33 research outputs found

    Model predictive emissions control of a diesel engine airpath: Design and experimental evaluation

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/163480/2/rnc5188.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/163480/1/rnc5188_am.pd

    A STUDY OF MODEL-BASED CONTROL STRATEGY FOR A GASOLINE TURBOCHARGED DIRECT INJECTION SPARK IGNITED ENGINE

    Get PDF
    To meet increasingly stringent fuel economy and emissions legislation, more advanced technologies have been added to spark-ignition (SI) engines, thus exponentially increase the complexity and calibration work of traditional map-based engine control. To achieve better engine performance without introducing significant calibration efforts and make the developed control system easily adapt to future engines upgrades and designs, this research proposes a model-based optimal control system for cycle-by-cycle Gasoline Turbocharged Direct Injection (GTDI) SI engine control, which aims to deliver the requested torque output and operate the engine to achieve the best achievable fuel economy and minimum emission under wide range of engine operating conditions. This research develops a model-based ignition timing prediction strategy for combustion phasing (crank angle of fifty percent of the fuel burned, CA50) control. A control-oriented combustion model is developed to predict burn duration from ignition timing to CA50. Using the predicted burn duration, the ignition timing needed for the upcoming cycle to track optimal target CA50 is calculated by a dynamic ignition timing prediction algorithm. A Recursive-Least-Square (RLS) with Variable Forgetting Factor (VFF) based adaptation algorithm is proposed to handle operating-point-dependent model errors caused by inherent errors resulting from modeling assumptions and limited calibration points, which helps to ensure the proper performance of model-based ignition timing prediction strategy throughout the entire engine lifetime. Using the adaptive combustion model, an Adaptive Extended Kalman Filter (AEKF) based CA50 observer is developed to provide filtered CA50 estimation from cyclic variations for the closed-loop combustion phasing control. An economic nonlinear model predictive controller (E-NMPC) based GTDI SI engine control system is developed to simultaneously achieve three objectives: tracking the requested net indicated mean effective pressure (IMEPn), minimizing the SFC, and reducing NOx emissions. The developed E-NMPC engine control system can achieve the above objectives by controlling throttle position, IVC timing, CA50, exhaust valve opening (EVO) timing, and wastegate position at the same time without violating engine operating constraints. A control-oriented engine model is developed and integrated into the E-NMPC to predict future engine behaviors. A high-fidelity 1-D GT-POWER engine model is developed and used as the plant model to tune and validate the developed control system. The performance of the entire model-based engine control system is examined through the software-in-the-loop (SIL) simulation using on-road vehicle test data

    Model Predictive Control of Modern High-Degree-of-Freedom Turbocharged Spark Ignited Engines with External Cooled EGR

    Get PDF
    The efficiency of modern downsized SI engines has been significantly improved using cooled Low-Pressure Exhaust Gas Recirculation, Turbocharging and Variable Valve Timing actuation. Control of these sub-systems is challenging due to their inter-dependence and the increased number of actuators associated with engine control. Much research has been done on developing algorithms which improve the transient turbocharged engine response without affecting fuel-economy. With the addition of newer technologies like external cooled EGR the control complexity has increased exponentially. This research proposes a methodology to evaluate the ability of a Model Predictive Controller to coordinate engine and air-path actuators simultaneously. A semi-physical engine model has been developed and analyzed for non-linearity. The computational burden of implementing this control law has been addressed by utilizing a semi-physical engine system model and basic analytical differentiation. The resulting linearization process requires less than 10% of the time required for widely used numerical linearization approach. Based on this approach a Nonlinear MPC-Quadratic Program has been formulated and solved with preliminary validation applied to a 1D Engine model followed by implementation on an experimental rapid prototyping control system. The MPC based control demonstrates the ability to co-ordinate different engine and air-path actuators simultaneously for torque-tracking with minimal constraint violation. Avenues for further improvement have been identified and discussed

    Explicit Nonlinear Model Predictive Control of the Air Path of a Turbocharged Spark-Ignited Engine

