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act- In this paper Discrete Sliding Mode Control (SMC) of 
 actuator is demonstrated in order to achieve a very high 
acy in Nano-scale with the desired dynamics. In spite of the 
ynamics of the Piezo actuator the problem of chattering is 

nated with the SMC control structure. The Piezo actuator 
s from hysteresis loop which is the inherent property and 
es rise to the dominant non-linearity in the system. The 
sed SMC control structure has been proved to deliver 

ering free motion along with the compensation of the non 
ity present due to hysteresis in the system. To further 
ce the accuracy of the closed loop system and to be 

iant to changes in the plant parameters a robust 
rbance observer is designed on SMC framework by taking 
consideration the lumped nominal plant parameters. 

rimental results for closed loop position are presented in 
 to verify the Nano-scale accuracy. 

 
I. INTRODUCTION 

electric actuator has been demonstrated with immense 
tial in application with requires accuracy within the 
 from sub micrometer to nanometer motion. The main 

ntage to use piezoelectric as an actuator is due to the fact 
t does not possess any   frictional or static characteristics 
h generally exist in other forms of actuators. The main 
cteristics of piezoelectric actuator are: high resolution in 
meter range, high bandwidth up to several kilo hertz 
, a large force up to few tons and short travel range 
 with millimeter range [1].Some of the major areas 
e piezoelectric actuator can be used is in 
manipulation, force feedback as in AFM, micro-
bly and in dual stage hard disk drives. In all of these 

cations it is highly desired to have accurate positioning 
h can only be achieved using closed-loop control. 
gh some attempts have been made in the past ([2], [3]) 
ntrol piezoelectric actuator in open loop system with fine 
ensation of hysteresis non-linearity in the system. Due 
e development of accurate positioning sensors it has 
me possible to use robust feedback based nonlinear 
ol methods in order to eliminate the hysteresis effect. 
electric actuator can be driven by either voltage or 
e. Generally voltage is used as a driving mechanism as 
asy to implement in the hardware and is the most 

spread method for controlling these actuators. But it also 
porates the nonlinear behavior between the input 
age) and output (position). 

 
This nonlinearity arises due to the parasitic hysteresis 
characteristics of the piezoelectric crystal. It has been 
illustrated in [2] that hysteresis behavior can be eliminated in 
case of driving by charge and a linear relationship is evolved 
between charge and position. However implementation of 
charge controllers is complicated job and voltage supply 
based driving is most preferred. 
Hysteresis reduces the accuracy of the piezoelectric actuator 
in the range of 15-20%, thus the performance of the system is 
highly degraded and its compensation is extremely desirable. 
In the literature many model based approaches are proposed 
([2], [3], [4], [5]). This approach incorporates the model of 
hysteresis for the compensation in open-loop but suffers from 
other internal disturbance such as creep and thermal drift. In 
[2] an accurate model of hysteresis is presented, but it is hard 
to implement in various range of control applications. In [3], 
[4] and [5] simpler model of hysteresis are proposed, 
however, those models does not represents the hysteresis 
behavior throughout the entire range of input voltage of the 
piezoelectric actuator. But still the use of hysteresis model is 
very useful where it’s not possible to use a sensor for position 
feedback from the actuator. 
In [5], H∞ based closed-loop is proposed with model based 
hysteresis compensation. The model described was too 
complex in spite of good outcome but could be replaced by a 
simpler model. In [6], a neural-network based feed-forward 
assisted proportional integral derivative (PID) controller was 
proposed. In [7] variable structure control (VSC) for accurate 
positioning control in submicron ranges.  
The main aim of this paper is to design a robust controller for 
Piezo-stage based on the assumption that the Piezo-stage can 
be modeled as a nominal linear lumped parameters 
( ) second order electromechanical system 
with voltage as the input and position as the output. The 
dominant nonlinear disturbance affecting is due to hysteresis 
arising from the Piezo. This paper tries to design a robust 
discrete sliding mode controller and disturbance rejection 
method to eliminate hysteresis in order to achieve high 
position accuracy in the nano-scale. The disturbance rejection 
is based on the concept of sliding mode observer which 
considers the total disturbance coming from the hysteresis 
and external force acting on the system. Thus the observer 
tries to estimate the lumped disturbance acting on the system.  
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II. MODEL OF THE PIEZO-STAGE 
 
A fairly accurate model was chosen [2] for the Piezo-stage 
due to its easiness for implementation and accuracy for 
estimating the actual behavior of these actuators. The Piezo-
stage consists of a Piezo-drive with a flexure guided structure 
which is designed to possess zero stiction and friction. 
Moreover the flexure stages exhibit high stiffness, high load 
capacity and insensitive to shock and vibration. Fig.1 
describes the overall electromechanical model [2] of a PZT 
actuator. 
 

