7 research outputs found

    Models, algorithms and architectures for cooperative manipulation with aerial and ground robots

    Get PDF
    Les dernières années ont vu le développement de recherches portant sur l'interaction physique entre les robots aériens et leur environnement, accompagné de l'apparition de nombreux nouveaux systèmes mécaniques et approches de régulation. La communauté centrée autour de la robotique aérienne observe actuellement un déplacement de paradigmes des approches classiques de guidage, de navigation et de régulation vers des tâches moins triviales, telle le développement de l'interaction physique entre robots aériens et leur environnement. Ceci correspond à une extension des tâches dites de manipulation, du sol vers les airs. Cette thèse contribue au domaine de la manipulation aérienne en proposant un nouveau concept appelé MAGMaS, pour " Multiple Aerial Ground Manipulator System ". Les motivations qui ont conduites à l'association de manipulateurs terrestres et aériens pour effectuer des tâches de manipulation coopérative, résident dans une volonté d'exploiter leurs particularités respectives. Les manipulateurs terrestres apportant leur importante force et les manipulateurs aériens apportant leur vaste espace de travail. La première contribution de cette thèse présente une modélisation rigoureuse des MAGMaS. Les propriétés du système ainsi que ses possibles extensions sont discutées. Les méthodes de planning, d'estimation et de régulation nécessaire à l'exploitation des MAGMaS pour des tâches de manipulation collaborative sont dérivées. Ce travail propose d'exploiter les redondances des MAGMaS grâce à un algorithme optimal d'allocation de forces entre les manipulateurs. De plus, une méthode générale d'estimation de forces pour robots aériens est introduite. Toutes les techniques et les algorithmes présentés dans cette thèse sont intégrés dans une architecture globale, utilisée à la fois pour la simulation et la validation expérimentale. Cette architecture est en outre augmentée par l'addition d'une structure de télé-présence, afin de permettre l'opération à distances des MAGMaS. L'architecture générale est validée par une démonstration de levage de barre, qui est une application représentative des potentiels usages des MAGMaS. Une autre contribution relative au développement des MAGMaS consiste en une étude exploratoire de la flexibilité dans les objets manipulés par un MAGMaS. Un modèle du phénomène vibratoire est dérivé afin de mettre en exergue ses propriétés en termes de contrôle. La dernière contribution de cette thèse consiste en une étude exploratoire sur l'usage des actionneurs à raideur variable dans les robots aériens, dotant ces systèmes d'une compliance mécanique intrinsèque et de capacité de stockage d'énergie. Les fondements théoriques sont associés à la synthèse d'un contrôleur non-linéaire. L'approche proposée est validée par le biais d'expériences reposant sur l'intégration d'un actionneur à raideur variable léger sur un robot aérien.In recent years, the subject of physical interaction for aerial robots has been a popular research area with many new mechanical designs and control approaches being proposed. The aerial robotics community is currently observing a paradigm shift from classic guidance, navigation, and control tasks towards more unusual tasks, for example requesting aerial robots to physically interact with the environment, thus extending the manipulation task from the ground into the air. This thesis contributes to the field of aerial manipulation by proposing a novel concept known has Multiple Aerial-Ground Manipulator System or MAGMaS, including what appears to be the first experimental demonstration of a MAGMaS and opening a new route of research. The motivation behind associating ground and aerial robots for cooperative manipulation is to leverage their respective particularities, ground robots bring strength while aerial robots widen the workspace of the system. The first contribution of this work introduces a meticulous system model for MAGMaS. The system model's properties and potential extensions are discussed in this work. The planning, estimation and control methods which are necessary to exploit MAGMaS in a cooperative manipulation tasks are derived. This works proposes an optimal control allocation scheme to exploit the MAGMaS redundancies and a general model-based force estimation method is presented. All of the proposed techniques reported in this thesis are integrated in a global architecture used for simulations and experimental validation. This architecture is extended by the addition of a tele-presence framework to allow remote operations of MAGMaS. The global architecture is validated by robust demonstrations of bar lifting, an application that gives an outlook of the prospective use of the proposed concept of MAGMaS. Another contribution in the development of MAGMaS consists of an exploratory study on the flexibility of manipulated loads. A vibration model is derived and exploited to showcase vibration properties in terms of control. The last contribution of this thesis consists of an exploratory study on the use of elastic joints in aerial robots, endowing these systems with mechanical compliance and energy storage capabilities. Theoretical groundings are associated with a nonlinear controller synthesis. The proposed approach is validated by experimental work which relies on the integration of a lightweight variable stiffness actuator on an aerial robot

