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Abstract 

To meet increasingly stringent fuel economy and emissions legislation, more advanced 

technologies have been added to spark-ignition (SI) engines, thus exponentially increase 

the complexity and calibration work of traditional map-based engine control. To achieve 

better engine performance without introducing significant calibration efforts and make the 

developed control system easily adapt to future engines upgrades and designs, this research 

proposes a model-based optimal control system for cycle-by-cycle Gasoline Turbocharged 

Direct Injection (GTDI) SI engine control, which aims to deliver the requested torque 

output and operate the engine to achieve the best achievable fuel economy and minimum 

emission under wide range of engine operating conditions. 

This research develops a model-based ignition timing prediction strategy for combustion 

phasing (crank angle of fifty percent of the fuel burned, CA50) control. A control-oriented 

combustion model is developed to predict burn duration from ignition timing to CA50. 

Using the predicted burn duration, the ignition timing needed for the upcoming cycle to 

track optimal target CA50 is calculated by a dynamic ignition timing prediction algorithm.  

A Recursive-Least-Square (RLS) with Variable Forgetting Factor (VFF) based adaptation 

algorithm is proposed to handle operating-point-dependent model errors caused by inherent 

errors resulting from modeling assumptions and limited calibration points, which helps to 

ensure the proper performance of model-based ignition timing prediction strategy 

throughout the entire engine lifetime. Using the adaptive combustion model, an Adaptive 

Extended Kalman Filter (AEKF) based CA50 observer is developed to provide filtered 

CA50 estimation from cyclic variations for the closed-loop combustion phasing control.   

An economic nonlinear model predictive controller (E-NMPC) based GTDI SI engine 

control system is developed to simultaneously achieve three objectives: tracking the 

requested net indicated mean effective pressure (IMEPn), minimizing the SFC, and 

reducing NOx emissions. The developed E-NMPC engine control system can achieve the 

above objectives by controlling throttle position, IVC timing, CA50, exhaust valve opening 

(EVO) timing, and wastegate position at the same time without violating engine operating 



xvi 

constraints. A control-oriented engine model is developed and integrated into the E-NMPC 

to predict future engine behaviors. A high-fidelity 1-D GT-POWER engine model is 

developed and used as the plant model to tune and validate the developed control system. 

The performance of the entire model-based engine control system is examined through the 

software-in-the-loop (SIL) simulation using on-road vehicle test data. 



1 

1 Introduction 

1.1 Background and Research Motivation 

Currently, there are more than 1.2 billion vehicles on the road around the world, and about 

80 million new cars are sold by the automotive industry annually. Over 59% of worldwide 

fossil fuel is and will be consumed by the transportation sector until the year 2050 [1]. With 

increasing concerns on energy security, economy, and environmental quality, the 

transportation industry is adopting various technologies to produce cleaner and more 

efficient vehicles including alternative fuels, hybrid electric vehicles (HEVs), and pure 

electric vehicles (EVs). However, it takes time for new technologies to penetrate the 

market. Figure 1.1 shows that the majority of the light-duty vehicles will still have internal 

combustion engines (ICEs) in the next thirty years. As a result, optimizing IC engines to 

improve the fuel economy and reduce emissions are valuable.  

 

 

Figure 1.1 Light-duty Vehicle Stock [1]1 

 

                                                 
1 OECD: Organization of Economic Cooperation and Development 
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Spark-ignition (SI) engines fueled with gasoline are major power sources of most on-road 

passenger cars. The released corporate average fuel economy (CAFE) standards require 

light-duty vehicles to achieve 40.4 miles per gallon (mpg) fuel economy target [2], and the 

carbon dioxides and nitrogen oxide emissions are limited to 201 grams per mile and 0.07 

grams per mile, respectively, in 2021-2026 [3]. Increasingly stringent fuel economy and 

emission regulations force the automotive industry to develop more efficient and cleaner 

SI engines by adopting various advanced technologies to production engines, including 

direct injection [4, 5], variable valve timing (VVT) [6, 7], turbocharging [8, 9], exhaust gas 

recirculation [10, 11], and variable compression ratio [12, 13]. Among mass-production 

engines, GTDI SI engines equipped with VVT dominate the market due to high propulsion 

performance with low fuel consumption and emissions. To realize the above innovations, 

more advanced actuators and sensors have been equipped in modern engines, which 

increase the degrees of engine freedom. This results in an exponential increase of 

calibration work and makes conventional map-based and single-input-single-output (SISO) 

feedback engine control cumbersome. In addition, the traditional map-based engine control 

system is usually developed and calibrated for a specific engine design, and it is hard to be 

adapted to the future design of engine upgrading. Since the performance of GTDI SI 

engines, such as the response of torque delivery, fuel economy, and emission levels, are 

affected by the control strategies in the engine management system (EMS), developing an 

optimal engine control system which can deliver the requested output and operate the 

engine with minimum fuel consumption and emissions under wide engine operating 

conditions is crucial. All the above motives the researchers and the automotive industry to 

adopt the model-based optimal multi-input-multi-output (MIMO) control approach to 

develop the engine control system, which can potentially reduce the calibration work 

significantly, shorten the engine production cycle, and provide the capability of adapting 

the developed control system to similar engine designs and future engine upgrading. 
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1.2 Literature Review  

1.2.1 GTDI SI Engine Control Problems and Approaches 

Torque control is the main control task of GTDI SI engines, which provides driver 

requested torque by preparing correct amount of inducted fresh air and injected fuel and 

igniting the in-cylinder mixtures at a proper timing. The torque-based engine control was 

proposed by Bosch [14] and is broadly adopted in the current production engine controllers, 

where the torque control module is a crucial component of an engine management system. 

The EMS systematically coordinates the torque control module with other control modules, 

including electronic throttle control, VVT management, fuel injection control, ignition 

timing control, turbocharger control, knock control, transmission control, tractive control, 

to deliver driver’s torque requests. The subsystems of each control module manipulate 

mechanical and electrical actuators, such as electronic throttle, intake and exhaust valves, 

ignition coils, wastegate, to track the references generated by upper-level control modules. 

Currently, the rule-based torque control approach incorporating lookup tables is widely 

used in the production engine control unit (ECU). Extensive experimental tests are required 

to obtain these lookup tables. The degrees of freedom of the engine control increases with 

added actuators, which exponentially increases the complexity of coordinating all control 

modules to meet torque requirement. Many researchers have investigated various control 

methods for torque-based SI engine control, such as sliding-mode control [15], fuzzy gain 

scheduling-based PID control [16], and adaptive PID control [17]. However, the above 

traditional feedback control methods lack the ability to handle system constraints, require 

extensive calibration efforts to tune the controller parameters, and have limited working 

ranges. 

To meet fuel economy and emission legislations, reducing fuel consumption and gaseous 

pollutants, such as oxides of nitrogen (NOx), carbon monoxide (CO), and hydrocarbons 

(HC), are two common goals of the engine control. During the warm-up period of three-

way catalytic converters (TWC), engine-out emissions are high. When the TWC has been 

fully warmed up, over 90% of engine-out emissions can be removed, and the main task of 
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EMS is to maintain stoichiometric air-fuel ratio (AFR) to achieve high conversion 

efficiency of TWC. Under normal engine operating conditions after the engine warms up, 

NOx emission rates are always high under both vehicle acceleration and deceleration due 

to high temperature combustion [18], and NOx emission is one of the major concerned 

pollutants in GTDI SI engines. In this study, we focus on reducing engine-out NOx 

emissions under normal engine operating conditions after the TWC is totally warmed up. 

Many researchers have investigated the methods of reducing NOx emission and fuel 

consumption through controlling VVT [19-22]. From an experimental study in [19], it 

shows that the objectives of minimizing the specific fuel consumption and minimizing 

NOx emissions conflict with each other under some engine operating conditions. The 

balance of these two objectives is required in the control algorithm.  

For engine control, the combustion stability and engine durability are also key control 

requirements. Engine combustion stability is normally quantified by the coefficient of 

variation (COV) of IMEP, denoted as COVIMEP. High cycle-to-cycle combustion 

variations lead to poor drivability [23]. Engine knock causes engine damage and decreases 

combustion efficiency [24]. The EMS needs to operate an engine below the combustion 

stability threshold and engine knock limit. Furthermore, the engine controller must 

consider the operating limits and response delays of actuators. The calibration effort is 

tremendous to obtain optimal nonlinear feedforward lookup tables to simultaneously 

accomplish the above tasks and meet the control goals with the consideration of system 

constraints, and thus elongates the production cycle.  

 

 

 

 



5 

1.2.2 Combustion Phasing Control 

In homogeneous SI engines, the combustion of in-cylinder air-fuel mixture is initialized by 

the ignition spark. The mass fraction burned (MFB) curve (Figure 1.2) estimated from the 

measured in-cylinder pressure trace and cylinder volume data is widely used to describe 

the process of chemical energy release as a function of the crank angle [25]. From energy 

release point of view, the SI combustion process is commonly categorized into two periods, 

which are flame development period and rapid burning period, respectively [26]. Among 

the combustion matrices determined from the MFB curve, the combustion phasing (CA50) 

is one of the most important parameters affecting engine torque output, thermal efficiency, 

and emissions.  

 

Figure 1.2 MBF of SI Combustion 

 

For combustion phasing control in SI engines, ignition timing is used to achieve optimal 

CA50 targets, which are usually determined from extensive experimental tests by 

considering torque output response, fuel economy, emissions, and engine operating 

constraints. Selection of optimal CA50 values depends on the priorities of the above 

considerations under different engine operating conditions. Under normal engine operating 

conditions after the engine warms up, optimal CA50 targets are usually calibrated to 

achieve Maximum Brake Torque (MBT) output, which leads to the maximum engine 

thermal efficiency and best fuel economy [27]. Figure 1.3 shows the effect of combustion 
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phasing on indicated fuel conversion efficiency [28]. Under part-load operating conditions, 

advanced CA50 leads to more negative work during the compression stroke and higher 

heat loss to the coolant, which results in lower fuel economy. Although retarding CA50 

decreases peak in-cylinder temperature, which results in NOx emissions reduction [29], 

over retarded CA50 leads to more expansion loss and worsens the fuel economy. CA50 is 

correlated to two major SI engine operating constraints, which are combustion knock and 

combustion stability. Under high load conditions, early CA50 results in higher peak in-

cylinder pressures and temperatures, which results in combustion knock [30] and damages 

the engine. Reducing emissions during engine cold start is the major task of the engine 

control, and the CA50 is retarded to warm up the catalyst as soon as possible [31]. 

However, too late CA50 may cause partial burns or misfires and leads to higher cycle to 

cycle combustion variations [32]. 

 

 

Figure 1.3 Influence of Combustion Phasing (CA50) on Engine Efficiency [28] 
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Taking advantages of advanced sensors, such as the in-cylinder pressure sensor and ion 

sensor, traditional closed-loop feedback control, such as proportional–integral–derivative 

(PID) control,  are widely used to manipulate the ignition timing to track target CA50 by 

using the estimated CA50 from measured in-cylinder pressure [33, 34] trace or ion signal 

[35, 36]. In SI engines, cyclic combustion variations are natural characteristics and are 

normally considered as the stochastic process. The traditional feedback combustion 

phasing controllers calculate the ignition timing correction based on CA50 error, which is 

the difference between estimated CA50 of the previous cycle and CA50 target. This 

approach not only introduces unavoidable cycle delay, but also may lead to wrong ignition 

timing correction. Under transient engine operating conditions, above cycle delay and 

wrong correction of ignition timing can lead to severe CA50 deviation from CA50 target, 

which may cause combustion knock during throttle tip in maneuver and partial burn or 

misfire during throttle tip out maneuver. To improve the performance of the combustion 

phasing control under transient operating conditions, feedforward control methods are 

widely used in CA50 control [37]. This method helps to shorten the settling time and rising 

time of combustion phasing control system through outputting ignition timing needed to 

track the target CA50 for the upcoming cycle in the feedforward path based on current 

engine operating conditions. In the current production engine control units (ECUs), 

empirical feedforward ignition timing maps are used to achieve desired combustion 

phasing. These maps are obtained from lots of experimental tests. As the degree of freedom 

of the engine control system increases, the complexity and difficulties of deriving ignition 

timing control maps with considering multiple engine control objectives and constraints 

increase significantly. To reduce the calibration effort, both on-board calibration [38] and 

model-based calibration [39] methods are investigated to generate ignition timing maps 

from engine dyno tests and high-fidelity engine simulations. However, a large number of 

steady-state tests are still needed to generate optimal ignition timing maps for combustion 

phasing control to minimize fuel consumption and emissions. All the above motivates the 

automotive industry and researchers to adopt the model-based feedforward combustion 

phasing control. 
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The process of SI combustion is complicated, which incorporates combustion chemistry, 

chemical kinetics, thermodynamics, fluid dynamics, and other related physics. Based on 

application scenarios, different kinds of SI engine combustion models have been studied 

and developed by researchers to be used for combustion phasing control. Depending on the 

level of details, the combustion models can be classified into four categories, which are 

zero dimensional (0-D), quasi-dimensional, one dimensional (1-D), and three dimensional 