   
 
Fig. 1 Electromechanical model of a PZT actuator, [2] 

 
The hysteresis and piezoelectric effects are separated.  
Represents the hysteresis effect and   is the voltage due to 

this effect. The piezoelectric effect is represented by  
which is an electromechanical transducer with transformer 
ratio .The capacitance  represents the sum of the 
capacitances of the individual PZT wafers, which are 
electrically in parallel. The total current flowing through the 
circuit is  q  . Furthermore,  may be seen as the total charge 

in the PZT actuator. The charge  is the transducer charge 

from the mechanical side. The voltage  is due to the Piezo 

effect. The total voltage over the PZT actuator is   ,  is 

the transducer force from the electrical side,  is the 
externally applied force, and the resulting elongation of the 
PZT actuator is denoted by . The mechanical relation 
between  and  is denoted by

H
hu

emT

emT eC

q

pq

pu

inu pF

extF

x
Fp x M . Note that we have 

equal electrical and mechanical energy at the ports of 
interaction i.e. p p pu q F x= .  

The piezoelectric ceramic has elasticity modulus E , 
viscosityη , and mass density ρ . Furthermore, the geometric 
properties of the PZT actuator are length L  and cross-
sectional area pA . Effective Mass   , Effective stiffness 

 and damping co-efficient  can be calculated as 
follows: 

pm

pk pc

p pm A Lρ=                          (2.1) 

 p
p

A
k

L
ρ

=        (2.2) 

p
p

A
c

L
η

=         (2.3) 

The complete electromechanical equations can be written as: 
 

( ( ) ( , ))p p p em in inm y c y k y T u t H y u Fext+ + = − −     (2.4) 
 
Here represents the displacement of the Piezo stage and 

denotes the non-linear hysteresis which is a 

function of 

y
( , )inH y u

y and [2]. inu
  

III. Design of Discrete SMC 
 
The equation (2.4) is rewritten in state-space form (3.1) for 
easiness of the derivation of the controller structure. 
 

1 2

2 1 2
p p em em ext

in
p p p p

x y x
k c T T Fx y x x u H
m m m m mp

= =

= = − − + − −

                                (3.1) 
The equation (3.1) can be written in more general form as 
shown below 

( , , )ext inx f x H F Bu= +                                 (3.2) 
 
The aim is to drive the states of the system into the set S 
defined by  
 

{ : ( ) ( , ) 0}r rS x G x x x xσ= − = =               (3.3) 
 
Here {  1}G λ= with λ  being a positive constant, x  is the 

state vector , 1 2{  x }Tx x= rx is the reference vector 

1 2( ) {  }r T r rx x x= and ( , )rx xσ is the function defining 
sliding mode manifold. 
The derivation of the controller structure with the proper 
selection of the Lyapunov function ( )V σ , and an appropriate 

form of the derivates of the Lyapunov function, ( )V σ . 
 For SISO system such as (3.1), required to have 
motion in manifold (3.3), natural selection of the Lyapunov 
function candidate seems in the form 

                         
2

( )
2

V σσ =                                             (3.4) 

Hence, the derivative of the Lyapunov function is 
   



  ( )V σ σσ=              (3.5) 
In order to guarantee the asymptotic stability of the 
solution , the derivates of the Lyapunov 
function may be selected to be 

( , ) 0rx xσ =

 
2( )V Dσ σ= −         (3.6) 

 Here  is a positive constant. Hence, if the control can be 
determined from (3.5) and (3.6), the asymptotic stability of 
the solution (3.3) will be guaranteed since

D

( ) 0V σ > , 

and , .By combining (3.5) 
and (3.6) the following equation can be deduced 

(0) 0V = ( ) 0V σ < (0) 0V =

 
( )D 0σ σ σ+ =        (3.7) 

A solution for (3.7) is as follows 
     

( )D 0σ σ+ =         (3.8) 
 The derivative of the sliding function is as follows 
 
               (3.9) ( )r rG x x Gx Gxσ = − = −

)( )

From equation (3.9) and using (3.2) 
 

(- ( )r
eqGx Gf GBu t GB u u tσ = − = −      (3.10) 

After inserting (3.10) into (3.8) and the result is solved for the 
control 
 1( ) ( )equ t u GB Dσ−= +                    (3.11) 

It can be seen from (3.01) that  are difficult to calculate. 