    Get PDF
    International audiencePollutant emissions and fuel economy objectives have led car manufacturers to develop innovative and more sophisticated engine layouts. In order to reduce time-to-market and development costs, recent research has investigated the idea of a quasi-systematic engine control development approach. Model based approaches might not be the only possibility but they are clearly predetermined to considerably reduce test bench tuning work requirements. In this paper, we present the synthesis of a physics-based nonlinear model predictive control law especially designed for powertrain control. A binary search tree is used to ensure real-time implementation of the explicit form of the control law, computed by solving the associated multi-parametric nonlinear problem

    Variational and Time-Distributed Methods for Real-time Model Predictive Control

    Full text link
    This dissertation concerns the theoretical, algorithmic, and practical aspects of solving optimal control problems (OCPs) in real-time. The topic is motivated by Model Predictive Control (MPC), a powerful control technique for constrained, nonlinear systems that computes control actions by solving a parameterized OCP at each sampling instant. To successfully implement MPC, these parameterized OCPs need to be solved in real-time. This is a significant challenge for systems with fast dynamics and/or limited onboard computing power and is often the largest barrier to the deployment of MPC controllers. The contributions of this dissertation are as follows. First, I present a system theoretic analysis of Time-distributed Optimization (TDO) in Model Predictive Control. When implemented using TDO, an MPC controller distributed optimization iterates over time by maintaining a running solution estimate for the optimal control problem and updating it at each sampling instant. The resulting controller can be viewed as a dynamic compensator which is placed in closed-loop with the plant. The resulting coupled plant-optimizer system is analyzed using input-to-state stability concepts and sufficient conditions for stability and constraint satisfaction are derived. When applied to time distributed sequential quadratic programming, the framework significantly extends the existing theoretical analysis for the real-time iteration scheme. Numerical simulations are presented that demonstrate the effectiveness of the scheme. Second, I present the Proximally Stabilized Fischer-Burmeister (FBstab) algorithm for convex quadratic programming. FBstab is a novel algorithm that synergistically combines the proximal point algorithm with a primal-dual semismooth Newton-type method. FBstab is numerically robust, easy to warmstart, handles degenerate primal-dual solutions, detects infeasibility/unboundedness and requires only that the Hessian matrix be positive semidefinite. The chapter outlines the algorithm, provides convergence and convergence rate proofs, and reports some numerical results from model predictive control benchmarks and from the Maros-Meszaros test set. Overall, FBstab shown to be is competitive with state of the art methods and to be especially promising for model predictive control and other parameterized problems. Finally, I present an experimental application of some of the approaches from the first two chapters: Emissions oriented supervisory model predictive control (SMPC) of a diesel engine. The control objective is to reduce engine-out cumulative NOx and total hydrocarbon (THC) emissions. This is accomplished using an MPC controller which minimizes deviation from optimal setpoints, subject to combustion quality constraints, by coordinating the fuel input and the EGR rate target provided to an inner-loop airpath controller. The SMPC controller is implemented using TDO and a variant of FBstab which allows us to achieve sub-millisecond controller execution times. We experimentally demonstrate 10-15% cumulative emissions reductions over the Worldwide Harmonized Light Vehicles Test Cycle (WLTC) drivecycle.PHDAerospace EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/155167/1/dliaomcp_1.pd

    Reference Governors: From Theory to Practice

    Get PDF
    Control systems that are subject to constraints due to physical limitations, hardware protection, or safety considerations have led to challenging control problems that have piqued the interest of control practitioners and theoreticians for many decades. In general, the design of constraint management schemes must meet several stringent requirements, for example: low computational burden, performance, recovery mechanisms from infeasibility conditions, robustness, and formulation simplicity. These requirements have been particularly difficult to meet for the following three classes of systems: stochastic systems, linear systems driven by unmodeled disturbances, and nonlinear systems. Hence, in this work, we develop three constraint management schemes, based on Reference Governor (RG), for these classes of systems. The first scheme, which is referred to as Stochastic RG, leverages the ideas of chance constraints to construct a Stochastic Robustly Invariant Maximal Output Admissible set (SR-MAS) in order to enforce constraints on stochastic systems. The second scheme, which is called Recovery RG (RRG), addresses the problem of recovery from infeasibility conditions by implementing a disturbance observer to update the MAS, and hence recover from constraint violations due to unmodeled disturbances. The third method addresses the problem of constraint satisfaction on nonlinear systems by decomposing the design of the constraint management strategy into two parts: enforcement at steady-state, and during transient. The former is achieved by using the forward and inverse steady-state characterization of the nonlinear system. The latter is achieved by implementing an RG-based approach, which employs a novel Robust Output Admissible Set (ROAS) that is computed using data obtained from the nonlinear system. Added to this, this dissertation includes a detailed literature review of existing constraint management schemes to compare and highlight advantages and disadvantages between them. Finally, all this study is supported by a systematic analysis, as well as numerical and experimental validation of the closed-loop systems performance on vehicle roll-over avoidance, turbocharged engine control, and inverted pendulum control problems

