2,359 research outputs found

    Confocal and multiphoton imaging of intracellular Ca<sup>2+</sup>

    Get PDF
    This chapter compares the imaging capabilities of a range of systems including multiphoton microscopy in regard to measurements of intracellular Ca&lt;sup&gt;2+&lt;/sup&gt; within living cells. In particular, the excitation spectra of popular fluorescent Ca&lt;sup&gt;2+&lt;/sup&gt; indicators are shown during 1P and 2P excitation. The strengths and limitations of the current indicators are discussed along with error analysis which highlights the value of matching the Ca&lt;sup&gt;2+&lt;/sup&gt; affinity of the dye to a particular aspect of Ca&lt;sup&gt;2+&lt;/sup&gt; signaling. Finally, the combined emission spectra of Ca&lt;sup&gt;2+&lt;/sup&gt; and voltage sensitive dyes are compared to allow the choice of the optimum combination to allow simultaneous intracellular Ca&lt;sup&gt;2+&lt;/sup&gt; and membrane voltage measurement

    Formalin-Induced Fluorescence Reveals Cell Shape and Morphology in Biological Tissue Samples

    Get PDF
    Ultramicroscopy is a powerful tool to reveal detailed three-dimensional structures of large microscopical objects. Using high magnification, we observed that formalin induces fluorescence more in extra-cellular space and stains cellular structures negatively, rendering cells as dark objects in front of a bright background. Here, we show this effect on a three-dimensional image stack of a hippocampus sample, focusing on the CA1 region. This method, called FIF-Ultramicroscopy, allows for the three-dimensional observation of cellular structures in various tissue types without complicated staining techniques

    Numerically Enhanced Stimulated Emission Depletion Microscopy with Adaptive Optics for Deep-Tissue Super-Resolved Imaging

    Get PDF
    Copyright © 2019 American Chemical Society. In stimulated emission depletion (STED) nanoscopy, the major origin of decreased signal-to-noise ratio within images can be attributed to sample photobleaching and strong optical aberrations. This is due to STED utilizing a high-power depletion laser (increasing the risk of photodamage), while the depletion beam is very sensitive to sample-induced aberrations. Here, we demonstrate a custom-built STED microscope with automated aberration correction that is capable of 3D super-resolution imaging through thick, highly aberrating tissue. We introduce and investigate a state of the art image denoising method by block-matching and collaborative 3D filtering (BM3D) to numerically enhance fine object details otherwise mixed with noise and further enhance the image quality. Numerical denoising provides an increase in the final effective resolution of the STED imaging of 31% using the well established Fourier ring correlation metric. Results achieved through the combination of aberration correction and tailored image processing are experimentally validated through super-resolved 3D imaging of axons in differentiated induced pluripotent stem cells growing under an 80 μm thick layer of tissue with lateral and axial resolution of 204 and 310 nm, respectively

    A CANDLE for a deeper in-vivo insight

    Full text link
    A new Collaborative Approach for eNhanced Denoising under Low-light Excitation (CANDLE) is introduced for the processing of 3D laser scanning multiphoton microscopy images. CANDLE is designed to be robust for low signal-to-noise ratio (SNR) conditions typically encountered when imaging deep in scattering biological specimens. Based on an optimized non-local means filter involving the comparison of filtered patches, CANDLE locally adapts the amount of smoothing in order to deal with the noise inhomogeneity inherent to laser scanning fluorescence microscopy images. An extensive validation on synthetic data, images acquired on microspheres and in vivo images is presented. These experiments show that the CANDLE filter obtained competitive results compared to a state-of-the-art method and a locally adaptive optimized non-local means filter, especially under low SNR conditions (PSNR < 8 dB). Finally, the deeper imaging capabilities enabled by the proposed filter are demonstrated on deep tissue in vivo images of neurons and fine axonal processes in the Xenopus tadpole brain.We want to thank Florian Luisier for providing free plugin of his PureDenoise filter. We also want to thank Markku Makitalo for providing the code of their OVST. This study was supported by the Canadian Institutes of Health Research (CIHR, MOP-84360 to DLC and MOP-77567 to ESR) and Cda (CECR)-Gevas-OE016. MM holds a fellowship from the Deutscher Akademischer Austasch Dienst (DAAD) and a McGill Principal's Award. ESR is a tier 2 Canada Research Chair. This work has been partially supported by the Spanish Health Institute Carlos III through the RETICS Combiomed, RD07/0067/2001. This work benefited from the use of ImageJ.Coupé, P.; Munz, M.; Manjón Herrera, JV.; Ruthazer, ES.; Collins, DL. (2012). A CANDLE for a deeper in-vivo insight. Medical Image Analysis. 16(4):849-864. https://doi.org/10.1016/j.media.2012.01.002S84986416

    Wavelet transform-based de-noising for two-photon imaging of synaptic Ca2+ transients.

    Get PDF
    PublishedJournal ArticleResearch Support, Non-U.S. Gov'tThis is an open access article.Postsynaptic Ca(2+) transients triggered by neurotransmission at excitatory synapses are a key signaling step for the induction of synaptic plasticity and are typically recorded in tissue slices using two-photon fluorescence imaging with Ca(2+)-sensitive dyes. The signals generated are small with very low peak signal/noise ratios (pSNRs) that make detailed analysis problematic. Here, we implement a wavelet-based de-noising algorithm (PURE-LET) to enhance signal/noise ratio for Ca(2+) fluorescence transients evoked by single synaptic events under physiological conditions. Using simulated Ca(2+) transients with defined noise levels, we analyzed the ability of the PURE-LET algorithm to retrieve the underlying signal. Fitting single Ca(2+) transients with an exponential rise and decay model revealed a distortion of τ(rise) but improved accuracy and reliability of τ(decay) and peak amplitude after PURE-LET de-noising compared to raw signals. The PURE-LET de-noising algorithm also provided a ∼30-dB gain in pSNR compared to ∼16-dB pSNR gain after an optimized binomial filter. The higher pSNR provided by PURE-LET de-noising increased discrimination accuracy between successes and failures of synaptic transmission as measured by the occurrence of synaptic Ca(2+) transients by ∼20% relative to an optimized binomial filter. Furthermore, in comparison to binomial filter, no optimization of PURE-LET de-noising was required for reducing arbitrary bias. In conclusion, the de-noising of fluorescent Ca(2+) transients using PURE-LET enhances detection and characterization of Ca(2+) responses at central excitatory synapses.C.M.T. and J.R.M. were supported by the Wellcome Trust, and K.T.-A. was supported by grant No. EP/I018638/1 from the Engineering and Physical Sciences Research Council
    • …
    corecore