𝑨2 + 𝑸𝚲𝑨2,1 

𝒂3,1 = 𝑸,1𝚲𝑨3 +𝑸𝚲,1𝑨3 + 𝑸𝚲𝑨3,1 
(26) 

The general nonlinear Green–Lagrange strain measure is [23]: 

𝜺 =
1

2
(𝑔𝑖𝑗 − 𝐺𝑖𝑗) 𝑮

𝑖⨂ 𝑮𝑗 (27) 

where 𝑮𝑖 are the contravariant basis vectors, 𝑔𝑖𝑗 and 𝐺𝑖𝑗 are the covariant components of the metric tensor 

in the deformed and undeformed configurations, respectively, defined by: 

𝐺𝑖𝑗 = 𝑮𝑖 ⋅ 𝑮𝑗 

𝑔𝑖𝑗 = 𝒈𝑖 ⋅ 𝒈𝑗 
(28) 

The linearized form of 𝜺 for small displacements and strains can be determined as: 

𝜺 =
1

2
(𝒖,𝑖 ⋅ 𝑮𝑗 + 𝒖,𝑗 ⋅ 𝑮𝑖) 𝑮

𝑖⨂ 𝑮𝑗 = 𝐸𝑖𝑗  𝑮
𝑖⨂ 𝑮𝑗 (29) 

It should be noted that the covariant basis vectors in the deformed and undeformed configurations are 

defined as follows: 

𝑮1 = 𝑿,1 = 𝑹,1 + 𝜃
2𝑨2,1 + 𝜃

3𝑨3,1 

𝑮2 = 𝑨2 

𝑮3 = 𝑨3 

(30) 

𝒈1 = 𝒙,1 = 𝒂1 + 𝜃
2𝒂2,1 + 𝜃

3𝒂3,1 

𝒈2 = 𝒂2 

𝒈3 = 𝒂3 

(31) 

Using Eqs.(26) to (31), all non-zero terms of strain tensor are calculated as follows: 
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𝐸11 = 𝒖,1 ⋅ 𝑮1 = 𝒗,1 ⋅ 𝑨1⏞    
𝐼1
11

+ 𝜃2 (𝒂2,1 ⋅ 𝑨1 − 𝑨2,1 ⋅ 𝑨1 + 𝒗,1 ⋅ 𝑨2,1)
⏞                      

𝐼2
11

+ 𝜃3 (𝒂3,1 ⋅ 𝑨1 − 𝑨3,1 ⋅ 𝑨1 + 𝒗,1 ⋅ 𝑨3,1)
⏞                      

𝐼3
11

= 𝐼1
11 + 𝜃2𝐼2

11 + 𝜃3𝐼3
11 

(32) 

𝐸12 =
1

2
(𝒖,1 ⋅ 𝑮2 + 𝒖,2 ⋅ 𝑮1)

=
1

2
[ (𝒗,1 ⋅ 𝑨2 + 𝒂2 ⋅ 𝑨1)⏞            

𝐼1
12

+ 𝜃2 (𝒂2,1 ⋅ 𝑨2 + 𝒂2 ⋅ 𝑨2,1)⏞              
𝐼2
12

+ 𝜃3 (𝒂3,1 ⋅ 𝑨2 − 𝑨3,1 ⋅ 𝑨2 + 𝒂2 ⋅ 𝑨3,1 − 𝑨2 ⋅ 𝑨3,1)⏞                            
𝐼3
12

 ] = 𝐼1
12 + 𝜃2𝐼2

12 + 𝜃3𝐼3
12 

(33) 

𝐸13 =
1

2
(𝒖,1 ⋅ 𝑮3 + 𝒖,3 ⋅ 𝑮1)

=
1

2
[ (𝒗,1 ⋅ 𝑨3 + 𝒂3 ⋅ 𝑨1)⏞            

𝐼1
13

+ 𝜃2 (𝒂2,1 ⋅ 𝑨3 −𝑨2,1 ⋅ 𝑨3 + 𝒂3 ⋅ 𝑨2,1 − 𝑨3 ⋅ 𝑨2,1)⏞                            
𝐼2
13

+ 𝜃3 (𝒂3,1 ⋅ 𝑨3 + 𝒂3 ⋅ 𝑨3,1)⏞              

𝐼3
13

 ] = 𝐼1
13 + 𝜃2𝐼2

13 + 𝜃3𝐼3
13 

(34) 

In deriving the above equations, the following assumptions have been made: 

 For slender beams, quadratic terms including (𝜃2)
2, (𝜃3)

2 and 𝜃2𝜃3 are neglected. 