    Predictive control strategies por unmanned aerial vehicles in cargo transportation tasks

    Get PDF
    Dissertação (mestrado) - Universidade Federal de Santa Catarina, Centro Tecnológico, Programa de Pós-Graduação em Engenharia de Automação e Sistemas, Florianópolis, 2016.O desenvolvimento de veículos aéreos não tripulados (VANTs) vem despertando um grande interesse tanto no meio acadêmico quanto na indústria nas últimas décadas. Muitos campos da robótica e da teoria de controle vem sendo explorados visando melhorar o desempenho destes sistemas. Existem vários cenários onde estas aeronaves são utilizadas, tais como monitoramento de ambientes, agricultura de precisão, busca e resgate, entre outras. Dentre as diferentes aplicações destas aeronaves temos o transporte de carga suspensa por cabo, o qual tem promovido várias pesquisas relacionadas com transporte de alimentos, medicamentos e suprimentos em geral, para zonas de risco. Neste sentido, este trabalho tem como foco o uso de VANTs em tarefas de transporte de carga, considerando perturbações externas e incertezas paramétricas. A aeronave utilizada é um birotor na configuração Tilt-rotor que carrega uma carga suspensa. Um Tilt-rotor é um veículo movimentado por dois rotores inclináveis, os quais geram e direcionam forças de impulso para sustentar a aeronave. Neste estudo, é importante que a aeronave seja capaz de seguir uma trajetória predefinida enquanto estabiliza a carga suspensa mesmo quando afetada por perturbações externas ou incertezas paramétricas. Além disso, um modelo não linear multicorpo é obtido via formulação Euler-Lagrange para o VANT Tilt-rotor considerando a carga suspensa. Neste modelo foi considerado que a aeronave é composta por quatro corpos rígidos e tem dez graus de liberdade. O problema de controle é solucionado com um controlador preditivo (MPC) incremental e um não incremental, baseados no modelo linear do erro do sistema, o qual é linearizado em torno a uma trajetória genérica. Além disso, os MPCs consideram custo terminal, com o objetivo de garantir estabilidade e por consequência reduzir o horizonte de predição. Devido ao fato do sistema linear ser variante no tempo (LVT), o custo terminal é calculado mediante desigualdades matriciais lineares (LMI). Por outro lado, restrições são impostas na formulação do MPC, relacionadas com as limitações físicas dos atuadores e considerando que o VANT está confinado numa área específica. Finalmente, simulações foram realizadas para avaliar o desempenho dos controladores propostos, considerando perturbações constantes em diferentes instantes de tempo, e levando em conta incertezas paramétricas.Abstract : The development of unmanned aerial vehicles (UAVs) has arousedgreat interest in both academia and industry in the recent decades.Many aereas of robotics and control theory have been exploited toimprove the performance of these systems. There are several scenarioswhere these aerial vehicles are used, like monitoring environment,precision agriculture, construction, search and rescue. Transportationof cable-suspended loads with UAVs is another application. This haspromoted research related to load transportation of food, medicine,and supplies in general for unsafe areas. This research is focused onthis topic, where it is necessary that the UAV follows a predenedtrajectory while stabilizing the suspended load, even if it is aectedby external disturbances. In this dissertation, two model predictivecontrollers (MPCs) are used to solve the path tracking problem of asmall scale Tilt-rotor Unmanned Aerial Vehicle (UAV) while carryinga suspended load. A Tilt-rotor is a vehicle lifted and propelled bytwo tiltable rotors, in order to control the direction of thrust forces.In the present study, it is important that the aircraft able to follow apredened trajectory while maintaining the suspended load stable evenin the presence of external disturbances and parametric uncertainties.Moreover, a rigorous multibody non-linear dynamic model is obtainedvia Euler-Lagrange formulation for the Tilt-rotor UAV with suspendedload, assuming four rigid bodies and ten degrees of freedom (DOF)of the vehicle. The control problem is solved with incremental andnon-incremental model predictive controllers, based on the linear errormodel of the system, which is linearized around a generic trajectory.Furthermore, the MPCs consider a terminal cost in order to ensurestability, allowing the prediction horizon reduction. As the linear modelis a linear time-varying (LTV) system, the terminal cost is calculatedvia linear matrix inequalities (LMI). In addition, some constraintsare imposed on the formulation, related to physical limitations of theactuators and assuming that the aircraft is conned to a particulararea. Finally, numerical simulations are performed in order to evaluatethe controllers, considering constant disturbances at dierent instantsof time, and modeling errors

