6,638 research outputs found

    Sliding mode control based piezoelectric actuator control

    Get PDF
    In this paper a method for piezoelectric stack actuator control is proposed. In addition a brief discussion about the usage of the same methods for estimation of external force acting to the actuator in contact with environment is made. The method uses sliding mode framework to design both the observer and the controller based on an electromechanical lumped model of the piezoelectric actuator. Furthermore, using a nonlinear differential equation the internal hysteresis disturbance is removed from the total disturbance in an attempt to estimate the external force acting on the actuator. It is then possible to use this external force estimate as a means of force control of the actuator. Simulation and experiments are compared for validating the disturbance and external force estimation technique. Some experiments that incorporate disturbance compensation in a closed-loop SMC control algorithm are also presented to prove the effectiveness of this method in producing high precision motion

    Discrete sliding mode control of piezo actuator in nano-scale range

    Get PDF
    In this paper Discrete Sliding Mode Control (SMC) of Piezo actuator is demonstrated in order to achieve a very high accuracy in Nano-scale with the desired dynamics. In spite of the fast dynamics of the Piezo actuator the problem of chattering is eliminated with the SMC control structure. The Piezo actuator suffers from hysteresis loop which is the inherent property and it gives rise to the dominant non-linearity in the system. The proposed SMC control structure has been proved to deliver chattering free motion along with the compensation of the non linearity present due to hysteresis in the system. To further enhance the accuracy of the closed loop system and to be invariant to changes in the plant parameters a robust disturbance observer is designed on SMC framework by taking into consideration the lumped nominal plant parameters. Experimental results for closed loop position are presented in order to verify the Nano-scale accuracy

    Analysis of a discrete-layout bimorph disk elements piezoelectric deformable mirror

    Get PDF
    We introduce a discrete-layout bimorph disk elements piezoelectric deformable mirror (DBDEPDM), driven by the circular flexural-mode piezoelectric actuators. We formulated an electromechanical model for analyzing the performance of the new deformable mirror. As a numerical example, a 21-actuators DBDEPDM with an aperture of 165 mm was modeled. The presented results demonstrate that the DBDEPDM has a stroke larger than 10  μm and the resonance frequency is 4.456 kHz. Compared with the conventional piezoelectric deformable mirrors, the DBDEPDM has a larger stroke, higher resonance frequency, and provides higher spatial resolution due to the circular shape of its actuators. Moreover, numerical simulations of influence functions on the model are provided

    The role of electrostriction on the stability of dielectric elastomer actuators

    Full text link
    In the field of soft dielectric elastomers, the notion electrostriction indicates the dependency of the permittivity on strain. The present paper is aimed at investigating the effects of electrostriction onto the stability behaviour of homogeneous electrically activated dielectric elastomer actuators. In particular, three objectives are pursued and achieved: i) the description of the phenomenon within the general nonlinear theory of electroelasticity; ii) the application of the recently proposed theory of bifurcation for electroelastic bodies in order to determine its role on the onset of electromechanical and diffuse-mode instabilities in prestressed or prestretched dielectric layers; iii) the analysis of band-localization instability in homogeneous dielectric elastomers. Results for a typical soft acrylic elastomer show that electrostriction is responsible for an enhancement towards diffuse-mode instability, while it represents a crucial property - necessarily to be taken into account - in order to provide a solution to the problem of electromechanical band-localization, that can be interpreted as a possible reason of electric breakdown. A comparison between the buckling stresses of a mechanical compressed slab and the electrically activated counterpart concludes the paper

    Sliding mode based piezoelectric actuator control

    Get PDF
    In this paper a control of method for a piezoelectric stack actuator control is proposed. In addition briefly the usage of the same methods for estimation of external force acting to the actuator in contact with environment is discussed. The method uses sliding mode framework to design both the observer and the controller based on an electromechanical lumped model of the piezoelectric actuator. Furthermore, using a nonlinear differential equation the internal hysteresis disturbance is removed from the total disturbance in an attempt to estimate the external force acting on the actuator. It is then possible to use this external force estimate as a means of force control of the actuator. Simulation and experiments are compared for validating the disturbance and external force estimation technique. Some experiments that incorporate disturbance compensation in a closed-loop SMC control algorithm are also presented to prove the effectiveness of this method in producing high precision motion