    Model based control for a modern automotive diesel engine

    Get PDF
    The dynamic performance of a turbocharged diesel engine during transient operation has been studied. For appropriate analysis of data obtained from engine transient operation, four alternative automated filtering methods were implemented on the cycle-by-cycle in-cylinder pressure. The techniques to process instantaneous emission data and align the transient data from different analyzers were developed. In the experimental study, the effects of engine speed and EGR have been investigated through load increase tests at a constant engine speed with different EGR calibrations. Based on the experimental results, a real-time diesel engine model was developed by Simulink. The model is capable of simulating the main engine parameters. It included the air path mode], combustion model and dynamic emission behavior model. The model can run as a real-time simulator for engine control strategy development. . An advanced fast predictive contro] approach was proposed and validated in a HIL simulation platform. The model predictive control was developed for EGR and VGT control. The oxygen concentration oriented control was designed and implemented in the real-time model. Compared with PID control, MPC presents a good tracking performance of reference values with a shorter response time. The results in HIL proved the real-time capability of the control strategy

    Optimization and control of a dual-loop EGR system in a modern diesel engine

    Get PDF
    Focusing on the author's research aspects, the intelligent optimization algorithm and advanced control methods of the diesel engine's air path have been proposed in this work. In addition, the simulation platform and the HIL test platform are established for research activities on engine optimization and control. In this thesis, it presents an intelligent transient calibration method using the chaos-enhanced accelerated particle swarm optimization (CAPSO) algorithm. It is a model-based optimization approach. The test results show that the proposed method could locate the global optimal results of the controller parameters within good speed under various working conditions. The engine dynamic response is improved and a measurable drop of engine fuel consumption is acquired. The model predictive control (MPC) is selected for the controllers of DLEGR and VGT in the air-path of a diesel engine. Two MPC-based controllers are developed in this work, they are categorized into linear MPC and nonlinear MPC. Compared with conventional PIO controller, the MPC-based controllers show better reference trajectory tracking performance. Besides, an improvement of the engine fuel economy is obtained. The HIL test indicates the two controllers could be implemented on the real engine

    Characterisation, control, and energy management of electrified turbocharged diesel engines

    Get PDF
    The electrification of engine components offers significant opportunities for fuel efficiency improvements. The electrified turbocharger is one of the most attractive options since it recovers part of the engine exhaust gas mechanical energy to assist boosting. Therefore, the engine can be downsized through improved transient responsiveness. In the electrified turbocharger, an electric machine is mounted on the turbine shaft and changes the air system dynamics, so characterisation of the new layout is essential. A systematic control solution is required to manage energy flows in the hybrid system. In this paper, a framework for characterisation, control, and energy management for an electrified turbocharged diesel engine is proposed. The impacts of the electric machine on fuel economy and air system variables are analysed. Based on the characterisation, a two-level control structure is proposed. A real-time energy management strategy is employed as the supervisory level controller to generate the optimal values of critical variables, while a model-based multi-variable controller is designed as the low level controller to track the values. The two controllers work together in a cascade to address both fuel economy optimisation and battery state-of-charge maintenance. The proposed control strategy is validated on a high fidelity physical engine model. The tracking performance shows the proposed framework is a promising solution in regulating the behavior of electrified engines