Using the fact that   is a continuous function, (3.10) can 
be rewritten in discrete form using Euler’s approximation, 

equ

equ

 

((( 1) ) ( ) ( ) ( )s s
eq s s

s

k T kT GB u kT u kT
T )σ σ+ −

= − (3.12) 

Here sT  is the sampling time and k .It is also 
necessary to write (3.11) in the discrete form which results in  

Z +=

  
 1( ) ( ) ( ) ( )s eq s su kT u kT GB D kTσ−= +      (3.13) 
 
If equation (3.12) is solved for the equivalent control, the 
following is obtained 

1 (( 1) ) ( )( ) ( ) ( ) s s
eq s s

s

k T kTu kT u kT GB
T

σ σ− ⎛ ⎞+ −
= + ⎜ ⎟

⎝ ⎠
    

(3.14) 
Since the system is casual, and it is required to avoid the 
calculation of the predicted value for σ  as control cannot be 
dependent on future value of σ .Since the equivalent control 
is a continuous function, the current value of the equivalent 
control can be approximated with the single-step backward 
value calculated from (3.14) as 

1

1 1
1ˆ ( )

k k

k k
eq eq k

s

u u u GB
T

σ σ
−

− −
−

⎛ ⎞−
≅ = + ⎜

⎝ ⎠
⎟

)

               (3.15) 

Here (or ) is the estimate of the current value 
of the equivalent control. After inserting (3.15) into (3.13) 
and resulting in control structure as 

ˆ
kequ ˆ (eq su kT

 
( )1

1 1( ) ( 1)k k s s k ku u GBT DT σ σ−
− −= + + −  (3.16) 

 
The control structure (3.16) is suitable for implementation, 
since it requires measurement of the sliding mode function 
and the value of the control applied in the preceding step. 
Thus (3.16) is used as control structure as discrete sliding 
mode for Piezo actuation. 
 

IV. DISTURBANCE OBSERVER 
 
The observer structure is deduced based on the equation (2.4) 
under the assumption that all the plant parameters 
uncertainties, nonlinearities and external disturbances can be 
represented as a lumped disturbance. It is assumed that y is 
the displacement and it’s measurable and similarly is the 
input and also a measurable quantity. 

( )u t

  

       
( )

( )
p p p p dis

dis p in h

m y c y k y T u t F

F T H T v v my cy ky

+ + = −

= + ∆ + + ∆ +∆ + ∆
            

           (4.1) 
Here , , and  are the nominal plant parameters 

while 
pm pc pk pT

m∆ , c∆ , k∆  and  are the uncertainties 
associated with the plant parameters. Since 

T∆
y and are 

measurable quantity, observer structure can be written in 
following form  

( )u t

ˆ ˆ ˆp p p p pm y c y k y T u T u+ + = − c       (4.2) 

Here , and are the position velocity and 

acceleration.  is plant control is the control input  is the 
observer control input as shown in Figure 2. 

ŷ ŷ ŷ
u cu

 
 
Fig.2 Observer Implementation 
 



If estimated position  can be forced to track ŷ y  then total 
disturbance feed to the system  

ˆ( ) (obs obs y y y yσ λ= − + − ˆ)

ˆ)

.Again the SMC structure is 
used for deriving the observer controller whose sliding 
manifold is defined as: 

 
ˆ( ) (obs obs y y y yσ λ= − + −                           (4.3) 

Here obsλ is a positive constant. If obsσ is forced to become 

zero then should be forced toŷ y . As described in the 
previous section from (3.8), with the same analogy it can be 
written as 
 

0obs obs obsDσ σ+ =                                          (4.4) 

which guarantees 0obsσ → . By plugging the (4.3) into (4.4), 
the resulting equation is written as 
    

( ) ( ) ( )ˆ ˆ( )obs obs obs obsy y D y y D y yλ λ− + + − + − =ˆ 0                                 

                                                                                           (4.5) 
It can be seen that the transient of the closed-loop system are 
defined by the roots obsλ− and . The same structure of 
the controller will be used in the observer as described in 
(3.16). From structure (4.2) it can be seen that the input 
matrix is given by 

obsD−

                 0  
T

p
obs

p

T
B

m
⎡ ⎤

= −⎢ ⎥
⎢ ⎥⎣ ⎦

       (4.6) 

 
The matrix G for this case is defined as 

 
  [ ] 1obsG λ=             (4.7) 

