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Abstract - In this paper a method for piezoelectric stack actuator 
control is proposed. In addition a brief discussion about the 
usage of the same methods for estimation of external force 
acting to the actuator in contact with environment is made. The 
method uses sliding mode framework to design both the 
observer and the controller based on an electromechanical 
lumped model of the piezoelectric actuator. Furthermore, using 
a nonlinear differential equation the internal hysteresis 
disturbance is removed from the total disturbance in an attempt 
to estimate the external force acting on the actuator. It is then 
possible to use this external force estimate as a means of force 
control of the actuator. Simulation and experiments are 
compared for validating the disturbance and external force 
estimation technique.  Some experiments that incorporate 
disturbance compensation in a closed-loop SMC control 
algorithm are also presented to prove the effectiveness of this 
method in producing high precision motion.   
 
 I. INTRODUCTION.  
 
The use of piezoelectric actuators for accurate and stable 
control of manipulator position and/or force is greatly 
facilitated by model-based control system analysis and 
design. Inherent nonlinearities composed primarily of 
hysteresis in piezoelectric actuators pose as an obstacle to 
these objectives. By far, open-loop techniques have not 
been successful in providing good results due to the 
difficulties involved in modeling the actuator precisely. In 
[3], disturbance compensation based on a hysteresis model 
was used, however, unmodeled disturbances required the 
addition of a robust controller such as H∞.  
Hysteresis is an inherent non-linearity in all piezoelectric 
actuators. This hysteresis non-linearity is usually 15-20% 
of the output thereby greatly reducing the performance of 
the actuators. In [4] and [5] models were made based on the 
physics of the actuators and these models proved to be 
effective in modeling the behavior of these actuators under 
different excitations. Additionally, the models in [4] and 
[5] define the hysteresis behavior as existent in the 
electrical domain of the actuator and is between voltage 
and charge. In [5], a simple differential equation was used 
to model the voltage-charge hysteresis behavior. This 
model proved simple to implement in real-time 
applications due to the simplicity of the equation 
representing the hysteresis.       
A sliding mode observer based disturbance compensation 
method is presented here. Disturbances acting on the plant 
are estimated by means of a simple second order system 
after the compensation. Furthermore, using this concept an 
attempt is made to estimate the external force acting on the 
actuator using the hysteresis model presented in [5] for 
purposes of force control. 
 

II.  ELECTROMECHANICAL MODEL 
 
A. Description of the Overall Model 
 

The model used in this work is described in [4]. The model 
proved to be a fairly accurate representation of the 
electromechanical behavior of the piezoelectric actuator. It 
is described schematically in Fig. 1.  
 

hp vvv −=  (1) 

)(qHvh =  (2) 

pp qCvq +=  (3) 

Txq p =  (4) 

pp TvF =  (5) 

extpppp FFxkxcxm −=++ &&&  (6) 

 
Meanings of the terms defined in equations (1) to (6) are as 
follows: v stands for total voltage across the piezoelectric 
actuator, vp stands for voltage due to the piezoelectric 
effect, vh stands for voltage due to the hysteresis effect, H 
is a hysteresis function,  T stand for electromechanical 
transformation ratio, q stands for total charge in the 
piezoelectric actuator, qp stands for charge transduced due 
to mechanical motion, Fp stands for force due to 
piezoelectric effect, Fext stands for external forces acting on 
the actuator and  mp, cp, kp stand for equivalent mass, 
damping and stiffness. 
 
The electromechanical lumped model of the piezoelectric 
actuator can be defined mathematically by equations (1) to 
(6) given below, [4]. 

 
Fig. 1. Electromechanical model of the actuator 

 
B. Description of the Hysteresis Model 
 
The hysteresis between voltage and charge is modeled 
using a first-order differential equation proposed in [5] and 
[7]. In [7], it has been experimentally verified that this 
differential equation is suitable for describing electric 
hysteresis such as that in piezoelectric actuators. The model 
for the hysteresis effect is given by 
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( ) hhh vbqavvq &&& +−= α  (7) 

Here: chc vqa ,=  is a constant found from loop center 
point, Aqqb 2minmax −=  is average slope of the hysteresis 
loop and ( ) 34 3Aba αε −=   is loop area for small 
sinusoidal inputs from which α can be found. 