 Since, in Euler–Bernoulli theory, the cross-section remains normal to the centerline and cross-

sectional dimensions remain unchanged, one obtains: 

𝑨1 ⋅ 𝑨2 = 0;   𝑨1 ⋅ 𝑨3 = 0;    𝒂1 ⋅ 𝒂2 = 0;   𝒂1 ⋅ 𝒂3 = 0 

𝑨2,1 ⋅ 𝑨2 = 0;    𝑨3,1 ⋅ 𝑨3 = 0  
(35) 

 According to Euler–Bernoulli theory, we also have:  

𝐸22 = 𝐸33 = 𝐸23 = 0 

𝐼1
12 = 𝐼2

12 = 𝐼1
13 = 𝐼2

13 = 0 
(36) 

 In the computation of 𝐼1
11, 𝐼2

11, 𝐼3
11, 𝐼3

12 and 𝐼2
13, all nonlinear terms containing more than one DOF 

(or their derivatives) are neglected. 

 The Euler–Bernoulli beam theory necessitates having at least 𝐶1 continuity throughout the curve 

and therefore a quadratic approximation should be at least employed. However, in order to avoid 

membrane locking (i.e., incapability of reflecting inextensible bending), B-spline approximations 

of degree three or higher will be adopted in the following (see, e.g., [49, 50]). 
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With the strain and deflection components of Eqs. (32) to (34), and using Hamilton’s principle, one can 

obtain:  

𝛿𝑈 − 𝛿𝑇 − 𝛿𝑊 = 0 (37) 

where 𝑈 is the internal potential energy, 𝑇 is the kinetic energy, and 𝑊 is the work done by the external 

forces, such that:   

𝛿𝑈 = ∫𝛿(𝜺𝑇)𝑪𝜺
 

Ω

𝑑Ω 

𝛿𝑇 = ∫𝛿(𝒖̇𝑇)𝜌𝒖̇
 

Ω

𝑑Ω 

𝛿𝑊 = ∫𝛿𝒖𝑇𝒇𝑏
Ω

𝑑Ω +∫𝛿𝒖𝑇𝒇𝑠
𝐴

𝑑𝐴 

(38) 

In the above equations, the matrix 𝑪 describes the material properties and is defined as:  

𝑪 = [
𝐸 0 0
0 𝐺 0
0 0 𝐺

] (39) 

being 𝐸, 𝐺 and 𝜌 the values of elasticity modulus, shear modulus, and density, respectively. In addition, 𝒇𝑏 

and 𝒇𝑠 are the body and surface loads, respectively. 

3.3 Isogeometric Discretization 

Based on the isoparametric concept of the IGA approach, the discrete displacement field of the centerline 

(𝑣) and the rotational DOF (𝜙) are defined by B-spline shape functions representing the beam geometry. 

Referring to Fig. 7, within the 𝑘-th element Ω𝑒: 𝑠 ∈ [𝑠𝑘−1, 𝑠𝑘] on the curved beam that is equivalent to      

𝜉 ∈ [𝜉𝑝+𝑘−1, 𝜉𝑝+𝑘] on the parameter space (in the case of non-repetitive internal knots), the local support 

property of B-spline curves necessitates having 𝑝 + 1 non-zero (i.e., active) 𝐶𝑝−1 basis functions, namely 

𝑁𝑘−1
𝑝 (𝜉) to 𝑁𝑘+𝑝−1

𝑝
(𝜉) where the corresponding control points are 𝑷𝑘−1 to 𝑷𝑘+𝑝−1 [38]. Table 1 presents 

the geometry and deformation fields of spatial curved beams in the isogeometric framework where 𝑥, 𝑦 and 