(3-D) models, respectively. 0-D models are mostly developed based on the first law of 

thermodynamics without considering spatial resolution within the cylinder, and empirical 

equations are normally used to model the combustion process. In 0-D combustion models, 

the Vibe combustion models [40, 41] are widely used to model the mass fraction burn of 

SI combustion by tuning the model coefficients to match simulated MFB curve with the 

experimental MFB curve. Significant amount of calibration work is needed to ensure the 

accuracy of the model by creating accurate lookup tables of the model parameters. In [42, 

43], the artificial neural networks (ANNs) were constructed to predict burn duration from 

ignition timing to CA50 (ΔθIGN-CA50) and CA50, respectively. However, it is not easy to 

adapt the trained ANN models to further engine upgrading without retraining. The quasi-

dimensional turbulent combustion model is another type of 0-D combustion model, as the 

independent variable in the equations is the time or crank angle. It solves two ordinary 

differential equations that describe the rate of fresh fuel-air mixture entrained by the flame 

front and characterize the unburned turbulent eddies burning rate, respectively. The model 

was first proposed by Blizard and Keck [44]. Although the quasi-dimensional turbulent 

combustion model has the capability to predict the combustion phasing in real-time [45, 

46], the model needs lots of effort to calibrate the empirical equations for laminar flame 

speed and turbulent intensity to fit the predicted MFB curve to the experimental MFB curve 

under different engine operating conditions [47]. 1-D [48, 49] and 3-D [50] combustion 

models have much better predictability and can provide more accurate simulation results 

by solving the detailed equations describing flow dynamics and chemical reactions in the 

cylinder. However, these models require high computing power and are not suitable for 

real-time engine control purpose.  
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As discussed above, completely empirical combustion models have limited predictive 

ability and require significant calibration effort, as they lack dependencies of the physical 

fundamentals. The quasi-dimensional turbulent combustion models have improved 

predictive ability but they need to be calibrated based on engine operating conditions to 

guarantee the model accuracy. For the real-time combustion phasing control, 

computationally efficient combustion models with small amount of calibration work that 

can be used to calculate the needed ignition timing based on target CA50 are ideal. The 

parametric combustion model is a popular 0-D model which considers the physical 

fundamentals and has the potential to reduce the calibration work. In [51], authors derived 

the parametric combustion models to predict both the flame development period (0 to 10% 

MFB) and the rapid burning period (10% to 90% MFB). The models were developed based 

on the basics of turbulent flame propagation in SI engines, and only one unique set of 

correlations needed to be derived to provide the best model performances for a particular 

engine design. Different equation formats and engine operating related physical 

parameters, including cylinder geometry parameters, mean piston speed, laminar flame 

speed, turbulent flame speed, and intake mixture density, etc., have been used to develop 

the parametric combustion model for burn duration prediction in [52-55]. Another model 

of this kind uses the Arrhenius type equation to model the fuel burning rate. In [26], 

Heywood showed the results that Arrhenius type models coupled with rate-controlling 

turbulent mixing process were able to implement into multi-dimensional SI engine 

combustion model to simulate the MFB curve and recover in-cylinder pressure trace [56].  
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1.2.3 Model Predictive Control and its Applications in Automotive Control 
Problems  

1.2.3.1 Model Predictive Control 

Model predictive control (MPC), also known as the receding horizon control, is an 

advanced control method for solving an optimization problem. MPC is a popular and 

effective control method for MIMO systems, which provides a systematic control design 

method that naturally incorporates system constraints to achieve optimal control 

performance. In the MPC algorithm, dynamic system models are used to predict future 

system behaviors over the prediction horizon, which is defined as the time period that 

system models can look ahead in the future. Using predicted system states, a sequence of 

optimal control actions is derived for a given prediction horizon by minimizing a user-

defined cost function which is subjected to a variety of system constrains, such as operating 

ranges of actuators, change rates of actuators, and feasible ranges of system states. The 

MPC is executed in every time interval and only the first control action of the derived 

control sequence is applied to actuators. Figure 1.4 shows an example of MIMO engine 

system in which E-NMPC derive a sequence of optimal control actions (U) by delivering 

IMEPn and minimizing 𝑚𝑐𝑦𝑙_𝑓𝑢𝑒𝑙 and NOx while meeting system constraints over entire 

prediction/control horizon (Nc). ‘k’ is the index of the actual cycle which needs to be 

controlled, and ‘i’ is the index of cycle within the prediction horizon. The MPC algorithm 

can be described as follows: 

1. At cycle ‘k’, use available measurements and system models to predict system 

states and constraints. 

2. Calculate a sequence of optimal control actions by minimizing the defined cost 

function over the prediction horizon while meeting system constraints using the 

predicted system states and constraints. 

3. Implement the control actions (U(k, 1)) at cycle ‘k’ to the system. 

4. Move to next cycle ‘k+1’. Repeat from step 1. 
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Figure 1.4 An Example of Application of E-NMPC based  Engine Control 

 

Depending on the system models and constrains, MPC can be generally classified into two 

categories, which is linear MPC and nonlinear MPC (NMPC), respectively. Linear MPC, 

uses linear system models to capture system dynamics, has been widely used in the process 

industries for controlling slow chemical reactions [57]. However, many systems are 

nonlinear. Linear models may not be able to effectively predict the future system behaviors 

for nonlinear systems. As the performance of the MPC heavily relies on the model 
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accuracy, nonlinear models that can accurately capture the nonlinear system dynamics are 

needed in the MPC to predict system states over the prediction horizon. This motivates the 

NMPC, which uses nonlinear system models. Compared to linear MPC, NMPC needs to 

solve an online nonlinear constrained optimization problem, which is more compute-

intensive and requires powerful processors for online application. Thanks to recent 

progress in NMPC algorithm and advances in computing hardware, NMPC is becoming 

more and more popular and adopted in different industrial applications, such as agriculture 

[58], chemical [59], oil production [60], aircrafts [61], and automotive [62]. 

 

1.2.3.2 Applications of MPC for Automotive Control 

MPC has drawn great interests from the automotive industry to push the technology for 

production applications due to its ability to generate optimal control actions for constrained 

MIMO systems to meet required control objectives, which will shorten the product 

development cycle and reduce calibration labor efforts. In addition, the increasing 

computing power of ECUs and rapid progress in solving a quadratic optimization problem 

online make MPC a feasible solution for vehicle control at various vehicle control levels.  

In 1990s, linear MPC was first applied to IC engine for idle speed control [63]. From 2000s, 

MPC has been widely studied for controlling powertrain components, such as engine 

torque control [64-66] and transmission control [67-69]. Starting from mid-2000s, MPC 

has been investigated for controlling fuel cell vehicles [70, 71] and hybrid electric vehicles 

(HEVs) with different powertrain configurations, such as battery powered HEVs [72], 

serial HEVs [73, 74], and parallel HEVs [75, 76]. For MPC-based HEV control, energy 

consumption reduction [77-80] is one of the major objectives. In recent years, MPC has 

been investigated for future automotive applications. The stochastic MPC [81] and explicit 

MPC [82] has been applied for adaptive cruise control. Many researchers are applying 

MPC to autonomous vehicles, such as vehicle tracking control [83], optimal vehicle 

velocity prediction [84], steering system control [85], lane keeping [86], collision 

avoidance [87], and automatic emergency braking [88].  
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1.2.3.3 MPC-Based Engine Control  

For engine control, MPC was initially applied for the control of diesel engine airpath in the 

earlier years [89-91]. Controlling a GTDI SI engine is to find sets of constrained optimal 

control actions to achieve multiple engine control objectives, including torque delivery, 

fuel consumption minimization, emission reduction, comfortable drivability, and product 

durability. Model-based constrained optimal MIMO control is a good option to 

simultaneously achieve multiple control objectives by systematically manipulating 

multiple actuators, and MPC is one of the candidates. One of the major advantages of MPC-

based engine control is that it provides a method to naturally and explicitly incorporate 

engine operating constraints into an optimization problem with combined objectives, 

which helps to ensure the safe engine operation and significantly simplify the control 

algorithm development. In addition, compared to traditional control methods, the 

calibration of MPC is more intuitive and straightforward. Basically, there are two kinds of 

tunable control parameters in the MPC, which are weighting factors of each objective in a 

cost function and the length of prediction horizon, respectively. Based on the priorities of 

the engine control objectives under different engine operating conditions, the more 

important control objective terms will have larger weighting factors. Depending on the 

dynamic performance of the controlled system and control requirements, the prediction 

horizon should be selected in a way that stable operation of the system is ensured first, and 

the controller response is fast enough to satisfy the control requirements. The above 

calibration process of the MPC is much simpler than other traditional closed-loop 

controller, like PID controller, which greatly reduce the calibration time.  

In recent years, MPC has been extensively investigated for controlling SI gasoline engines, 

and major applications of MPC on engine control are engine states/outputs tracking. To 

deliver the requested engine torque, MPC is used to follow the calibrated intake manifold 

pressure (MAP) [92, 93] and boost pressure [94, 95] targets acquired from extensive 

steady-state and transient engine tests by manipulating the throttle position and the 

wastegate position. In [65, 96], the IMEP is used as the tracking reference, and control 

signals of MPC are throttle air flow, EGR mass flow, and CA50. The engine shaft torque 
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output is used as the control target of MPC in [64, 97, 98]. For the reduction of the fuel 

consumption and NOx emissions, Mingxin [99] Tae-Kyung and Lee [100] applied MPC to 

reduce NOx emissions and deliver the requested torque by following calibrated MAP 

values. Tae-Kyung Lee et al. [100] tried to achieve residual gas fraction (RGF) targets by 

controlling the throttle position, intake, and exhaust cam timings to follow set-points for 

actuators, which were calibrated at some engine operating points to minimize NOx 

emissions. MPC was investigated in [22] to control both intake and exhaust cam timings 

to track optimal trajectories of cam timings, which were calibrated to minimize fuel 

consumption and NOx emission. 

To successfully implement MPC-based engine control, two key components are required: 

(1) accurate engine models (2) fast MPC execution for cycle-by-cycle engine control. Since 

the performance of MPC is heavily relied on the accuracy of the system models integrated 

in the control algorithm, developing an accurate dynamic GTDI SI engine model based on 

the control objectives is critical. Limited by the computing power and memory size of the 

engine controller, the engine model should be computationally efficient and capable of 

real-time evaluation. The GTDI SI engine is a complex dynamic system comprising 

chemical reactions, fluid mechanics, thermal dynamics, mechanical dynamics, etc. Linear 

engine models are widely used in the MPC-based engine control [64, 99]. However, 

multiple linear MPCs are required to cover wide engine operating conditions, and these 

linear MPCs need to be scheduled in a way to ensure the smooth and stable engine 

operation. As an SI engine is a nonlinear dynamic system, developing a computational 

efficient and accurate engine model that can effectively capture the engine dynamics and 

cover wide engine operating conditions is challenging. To capture the nonlinear dynamics 

between inputs and outputs of an engine, detailed physics-based models are needed. In-

cylinder combustion metrics, such as IMEPn and combustion phasing, are calculated from 

crank angle based in-cylinder pressure. To predict crank angle based in-cylinder pressure, 

detailed combustion models are needed, which are usually represented by nonlinear partial 

differential equations. Linearizing system and constraints through calculating sensitivity 

matrices is one of the key steps in the nonlinear model predictive control (NMPC) 
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algorithm using the sequential quadratic programming (SQP) approach [101]. Online 

calculation of sensitivity matrices of system models and evaluating nonlinear system 

models in MPC introduce a heavy computational burden. To effectively capture system 

dynamics with acceptable accuracy and computation time, different kinds of modeling 

techniques have been investigated in MPC based engine control, such as neural network 

[94, 102, 103], state-space system identification [99, 104, 105], and semi-physics based 

control-oriented modeling [106, 107]. 