III. DISTURBANCE AND FORCE OBSERVRE 

 
A. Disturbance Observer 
 
The structure of the observer is based on (8) and it is 
proposed that all the plant parameter uncertainties, 
nonlinearities and external disturbances can be represented 
as a single disturbance. As it is obvious, x is the 
displacement of the plant and is measurable. Likewise, vin 
is the input to the plant and is also measurable. Hence, the 
nominal structure of the plant is defined as follows 

dinNNNN FvTxkxcxm −=++ &&&  
( ) kxxcxmvvTFvTF hinexthNd ∆+∆+∆++∆++= &&&  

(8) 

Here mN, cN, kN and TN are the nominal plant parameters 
while ∆m, ∆c, ∆k and ∆T are the uncertainties of the plant 
parameters. Since x and vin are measured the proposed 
observer is then of the following form 

cNinNNNN uTvTxkxcxm −=++ ˆˆˆ &&&  (9) 

Here x̂  is the estimated position inv is the plant control 
input and uc is the observer control input. If x̂ can be forced 
to track x then obviously cNd uTF = . The observer 
controller that will be used is in the SMC framework. Let 
the sliding manifold be as ( ) ( )xxCxx ˆˆ −+−= &&σ . Also 
selecting the Lyapunov function as 22σ=Lv  and 
selecting the derivative of the Lyapunov function as 

2σD− with 0>D . Equating the above results and 
simplifying 

00
2 =+⇒−==

≠σσσσσσ DDvL &&&  (10) 

If we plug ( ) ( )xxCxx ˆˆ −+−= &&σ  in (10) and simplify we get 

( ) ( )( ) ( ) 0ˆˆˆ =−+−++− xxCDxxDCxx &&&&&&  (11) 

Here the transients of the closed-loop control system are 
defined by the roots –C and –D.  If we subtract (9) from (8) 
and plug the result into (11), we get 

( )[ ]( ) [ ]( ){ }xxCDmkxxDCmcF
T

u NNNNd
N

eq ˆˆ1
−−+−+−+= &&  (12) 

Where ueq is the control that will keep system motion in 
manifold ( ) ( ) 0ˆˆ =−+−= xxCxx &&σ . From (12), it can be 
seen that as 0→σ then xx →ˆ and deqN FuT → . One can 
easily find that the control to satisfy the condition 

0)( =+ σσσ D& when 0≠σ  is given by (13) 

)sgn(σDuu eqc +=  (13) 

For discrete-time applications the following control is used 
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here Ku is a design parameter which can be tuned to 
optimize the  controller and Ts is the sampling interval of 
the discrete-time control. The observer implementation is 
best described by the block diagram of Fig. 2. 
 
From here, if 0→σ  then xx →ˆ and dcN FuT → . The 
positive feedback of uc cancels all the disturbances acting 
on the plant and (9) is reduced to a nominal plant (15) for 
which the design of the feedback controller that assure the 
stable transients may follow the same steps as design of the 
observer controller.  

inNNNN vTxkxcxm =++ &&&  (15) 

By selecting the sliding manifold as 
( ) ( )xxCxx ref

o
ref

x −+−= &&σ . Following the same steps as 
for observer design one can easily find that the controlled 
system is described by 

( ) ( )( ) ( ) 0=−+−++− xxDCxxDCxx ref
oo

ref
oo

ref &&&&&&  (16) 

and the control input has a form as in (14) with xσσ = . 
 

B. Force Observer 

 
From the structures (5) and (6) defined previously, the 
mechanical side of the actuator can be written as 

extpNNNN FvTxkxcxm −=++ &&&  (17) 

Note that any parameter uncertainties are neglected with 
the assumption that the nominal plant parameters are as 
precise as possible. Hence, a disturbance observer based on 
the complete model of the actuator that includes hysteresis 
estimates the external force only. Based on the same 
principles defined for the total disturbance observer an 
observer based on the non-linear model of the actuator is 
constructed as follows 

forcepNNNN uvTxkxcxm −=++ ˆˆˆ &&&  (18) 

As before, if x̂  is forced to track x then extforceext FuF ˆ== . 
Note that vp is not measured directly, but, is computed from 
x and vin using equations (1) to (4). Again the controller 
used will be in the SMC framework. Using the sliding 
manifold ( ) ( )xxCxx estest ˆˆ −+−= &&σ  and since this is a 
discrete-time application the control described by (19) is 
used.  

 
Fig. 2. Observer implementation 
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The observer implementation is depicted in figure 3. The 
results of the force observer are shown in section IV.  
 

IV. EXPERIMENTAL RESULTS 

 
The experimental setup consists of a PSt150/5/60 stack 
actuator ( 60max =x µm, 800max =F N, 150max =v Volt) 
produced by Piezomechanik connected to SVR150/3 low-
voltage, low-power amplifier. The piezoelectric actuator 
has built-in strain-gages for position measurement. Force 
measurement is accomplished by the help of a load cell that 
is placed against the actuator as shown in Fig. 4. 
 
The entire setup is connected DS1103 module hosted in a 
PC with dSpace software Control Desk v.2.0. In Fig. 5 a 
simplified structure of the experimental setup is shown.   
 