𝑧 denote the position of an arbitrary point on the centerline, [𝑋𝑖 , 𝑌𝑖, 𝑍𝑖] is the position of 𝑖-th control point 

of the geometry in space, 𝑣𝑥
𝑒 , 𝑣𝑦

𝑒 , 𝑣𝑧
𝑒 and 𝜙𝑒 are DOFs at the element level, and 𝑉𝑥

𝑖 , 𝑉𝑦
𝑖 , 𝑉𝑧

𝑖 and Φ𝑖 are 

their respective control variables. Finally, it should be also pointed out that integration over the element 

space is performed in the parent element domain 𝜉 ∈ [−1, 1] using a standard Gauss–Legendre quadrature 

rule. 
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Fig. 7.  Characterization of a curved beam element in IGA 

 

Table 1.  B-spline representation of the geometry and field variables of spatial curved beams 

Geometry Field variables over the 𝑘-th element 

𝑥(𝜉) =∑𝑁𝑖
𝑝(𝜉) 𝑋𝑖

𝑛

𝑖=0

 𝑣𝑥
𝑒(𝜉) = ∑ 𝑁𝑖

𝑝(𝜉) 𝑉𝑥
𝑖

𝑘+𝑝−1

𝑖=𝑘−1

 

𝑦(𝜉) =∑𝑁𝑖
𝑝(𝜉) 𝑌𝑖 

𝑛

𝑖=0

 𝑣𝑦
𝑒(𝜉) = ∑ 𝑁𝑖

𝑝(𝜉) 𝑉𝑦
𝑖

𝑘+𝑝−1

𝑖=𝑘−1

 

𝑧(𝜉) =∑𝑁𝑖
𝑝(𝜉) 𝑍𝑖

𝑛

𝑖=0

 𝑣𝑧
𝑒(𝜉) = ∑ 𝑁𝑖

𝑝(𝜉) 𝑉𝑧
𝑖

𝑘+𝑝−1

𝑖=𝑘−1

 

 𝜙𝑒(𝜉) = ∑ 𝑁𝑖
𝑝(𝜉) Φ𝑖

𝑘+𝑝−1

𝑖=𝑘−1

 

 

 

By implementing the isogeometric framework, the stiffness and mass matrices and the force vector at the 

element level are obtained through the discretization of Eq. (37). The above-mentioned matrices are then 

assembled to solve the following static and eigenvalue problems (see, e.g., [40, 50, 51]): 

     

 
 

 
 

 
 
 

Geometric domain 

 

 

 

 

 

 

 

 

Basis functions 

 

 

 

 
Parametric domain 

 

 
 

 

Parent element 
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𝑲𝒒 = 𝑭 

(𝑲 − 𝜔2𝑴)𝒒 = 𝟎 
(40) 

where 𝑲, 𝑴 and 𝑭 are the global stiffness matrix, the global mass matrix, and the global force vector, 

respectively, while 𝜔 are the eigenfrequencies and 𝒒 is the vector of nodal degrees of freedom, i.e.,             

𝒒 = [𝑉𝑥
0,⋯ , 𝑉𝑥

𝑛, 𝑉𝑦
0,⋯ , 𝑉𝑦

𝑛, 𝑉𝑧
0,⋯ , 𝑉𝑧

𝑛, Φ0,⋯ ,Φ𝑛]
𝑇

. Given the nodal DOFs, one can simply obtain the 

distribution of stress results (like bending moments) along the beam using the derivatives of the 

displacement fields. 

4 Case Studies 

The different knot placement techniques are herein tested by three case studies of free-form geometries, 

namely the Tschirnhausen, the elliptic spiral, and the Lissajous beams. For this purpose, the natural 

frequencies and static deflection under an end force are obtained for the mentioned beams using 

isogeometric analysis in combination with different knot placement techniques. Some explanatory remarks 

regarding the numerical results of this section follow: 

 In all examples, a circular cross-section of 0.1 m radius is assumed. In addition, the Young 

modulus, the Poisson ratio, and the density of all curved beams are assumed to be 𝐸 = 200 GPa, 

𝜈 = 0.3, and 𝜌 = 1000 kg/m3, respectively, while the shear modulus is calculated as 𝐺 =
𝐸

2(1+𝜈)
. 