Thus, after some simplification the controller structure can be 
written as 

1

1

k k

k k k

obs obsp
c c obs obs

p s

m
u u D

T T
σ σ

λ −

−

−⎛ ⎞
= − +⎜ ⎟

⎝ ⎠
          (4.8) 

Here is the compensated control input to the system. The 

positive feedback by input forces the system to behave 
closely towards the ideal system having the nominal 
parameters. But in reality there is also some amount of 
difference between the real disturbance and estimated 
disturbances.  

cu

cu

 
 V. SIMULATION RESULTS 

 
The overall system shown in figure 3 is simulated in 
MATLAB Simulink in order to investigate the performance 
of the controller and observer in the accuracy of the Piezo 
model. The properties of the Piezo stage used in the 

simulation is defined in Table I is same with our experimental 
3-axis Piezo stage.  
 

 
Fig. 3 Simulink Model of the overall system 

 
TABLE I 

PROPERTIES OF PIEZO-STAGE 
Symbol Quantity Value in SI 

pm  Nominal Mass 31.5x10  Kg−  

pc  Nominal Damping 220 N-s/m  

pk  Nominal Stiffness 300000 N/m  

rf  Resonant Frequency 350 Hz  

emT  Transformation Ratio 0.3 N/V  

 
As a reference to the system, step input was given to the 
system with different position in presence of a sinusoidal 
disturbance with low amplitude and results are shown below: 
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Fig. 4 Step response for 1000 Nanometer 
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Fig. 5 Step response for 100 Nanometer  
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 Fig. 6 Step response for 10 Nanometers 

      
The fig.4-6 clearly indicates that in spite of sinusoidal 
disturbances present in the system, the controller is able to 
achieve the desired accuracy. Moreover our disturbance 
observer proves to be very effective in compensating the 
disturbance and the system is driven with nano accuracy. 
  

VI. EXPERIMENTAL DESCRIPTION 
 
In order to illustrate the prove the effectiveness of the 
proposed controller with the disturbance observer some 
experiments were carried out on a single axis of a 3-axis 
Piezo-stage manufactured by Physik Instrumente (PI) 
supplied by E-664 power amplifier. Table I shows the 
parameters of the Piezo-stage as also used for simulation 
purpose. As hardware to drive the Piezo-stage DSPACE 
DS1103 is used and coded in the C language using the 
libraries provided by the software. 
The closed loop performance of the Piezo stage was 
investigated while using the overall structure shown in Figure 
3 by applying the smooth step input of different position. 
 

 
 
Fig. 7 Step response for 100 Nanometer 

 
 
Fig. 8 Step responses for 50 Nanometer 
 

  
 
Fig. 9 Step response for 10 Nanometer 

 

 
 
Fig. 10 Step responses for 5 Nanometer 
 



 

 
Fig. 11 Step responses for 2 Nanometer 
 
As it can be seen from above figures 7, 8 and 9 that response 
for closed-loop performance of 100 nanometers, 50 
nanometers and 10 nanometers respectively are able to 
achieve the desired position with fast rise time and almost 
zero steady state error. The results show that the proposed 
controller along with the disturbance observer produces good 
results. 
In the case of figure 10 and 11 which also shows the response 
for closed-loop performance of 5 nanometers and 2 
nanometers respectively. It can be seen clearly that the 
controller along with the disturbance is able to drive the 
system with desired accuracy but it’s highly affected by the 
noise coming from the measurement device. Due to the 
influence of sensing noise, which belongs to high frequency 
range affects steady state position of the system and forces an 
oscillatory behavior with an maximum amplitude of 1-1.5 
nanometer. 

 
VII. CONLUSION 

 
In the paper design of a Discrete Time Sliding Mode 
controller based on Lyapunov is presented. A robust 
disturbance observer based on Sliding Mode control is 
presented and applied to a Piezo-stage by considering all the 
nonlinearities present in the system as lumped disturbance. 
Linear model of a Piezo-stage was used with nominal 
parameters and used to compensate the disturbance acting on 
the system in order to achieve nano scale accuracy. 
The effectiveness of the controller and disturbance observer 
was demonstrated in term of closed loop position 
performance in simulation and experiments. The results show 
the proposed controller structure produced good experimental 
results eliminating any chattering motion but in the range 
below 5 nanometers suffers from dominant sensing noise. 
As a part of future work, the effort will be directed to reduce 
the effect of measurement noise to reach an accuracy of 1 
nanometer with desired dynamics. 
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