 

1.3 Research Objectives and Tasks 

This dissertation presents a model-based control system for cycle-by-cycle control of a 

GTDI SI engine. The goal of the engine control system is to simultaneously track requested 

net indicated mean effective pressure and minimize fuel consumption and NOx emissions 

without violating engine operating constraints by systematically managing throttle 

position, intake valve closing (IVC) timing, spark timing, exhaust valve opening (EVO) 

timing, and wastegate opening percentage. To achieve above goal, the following tasks are 

required to be accomplished: 

1. Develop a computationally efficient control-oriented combustion model and 

ignition timing prediction algorithm for cycle-by-cycle combustion phasing 

control. 

2. Develop an adaptive algorithm for feedforward ignition timing prediction that can 

ensure the accuracy of model-based combustion phasing control throughout the 

engine lifetime and enable the combustion phasing control system to cover entire 

engine operating conditions without additional calibration. 

3. Develop a feedback combustion phasing estimator to acquire responsive and 

‘filtered’ CA50 estimation from cycle-by-cycle CA50 calculated using in-cylinder 

pressure sensor under transient engine operating conditions. 

4. Develop a computationally efficient and control-oriented MIMO GTDI SI engine 

model that can effectively and accurately capture engine dynamics and be easily 
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integrated into the model-based engine control algorithm for real-time engine 

control purpose.  

5. Develop an economic nonlinear model predictive controller  which can track 

requested IMEPn and minimize fuel consumption and NOx emissions with the 

consideration of all necessary engine operating constraints. 

6. Develop a high fidelity 1D GT-POWER GTDI SI engine model to generate engine 

data for the development of control-oriented MIMO GTDI SI engine model. Build 

a virtual simulation framework to tune and evaluate the MPC controller by using 

the developed 1D GT-POWER virtual engine. 

7. Evaluate the performance of the entire model-based engine control system, which 

integrates the adaptive combustion phasing controller and the E-NMPC engine 

controller, through the software-in-the-loop  co-simulation between GT-POWER 

and SIMULINK using on-road vehicle test data.  

 

1.4  Contributions 

The major contributions of this study are summarized below: 

• A model-based cycle-by-cycle feedforward ignition timing management system 

using a computationally efficient control-oriented combustion model has been 

developed. The system is evaluated using two transient tests. The developed 

ignition timing management algorithm can predict the needed ignition timing to 

achieve the target CA50 within 0.8 CAD error. With only 64 test points used for 

model calibration, the developed ignition timing management system is shown to 

cover wide engine operating conditions, which significantly reduces the calibration 

efforts. 

• A Recursive-Least-Square (RLS) based adaptive algorithm is developed and 

integrated into the feedforward ignition timing management system to handle 

operating-point-dependent model errors, which helps to improve and maintain the 

accuracy of combustion model and thus ensure the performance of model-based 
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combustion phasing control throughout the engine lifetime. A variable forgetting 

factor (VFF) is integrated into the RLS algorithm, which helps stabilize the adaptive 

algorithm by mitigating negative effects of stochastic cycle-to-cycle combustion 

variations. The developed RLS-VFF based adaptive algorithm is able to expand the 

original feedforward ignition timing management to cover the entire engine 

operating conditions without additional calibration efforts, which shows the 

potential of a significant reduction of calibration work. 

• A CA50 observer is proposed using an adaptive Extended Kalman Filter (AEKF) 

and developed combustion model, which provides a method of accurate and fast 

estimation of CA50 from cycle-to-cycle using an in-cylinder pressure sensor under 

transient operating conditions. To reduce the calibration effort and the risk of 

divergence of the AEKF algorithm caused by improper values of covariances 

metrices, the recursive method is used for online estimation of covariance metrices. 

Compared to traditional CA50 estimation using the moving average approach, the 

developed AEKF-based feedback CA50 estimation can successfully ‘filter’ out the 

‘stochastic noise’ and provide ‘filtered’ CA50 estimation without significant cycle 

delays, which provides an effective method for CA50 estimation under transient 

engine operating conditions. 

• An E-NMPC based cycle-by-cycle GTDI SI engine control system is developed. 

The E-NMPC based engine control system aims to simultaneously accomplish 

three objectives: requested IMEPn delivery, fuel consumption minimization, and 

NOx emission reduction. A comprehensive set of engine operating constraints has 

been considered in the E-NMPC, including both physical limitations of actuators 

and constraints for safe and stable engine operation. The developed E-NMPC based 

engine control system can successfully achieve three control objectives by 

systematically manipulate actuators and meet all engine operating constraints at the 

same time. To the best of our knowledge, the NMPC-based cycle-by-cycle control 

of a GTDI SI engine to simultaneously achieve three control objectives: torque 

delivery, fuel consumption minimization, and NOx reduction, while considering all 

necessary engine constraints has not been studied yet.  
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• A control-oriented MIMO GTDI SI engine model is developed by incorporating 

both physics-based and data-driven modeling approaches to effectively and 

accurately capture nonlinear engine dynamics. The developed control-oriented 

engine model is integrated into the E-NMPC algorithm to predict the future engine 

behaviors. The hybrid modeling approach helps to reduce the computational burden 

of E-NMPC for online engine control applications.  

• A high fidelity 1D GT-POWER GTDI SI engine model is developed and calibrated 

using experimental data. The developed virtual engine model is validated trough 

transient on-road vehicle data. A software-in-the-loop co-simulation platform with 

GT-POWER and SIMULINK is built to tune and evaluate the model-based engine 

control system, which speeds up the control system development. The entire model-

based engine control system is evaluated using real world transient vehicle driving 

tests through SIL simulation. The SIL results demonstrate that the developed E-

NMPC based engine control system can track the requested IMEPn and find the 

best achievable combination of IVC and EVO to minimize the ISFC and reduce the 

NOx emission. This work provides a framework of model-based engine control, 

which can be easily adapted to different engine design and future upgrading by 

recalibrating engine models. 
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1.5 Outline of the dissertation 

According to the research objectives described above, the dissertation has been organized 

as following .  

• Chapter 2 describes the detailed specifications of the test engine used in this study. 

The information of key instrumentation sensors, data acquisition system, and 

schematic of test engine setup are also introduced. 

• Chapter 3 presents the development of a computationally efficient control-oriented 

combustion model for predicting burn duration (IGN-CA50). Using the developed 

combustion model, a framework of cycle-by-cycle feedforward model-based 

ignition timing management is proposed to find the ignition timing at IVC for the 

upcoming cycle based on the desired CA50. 

• Chapter 4 expands the working ranges of the feedforward model-based ignition 

timing management by adopting the adaptation techniques. A Recursive-Least-

Square (RLS) with Variable Forgetting Factor (VFF) based adaptation algorithm is 

developed to enable the ignition timing management system to cover entire engine 

operating conditions and improve the combustion phasing control accuracy. The 

adaptive extended Kalman filter (AEKF) based CA50 estimator is proposed to 

provide responsive and ‘filtered’ feedback CA50 estimation under transient engine 

operating conditions. 

• Chapter 5 presents an economic nonlinear model predictive controller  based cycle-

by-cycle engine control system. The entire model-based control system aims to 

deliver the driver requested torque and simultaneously minimize the fuel 

consumption and NOx emission with the consideration of engine operating 

constraints. A control-oriented MIMO GTDI SI engine model, which can capture 

nonlinear engine dynamics and predict the future engine behavior, is integrated in 

the E-NMPC algorithm. A 1D engine model and a virtual testing environment is 

built to evaluate the performance of the E-NMPC engine control system through 

software-in-the-loop  co-simulation between GT-POWER and SIMULINK using 

on-road vehicle test data. 
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2 Test Engine and Experimental Setup 

2.1 Test Engine 

The experimental engine is a Ford 2.0L direct-injection (DI), turbocharged, 4-cylinder 

engine, as showed in Figure 2.1. The test engine is equipped with variable valve timing 

technology, and the intake cam timing and exhaust cam timing can be controlled 

independently. A 450kW programmable Alternating Current (AC) dynamometer was used 

to run the engine under desired steady-state and transient operating conditions. The test 

fuel is AKI 87 fuel, and fuel properties are described in Table 2.1. The detailed 

specifications of the engine are listed in Table 2.2.  

 

 

Figure 2.1 Test Engine 
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Table 2.1 Test Fuel Specifications  

Parameter Value 

Carbon (%) 83.06 

Hydrogen (%) 13.48 

Oxygen (%) 3.46 

Density (kg/m3) 741.9 

Lower heating value (MJ/kg) 41.725 

Stoichiometric Air-Fuel Ratio 14.06 

 

Table 2.2 Experimental Engine Specifications 

Parameter Value 

Displacement (L) 2.0 

Compression Ratio 9.3:1 

Bore (mm) 87.5 

Connecting Rode Length 

(mm) 
155.8 

Stroke (mm) 83.1 

Firing Order 1-3-4-2 

Base IVC (° ATDC) 247 

Base IVO (° ATDC) 11 

Base EVC (° ATDC) 8 

Base EVO (° ATDC) -216 

Rated Torque 270 lb-ft @ 3000 rpm 

Rated Power 240 hp @ 5500 rpm 
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2.2 Experimental Setup 

Figure 2.2 shows the schematic of the test engine with instrumentations. The production 

Bosch ECU and ATI Vision calibration software were used to control the engine and 

monitor all necessary engine states. The external cooling system was used to maintain the 

engine coolant temperature at desired values. Inlet air temperature before the throttle was 

controlled by the cooling temperature in the turbocharger after-cooler. The real-time 

combustion analysis system (CAS) from MTS powertrain technology and VeriStand 

system from National Instruments were used to acquire angle-based and time-based test 

data. Kistler 6125A piezoelectric in-cylinder pressure sensors are equipped in all cylinders 

to measure the crank-angle based pressure signals with a sample interval of 0.5 CAD. The 

measurement range and output range of in-cylinder pressure sensors are between 0 and 100 

bar, and 0 to 5V, respectively. OMEGA and piezoresistive Kulite pressure sensors were 

used to measure MAP and exhaust pressure in the integrated exhaust manifold with 0.5 

CAD resolution. Kulite pressure sensor is directly mounted on the exhaust manifold, to 

accurately capture exhaust pressure dynamics. Meriam’s laminar flow measurement (LFE) 

was used to measure intake air mass flow through the throttle. Thermocouples were used 

to measure inlet air temperature and exhaust gas temperature. A volumetric flowmeter and 

A 80I-110S Fluke current probe were used to measure engine fuel flow and injection pulse 

widths. NDIR500 fast CO & CO2 analyzers were used to measure emissions. Figure 2.2 

shows the detailed schematic of the test engine with all instrumentational sensors. 
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Figure 2.2 Schematic of Experimental 2.0L GTDI engine 



24 

3 Model-Based Combustion Duration and Ignition 
Timing Prediction for Combustion Phasing Control of 
a Spark-Ignition Engine Using In-Cylinder Pressure 
Sensors2 [108] 

3.1 Overview of Model-Based Burn Duration and Ignition Timing 
Management for Combustion Phasing Control 

The architecture of the model-based GTDI SI engine control is shown in Figure 3.1. This 

chapter focuses on the Model-Based Ignition Timing Management block. The entire engine 

cycle is defined from IVC(k-1) to IVC(k). Cycle ‘k’ is the upcoming cycle that needs the 

predicted ignition timing for combustion phasing control and requires the estimation with 

enough time for scheduling the ignition dwell. In this work, the estimation is produced at 

IVC for the cycle under consideration. 𝜃𝐼𝐺𝑁(𝑘) is the final predicted ignition timing. An 

optimal feedforward ignition timing is determined by engine operating conditions and the 

desired combustion phasing, 𝜃𝐶𝐴50_𝑇𝑎𝑟𝑔𝑒𝑡(𝑘).  

 

Figure 3.1 Structure of Model-Based Combustion Phasing Control in GTDI SI Engine 

Control 

                                                 
2 The material contained in this chapter was previously published in the Proceedings of ASME 2019 

International Design Engineering Technical Conferences & Computers and Information in Engineering 

Conference, Volume 9, 2019 (See Appendix 1) 
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Figure 3.2 shows a diagram of model-based ignition timing prediction. The control-

oriented combustion model uses only the information at and before IVC. ∆𝜃𝐼𝐺𝑁−𝐶𝐴50
− (𝑘) 

is the predicted burn duration using the developed combustion model and a dynamic burn 

duration and ignition timing prediction algorithm is developed to obtain the final predicted 

ignition timing 𝜃𝐼𝐺𝑁(𝑘), for upcoming cycle ‘k’. A dynamic model is used to provide the 

needed inputs of the combustion model, including in-cylinder temperature and the masses 

of both inducted fresh air and residual gases at IVC cycle-by-cycle [109]. 