 The geometry of each example is constructed by B-spline curves of degrees 3, 4, and 5 with 

arbitrary input data points. The parameterization is based on the chord-length approach (see §2.2) 

and the number of control points is selected in such a way that a desirable curve fit as well as 

converged IGA results are achieved. 

 Increasing the number of control points at each refinement level needs a new curve fitting process, 

so that the beam geometry will be subject to a slight change (i.e., improved in terms of fitting error). 

As a result, the convergence rates may be different as compared to typical ℎ-, 𝑝- and 𝑘-refinements 

(see §5.3). 

 Since an analytical solution does not exist for the considered curved beam examples, IGA results 

are compared with “overkill” finite element results, obtained with the commercial software 

ABAQUS by generating appropriate meshes of quadratic beam elements at least 100 times finer 

than the finest adopted IGA mesh. As a result, theoretical convergence rates of deflection and 

frequency errors cannot be determined. 

 For different natural frequencies, the convergence behavior might be different. The characteristics 

of the basis functions and the positions of knots (obtained through data fitting process) with respect 

to different mode shapes are our main justification for such a trend. 

 In particular, the reference results for the first three natural modes are computed and listed in      

Table 2. 
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Table 2.  Reference finite element results for the first three natural frequencies of the case studies (Hz) 

 Mode 1 Mode 2 Mode 3 

The Tschirnhausen beam 3.644 3.879 18.678 

The elliptic spiral beam 0.770 0.786 0.995 

The Lissajous beam 9.172 9.823 14.3108 

 

4.1 The Tschirnhausen Beam 

The first example is the Tschirnhausen curved beam, whose initial geometry is planar. Input data points of 

the curve are obtained using the following analytical formula: 

𝑥 = −3(𝑡2 − 3) 

𝑦 = −𝑡(𝑡2 − 3) 
(41) 

where 1000 input data points are considered for the current analysis (a selection of these points is depicted 

in Fig. 8). The curve is clamped at the right end and is subjected to a 2 KN point load in the 𝑧–direction at 

the left end. 

 

 

Fig. 8.  Input data points for the Tschirnhausen beam 

 

In order to construct a suitable geometry for IGA, B-spline curves with different numbers of control points 

are fitted. In order to explore the effect of different knot placement techniques on the shape functions of the 

field variables in IGA, the cubic basis function plots and respective knot positions are depicted in Fig. 9 for 

a coarse mesh with 10 control points. As it can be seen, the generated knot vectors and the values of basis 

functions are dependent on the positions of input dataset when the De Boor’s and Piegl and Tiller’s 

algorithms are employed. 
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Fig. 9.  Cubic basis function plots and respective knot positions for a coarse mesh (with 10 control points) of the Tschirnhausen 

beam: (a) uniform knot placement, (b) De Boor’s algorithm, (c) Piegl and Tiller’s algorithm 

 

The 𝐿2-norm error of the deflection ‖𝒗 − 𝒗FEA‖𝐿2 and the frequency error |𝜔/𝜔FEA  − 1| of the first three 

natural modes versus the number of approximating control points are compared for different knot placement 

techniques and different degrees of basis functions in Fig. 10 (the errors are computed with reference to the 

“overkill” finite element results). It can be seen in the figure that convergence plots reach a plateau in the 

2nd and 3rd modes, while, in the 1st mode or in the static deflection, more control points are needed to 

reach convergence and a lower convergence rate is observed. This might be due to the fact that in these 

cases the planar beam undergoes an out-of-plane deformation creating some shear strain that cannot be fully 

captured by the Euler–Bernoulli beam theory. The in-plane and out-of-plane mode shapes of this example 

are illustrated in Fig. 11. The results show that the use of the De Boor’s and Piegl and Tiller’s knot 

placement algorithms leads to more accurate outputs, especially when a coarse mesh is employed, while 

the uniform knot placement method is the least effective. One reason for the effectiveness of the De Boor’s 

algorithm lies within the fact that it generates more accurate geometries as shown quantitatively in Fig. 12 

through the least-squares fitting error. Nevertheless, it is not always true that less approximation errors lead 

to IGA results with higher accuracies. For example, in this case study, the results of the De Boor’s algorithm 

for quintic basis functions are less accurate compared to Piegl and Tiller’s algorithm (Fig. 10), while in 

terms of fitting error (Fig. 12), the De Boor’s algorithm is more accurate for the same number of control 

points. It is important to note that in computer-aided design, the convergence rate of curve fitting problems 

depends on different items. For instance, the number and distribution of input data points, the degree of the 

basis functions, the parameter selection and knot placement schemes, and even the complexity of the curve 