    Piezo-electromechanical smart materials with distributed arrays of piezoelectric transducers: Current and upcoming applications

    Get PDF
    This review paper intends to gather and organize a series of works which discuss the possibility of exploiting the mechanical properties of distributed arrays of piezoelectric transducers. The concept can be described as follows: on every structural member one can uniformly distribute an array of piezoelectric transducers whose electric terminals are to be connected to a suitably optimized electric waveguide. If the aim of such a modification is identified to be the suppression of mechanical vibrations then the optimal electric waveguide is identified to be the 'electric analog' of the considered structural member. The obtained electromechanical systems were called PEM (PiezoElectroMechanical) structures. The authors especially focus on the role played by Lagrange methods in the design of these analog circuits and in the study of PEM structures and we suggest some possible research developments in the conception of new devices, in their study and in their technological application. Other potential uses of PEMs, such as Structural Health Monitoring and Energy Harvesting, are described as well. PEM structures can be regarded as a particular kind of smart materials, i.e. materials especially designed and engineered to show a specific andwell-defined response to external excitations: for this reason, the authors try to find connection between PEM beams and plates and some micromorphic materials whose properties as carriers of waves have been studied recently. Finally, this paper aims to establish some links among some concepts which are used in different cultural groups, as smart structure, metamaterial and functional structural modifications, showing how appropriate would be to avoid the use of different names for similar concepts. © 2015 - IOS Press and the authors

    Damage identification in structural health monitoring: a brief review from its implementation to the Use of data-driven applications

    Get PDF
    The damage identification process provides relevant information about the current state of a structure under inspection, and it can be approached from two different points of view. The first approach uses data-driven algorithms, which are usually associated with the collection of data using sensors. Data are subsequently processed and analyzed. The second approach uses models to analyze information about the structure. In the latter case, the overall performance of the approach is associated with the accuracy of the model and the information that is used to define it. Although both approaches are widely used, data-driven algorithms are preferred in most cases because they afford the ability to analyze data acquired from sensors and to provide a real-time solution for decision making; however, these approaches involve high-performance processors due to the high computational cost. As a contribution to the researchers working with data-driven algorithms and applications, this work presents a brief review of data-driven algorithms for damage identification in structural health-monitoring applications. This review covers damage detection, localization, classification, extension, and prognosis, as well as the development of smart structures. The literature is systematically reviewed according to the natural steps of a structural health-monitoring system. This review also includes information on the types of sensors used as well as on the development of data-driven algorithms for damage identification.Peer ReviewedPostprint (published version

    Continuous time controller based on SMC and disturbance observer for piezoelectric actuators

    Get PDF
    Abstract – In this work, analog application for the Sliding Mode Control (SMC) to piezoelectric actuators (PEA) is presented. DSP application of the algorithm suffers from ADC and DAC conversions and mainly faces limitations in sampling time interval. Moreover piezoelectric actuators are known to have very large bandwidth close to the DSP operation frequency. Therefore, with the direct analog application, improvement of the performance and high frequency operation are expected. Design of an appropriate SMC together with a disturbance observer is suggested to have continuous control output and related experimental results for position tracking are presented with comparison of DSP and analog control application

    Design and application of electromechanical actuators for deep space missions

    Get PDF
    During the period 8/16/92 through 2/15/93, work has been focused on three major topics: (1) screw modeling and testing; (2) motor selection; and (3) health monitoring and fault diagnosis. Detailed theoretical analysis has been performed to specify a full dynamic model for the roller screw. A test stand has been designed for model parameter estimation and screw testing. In addition, the test stand is expected to be used to perform a study on transverse screw loading
    corecore