 
Figure 3.2 Model-based Ignition Timing Management 
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3.2 SI Combustion Modeling for Engine Control 

Combustion phasing is one of the most important parameters affecting engine efficiency, 

torque output, and emissions. In homogeneous spark-ignition (SI) engines, ignition timing 

control algorithms are typically map-based with several multipliers, which require 

significant calibration efforts. This chapter presents a framework of model-based ignition 

timing prediction using a computationally efficient control-oriented combustion model for 

the purpose of real-time combustion phasing control. Burn duration from ignition timing 

to CA50 (ΔθIGN-CA50) on an individual cylinder cycle-by-cycle basis is predicted by the 

combustion model developed in this work. The model is based on the physics of turbulent 

flame propagation in SI engines. The most important control parameters, including ignition 

timing, variable valve timing, air-fuel ratio, and the engine load mostly affected by the 

combination of the throttle opening position are included in the combustion model. With 

64 test points used for model calibration, the developed combustion model is shown to 

cover wide engine operating conditions, thereby significantly reducing the calibration 

effort. A Root Mean Square Error (RMSE) of 1.7 Crank Angle Degrees (CAD) and 

correlation coefficient (R2) of 0.95 illustrate the accuracy of the calibrated model. On-road 

vehicle testing data are used to evaluate the performance of the developed model-based 

burn duration and ignition timing algorithm. When comparing the model predicted burn 

duration and ignition timing with experimental data, 83% of the prediction error falls 

within ±3 CAD. 

Modeling the SI combustion process is a challenging task, due to the complex combustion 

chemistry coupled with turbulent flow. Detailed physics-based models need to incorporate 

combustion chemistry, chemical kinetics, thermodynamics, fluid dynamics, and other 

related physics. Various kinds of SI engine combustion models, from 0-D to 3-D models, 

have been developed and studied to obtain the ignition timing for combustion phasing 

control. 0-D models employ the empirical equations and incorporate the first law of 

thermodynamics without accounting for spatial resolution within the cylinder [110]. 3-D 

models are capable of providing the most accurate simulation results by solving the 

equations describing flow and interaction of the fluid within the cylinder, however 3-D 
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models require high computing power. Real-time combustion phasing control using 0-D 

combustion models is feasible to be implemented in current production ECUs. Due to 

lacking dependencies of physical fundamentals, completely empirical 0-D models, such as 

the Wiebe function,  have limited predictive ability [111]. Physics-based combustion 

models have improved predictive ability, such as the quasi-dimensional turbulent 

combustion model [44, 112]. It derives the MFB curve by solving two differential 

equations, which phenomenologically characterize the burning rate of turbulent eddies and 

the entrainment rate of unburned air-fuel mixture. To attain high model accuracy, lots of 

engine calibration data is still required to generate lookup tables of calibration parameters, 

which are normally a function of engine operating conditions. 

Taking into consideration the computing power of ECUs, predictive ability, and calibration 

efforts, this research develops a computationally efficient control-oriented combustion 

model to predict the burn duration (Δ𝜃IGN-CA50) cycle-by-cycle. The model is developed 

upon the basis of turbulent flame propagation in SI engines, which considers physical 

fundamentals. Based on target CA50, ignition timing can be calculated from predicted burn 

duration (Δ𝜃IGN-CA50) cycle-by-cycle using a rule-based method developed in this work. 

The combustion model uses the information acquired at or before the Intake Valve Closing 

(IVC), the starting point of the upcoming engine cycle. Since on road SI engines are often 

operating in transient conditions, this model-based in-cycle ignition timing prediction has 

significant potential to improve fuel economy and reduce emissions by maintaining the 

optimal combustion phasing. 

 

3.3 Control-Oriented Combustion Model Development 

From the heat release point of view, the combustion process of SI engines can be separated 

into two stages [26]. First period is the time interval between the ignition timing and the 

start of the combustion (SOC), which is named as early flame development stage. SOC 

here is defined to be the crank angle location of 5 percent mass fraction burn (CA05). The 
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second period is from the CA05 to the time when the bulk of fuel-air mixture charge is 

burned, and this part is defined as the rapid burning stage. Since the objective is to predict 

the ignition timing for the coming cycle based on desired CA50, a combustion duration 

model that can predict burn duration between the point of start of ignition and CA50 cycle-

by-cycle is needed. In this study, the burn duration prediction, ∆𝜃𝐼𝐺𝑁−𝐶𝐴50
− , is composed of 

flame development stage, ∆𝜃𝐼𝐺𝑁−𝐶𝐴05
− , and rapid burning stage, ∆𝜃𝐶𝐴05−𝐶𝐴50

− , as described 

in Equation (3.1), 

 

50 05 05 50
ˆ ˆ ˆ
IGN CA IGN CA CA CA  − − −

− − − =  +
 

(3.1)  

 

3.3.1 Flame Development Stage Model 

Based on the basics of turbulent flame propagation in SI engines, Hirs et al. developed two 

models for both the flame development stage and the rapid burning stage [51], as described 

in Equation (3.2). In Equation (3.2), the first term models the burn duration of early flame 

development stage, and the second term describes the burn duration of rapid burn stage. In 

[51], crank angle based quasi-dimensional turbulent combustion model was integrated 

from ignition timing to the End of the Combustion (EOC), where EOC was defined to be 

the crank angle of 99 percent mass fraction burned. Two assumptions were made to derive 

the model for flame development period: (i) the time duration between ignition timing and 

CA05 is proportional to the time needed to burn a turbulent eddy and (ii) turbulent intensity 

is positively correlated with mean piston speed. For the derivation of the combustion 

duration model of the rapid burning stage, ‘rapid distortion’ theory was used to calculate 

the turbulent intensity. 
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where, 𝑎1
′  and 𝑎2

′  are calibration parameters. The subscripts of the parameters refer to 

quantities calculated at certain crank angle locations (CA05, CA50, CA90). 𝑆𝑃
̅̅ ̅ is the mean 

piston speed. 𝑣𝑢𝑛_𝐶𝐴50 is the kinetic viscosity of unburned mixture at CA05. ℎ𝐶𝐴50 is the 

effective chamber height at CA05. 𝑆𝐿_𝐶𝐴05 is the laminar flame speed calculated at CA05. 

In this work, the control-oriented combustion model for the burn duration prediction of 

∆𝜃𝐼𝐺𝑁−𝐶𝐴05
−  is derived based on the first term in (3.2). Following the turbulent combustion 

model developed in [51], this work also uses the two zone combustion concept, which 

assumes that flame front moves at turbulent flame speed and the cylinder is separated into 

the burned zone and unburned zones. The thermodynamic properties of the mixture in the 

unburned zone are calculated by assuming polytropic process. Kinetic viscosity, 𝑣𝑢𝑛_𝐶𝐴50, 

is calculated using Equations (3.3) to (3.5). Equation (3.4) describes the temperature 

dependent dynamic viscosity correlation developed in [26]. The ranges of temperature, 

pressure, and equivalence ratio of mixture covered by this correlation are 500 to 4000 K, 1 

to 100 bar, and φ is from 1 to 4.  Equation (3.6) gives calculation of mean piston speed 

from engine speed (rpm). 
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Where, RPMEng is the engine speed. B is the diameter of piston. l is the length of connecting 

rod. VCA05 is the cylinder volume at CA05. 

By substituting Equations (3.3) to (3.6) into Equation (3.2) and combining all the constants 

of physical parameters into a1 and a2, predicted burn duration from start of ignition timing 

to EOC can be described in Equation (3.8). ∆𝜃𝐼𝐺𝑁−𝐸𝑂𝐶
−  is a function of engine 

specifications, effective chamber height, temperatures and pressures of unburned zone at 

CA05 and CA50, laminar flame speeds at CA05 and CA50, and engine speed. 
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In this work, it is assumed that the unburned mixture is not significantly compressed 

between ignition timing and SOC. To simplify the model without missing the physical 

parameters related to early flame development stage, 𝑇𝐼𝐺𝑁 and  𝑃𝐼𝐺𝑁 will be used in the 

first term of Equation (3.8). From parametric studies by Hirs et al. [51], the turbulent flame 

speed has a weak dependence on turbulent length scale, which is proportional to effective 

chamber height. Since CA05 is needed for calculating  ℎ𝐶𝐴05, to further simplify the model 

and calculation without predicting CA05, ℎ𝐶𝐴05 in Equation (3.8) is substituted by ℎ𝐶𝐴05. 

The laminar flame speed correlation developed in [113] is used in this study, as described 

in Equation (3.9). 𝑌𝐹  and 𝑌𝑂2  represent the mole fractions of fuel and oxygen in the 

unburned mixture, which describe the contents of air fuel mixture trapped in the cylinder 

including fresh air, residuals, fuel, etc. The laminar flame speed is dependent upon the total 

dilution from excess air and residuals [26]. To account for this, a dilution factor 𝑋𝐷𝑖𝑙𝑢𝑡𝑖𝑜𝑛 

is defined and used to substitute 𝑌𝐹 ∙ 𝑌𝑂2, as shown in Equation (3.10). The laminar flame 

speed is more sensitive to residual gas fraction than to excess air dilution [26]. Since the 

effect of residuals and air are not the same, a parameter ‘d’ is introduced. 
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 (3.10)  

Where, 𝑚𝑎𝑖𝑟_𝐼𝑉𝐶 is the mass of inducted fresh air at IVC. 𝑚𝑓𝑢𝑒𝑙_𝐼𝑉𝐶  is the mass of injected 

fuel into the cylinder. 𝐷𝑖𝑙𝑢𝑡𝑖𝑜𝑛𝐴𝑖𝑟 is the term used to represent the excess air dilution. 

 

The burned gas that remains in the cylinder from previous cycle reduces the adiabatic flame 

temperature, and hence reduces the laminar flame speed, thus the higher RGF results in 

longer burn duration. The mass of residuals remained in the cylinder is mainly affected by 
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the intake and exhaust valve timing events especially the pressure ratio of exhaust to intake, 

exhaust to in-cylinder, and intake to in-cylinder [114]. Residuals also increase as engine 

speed decreases as there is more time for exhaust gases to flow back through the intake 

[115]. The model developed in [109, 116] is used to estimate the mass of induced fresh air 

and residual gas trapped in the cylinder at IVC cycle-by-cycle. RGF is defined in Equation 

(3.11). Equation (3.12) describes the total mass of residual trapped in the cylinder at IVC, 

which considers both the backflow of exhaust during the valve overlap, �̂�𝑒𝑥ℎ_𝑏𝑎𝑐𝑘𝑓𝑙𝑜𝑤, and 

trapped burned gas at Intake Valve Opening (IVO), �̂�𝑟𝑒𝑠_𝑡𝑟𝑎𝑝𝑝𝑒𝑑_𝐼𝑉𝑂. The mass of trapped 

residual gases at IVO is computed using the ideal gas law, as shown in Equation (3.13). 
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Crank angle based in-cylinder pressure is compared to the exhaust pressure. To calculate 

the mass of exhaust flows back into the cylinder during the valve overlap, the compressible 

ideal gas flow correlation described in Equation (3.14) is used when pressure ratio of 

downstream to upstream is larger than critical pressure ratio. The choked flow correlation 

described in Equation (3.15) is used when the pressure ratio of downstream to upstream is 

less or equal to the critical ratio. Upstream is the in-cylinder pressure, and downstream 

pressure is the exhaust manifold pressure. 
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Where, 𝐶𝐷𝐴 is the discharge coefficient multiplied by the effective port area calculated 

using a flow test bench. Superscripts ‘up’ and ‘down’ indicate the pressure and temperature 

at upstream and downstream respectively. 

Equation (3.16) defines the excess air dilution term described as the percentage of excess 

air in the mixture. Excess air inducted into the cylinder makes the engine operate under 

lean condition. Mixture burning speed reaches its maximum at slightly rich conditions and 

decreases as the mixture becomes leaner or richer [26]. Burn duration increases as burning 

velocity decreases. 
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Where, λ is defined as the value of actual air to fuel ratio divided by stoichiometric air to 

fuel ratio. FARStoi is the fuel to air ratio at stoichiometric condition. 

 

By substituting Equations (3.9) and (3.10) into the first term of Equation (3.8) and merging 

all the model coefficients, the newly developed control-oriented burn duration model for 

early flame development stage can be described in Equation (3.17). Due to the physics of 

the flame development and propagation in SI engines after the ignition timing, burn 
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duration of flame development stage has the minimum limit, which is a positive value. 

Based on this, 𝑎7 is added to be the physical lower constraint for early flame development 

stage. 
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Where, 𝑎1 to 𝑎7 are model coefficients that need calibration. 