(i.e., how curvature and torsion vary throughout the curve) can influence the convergence rate (see, e.g., 

[38]), as it can be also observed in the presented results. Therefore, one can hardly predict a theoretical 

convergence rate for curve fitting problems. 
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                (a) 

 
                 (b) 

Fig. 10.  Comparison of different knot placement techniques in (a) static deflection and (b) natural frequency results for the 

Tschirnhausen beam: computation error vs. number of approximating control points for different spline degrees 

 

The entire frequency spectra of a coarse and a relatively fine considered mesh (of 10 and 22 control points, 

respectively) are also illustrated in Fig. 13 for different knot placement approaches. In this figure, the 

resulting natural frequencies 𝜔 are normalized with respect to the reference FEA solution, 𝜔FEA, and plotted 

versus the mode number, 𝑖, normalized with respect to the total number of DOFs, 𝑁. The frequency spectra 

graphs show that IGA results obtained by De Boor’s knot placement algorithm are more reliable in lower 

natural frequencies and also when a coarse mesh is considered. In fact, there is no distinguishable difference 

among the three studied knot placement techniques for higher frequencies. 
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Fig. 11.  First three natural modes for the Tschirnhausen beam  

 

 

Fig. 12.  Least-squares fitting error for the Tschirnhausen beam vs. number of approximating control points for different knot 

placement techniques and different spline degrees 

 

 

 

Fig. 13.  Frequency spectra for the Tschirnhausen beam for different knot placement techniques: (a) a coarse mesh with 10 

control points (i.e., 40 DOFs), (b) a relatively fine mesh with 22 control points (i.e., 88 DOFs) 
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Finally, considering that engineers are always interested in a good approximation of stress resultants like 

bending moments, the relative 𝐿2-norm errors of bending moments for the Tschirnhausen beam, obtained 

by cubic basis functions and different knot placement algorithms, are shown in Fig. 14. 

 

 

Fig. 14.  Relative 𝐿2-norm errors of bending moment resultants throughout the Tschirnhausen beam with cubic basis 

 

4.2 The Elliptic Spiral Beam 

An elliptic spiral curve is considered as the second example. Spirals are well-known spatial geometries that 

can be frequently seen in common engineering structures. The elliptic spiral of the current case study has 

variable curvature and torsion since its base curve is an ellipse. Some input data points of this example are 

shown in Fig. 15 noting that the structure is assumed to be clamped at the lower end and undergoes a tip 

force of 2 KN in the 𝑧–direction at the upper end. The analytical expression of the curve is represented in 

Eq. (42). It should be noticed that the elliptic spiral has an exact NURBS representation as described in 

[29]. However, if the NURBS curve fitting is of interest, a nonlinear optimization problem should be solved 

to find unknown control points and respective weights (see, e.g., [42, 43]). This nonlinear optimization 

procedure is relatively expensive for IGA compared to the currently investigated B-spline curve 

approximation taking into account that we can reach a significant accuracy in results with more control 

points and by employing appropriate parameterization and knot placement schemes. 

 

𝑥 = 2 cos(𝑡) 

𝑦 = 4 sin(𝑡) 

𝑧 =
𝑡

4
 

(42) 
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Fig. 15.  Input data points of the elliptic spiral beam 

 

The effect of different knot placement techniques on the cubic basis functions and respective knot positions 

of the elliptic spiral example are depicted in Fig. 16 for a coarse mesh with 50 control points. 