    Model Based Optimal Longitudinal Vehicle Control

    Get PDF
    Tez (Doktora) -- İstanbul Teknik Üniversitesi, Fen Bilimleri Enstitüsü, 2016Thesis (Ph.D.) -- İstanbul Technical University, Institute of Science and Technology, 2016Otomotiv sektöründeki zorlu rekabet ortamı göz önüne alındığında, otomotiv üreticileri müşterilerine daha çekici ve fonksiyonel araçlar sunabilmak için birbirleri ile sürekli bir yarış halindelerdir. Maliyet, emisyon, yakıt ekonomisi, gürültü ve titreşim, dayanıklılık, performans ve araç sürüş özellikleri gibi kriterlerde yapılan iyileştirmeler sayesinde üreticiler rakip firmaların araçlarına göre daha avantajlı bir yere gelmeyi hedeflerler. Bu özelliklerin her biri müşterilerin kullandığı / kullacağı araç için olumlu bir algı oluşturulmasında önemli katkısı vardır. Bilişim ve elektronik sektöründeki araştırma ve gelişmeler faaliyetleri sonucunda elde edilen yeni teknolojiler ışığında otomobil mimarisindeki elektro-mekanik istemlerin kullanımı oldukça artmıştır. Buna ek olarak malzeme bilimi ve üretim teknolojisinde gelişmeler ışığında dizel yakıtlı içten yanmalı motorlarun tork ve güç eğrileri 20 yıl önce üretilen motorlardaki tork ve güç seviyelerine göre neredeyse 2 katına çıkmıştır. Ayrıca araçların ivmelenme manevralarındaki hızlanma tepki seviyeleri de özellikle hava yolu kontrolündeki yenilik ve gelişmeler doğrultusunda oldukça artmıştır ve araçları çok daha çevik ve sürücülerin gaz pedalı hareketine bağlı isteklerine çok daha fazla duyarlı hale getirmiştir. Motor tork ve güç kapasitelerindeki gelişmeler doğrultusunda araçların gaz pedalı tepkileri ciddi oranda değişmiş ve iyi bir araç sürüş özellikleri kalibrasyonuna ihtiyaç doğmuştur. Tüm gelişmelerin neticesinde araç sürüş özellikleri, müşteri memnuiyeti kriterleri arasında önemli bir paya sahip olmuştur. Bu tez çalışması araç sürüş üzellikleri simulasyon programları ve model bazlı kontrol algoritmaları kullanarak iyileştirmeyi amaçlamaktadır. Aracın güç ünitesi olan motorlardan tekerlekler vasıtasıyla yola olan tork ve kuvvet iletimi son derece karmaşık bir yapıya sahiptir ve araç sürüş özellikleri düşünüldüğünde dikkatli bir şekilde ele alınmalıdır. Aracın gaz pedalı hareketine olan tepkisi gecikme içermemeli, yeteri kadar hızlı ve seri olmalı aynı zamanda vurma, sarsıntı, salınım ve yığılma gibi hata modları içermemelidir. Bununla birlikte araç aktarma organları bileşenlerindeki doğrusal olmayan sistemler düşünüldüğünde, yukarıda bahsedilen araç sürüş özellikleri beklentilerini karşılamak son derece zorlu bir hal almaktadır. Eski araçlardaki gaz pedalı ve kelebeği arasındaki bağlantı teli vasıtasıyla sağlanan mekanik araç doğrusal ekseni kontrolünden farklı olarak, günümüzün modern araçları elektromekanik sistemler ile donatılmıştır. Motor kontrol üniteleri araç dorusal ekseni hareketini regülatif ve müşteri beklentileri ile uyumlu şekilde sağlamak için onlarca sensör sinyalini algıladıkdan sonra milisaniyeler içersinde işleyerek, motor ve araç aktüatörlerinin kontrolü için uygun sinyalleri üretirler. Araç sürüş özellikleri algoritmları düşünüldüğünde otomobil üreticileri gaz pedalı deplasmanına bağlı sürücü tork isteğini yumuşatan veya filtreleyen algorithmalar kullanırlar. Bu algoritmalar genellikle harita bazlıdırlar ve ana misyonları özellikle araç aktarma organlarındaki dişli mekanizmalarındaki boşluklardan geçerken geçerken tork artış ve azalma hızlarını limitleyerek araç sürüş özelliklerini iyileştirmektir. Sistem herhangi bir kapalı döngü içermediği için, bu algoritmalar subjectif kalibrasyon yöntemleri olarak tanımlanabilirler ve sistemin doğru çalışması, bu haritaları kalibre edem kalibrasyon mühendisinin hislerine ve yeteneğine bağlıdır. Ayrıca bu haritalardaki araç hızı, pedal pozisyonu ve vitese bağlı kombinasyonlar içerirler ve tüm olası koşulları içeren bir kalibrasyon yapılması oldukça zaman almaktadır. Mevcut kalibrasyon yapısının yukarıda bahsedilen kusurları göz önüne alındığında; araç sürüş özelliklerinin iyileştirilmesi için performans ve konfor gibi birbirleriye çelişen isteklerin optimizasyonunu barındıran gelişmiş tork kontrolü, otomobil üreticileri ve akademik dünyada son derece ilgi çeken bir konu haline gelmiştir. Araç doğrusal ekseni hareket kontrolü algoritmalarının başarılı bir şekilde kullanılabilmesi için motorun anlık olarak ürettiği torkun bilinmesi oldukça