To obtain the coefficients of Equation (3.17), an optimization method is used to minimize 

the RMSE between predicted burn duration, ∆𝜃𝐼𝐺𝑁−𝐶𝐴05
− , and experimental burn duration, 

∆𝜃𝐼𝐺𝑁_𝐶𝐴05. MATLAB function ‘fmincon’ was used to determine values of 𝑎1 to 𝑎7 to 

minimize Equation (3.18) using the ‘Global Search’ method. In ‘fmincon’, the boundaries 

of coefficients were chosen to ensure that changes of physical model parameters resulting 

in correct directional changes of modeled burn duration. The combustion model 

development data set listed in Table 3.1, composed of 64 test points, was used to derive 

model coefficients. 
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Where, n is the number of experimental data points. 

 

Table 3.1 Base Combustion Model Calibration Points 

Total 

Points 

Engine 

Speed 

(RPM) 

Gross 

IMEP 

(kPa) 

CA50 

(°ATDC) 

λ 

(-) 

Cam 

Overlap 

(CA deg) 

64 
1500 & 

3500 
250 & 750 8 & 18 0.9 & 1 0 ~ 47 
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Figure 3.3 shows the results of the flame development model fit. The x-axis represents the 

experimental results of IGN-CA05 burn duration, and the y-axis represents the modeled 

IGN-CA05 with the fitted coefficients. The points in the figure are color coded according 

to the residual gas fraction as shown in the color bar to the right of the figure. It can be 

observed that the duration of the flame development stage increases with increasing RGF. 

This is because at higher RGF the laminar burning velocity decreases. The RMSE of 

∆𝜃𝐼𝐺𝑁−𝐶𝐴05
−  is 1.7 CAD, and the correlation coefficient is 0.95. The red dashed lines 

indicate ±10% error, and 85% of predicted burn durations are within ±10% error lines. 

 

Figure 3.3 Modeled flame developed burn duration vs. experimental flame development 

duration 

 

3.3.2 Rapid Burning Stage Model 

In Equation (3.8), both the first term and the second term are similar and use the same 

physical parameters calculated at different crank angle locations to model flame 

development period and rapid burning period respectively. To further simplify the model 

and reduce calibration efforts, the correlation between experimental flame development 
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period, ∆𝜃𝐼𝐺𝑁_𝐶𝐴05, and rapid burn burning period, ∆𝜃𝐶𝐴05_𝐶𝐴50, is examined to see if the 

prediction of ∆𝜃𝐼𝐺𝑁−𝐶𝐴50
−  can be estimated as a function of ∆𝜃𝐼𝐺𝑁−𝐶𝐴05

− . 

From the experimental optical study of SI engine combustion by Toulson [117], the flame 

radius is shown to increase linearly versus crank angle between ignition timing and 30 

degrees after ignition timing. This phenomenon exists under different engine speeds/loads 

operating conditions and various lean combustion levels. In Irimescu’s study [118], the 

linear correlation between flame area and volume fraction burned has been found under 

various engine speed conditions. From the experimental studies conducted by Robinet and 

Higelin [119], a linear correlation of ∆𝜃𝐼𝐺𝑁_𝐶𝐴05  vs. ∆𝜃𝐶𝐴05_𝐶𝐴10 , ∆𝜃𝐼𝐺𝑁_𝐶𝐴10  vs. 

∆𝜃𝐶𝐴10_𝐶𝐴20, and ∆𝜃𝐼𝐺𝑁_𝐶𝐴20 vs. ∆𝜃𝐶𝐴20_𝐶𝐴50 has been found. 

Based on experimental findings from above studies [117-119], tests listed in Table 3.1 were 

analyzed to examine the correlation between ∆𝜃𝐼𝐺𝑁_𝐶𝐴05 and ∆𝜃𝐼𝐺𝑁_𝐶𝐴50. Figure 3.4 shows 

a linear relationship between experimental ∆𝜃𝐼𝐺𝑁_𝐶𝐴05 and ∆𝜃𝐼𝐺𝑁_𝐶𝐴50, with a correlation 

coefficient of 0.94. The results show that ∆𝜃𝐼𝐺𝑁−𝐶𝐴50
−  can be modeled using Equation 

(3.19). 

 

( )50 05 05
ˆ ˆ ˆ
IGN CA IGN CA IGN CAf a b  − − −

− − − =  =  +  (3.19)  

Where, a and b are model coefficients. 
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Figure 3.4 Experimental flame development period (IGN-CA05) vs. experimental rapid 

burning period (IGN-CA50) 

 

Finally, the newly developed control-oriented combustion model for estimating the burn 

duration between ignition timing and CA50 is given in Equation (3.20). 𝑇𝐼𝐺𝑁  and 𝑃𝐼𝐺𝑁 

represent the mixture conditions at ignition timing location and are affected primarily by 

three control inputs: throttle angle, cam phasing, and ignition timing. Engine speed, 

residual gas fraction, and lambda control the turbulent flame speed, which in turn impacts 

the burn duration. In Equation (20), there are seven parameters that need calibration (𝑎1, 

𝑎7). 
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Model coefficients in Equation (3.20) were determined by minimizing the RMSE of 

∆𝜃𝐼𝐺𝑁−𝐶𝐴50
−  using the ‘fmincon’ function in MATLAB. Figure 3.5 shows the results of 

modeled burn duration from ignition timing to CA50. A correlation coefficient of 0.94 

indicates the control-oriented combustion model developed captures the dynamic changes 

of engine operating conditions. The RMSE of the model is 2.4 CAD, and 93% of the 

modeled burn duration falls within the ±10% error lines. Table 3.2 shows the fitted model 

coefficients for Equation (3.20). Based on the fitted model coefficients shown in Table 3.2, 

it can be observed that increasing values of RGF and engine speed results in large burn 

duration prediction. 𝑃𝐼𝐺𝑁 𝑇𝐼𝐺𝑁⁄  represents the density of the unburned mixture, higher 

𝑃𝐼𝐺𝑁 𝑇𝐼𝐺𝑁⁄  leads to decrease of burn duration prediction caused by the drop of laminar 

flame speed. Increasing 𝑇𝐼𝐺𝑁 results in decrease of 𝑒𝑎4 𝑇𝐼𝐺𝑁⁄  and burn duration prediction. 

The trends of the modeled burn duration ∆𝜃𝐼𝐺𝑁−𝐶𝐴50
−  match the trends of experimental burn 

duration caused by changes of engine operating conditions. 

 

 

Figure 3.5 Experimental burn duration (IGN-CA50) vs. modeled burn duration (IGN-

CA50) 
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Table 3.2 Fitted model coefficients 

Coefficients 𝒂𝟏 𝒂𝟐 𝒂𝟑 𝒂𝟒 

Value 1.65e-12 -0.49 -2.97 1256 

Coefficients 𝑎5 𝑎6 𝑎7  

Value 0.25 8.09 25.83  

 

3.3.3 Dynamic Burn Duration and Ignition Timing Prediction 

In order to achieve the ignition timing prediction for the model-based combustion phasing 

control purpose, the developed combustion model in Equation (3.20) is used to predict the 

burn duration based on the target CA50 cycle-by-cycle. Ignition timing can be calculated 

based on the predicted burn duration and desired CA50 target, 𝜃𝐶𝐴50_𝑇𝑎𝑟𝑔𝑒𝑡(𝑘). Dynamic 

burn duration and ignition timing prediction algorithm is shown in Figure 3.6. 

 

Cycle ‘k-1’ is the past cycle and cycle ‘k’ is the current cycle. Sensor information at and 

before IVC are needed for the algorithm. Calculated masses of residual gases and inducted 

fresh air trapped at IVC are used to calculate RGF for cycle ‘k’. Final ignition timing 

prediction for cycle ‘k-1’ is used as the input to start the iterations to predict the ignition 

timing for the cycle ‘k’. Each iteration checks the difference between 𝜃𝐶𝐴50
− (𝑘, 𝑗)and 

𝜃𝐶𝐴50_𝑇𝑎𝑟𝑔𝑒𝑡(𝑘) . If ∆𝜃𝐶𝐴50
− (𝑘, 𝑗)  is less than 0.5 CAD, the iteration is stopped. The 

threshold of the iteration number is set to ensure the safety of the real-time engine control. 

∆𝜃𝐼𝐺𝑁_𝐶𝐴50
− (𝑘) and ∆𝜃𝐼𝐺𝑁

− (𝑘) are final predicted burn duration and ignition timing for the 

upcoming cycle ‘k’. 𝜃𝐼𝐺𝑁(𝑘) is the final ignition timing sent to the engine ignition system. 
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Figure 3.6 Dynamic Burn Duration and Ignition Timing Prediction 
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3.4 Experimental Validation 

Two sets of vehicle data recorded during track tests are used to examine the performances 

of model-based ignition timing prediction algorithm. The transient speed/load profiles 

were programmed into the dynamometer controller to duplicate the transient engine 

operating conditions tested in the vehicle by controlling the dyno speed and the pedal 

position. Both the production engine sensors and the instrumentation sensors described in 

Figure 2.2 were used to record the engine test data. The engine was auto-controlled by 

Bosch PCM. Table 3.3 shows the transient operating conditions regarding the acceleration 

and the deceleration calculated from dynamometer tests. 

 

Table 3.3 Transient tests comparison 

 
Max Speed Accel/Decel 

(rpm/s) 

Max Load Accel/Decel 

(bar/s) 

Normal 876 -700 13 -12 

Heavy 1372 -1150 33 -63 

 

Figure 3.7 shows the speed/load map of the normal transient test and details of engine 

acceleration/deceleration. Blue dots are engine operating points. Red dots represent 64 

calibration points listed in Table 3.1. The entire transient test includes 3600 cycles of data. 

Figure 3.8 shows the speed/load map of the heavy transient test with rapid throttle opening 

and closing over 1050 cycles of recorded data. This heavy test has even wider engine 

operating conditions, where engine speeds/loads are from 1276 rpm/26 kPa gross IMEP to 

4000 rpm/1250 kPa gross IMEP. In this test, 96% of cycles converge within 2 iterations. 

The average error of burn duration prediction is 1.5 CAD.  
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Figure 3.7 Normal transient test 

 
Figure 3.8 Heavy transient test 
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Figure 3.9 shows performances of model-based burn duration and ignition prediction 

algorithm. The predicted burn duration follows the experimental burn duration, which 

changes due to the modified control inputs, including the throttle opening/closing, IVC 

advancing and EVO retarding. Most of the cycles only need 1 or 2 iterations, and none 

more than 3. 50% of cycles converge within 1 iteration, and 49% of cycles need 2 iterations 

to converge. The burn duration prediction mean error is -0.8 CAD. From the normal 

transient test, the developed combustion model can cover engine speeds/loads from 1000 

rpm/250 kPa gross IMEP up to 2500 rpm/1000 kPa gross IMEP with 64 calibration points. 

 

Figure 3.9 The performance of model-based burn duration and ignition prediction in a 

normal transient test 



44 

Figure 3.10 shows the speed/load map of the heavy transient test with rapid throttle opening 

and closing over 1050 cycles of recorded data. This test has even wider engine operating 

conditions, where engine speeds/loads are from 1276 rpm/26 kPa gross IMEP to 4000 

rpm/1250 kPa gross IMEP. In this test, 96% of cycles converge within 2 iterations. The 

average error of burn duration prediction is 1.5 CAD. 

 

 

Figure 3.10 The performance of model-based burn duration and ignition prediction in a 

heavy transient test 
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Figure 3.11 shows the prediction errors of burn duration and ignition timing combining 

two transient tests. The average prediction error of burn duration is 0.8 CAD. 83% of 

ignition timing prediction errors are within ±3 CAD. The STD of burn duration prediction 

error is 3.5 CAD and the STD of ignition timing prediction error is 2.4 CAD. Cycles with 

ignition prediction error exceeds ±5 CAD occur during tip in/out periods, like cycles 

between 200 and 250 in Figure 3.10, which are caused by the combination of stochastic 

cyclic combustion variations and model errors. An online model adaptation algorithm is 

developed to avoid large ignition timing prediction error during tip in/out periods in the 

section 4.1. 

 

 

Figure 3.11 Error of burn duration and ignition timing prediction 
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3.5 Summary 

This work developed a new computationally efficient control-oriented burn duration 

prediction model. With only 64 calibration points, the combustion model can be used for a 

wide range of engine operating conditions, which contributes to shorten the engine 

development cycle. Trends of the modeled burn duration match the trends of experimental 

burn duration caused by changes of engine operating conditions. The RMSE of ∆𝜃𝐼𝐺𝑁−𝐶𝐴50
−   

is 2.4 CAD, and the correlation coefficient is 0.94. 