 

 

Fig. 16.  Cubic basis function plots and respective knot positions for a coarse mesh (with 50 control points) of the elliptic spiral 

beam: (a) uniform knot placement, (b) De Boor’s algorithm, (c) Piegl and Tiller’s algorithm 

 

The comparisons of the IGA results obtained by different knot placement techniques are presented in        

Fig. 17a and Fig. 17b for the static deflection and the first three natural frequencies, respectively. The least-

squares fitting error is also shown in Fig. 18. The results show again the superiority of the De Boor’s 

algorithm since it typically leads to more accurate geometries as well as more accurate IGA results 

(although the Piegl and Tiller’s algorithm may be occasionally better). We also highlight the poor 

performance of the uniform knot placement strategy. The entire frequency spectra are also depicted in        
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Fig. 19. The full spectra plots inform us that in higher frequencies, all knot vector generation methods result 

in almost the same accuracy. Nevertheless, in lower frequencies and for coarse meshes, the uniform knot 

placement technique shows again poor results. Finally, the relative 𝐿2-norm errors of bending moments for 

the elliptic spiral beam, obtained by cubic basis functions and different knot placement algorithms, are 

shown in Fig. 20.  

 

 
                 (a) 

 
                  (b) 

Fig. 17.  Comparison of different knot placement techniques in (a) structural static and (b) natural frequency analyses of the 

elliptic spiral beam: computation error vs. number of approximating control points for different spline degrees 
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Fig. 18.  Least-squares fitting error of the elliptic spiral beam vs. number of approximating control points for different knot 

placement techniques and different degrees of basis functions 

 

 

Fig. 19.  Frequency spectra of the elliptic spiral beam for different knot placement techniques: (a) a coarse mesh with 50 and (b) a 

fine mesh with 150 control points 

 

 

Fig. 20.  Relative 𝐿2-norm errors of bending moments for the elliptic spiral beam, obtained by cubic basis functions and different 

knot placement algorithms 
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4.3 The Lissajous Beam 

The Lissajous curve is a graph of complex harmonic motion in space that is described by the following 

analytical equations: 

𝑥 = cos(3𝑡) 

𝑦 = sin(2𝑡) 

𝑧 = sin(7𝑡) 

(43) 

For modeling the third case study, 1000 data points were considered for isogeometric analysis of the 

Lissajous curved beam (some of them are shown in Fig. 21), noting that he curve is clamped at the left end 

and undergoes a point load of 200 KN in the 𝑧–direction at the right end. The effect of different knot 

placement techniques on the cubic basis functions and respective knot positions on the knot vector of the 

Lissajous example are depicted in Fig. 22 for a coarse mesh with 40 control points. 

 

Fig. 21.  Input data points of the Lissajous beam 

 
Fig. 22.  Cubic basis function plots and respective knot positions for a coarse mesh (with 40 control points) of the Lissajous 

beam: (a) uniform knot placement, (b) De Boor’s algorithm, (c) Piegl and Tiller’s algorithm 
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The same results as previous examples are presented in Fig. 23 and Fig. 24. The general conclusions 

obtained in the previous examples can be inferred again (and magnified) in the Lissajous complex curved 

beam, which are listed as follows: 

 The De Boor’s knot placement technique is, in overall, better than other two studied knot placement 

algorithms in isogeometric analysis-aware modeling. 

 In general, the uniform knot placement method is significantly less accurate (particularly with a 

lower convergence rate). 

 As discussed earlier, convergence to exact solutions in eigenfrequency and deflection errors of free-

form case studies hardly obtainable, because no analytical solution does exist for such examples 

and the reference solution is also a numerical one obtained by an overkill FEA simulation.  

 When it comes to curve fitting problems, we can achieve lower errors by increasing the number of 

control points (i.e., DOFs). In this case, the fitting error is computed as the Euclidean distance 

between input data points and the fitted curve. As we stated in §2.2, zero fitting error is guaranteed 

by setting the number of control points equal to data points, so that the curve approximation is 

converted to interpolation that is not always of interest in curve fitting problems (see, e.g. [38, 44, 

48]). 

 

The plot of full frequency spectra for the third case study is also depicted in Fig. 25. The presented results 

show the same trend discussed in previous examples (i.e., more precisely, almost the same accuracy at 

higher frequencies and outliers for all knot placement techniques, and the superior behavior of the De 

Boor’s algorithm in lower frequencies and for coarser meshes). The poor performance of the uniform knot 

vector in lower frequencies is particularly evident in this example. 