önemlidir. Günümüz araçlarının yanma kontrolü incelendiğinde, mevcut yapının harita bazlı olduğu görülür ve bu yapıda üretilen torkun doğrulaması yapılmamaktadır. Bu haritalar motor test dinamometrelerinde normal hava koşulları için (25 derece sıcaklık ve deniz seviyesi irtifa) doldurulurlar. Genellikle bu haritaların eksenleri motor hızı ve istenilen indike tork şeklinde olup, haritanın içeriğini ise istenilen yanma parametresinin belirtilen motor hızı ve indike torktaki değeri oluşturur. Bu yapı araçlarda kullanılırken bazı sıkıntılar yaratabilir. Motorlarda yanmayı oluşturan yakıt yolu parametreleri kontrolü çok daha hassas bir şekilde yapılırken (istenilen yakıt özellikleri: basınç, zamanlama ve miktar), gecici rejim manevraları düşünüldüğünde hava yolu parametreleri özellikle turbo şarj içeren dizel motor motorlarda istenilen değerden sapma gösterebilir. Bu durum “turbo gecikmesi” olarak adlandırılır ve üretilen torku ciddi şekilde etkiler. Aşırı sıcak yada soğuk ve yüksek irtifa koşulları düşünüldüğünde üretilen torktaki sapmalar çok daha fazla olur. Literature incelendiğinde araç eksenel doğrultusu için geliştirilen motor tork kontrol algoritmaları bakımından istenilen anlık torkun motor tarafından verildiği düşünülür. Fakat yukarıda belirtilen nedenlerden dolayı bu durum gerçekleşemez. Bu yüzden literaturde belirtilen araç doğrulsal ekseni için geliştirilen motor tork kontrolü algoritmalarında motor tork karakteristiği ya hiç düşünülmemiştir yada bazı temel gecikme ve filtrele fonksiyonları ile modellenmiştir. Tüm bu anlatılanlar düşünüldüğünde bu tez çalışmasının temelini oluşturan motor tork modeli içeren araç doğrusal ekseni kontrol algoritması literatürdeki diğer çalışmaşlarda ayrışır. Önerilen “Silindir için basınç öngörümlü motor tork kontrol modeli algoritması” araç sürüş özellikleri kontrol yapısı ile uyumlu bir şekilde çalışarak araç tepki karakterini iyileştirir. Bu çalışma kapsamında MATLAB/Similink modelle ortamında, 4 atalet kütlesi, 2 set yay ve sönüm elemanı ve lastik karakteristiği içeren, 4 serbbestlik dereceli bir aktarma organları modeli oluşturulmuştur. Sadece araç doğrusal ekseni araç dinamiğini içeren model validasyonu, gaz basma ve gazdan çekme gibi yük değişimi manevralarını içeren araç seviyesi tesler ile yürütülmüştür. Test ölçüm sonuçları ve model çıktıları karşılaştırıldığında geliştirilen aktarma organları modelinin araç doğrusal ekseni hızlanma profili için karşılaşılan hata modlarını da içerecek şekilde yansıttığı görülmüştür. Son olarak araç aktarma organları uygulaması düşünüldüğünde, araç sürüş özelliklerini iyileştirme için sürücü talebi doğrultusunda oluşan tork isteğini araç doğrulsal ekseni hareketinde oluşabilecek salınımları engelleyen model bazlı öngörümlü tork kontrol algoritması geliştirilmiştir. Bu algoritmada 4 serbestlik dereceli model, içerdiği doğrusal olmama durumu yüzünden kullanılamamıştır. Bu yüzden basitleştirilmiş 2 ve 3 serbestlik dereceli araç aktarma organları modelleri oluşturulmuştur. Yapılan çalışmalar doğrultusunda hem 2 hem de 3 serbestlik dereceli modellerin, model bazlı öngörümlü tork kontrol algoritmasını düzgün şekilde çalıştırabilmek için yeterli doğruluk ve çözünürlükde olduğu görülmüştür. Bu çalışmanın amacı kapalı devre bir araç sürüş özellikleri algoritması ortaya çıkarmak olduğu için ve geliştirilen algoritma teknik nedenler dolayısıyla araçta denenemediği için, 4 serbestlik dereceli motor aktarma organları modeli, 2 ve 3 serbestlik dereceli motor aktarma organları modelli içeren model bazlı öngörümlü tork kontrol algoritmalarını çalıştırmak üzere kullanılmıştır. Geliştirilen 2 ve 3 serbestlik dereceli modellerin araç sürüş özellikleri önemli derecede iyileştirdiği görülmüştür. Özellkile ivmelenme profilinin düzgünlüğü ve neden olusan sistem gecikmesi düşünüldüğünde 2 serbestlik dereceli aktarma organları modeli bazlı kontrol algoritmasnın daha iyi sonuç verdiği görülmüştür. Geliştirilen tork kontrol modelli aktarma organları bazlı araç salınımları ciddi oranda azaltsada, tamamen ortadan kaldırmadığı görülmüştür. Bu doğrultuda araç ivmelenme karakteristiğinden minimum seviyede ödün vererek, oluşan salınımları daha da azaltmak ve ivmelenme profilini daha düzgün hale getirmek için temel olarak motor ve araç hızı farkını elimine etme prensibine dayanan bir doğrulsal (P) kontrolcü, model bazlı öngürümlü