 
 
 
 

Fig. 3. Force observer implementation 
 
 
 
 

 
Fig.4. Simplified sketch of the experimental setup 

 
 

 
 
 

Fig. 5. Simplified structure of the experimental system 
 

 
A. Results with the Disturbance Observer 
 
Experiments were carried out with the disturbance observer 
in an attempt to test its capacity of estimating the 
disturbances acting on the system. Fig. 6 shows the 
measured and estimated position (left) while Fig. 6 (right) 
shows the estimation error for a sinusoidal voltage input. 
Both figures show that the observer position is able to track 
the measured actuator position nicely. The tracking error is 
2nm and could be improved in the SMC framework. The 
results shown in Fig. 6 to Fig. 10 have been filtered due to 
the large noise in the measurements. 
 
In Fig. 7a, the response of the actuator with disturbance 
compensation is compared to the response without 
compensation as well as the response from the linear plant 
model. In Fig. 7a, xideal represents the response of the linear 
plant model (15) for the same input. In Fig. 7b the error for 
the system with compensation is depicted. 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 6. Measured and estimated position 
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Fig. 7a. Response to a harmonic voltage input 
 
 

 
 
 
 
 
 
 
 
 
 
 

Fig. 7b. Compensation error for a harmonic voltage input 
 
B. Results with Closed-Loop Control 
 
The disturbance compensation scheme was incorporated 
with closed-loop control algorithm using SMC, defined by 
(14), as depicted by Fig. 8. As it can be seen from the 
results in Fig. 9a and Fig. 9b, the use of closed-loop control 
with disturbance compensation gives good results. The 
results that are shown in Fig. 9a and Fig. 9b are for a 
reference trajectory of the form )2sin(1111 txref π+= .  
 
C. Results with Hysteresis Estimation 
 
Using the model for the hysteresis described earlier, 
experiments were conducted to verify the model with the 
experimentally estimated hysteresis. Hysteresis voltage was 
estimated by assuming that in the case of no external forces 
acting on the system the disturbance estimated by the 
observer is the hysteresis disturbance only. As it can be 
seen from both Fig. 11a there is a delay in the estimation 
for which the error is shown in Fig. 11b. One reason for the 
discrepancy in estimation could be the assumption that the 
uncertainties in plant parameters are negligible in 
comparison to the hysteresis disturbance. This discrepancy 
in the estimation should show itself nicely in the external 
force estimation.  
 

 
 

Fig. 8. Closed-loop control scheme 
 
 

 
 
 
 
 
 
 
 
 
 

 
 

Fig. 9a. Reference and measured position 
 
 

 
 
 
 
 
 
 
 
 
 
 

 
Fig. 9b. Closed-loop tracking error (0.6nm) 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Fig. 10. 1nm step motion  
 

 
 
 
 
 
 
 
 
 
 

 
 
 

Fig. 11a. Estimated and measured hysteresis voltage; Ve-hyst and Vm-hyst 
respectively 
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Fig. 11b. Error in hysteresis estimation 

 
 
D. Results with the Force Observer  
 
The external force estimation method is applied 
experimentally. The results in Fig. 12a and Fig. 12b show 
that the method works nicely for a smooth sinusoidal force. 
However, the discrepancy in the hysteresis estimation is 
also seen here Fig. 12a and Fig. 12b. Due to the lag in the 
hysteresis estimate there is a lead in the force estimation. 
 
If a different external force such as a trapezoidal force is 
used, the estimation suffers more due to the dynamics in 
the hysteresis model as it was seen previously in Fig. 10a 
and as it can be seen below in Fig. 13a. It is most certain 
that any improvements in the hysteresis estimation should 
improve the estimation of the external force acting on the 
actuator. 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

Fig. 12a. Experimental estimation of force 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Fig. 12b. Estimation error of harmonic force 
 

V. CONCLUSIONS 
 

An observer based disturbance compensation technique is 
presented here. The observer was in the SMC framework  

 

 

 

 

 
 
 
 

Fig. 13a. Experimental estimation of a trapezoidal force 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

Fig. 13b. Estimation error of a trapezoidal force 
 
 
and was based on a lumped electromechanical model of the 
piezoelectric actuator. The observer proved successful in 
compensating all the disturbances acting on the actuator. 
Addition of the disturbance compensation to a closed-loop 
control scheme provided good results and should open the 
way for high precision tracking with piezoelectric 
actuators. Inclusion of the hysteresis term in the plant 
model allowed the construction of a force observer based 
on the same principles of the disturbance observer. Work is 
currently in progress to improve the hysteresis model so 
that a more accurate estimation of external force is 
possible. 
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