The dynamic burn duration model and ignition timing prediction algorithm were proposed 

to predict the burn duration and the ignition timing at IVC for the upcoming cycle based 

on the desired CA50. From the results including transient tests, it can be observed that the 

algorithm needs no more than 3 iterations to converge and output the predicted ignition 

timing for the upcoming cycle based on target combustion phasing. 99% of cycles converge 

within 2 iterations in the normal transient test, and 96% of cycles converge within 2 

iterations in the heavy transient test. Combining two transient tests, the average error of 

predicted ignition timing is 0.8 CAD. When compared to ignition timing stored in the 

Bosch PCM, 83% of prediction errors of the model-based ignition timing prediction 

algorithm fall within ±3 CAD. With the proper selection of the calibration point 

boundaries, the developed model-based burn duration and ignition timing prediction 

algorithm can be adapted to different engines and implemented into the engine ECUs for 

real-time combustion phasing control. 
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4 Adaptive Ignition Timing Management and Feedback 
Combustion Phasing Estimation for Combustion 
Phasing Control  

4.1 Adaptive Model-Based Ignition Timing Management3  

To maintain the accuracy of developed combustion model and feedforward ignition timing 

management algorithm throughout the entire engine lifetime, a Recursive-Least-Square 

(RLS) with Variable Forgetting Factor (VFF) based adaptative algorithm is developed to 

handle operating-condition-dependent model errors. Due to the inherent model errors 

resulted from modeling assumptions and limited calibration points, the developed dynamic 

combustion model presented in Chapter 3 is expected to have operating condition 

dependent prediction errors. Even with the large amount of the steady state calibration 

points, the kind of model error cannot be omitted. Considering both not increasing the 

calibration burden with more dyno tests and ensuring the model accuracy within the entire 

engine operating region throughout the whole engine life, the on-board adaptative 

algorithm that can automatically adjust the model parameters through online learning to 

improve the model prediction accuracy becomes an optimal solution. Due to both 

operating-condition-dependent model prediction errors and stochastic characteristics of 

cycle-to-cycle combustion variations, large model errors may occur during severe transient 

operating conditions (tip-in/tip-out), which can result in wrong adjustments and excessive 

adaptations. Since on-road SI engines are always operating in transient conditions, the 

‘Heavy Transient Detection’ algorithm is developed to avoid fault adaptation and assist the 

adaptative algorithm to be stable. 

This chapter presents a recursive least square (RLS) based algorithm that can be easily 

implemented in the ECU to optimally calculate the adapted model parameters in real-time 

through online learning. For SI engines, cyclic variations of combustion duration/phasing 

exist all the time and different engine operating conditions have different levels of cyclic 

                                                 
3 The material contained in section 4.1 was previously published in the Proceedings of ASME 2019 

Dynamic Systems and Control Conference, Volume 2, 2019 (See Appendix 1) 
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variations [120]. These cyclic variations of combustion duration act as the ‘outliers/noise’ 

and corrupt the real combustion parameters used for online learning, which leads to 

misadjustments of adapted model parameters. As the SI engines in the vehicle are always 

operated under transient conditions, the cyclic ‘outliers’ have high potential to make the 

adaptative algorithm become unstable, especially under heavy transient operating 

conditions (rapid acceleration/deceleration). To reduce the negative effects of cyclic 

combustion variations on the adaptative algorithm, the self-tuning forgetting factor with 

real-time estimation of the level of cyclic variation has been integrated into the RLS 

algorithm. Besides, significant model prediction error may exist during heavy transient, 

which can result in over adjustment in the adapted model parameters. To avoid potential 

model errors under heavy transient conditions, the ‘heavy transient detection’ algorithm 

has been developed to ensure that the adaptative algorithm is stable and able to optimally 

derive the adapted model parameters automatically based on the engine operating 

conditions. 

 

4.1.1 Overview of Adaptive Model-Based Ignition Timing Management  

The complete structure of model-based GTDI SI engine control with adaptive ignition 

timing management is shown in Figure 4.1. This section focuses on the burn duration 

adaptation and adaptive ignition timing management in the feedforward path. The ‘RLS 

Combustion Model Adaptation’ block calculates adapted parameters used to compensate 

operating-condition-dependent model errors. 
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Figure 4.1 Structure of Model-Based GTDI SI Engine Control with Adaptive Ignition 

Timing Management 

 

Figure 4.2 gives the detailed block diagram of the model-based adaptive burn duration and 

ignition timing management. The ‘Dynamic Air Charge and Residual Gas Estimation’ 

block provides estimated in-cylinder temperature and masses of fresh air and residual gases 

trapped at IVC. �̂�𝑅𝐿𝑆 is the adapted model parameters obtained by minimizing model errors 

between measured burn durations, ∆𝜃𝐼𝐺𝑁_𝐶𝐴50(𝑘 − 1) , and base model predictions, 

∆𝜃𝐼𝐺𝑁−𝐶𝐴50
− (𝑘). 𝜃𝐼𝐺𝑁_RLS  is the adapted ignition timing prediction calculated from the 

adapted burn duration, ∆𝜃(𝐼𝐺𝑁−𝐶𝐴50)_RLS
− (𝑘) , and the target combustion phasing, 

𝜃𝐶𝐴50_𝑇𝑎𝑟𝑔𝑒𝑡(𝑘). A dynamic burn duration and ignition timing prediction algorithm is 

developed to calculate both base burn duration predictions from the original control-

oriented combustion model and final adapted burn duration predictions. The ‘Engine 

Operating Condition Detection’ function generates a flag, ‘Heavy_Transient_Flag(k)’, to 

indicate whether the engine is under tip-in/tip-out operating conditions. This flag is used 

as an input to RLS-based combustion model adaptation algorithm. 
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Figure 4.2 Block Diagram of Adaptive Ignition Timing Management 
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4.1.2 Recursive Least Square-Based Model Adaptation 

As previously discussed, the base control-oriented combustion model shown in Figure 3.5 

is expected to have operating point dependent model errors with only 64 calibration points. 

In this section, the recursive least square method based online combustion model 

adaptation algorithm is developed to minimize operating-condition-dependent model 

errors without additional calibration efforts. Equation (4.1) describes measured burn 

durations, ∆𝜃𝐼𝐺𝑁_𝐶𝐴50 , which can be described as the mean values of the combustion 

durations under steady state operating conditions corrupted by cyclic variations, 𝑣. Cyclic 

variations can be considered as ‘stochastic noise or outliers’ added to the actual combustion 

duration. �̂�𝑅𝐿𝑆  represents the adapted parameters. 𝜑𝑅𝐿𝑆  is the base control-oriented 

combustion model output, ∆𝜃𝐼𝐺𝑁−𝐶𝐴50
− . ∆𝜃(𝐼𝐺𝑁−𝐶𝐴50)_RLS

−  is the adapted burn duration 

prediction, as described in (4.2). (4.3) defines the priori prediction error between measured 

burn duration and adapted burn duration. Since cyclic combustion variations are the nature 

of SI engines, minimizing the priori prediction error, 𝜀𝑅𝐿𝑆
− , to reach zero will introduce 

wrong adaptations. The purpose of RLS-based combustion model adaptation is to find the 

optimal �̂�𝑅𝐿𝑆  to minimize the operating-point-dependent model errors without being 

corrupted by stochastic cyclic combustion variations. 
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The forgetting factor governs the performance of the RLS adaptation algorithm. The RLS 

algorithm with Variable Forgetting Factor (VFF) has been widely studied and applied for 

system identification and online model adaptation [121]. Smaller forgetting factors 

improve the tracking ability but have higher potential of wrong adaptations and low 

adaptation stability. Forgetting factors that are close to 1 ensure the adaptation stability but 

lead to low tracking ability and converge rate of the algorithm. The purpose of using VFF 

is to ensure the tracking ability of the RLS adaptation algorithm without wrong adaptations 

caused by stochastic cyclic combustion variations. In this study, the VFF forgetting factor 

developed in [122] is used as the base VFF. Since cyclic combustion variations are 

dependent on engine operating conditions, a modified VFF, �̂�𝑅𝐿𝑆 , is developed by 

incorporating online estimation of the level of cyclic variations, as described in Equation 

(4.4). �̂� quantifies the level of cyclic combustion variation. The recursive method in [123] 

is modified and used for the online calculation of �̂� cycle by cycle, as described in Equation 

(4.5). 𝛼𝑅𝐿𝑆 is a weighting factor set to be 0.9. ∆𝜃̅̅̅̅
𝐼𝐺𝑁_𝐶𝐴50 is the mean value of measured 

burn duration from previous 10 cycles. �̂�𝑅𝐿𝑆 is the adaptation gain used to calculate the 

adapted parameter, as shown in Equation (4.6). When cyclic combustion variations 

increase, �̂�𝑅𝐿𝑆 increases towards to 1 due to larger �̂�, resulting in smaller �̂�𝑅𝐿𝑆 and less 

adaptations. Larger model errors, 𝜀𝑅𝐿𝑆
− , lead to decrease of �̂�𝑅𝐿𝑆, thus results in increase of 

�̂�𝑅𝐿𝑆 and stronger adaptations. Equation (4.7) is used to calculate �̂�𝑅𝐿𝑆 cycle by cycle. In 

summary, large model errors result in smaller forgetting factors, thus improve the tracking 

ability by larger adaptation gains. Higher levels of cyclic variations result in larger 

forgetting factors, thus reduce adaptations. 
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( ) ( ) ( ) ( ) ( )ˆ ˆ ˆ1 2 1 2 1RLS RLS RLS RLS RLSk k F k k k    −− = − + −  −  −  (4.7)  

 

Most operating conditions of SI engines in the real world can be classified into two types. 

Heavy transient operating conditions are caused by sudden acceleration and deceleration 

with sudden throttle angle increase or decrease. The other type includes steady-state and 

medium transient operating conditions, which are caused by gradually open or close of the 

throttle. Since the combination of cyclic combustion variations, inaccuracy of in-cylinder 

pressure sensors, and operating-point-dependent model errors may result in large 

calculated model errors, which can drive the online adaptation to be unstable, especially 

under heavy transient operating conditions (tip-in/tip-out). It is not desirable that the model 

adaptation learns ‘model errors’ under the heavy transient conditions. To solve this issue, 

the ‘Engine Operating Condition Detection’ algorithm is proposed to distinguish the above 

two operating conditions, as shown in Figure 4.3. The change rate of the MAP signal is 

used to sense the engine operating conditions. Based on real vehicle driving tests, 10% 

MAP change rate is chosen to be the threshold to determine whether the engine enters the 

‘Heavy Transient’. When 𝑃𝑀𝑎𝑛_𝑅𝑎𝑡𝑒 is larger than 10%, it means the engine is under tip-in 

conditions. When 𝑃𝑀𝑎𝑛_𝑅𝑎𝑡𝑒  is less than -10%, it indicates the engine is under tip-out 

conditions. ‘Heavy_Transient_Flag=1’ means the engine enters the ‘heavy transient’ 

condition. ‘Heavy_Transient_Exit_Counter’ is used to determine whether the engine exists 
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the ‘Heavy Transient’ conditions by continually checking 𝑃𝑀𝑎𝑛_𝑅𝑎𝑡𝑒 for 20 cycles when 

‘Heavy_Transient_Flag’ is set to be 1. The RLS algorithm selects the different variable 

forgetting factor based on the engine operating conditions indicated by 

‘Heavy_Transient_Flag’. 

 

 

Figure 4.3 Engine Operating Condition Detection 

 



55 

Figure 4.4 shows the complete diagram of VFF-RLS based combustion model adaptation 

algorithm. When the ‘heavy transient’ condition is detected, the variable forgetting factor 

is set to be 1, which results in the minimum model adaptation gain. Under this condition, 

the adapted parameter, �̂�𝑅𝐿𝑆, has the minimum modification. When the engine is not under 

‘Heavy Transient’ operating conditions, forgetting factors are calculated based on both 

base model prediction errors and the levels of cyclic combustion variations. Initial adapted 

burn duration is calculated using �̂�𝑅𝐿𝑆 and ∆𝜃𝐼𝐺𝑁−𝐶𝐴50
− , as described in Equation (4.2). The 

dynamic algorithm described in Figure 3.6 is applied to calculated adapted ignition timing 

based on the desired CA50. The ‘Control-Oriented Combustion Model’ block is substituted 

by Equation (4.2). 
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Figure 4.4 VFF-RLS Based Combustion Model Adaptation 
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4.1.3 RLS-Based Model Adaptation Experimental Validation 

Vehicle data recorded during track tests are used to examine the performances of control-

oriented combustion model-based adaptive burn duration and ignition timing prediction 

algorithm. Figure 4.5 shows the speed/load map of the heavy transient test. Blue dots are 

engine operating points. Red dots represent the speed/load range of 64 calibration points 

listed in Table 3.1. The test has wider engine operating conditions compared to the range 

of calibration points, where engine speeds/loads are up to 4000 rpm/1250 kPa gross IMEP. 