tork kontrol algoritmasına eklenmiştir. Literatürde bu konuda yapılan çalışmalar incelendiğinde tüm araçtırmacıların model bazlı öngürümlü algoritmayı tek başına kullandıkları görükmektedir ve bu çalışmada önerilen doğrusal kontrolcü eklenmiş model bazlı öngörümlü tork kontrol algoritması bir yenilik olarak mevcut literatür içeriğine eklenmiştir.Considering the competitive environment in automotive industry, original equipment manufacturers (OEMs) in this industry are in a challenging competition with each other to offer their customers more attractive vehicles. Cost, emissions, fuel economy, noise vibration & harshness (NVH), durability, performance and driveability properties make a product able to distinguish from its competitors’ products. Each of these attributes has a major contribution of forming a perception of the customers’ choosiness. New technologies as a result of the research and developments activities in electronics resulted with complex electro-mechanical systems in automobiles. With the addition of recent developments in materials and manufacturing processes on top of it, especially in diesel fuelled internal combustion engines (ICE), torque and power delivery had almost doubled with respect to the conventional engines developed not more than two decades ago. Additionally as a result of latest developments at air path and gas exchange systems control, torque build up rate had significantly increased enabling the vehicles to be more agile and reactive to load change request manoeuvres. As a result of all these capability improvements, vehicle response characteristics to high torque and power capacity engines changed extremely altering the necessity of proper and robust driveability calibration requirements. Driveability properties of the vehicles had gained significant importance in terms of customer satisfaction. This dissertation focuses on improving vehicle driveability properties taking advantage of simulation tools and model based control. The overall profit of this thesis is providing improved driveability via using engine torque production and vehicle models and controllers at the same time. Torque transmission from the vehicle’s power unit to the road surface via tires is a complex structure which should be handled with extreme care considering the overall driveability performance of the vehicle. An agile throttle response of the vehicle is aimed without error modes like acceleration initial kick, bump, response delay, stumble or shuffle. However considering the nonlinearities resulting from the complex structures at the drivetrain of the vehicle, this requirement becomes significantly challenging. Despite mechanical control at longitudinal motion in conventional vehicles, modern vehicles are equipped with electromechanical systems. Thanks to technological developments in the automotive industry that current capability of the vehicles enables us to develop better platforms for improving driveability characteristics. Modern engine control units (ECUs) have the capability of processing thousands of signals in a less than tens of milliseconds and as a result regulate numerous actuators which results with displacement of the vehicle complying all regulative requirements and customer expectations. Acceleration throttle pedal input signal is recorded by electronic control unit, processed and finally used to control the parameters for the combustion systems. In terms of driveability control, automotive manufacturers’ engine control algorithms employ input shaping or simple filtering algorithms. These algorithms use look-up tables and main control strategy is to slew the pedal oriented torque request for the tip-in and tip-out manoeuvres in an open loop control methodology especially in backlash transition region of the driveline. Considering the fact that there is no close loop control and these features become subjective calibration methodologies and outcome becomes strongly dependant on calibrator’s capability and performance. Moreover filling look-up tables for all gear, engine speed and pedal position combinations requires significant amount of calibration development time. Taking into consideration all of these obstacles of the current driveability features, the subject of automated torque control for improved driveability is a state of the art research topic