 

 

            (a) 
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              (b) 

Fig. 23.  Comparison of different knot placement techniques in (a) 𝐿2-norm deflection error and (b) natural frequency analysis of 

the Lissajous beam: computation error vs. number of approximating control points for different spline degrees 

  

 

Fig. 24.  𝐿2-norm fitting error of the Lissajous beam vs. number of approximating control points for different knot placement 

techniques and different spline degrees 
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Fig. 25.  Frequency spectra of the Lissajous beam for different knot placement techniques: (a) a coarse mesh with 40 and (b) a 

fine mesh with 140 control points 

 

Finally, the relative 𝐿2-norm errors of bending moments for the Lissajous beam, obtained by cubic basis 

functions and different knot placement algorithms, are shown in Fig. 26.  

 

 

Fig. 26.  Relative 𝐿2-norm errors of bending moments for the Lissajous beam, obtained by cubic basis functions and different 

knot placement algorithms 

 

5 Supplementary Investigations 

In this section, we perform some additional investigations to demonstrate how the knot placement 

techniques can deal with different geometric aspects of the IGA framework. In our assessments, we first 

consider the situations in which different data distributions of the geometry of interest are input. Then, the 

presence of noise in data distribution and its impact on IGA results are studied, followed by a comparison 

between the geometry construction by curve fitting and typical refinements techniques. Finally, we 
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investigate how the fitting error obtained by De Boor’s algorithm can be close to the optimal knot placement 

in which the knot positions are found by an optimization procedure.  

5.1 Different Distributions of Data Points 

In order to investigate how the IGA results may depend on the initial distribution of the input data points, 

two case studies of this article, namely, the Tschirnhausen and Lissajous beams, are revisited here with 

different data distributions. These distributions are obtained by different increments of parameter 𝑡 in the 

analytical expression of the respective geometries. Although geometry construction by curve fitting seems 

to be sensitive to initial data distribution, the IGA results are shown to be quite insensitive to how the input 

data are provided when the quasi-linear parameterization of the chord-length parameter selection scheme 

is combined with De Boor’s knot placement technique. In the first example of this section (see Fig. 27), 

two different data distributions of the Tschirnhausen beam, in which the input data are biased to the right 

and left ends of the beam (Cases 1 and 2, respectively), are compared to the original model (Case 3), studied 

earlier in §4.1, while cubic basis functions are considered. It should be noted that for different natural 

frequencies, the convergence behavior might be different. The characteristics of the basis functions and the 

positions of knots (obtained through data fitting process) with respect to different mode shapes are our main 

justification for such a trend. In the second example, as shown in Fig. 28, we study different knot placement 

algorithms on three different data distributions of the Lissajous example in which the input data are biased 

to the ends (Case 1) and center (Case 2) of the beam and compared to the original model (Case 3). The 

eigenfrequency and fitting errors obtained by cubic bases for different data distributions are also reported 

in the figure. It can be seen that the De Boor’s algorithm can generally lead to more accurate IGA results.  

 

 

 (a) 
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           (b) 

Fig. 27.  (a) Different data distributions of the Tschirnhausen beam and (b) their impacts on first three eigenfrequencies obtained 

by cubic bases; Note: Case 3 in part (b) is the reproduction of Fig. 10b for 𝑝 = 3 

 

  

 
 (a) 
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           (b) 

 
           (c) 

Fig. 28.  (a) Different data distributions of the Lissajous beam, (b) their impacts on first three eigenfrequencies and (c) curve 

fitting errors with cubic bases; Note: Case 3 in parts (b) and (c) are the reproductions of Fig. 23b and Fig. 24 for 𝑝 = 3 

 

5.2 Effect of Noisy Data 

In order to investigate how a noisy dataset may affect the IGA results, we herein study the elliptic spiral 

beam with noisy distribution of input data points. Fig. 29a depicts some input data with noise levels of 1% 

and 3%. By studying the effect of different noise levels on first three eigenfrequencies obtained by cubic 

basis functions and different knot placement algorithms (Fig. 29b), it is indicated that increasing the number 
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of control points up to a certain level, depending on the noise magnitude, may improve the IGA results. 