Table 4.1 shows the acceleration and deceleration conditions of the transient test. 

 

Figure 4.5 Transient Engine Operating Points 

 

Table 4.1 Acceleration and Deceleration 

 
Max speed accel /decel 

(rpm/s) 

Max load accel/decel 

(bar/s) 

Tip-In 
876 13 

1372 33 

Tip-Out 
-700 -12 

-1150 -63 
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Figure 4.6 shows the detailed engine operating conditions of Figure 4.5. In Figure 4.6, the 

RGF value increases when the IVC timing advances or the EVC timing retards. Higher 

valve overlaps result in larger RGF. The estimated RGF changes due to the control inputs, 

including the throttle opening/closing, IVC advancing and EVO retarding. For ‘Engine 

Operating Condition Detection’ algorithm, it can be observed that all tip-in events result in 

𝑃𝑀𝑎𝑛_𝑅𝑎𝑡𝑒 larger than 10% and all tip-out events leads to 𝑃𝑀𝑎𝑛_𝑅𝑎𝑡𝑒 less than -10%. All 

these tip-in/tip-out conditions caused by sudden open/close of the throttle will set 

‘Heavy_Transient_Flag’ to be 1 for avoiding misadjustments calculated from the RLS 

adaptation algorithm. It can be observed that cycle 76 is detected to be the tip-in event by 

𝑃𝑀𝑎𝑛_𝑅𝑎𝑡𝑒, and this is caused by continuous throttle opening from 6° to 40°. 

 

 

Figure 4.6 Transient Operating Condition 
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Figure 4.7 shows the performances of both the base control-oriented combustion model 

and the RLS based adaptive burn duration and ignition timing prediction. In this test, 96% 

of cycles converge within 4 iterations and output the predicted ignition timing, combining 

the iteration numbers of both base ignition timing prediction and RLS based ignition timing 

prediction. 99% of cycles converge within 3 iterations. The average prediction errors of 

burn duration and ignition timing from the base model are 1.5 CAD and 1.4 CAD 

respectively. The average prediction errors of adaptive burn duration and adaptive ignition 

timing with the RLS algorithm are 0.1 CAD and 0 CAD respectively. Since cycle 76 is 

detected to be the tip-in event, ‘Heavy_Transient_Flag’ is set to be 1 from cycle 76 to cycle 

100 and the forgetting factor is forced to be 1 during this tip in-period. From cycle 100 to 

cycle 146, the errors of burn duration prediction from the base control-oriented are larger 

than 3 CAD, and these make the forgetting factor to decrease, which drives the adapted 

parameter ‘�̂�𝑅𝐿𝑆’ from 1 to 0.86. The adapted parameter ‘�̂�𝑅𝐿𝑆’ remains around 0.89 from 

cycle 146 to 216, where the engine load is 860 kPa gIMEP and engine speed gradually 

increase from 2800 to 3070 rpm. It takes 46 cycles to find the optimal �̂�𝑅𝐿𝑆 after engine 

enters steady-state conditions. This demonstrates that model adaptation with variable 

forgetting factor and ‘Engine Operating Condition Detection’ algorithm can derive the 

stable �̂�𝑅𝐿𝑆 without cyclic combustion variation effects under transient engine operating 

conditions. 
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Figure 4.7 The Performance of Adaptive Burn Duration and Ignition Timing Prediction 

 

Figure 4.8 shows the prediction errors of burn duration and ignition timing from both base 

control-oriented combustion model and adaptive combustion model. With RLS based 

adaptation, the average prediction error of burn duration drops from 1.5 CAD to 0.1 CAD, 

and the average prediction error of ignition timing drops from 1.4 CAD to 0 CAD. For base 

control-oriented combustion model, the STD of base burn duration prediction error is 3.5 

CAD and the STD of base ignition timing prediction error is 2.4 CAD. For RLS based 

adaptive burn duration and ignition timing prediction, the STD of adaptive burn duration 
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prediction error is 2.3 CAD and the STD of base ignition timing prediction error is 1.8 

CAD. 

 

 

Figure 4.8 Errors of burn duration and ignition timing prediction 

 

Online calculated �̂�𝑅𝐿𝑆 can be stored into the lookup table in the ECU memory, and the 

values can be updated in real-time. During the engine life cycle, the developed adaptation 

algorithm will improve the model accuracy, thus maintain the high engine efficiency and 

low emissions. Since 99% of cycles converge within 3 iterations, the algorithm of RLS-

based adaptive burn duration and ignition timing prediction can be implemented into the 

engine ECU for the real-time combustion phasing control. 
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4.2 Adaptive Model-Based Combustion Phasing Estimation  

For the closed-loop combustion phasing control, the feedback estimation of combustion 

phasing has the key impact on the controller performance, including the stability, rising 

time, settling time, steady-state error, etc. Due to the nature of cyclic variations of SI engine 

combustion duration/phasing, the low pass filter and moving window average method are 

widely applied to obtain smooth and reasonably accurate combustion phasing estimation 

[124]. Significant cycle delays are introduced into the estimation when the large window 

size or low cutoff frequency are selected. The small window size cannot eliminate the 

cyclic ‘outliers’. To overcome the negative effects of the above two shortcomings on the 

cycle-by-cycle feedback combustion phasing control, the extended Kalman filter (EKF) 

technique has been applied to CA50 feedback estimation [125-127]. Most of the EKF based 

CA50 observers use the fixed [126, 127] or pre-calibrated lookup tables [125] of 

covariance matrices of measurement noise and process noise, which were tuned through 

offline simulation using limited experimental data. The performances of the EKF are 

affected by two noise covariance matrices. Since the level of cyclic combustion variation 

depends on the engine operating conditions, the pre-calibrated values of covariance 

matrices may not be suitable for other engine operating conditions, and the improper values 

of noise covariance may make the EKF algorithm diverge. To solve the issues existing in 

conventional EKF based CA50 estimation, an adaptive extended Kalman filter (AEKF) has 

been developed to provide the feedback estimation of CA50, using the adaptive combustion 

model developed. The developed ‘Engine Operating Condition Detection’ algorithm and 

the forgetting factors are also integrated into the AEKF.    
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4.2.1 AEKF-based Feedback Combustion Phasing Estimation 

As the SI engines are operated under both steady-state and transient operating conditions, 

the accurate and fast estimation of combustion phasing feedback plays a key role in the 

closed-loop combustion phasing control. The actual combustion durations are corrupted by 

cyclic combustion duration variations, thus result in cyclic variations in CA50 estimation. 

The estimation algorithm should be able to minimize the effects of the stochastic 

components added to actual combustion durations. This work provides a method for fast 

CA50 estimation. An adaptive EKF method is used to estimate the feedback burn duration, 

and the estimated combustion duration is used to calculate the feedback CA50. 

The model of burn duration estimation with AEKF is described in (4.8) . ∆𝜃(𝐼𝐺𝑁−𝐶𝐴50)_AEKF
−  

is the priori prediction of burn duration in AEKF. 𝑤  and  𝑣  are process noise and cyclic 

combustion variation respectively. 𝑣  represents cyclic combustion duration variation 

corrupted to the actual burn duration. �̂�𝐴𝐸𝐾𝐹 and �̂�𝐴𝐸𝐾𝐹 are the covariance of process and 

measurement noise respectively. Since the burn duration is the only state, all parameters in 

the AEKF algorithm are scalars. Here, both A and H equal to 1. 
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In this work, the AEKF algorithm introduced in [128] is used to estimate the feedback burn 

duration. The AEKF algorithm can be separated into two main steps, priori prediction, and 

post correction using measurements. 
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(1) Priori Prediction 

In this work, the adapted burn duration from the VFF-RLS algorithm is used to the priori 

prediction step, as shown in Equation (4.10). �̂�𝐴𝐸𝐾𝐹
−  in Equation (4.11) is the covariance of 

priori prediction. 
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(2) Post Correction 

In this step, the combustion duration is the existed information calculated from recorded 

cylinder pressure. Equation (4.12) is the priori prediction error of burn duration, where 

∆𝜃𝐼𝐺𝑁−𝐶𝐴50 is the feedback burn duration calculated from in-cylinder pressure trace. The 

feedback estimation of burn duration corrected by new measurements in equation (4.14) is 

calculated based on the priori prediction in equation (4.10), calculated Kalman gain in 

equation (4.13), and posteriori error in equation (4.15).  

The performance of posteriori correction is heavily affected by the calculated Kalman gain. 

As can be seen from equation (4.13) and equation (4.11), both �̂�𝐴𝐸𝐾𝐹 and �̂�𝐴𝐸𝐾𝐹 have a 

significant impact on �̂�𝐴𝐸𝐾𝐹. Normally, the try and error method is used to calibrate the 

covariance of the process noise and the measurement noise. The large lookup table was 

built in [125] for above two covariances to estimate CA50 by offline calibration.  To reduce 

the calibration effort and the risk of divergence of the AEKF algorithm caused by improper 

values of above two covariances, the online estimation of both �̂�𝐴𝐸𝐾𝐹 and �̂�𝐴𝐸𝐾𝐹 using the 

recursive method proposed in [129] and [128] is used in this work, as described in equation 

(4.16) and (4.17). 𝛼𝐴𝐸𝐾𝐹 is the forgetting factor and should be close to 1. Here, 𝛼𝐴𝐸𝐾𝐹 is 

chosen to be 0.95. The ‘Engine Operating Condition Detection’ algorithm is also applied 
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to the AEKF algorithm. When the heavy transient operating conditions are detected, the 

𝛼𝐴𝐸𝐾𝐹  is set to be 1. Otherwise, 𝛼𝐴𝐸𝐾𝐹  is 0.95. This helps avoid the divergence of the 

AEKF algorithm caused by actual large changes of combustion duration values during 

heavy transient conditions. The flowchart of AEKF based feedback estimation of the burn 

duration is described in Figure 4.9. Finally, the feedback CA50 estimation can be derived 

by equation (4.18).  
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Figure 4.9 AEKF based Feedback Estimation of Burn Duration and CA50 
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4.2.2 Experimental Validation of AEKF-based Burn Duration and CA50 
Estimation  

The heavy transient test data shown in Figure 4.5 were used to examine the proposed 

AEKF-based feedback estimations of both burn duration and combustion phasing. Figure 

4.10 shows the results of the AEKF-based feedback estimations of both burn duration and 

CA50. The default value of the Kalman gain is set to be 0 in the beginning of the algorithm. 

The algorithm only takes 8 cycles to converge to the ‘true’ value, 0.35. From the entire 

transient results, the AEKF-based estimation method successfully removes the large cyclic 

variation components from the raw data of both burn duration and CA50. With the 

assistance of adaptive burn duration model, the feedback estimation of IGN-CA50 has 

smooth and accurate responses under both heavy transient and medium transient/steady-

state conditions. Equation (4.19) describes the moving average estimation of CA50, and 

𝜃𝐶𝐴50 is the cyclic CA50 calculated from measured crank angle based in-cylinder pressure. 

Compared to 10 cycle moving average estimation of CA50, the AEKF-based method gives 

the same stable estimation of CA50 under near steady-state operating conditions. Under 

both the medium to heavy transient operating conditions, the AEKF-based method gives 

much faster response.  
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Figure 4.10 AEKF-Based Feedback Estimation of Burn Duration Estimation and 

Combustion Phasing 
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4.3 Summary 

This chapter develops a VFF-RLS based adaptive ignition timing management and AEKF-

based burn duration and CA50 feedback estimation. The results demonstrate that VFF-RLS 

based adaptation method can improve the prediction accuracy of burn duration, and thus is 

able to provide more accurate feedforward ignition timing management for combustion 

phasing control. The variable forgetting factor considers both the level of cyclic variable 

existing in the SI combustion and base model error. From the transient test results, the VFF 

can quickly converge to the true value when there are large model errors. Under medium 

or near steady-state operating conditions, the VFF values are close to 1, which eliminate 

misadjustments caused by high ‘stochastic noise’ effect. With the proposed VFF-RLS 

based model adaptation technique, it further contributes to reducing the calibration effort 

and production development time. The derived values of adapted parameters can be stored 

into a lookup table in the ECU memory, and the values can be updated in real-time. During 

the engine life cycle, the developed adaptation algorithm will ensure the accurate model 

performance, thus maintain the high engine efficiency and low emissions.  