both within automotive manufacturers and academic researchers as it can be described as an optimization problem dealing with performance and comfort counter measures. Knowledge of the instantaneous produced torque by the engine is a key item with respect to satisfying above stated attributes in vehicle longitudinal motion control. Currently common approach for combustion management is the usage of look-up table based structures with the drawback of poor conformity of the produced torque. Look-up tables define air and fuel quantity setpoints in order to produce requested indicated torque without feedback of the produced torque. These look-up tables are filled at engine dynamometer test benches at normal ambient conditions. In general fuel and air quantity setpoint maps have the axes of engine speed and indicated torque and requested amount of desired variable is filled to the corresponding point of the look-up table. In real world driving conditions fuel quantity control is robust however especially with turbocharged systems; requested air quantities may deviate from the setpoint values especially when considering transient manoeuvres. This phenomenon is called “turbo/boost lag” and significantly affects the produced torque. The situation is much worse for non-standard conditions, extreme hot and cold and altitude. In the literature most of the proposed vehicle longitudinal motion control related engine torque control algorithms base on the fact that requested torque will be generated immediately from the diesel engine. However as explained above this is not the case in real life applications. Therefore engine characteristic is either not included or covered with a simple filtering algorithm in conventional vehicle longitudinal motion related engine torque control methodologies. Engine brake torque model combined driveability control algorithm proposed in this thesis is differentiated from the previous studies in the literature within this perspective. Proposed “In cylinder pressured based engine brake torque model algorithm” works in harmony with the driveability control structure and improves overall vehicle response characteristics. Within the scope of this study a 4 degree of freedom powertrain model consisting of 4 inertias, 2 set of spring and damper elements with tyre characteristics, is built in MATLAB/Simulink environment. Model validation considering longitudinal vehicle dynamics is performed with employing vehicle level tests using a tip-in followed by a tip-out acceleration pedal signal input load change manoeuvres. Comparison of simulation results and measured vehicle test data shows that proposed model is capable of capturing vehicle acceleration profile revealing unintended error states for the specified input signals. Considering the driveability control perspective, a Model Predictive Control (MPC) algorithm employed to manipulate the pedal map oriented torque demand signal in an automotive powertrain application in order attenuate the powertrain oscillations in longitudinal vehicle motion control. 4 mass model could not be employed at with the MPC algorithm due to very high level of nonlinearity. Therefore two simplified versions of 2 and 3 mass models have been developed. It has been verified that both 2 and 3 mass vehicle models are accurate enough to employ the MPC torque control algorithm. As the aim of this study is to develop a close loop driveability algorithm for real world applications, the 4 mass vehicle model is used as replacement environment for the subjected vehicle in order to employ 2 and 3 mass vehicle model based control algorithm. MPC algorithms via using both models showed good capability, however smoothness of the driving profile with the 2 mass vehicle model is slightly better than the 3 mass model. Moreover to further improve the powertrain oscillations without compromising from overall system response speed, an additional anti-shuffle control element, basically a P controller based on the speed difference of engine and vehicle speeds, has been implemented to the MPC control algorithm. Literature review about the engine torque control for improved driveability show that all the researcher use MPC alone. Proposed MPC with additional P controller is a new contribution to the literature in the subjected area of research.DoktoraPh.D
    corecore