    Proceedings of the International Micro Air Vehicles Conference and Flight Competition 2017 (IMAV 2017)

    Get PDF
    The IMAV 2017 conference has been held at ISAE-SUPAERO, Toulouse, France from Sept. 18 to Sept. 21, 2017. More than 250 participants coming from 30 different countries worldwide have presented their latest research activities in the field of drones. 38 papers have been presented during the conference including various topics such as Aerodynamics, Aeroacoustics, Propulsion, Autopilots, Sensors, Communication systems, Mission planning techniques, Artificial Intelligence, Human-machine cooperation as applied to drones

    Aeronautical engineering: A continuing bibliography with indexes (supplement 286)

    Get PDF
    This bibliography lists 845 reports, articles, and other documents introduced into the NASA scientific and technical information system in Dec. 1992. Subject coverage includes: design, construction and testing of aircraft and aircraft engines; aircraft components, equipment, and systems; ground support systems; and theoretical and applied aspects of aerodynamics and general fluid dynamics

    Aerial Vehicles

    Get PDF
    This book contains 35 chapters written by experts in developing techniques for making aerial vehicles more intelligent, more reliable, more flexible in use, and safer in operation.It will also serve as an inspiration for further improvement of the design and application of aeral vehicles. The advanced techniques and research described here may also be applicable to other high-tech areas such as robotics, avionics, vetronics, and space

    Planification de trajectoire et contrôle d'un système collaboratif : Application à un drone trirotor

    Get PDF
    This thesis is dedicated to the creation of a complete framework, from high-level to low-level, of trajectory generation for a group of independent dynamical systems. This framework, based for the trajectory generation, on the resolution of Burgers equation, is applied to a novel model of trirotor UAV and uses the flatness of the two levels of dynamical systems.The first part of this thesis is dedicated to the generation of trajectories. Formal solutions to the heat equation are created using the differential flatness of this equation. These solutions are transformed into solutions to Burgers' equation through Hopf-Cole transformation to match the desired formations. They are optimized to match specific requirements. Several examples of trajectories are given.The second part is dedicated to the autonomous trajectory tracking by a trirotor UAV. This UAV is totally actuated and a nonlinear closed-loop controller is suggested. This controller is tested on the ground and in flight by tracking, rolling or flying, a trajectory. A model is presented and a control approach is suggested to transport a pendulum load.L'objet de cette thèse est de proposer un cadre complet, du haut niveau au bas niveau, de génération de trajectoires pour un groupe de systèmes dynamiques indépendants. Ce cadre, basé sur la résolution de l'équation de Burgers pour la génération de trajectoires, est appliqué à un modèle original de drone trirotor et utilise la platitude des deux systèmes différentiels considérés. La première partie du manuscrit est consacrée à la génération de trajectoires. Celle-ci est effectuée en créant formellement, par le biais de la platitude du système considéré, des solutions à l'équation de la chaleur. Ces solutions sont transformées en solution de l'équation de Burgers par la transformation de Hopf-Cole pour correspondre aux formations voulues. Elles sont optimisées pour répondre à des contraintes spécifiques. Plusieurs exemples de trajectoires sont donnés.La deuxième partie est consacrée au suivi autonome de trajectoire par un drone trirotor. Ce drone est totalement actionné et un contrôleur en boucle fermée non-linéaire est proposé. Celui-ci est testé en suivant, en roulant, des trajectoires au sol et en vol. Un modèle est présenté et une démarche pour le contrôle est proposée pour transporter une charge pendulaire

    Emerging Trends in Mechatronics

    Get PDF
    Mechatronics is a multidisciplinary branch of engineering combining mechanical, electrical and electronics, control and automation, and computer engineering fields. The main research task of mechatronics is design, control, and optimization of advanced devices, products, and hybrid systems utilizing the concepts found in all these fields. The purpose of this special issue is to help better understand how mechatronics will impact on the practice and research of developing advanced techniques to model, control, and optimize complex systems. The special issue presents recent advances in mechatronics and related technologies. The selected topics give an overview of the state of the art and present new research results and prospects for the future development of the interdisciplinary field of mechatronic systems
    corecore