However, with more control points, it is clear that the fitted B-spline curve would be more flexible and 

follow the noisy data with lower fitting error. Consequently, the fitted curve deviates more from the original 

geometry and the IGA errors increase compared to the reference solution. It is also clear in the figure that 

De Boor’s knot placement algorithm generally leads to lower simulation errors. 

 

  

         (a) 

 

        (b) 

Fig. 29.  (a) Input data of elliptic spiral beam with 1% and 3% noise levels, (b) effect of different noise levels on first three 

eigenfrequencies of elliptic spiral beam obtained by cubic basis functions and different knot placement algorithms 

 

5.3 Typical 𝒉-Refinement vs. Curve Fitting 

In the presented IGA framework with curved beams given in terms of input data points, the geometry is 

obtained by curve approximation and the mesh refinement is performed inherently in the fitting process by 

selecting the appropriate number of control points. Hence, both fitting and frequency (or static) analysis 
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errors will generally be reduced by employing more control points. However, if the geometry is constructed 

by lower (i.e., not enough) number of control points and then the appropriate mesh density is to be obtained 

by a typical ℎ-refinement, the IGA errors may converge to larger values compared to those obtained by the 

same number of control points in curve fitting. This is because for the former, the geometry inherits a larger 

fitting error and deviates more from the reference solution. This comparison is illustrated in Fig. 30 for the 

first eigenfrequency of the elliptic spiral beam, noting that for the ℎ-refined geometries, the initial fitted 

curve had 32 control points. It is also clear that one can simply perform curve fitting with more control 

points and employ a knot placement technique that produces a better fit; and then, use typical ℎ-, 𝑝- and 𝑘-

refinements on the same geometry to make the analysis results as accurate as desired. 

 

 

Fig. 30.  Comparison of the first eigenfrequency results of the elliptic spiral beam when the geometry is obtained by curve fitting 

(solid lines) and by ℎ-refinement (dashed lines) 

 

5.4 Comparing to Optimal Knot Placement 

In order to obtain the best knot placement for curve approximation, we can consider internal knots of the 

knot vector as unknowns that should be found along with control points in the curve fitting process. The 

procedure, however, entails performing an optimization to find the best knot positions. Although we may 

achieve a better curve fit in this way, we need to spend more time to perform the optimization (about 100 

times greater than that required for other three algorithms). On the hand, as shown in Fig. 31 for the 

Tschirnhausen example, the fitting error obtained by De Boor’s algorithm is very close to the optimal knot 

placement error, especially when the number of control points increases. In this figure, a gradient-based 

optimization with sequential quadratic programming (SQP) is employed. Consequently, it is not reasonable 

to employ such optimization directly in an isogeometric problem and the De Boor’s method can be used 

instead. 
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Fig. 31.  Convergence of fitting error of the Tschirnhausen example obtained by the optimal and well-known knot placements 

 

6 Conclusions 

The effect of different knot placement techniques in geometry construction for isogeometric analysis is 

investigated in this study. Using the implemented IGA formulation for structural static and vibration 

analyses of free-form spatial curved beams, three well-known knot vector generation approaches (namely, 

uniformly spaced, De Boor’s, and Piegl and Tiller’s algorithms) are compared in the cases that the geometry 

needs to be constructed from input dataset by means of a curve approximation. The main message of the 

present research lies in the fact that employing different knot placement techniques not only affects the 

quality of the constructed geometry but also changes the characterization of the IGA elements and therefore 

the accuracy of results. Different case studies and numerical examples are presented in this paper and the 

results are validated against commercial finite element software. All examples revealed that the De Boor’s 

algorithm typically leads to superior results compared to uniformly spaced and Piegl and Tiller’s knot 

placement strategies. Interestingly, the widely used uniformly spaced knot placement technique may lead 

to particularly inaccurate results. Future works may include the extension of the present study to 2D and 

3D problems although the authors would like to add the fact that the linear (pseudo arclength) 

parameterization that was adopted in this paper and works so nicely for beams is not easy to be extended 

to multidimensional cases. 
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