Based on the stochastic characteristics of cycle-to-cycle combustion variation, a CA50 

observer is proposed using an adaptive Extended Kalman Filter and developed combustion 

model. The performances of the developed adaptive prediction of burn duration and spark 

timing, and AEKF based CA50 estimation are evaluated using engine dyno test results 

under both steady-state and transient engine operating conditions. The AEKF algorithm 

successfully ‘filters’ out the ‘stochastic noise’ in the feedback signals. To reduce the 

calibration effort and the risk of divergence of the AEKF algorithm caused by improper 

selections of above two covariances in the EKF algorithm, the online estimation of the 

covariances of both process noise and measurement noise are implemented in this work. 

Compared to the traditional moving average based CA50 estimation, the developed AEKF-

based CA50 estimation provides faster and more stable feedback CA50 signals, which is 

more suitable under transient engine operating conditions.  



70 

5 The Economic Nonlinear Model Predictive Control of 
GTDI SI Engine 

 

This chapter presents a model-based control system for cycle-by-cycle control of a 

Gasoline Turbocharged Direct Injection (GTDI) spark-ignition (SI) engine using an 

economic nonlinear model predictive controller. The presented E-NMPC engine control 

system is designed to solve a constrained optimal control problem (OCP) by minimizing a 

cost function with three objectives: delivery of requested net indicated mean effective 

pressure (IMEPn), minimization of fuel consumption, and reduction of NOx emissions. 

Since a turbocharged gasoline engine is an extremely complex system with nonlinear 

characteristics, both physics-based and data-driven modeling approaches have been 

employed to develop a control-oriented Multi-Input-Multi-Output GTDI SI engine model 

that is able to effectively and accurately predict the future engine behaviors and reduce the 

computational burden of E-NMPC for real-time engine control. The E-NMPC is 

implemented by using an open-source Automatic Control and Dynamic Optimization 

(ACADO) toolkit. The auto-coded C files are generated and integrated into the SIMULINK 

environment. The presented E-NMPC uses the Sequential Quadratic Programming (SQP) 

approach to generate an optimal sequence of control actions with the consideration of 

engine operating constraints, including both physical limitations of actuators and 

thresholds of abnormal combustion metrics comprising high variation of IMEP and 

combustion knock. A high-fidelity 1D GT-POWER GTDI SI engine model is also 

developed for the testing of the developed control system. The GT-POWER engine model 

is calibrated and validated by experimental test data. The performance of the E-NMPC 

engine control system has been evaluated through software-in-the-loop via co-simulation 

between GT-POWER and SIMULINK using on-road vehicle test data. The evaluation 

results show that the developed E-NMPC engine control system can track the driver’s 

torque request and stably operate the engine while simultaneously reducing fuel 

consumption and NOx emissions without violating engine operating constraints. All these 

are achieved by systematically managing throttle position, spark timing, intake and exhaust 
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valve phasing, and wastegate. Compared to baseline engine control, E-NMPC based engine 

control reduce the fuel consumption by 2% and reduce the NOx emission by 50% for a 

real-world driving cycle. 

 

5.1 Overview of Cycle-by-Cycle GTDI SI Engine Control using E-
NMPC 

The presented model predictive control system is developed to control a GTDI SI engine 

as shown in Figure 5.1. The index ‘k’ indicates the kth cycle. The symbols of P, T, m, and 

ω, represent pressure, temperature, mass, and shaft rotational speed, respectively. Five 

control signals are defined, including throttle opening angle (𝜃𝑡ℎ), intake valve closing 

timing (𝜃𝐼𝑉𝐶), spark timing (𝜃𝐼𝐺𝑁), exhaust valve opening timing (𝜃𝐸𝑉𝑂), and wastegate 

opening percentage (𝜃𝑊𝐺 ). The feedback signals used for E-NMPC are engine speed 

(𝑅𝑃𝑀𝐸𝑛𝑔), manifold temperature (𝑇𝑀𝑎𝑛) and manifold pressure (𝑃𝑀𝑎𝑛) from the T-MAP 

sensor, turbo speed (𝜔𝑇𝑢𝑟𝑏), and lambda (λ) from the universal gas oxygen sensor (UEGO) 

sensor. The lambda value is used by the fuel injection control system to maintain the 

stoichiometric air-fuel ratio (AFR). The turbocharger related parameters including ‘𝑐_𝑖𝑛’, 

‘𝑐_𝑜𝑢𝑡’, ‘𝑡_𝑖𝑛’, and ’ 𝑡_𝑜𝑢𝑡’, represent compressor inlet, compressor outlet, turbo inlet, 

and turbo outlet, respectively. 𝑃𝑇𝐼𝑃 is the throttle inlet pressure. 𝑚𝑡ℎ_𝑎𝑖𝑟 represents the air 

mass flow through the throttle. 𝑚𝑐𝑦𝑙_𝑎𝑖𝑟  is the mass of the fresh air inducted into the 

cylinder. KI is the knock intensity. 
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Figure 5.1 Schematic of GTDI SI Engine System 

 

An overview of the model-based control system for the GTDI SI engine is shown in Figure 

5.2. For every upcoming cycle within a given prediction horizon, the model-based engine 

control system finds optimal control actions to deliver the requested torque while 

minimizing fuel consumption (𝑚𝑓𝑢𝑒𝑙) and NOx emission. From equation (5.1), the engine 

brake torque is a function of IMEPn and friction mean effective pressure (FMEP), which 

represents the actual friction (e.g, mechanical rubbing) and axillary losses. FMEP is not 

affected by control actions and usually tabulated or modeled as a function of engine speed 

and torque from experimental tests. This work uses IMEPn as a surrogate for torque and 

focuses on delivering the requested IMEPn, which is independent of engine displacement 

and represents the net indicated engine torque divided by the displacement. 
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Where,  

Tbrake  Engine brake torque (Nm) 

Vd  Cylinder volume (m3) 

BMEP Brake mean effective pressure (Pa) 

FMEP Friction mean effective pressure (Pa) 

Tn_ind Indicated net torque (Nm) 

Tf  Friction torque (Nm) 

 

 

Figure 5.2 Model-based Cycle-by-Cycle GTDI SI Engine Control using E-NMPC 

 

The engine is controlled in the cycle domain. Cycle ‘k-1’ is the past cycle with production 

sensor measurements. Cycle ‘k’ is the upcoming cycle that the engine needs to be 

controlled to achieve the operational objectives. ‘Nc’ is the control horizon, and the 
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prediction horizon is set to be the same as the control horizon. ‘i’ is the cycle index within 

the prediction horizon. The optimizer in Figure 5.2 uses the E-NMPC to perform the online 

optimization, which generates a sequence of optimal control actions over the prediction 

horizon by minimizing the cost function with the consideration of defined constraints. 

Using the production sensor measurements from cycle ‘k-1’ and calculated control actions, 

Control-Oriented Engine Models are used to predict future engine behaviors. The E-NMPC 

calculates the sets of optimal control actions for every cycle within the prediction horizon, 

but only the first set of computed control actions are applied to manipulate the actuators. 

Then, the prediction window moves forward one cycle, and a new sequence of optimal 

control actions is calculated when new measurements become available. 

 

In SI engines, ignition timing is used to control combustion phasing, which affects engine 

torque output, specific fuel consumption, and emissions. Combustion phasing is often 

defined as the crank angle of fifty percent mass fraction burned (CA50). Since the 

combustion process is extremely complex and CA50 is dependent on engine operating 

conditions, CA50 is normally modeled using nonlinear equations [47]. The adaptation 

technics are usually used to adapt the CA50 model to be able to cover wide engine 

operating conditions. To reduce the complexity and computational burden of the MPC, the 

optimizer directly computes CA50. The Adaptive Spark Timing Management model 

developed in section 4 is used to manipulate the spark timing to track the optimal CA50 

command issued by E-NMPC. A recursive-least-square based adaptive combustion model 

is used to predict the burn duration, which is from spark timing to CA50, based on the 

optimal CA50 target and current engine operating conditions. The dynamic spark timing 

prediction algorithm uses the predicted burn duration to calculate the spark timing needed 

for tracking the CA50 target in the upcoming cycle.  

Software-in-the-loop (SIL) simulation is an effective method of safely verifying and 

validating the performances of the control software for complex systems [130, 131] in the 

early development stage. SIL integrates the control system and detailed physics-based plant 
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models in a virtual environment, which can significantly shorten the production 

development cycle and reduce the cost of rapid prototype testing. In this work, the model-

based engine control system was developed in MATLAB/SIMULINK environment. The 

E-NMPC algorithm and control-oriented models were implemented in SIL environment 

using SIMULINK S-function blocks. The Adaptive Spark Timing Management model was 

implemented in the MATLAB function block in Simulink environment. In the SIL 

simulation, a high-fidelity GT-POWER engine model was used as the plant model to 

provide the feedback sensor measurements to engine control system, and the engine control 

system applies optimal control actions to the GT-POWER engine model capable 

reproducing the engine physics and dynamics on a cycle-by-cycle bases. 

 

5.2 GT-POWER Engine Model 

A detailed 1D physics-based engine model has been built in GT-POWER, and 

experimental engine data were used to calibrate and validate the GT-POWER engine 

model. 

 

5.2.1 GT-POWER Engine Model Development 

Figure 5.3 shows the GT-POWER engine model development process. The complete 

airpath system, including intake system, exhaust system, turbocharging system, was 

modeled using 1D method, which provides the detailed gas dynamics, pressure wave’s 

propagation, etc. GT-POWER flow components of both intake and exhaust systems are 

converted from detailed 3D CAD models of intake, cylinder head, and exhaust systems 

with accurate geometries using the GEM3D application. Both detailed valve lift profiles 

and coefficient of discharge (CD) characteristic curves of intake and exhaust valves were 

implemented in the GT-POWER valve sub-models. The turbocharger manufacturer’s 

turbocharger maps were imported into the turbocharger model to predict the output power, 
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mass flow rate, outlet temperatures and pressures of the turbocharging system. Combustion 

model is one of the most key sub-models in the engine model, which impacts the engine 

performance, including torque, fuel consumption, and emissions. The turbulent flame 

combustion model was used in this work, and 3D CAD models of the piston head and the 

cylinder head were used to simulate the flame propagation in the engine. Since the heat 

transfer between in-cylinder mixture and the cylinder wall affects the combustion process 

and engine performance, such as thermal efficiency, IMEPn, CA50, the heat transfer model 

developed in [47] was used with the consideration of detailed in-cylinder flow. For 

predicting NOx emissions, the extended Zeldovich mechanism was used to model the total 

NOx produced in the cylinder at exhaust valve opening phase. 

 

 

Figure 5.3 GT-POWER Engine Model Development 
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5.2.2 Calibration and Validation of the GT-POWER Engine Model 

To calibrate the GT-POWER engine model, experimental data measured from steady-state 

dyno tests were used. Table 3.1 lists the operating points of dyno tests. There are two steps 

in the GT-POWER model calibration process. First, three pressure analysis (TPA) method, 

which uses experimental crank angle based traces of MAP, in-cylinder pressure, and 

exhaust manifold pressure, was used to calibrate the overall in-cylinder heat transfer 

coefficient by matching simulated in-cylinder pressure traces and air flow into the cylinder 

to experimental data. In this step, in-cylinder conditions at IVC, such as volumetric 

efficiency, residual gas fraction (RGF), in-cylinder temperature of mixtures and air mass 

at IVC, were calculated by TPA. 

 

In the second step, the predictive turbulent SI combustion and NOx submodels were 

calibrated using closed volume pressure analysis and in-cylinder quantities calculated from 

TPA. Table 5.1 lists the tunable model calibration parameters of two models with 

optimized values. The ‘design optimizer’ toolbox was used to derive best calibration 

parameters of both models over the entire experimental tests listed in Table 3.1. The genetic 

algorithm (GA) was used for the optimization with the parameters listed in Table 5.2. Only 

one set of model parameters was derived for each model to cover engine operating range. 

For the combustion model, the parameters were calibrated by minimizing the root-mean-

squared errors (RMSE) between the simulated burn rate and experimental burn rate in the 

crank angle domain. For the NOx model, the parameters were calibrated by minimizing the 

deviations between simulated cumulative NOx at EVO and experimental data. Figure 5.4 

gives the key calibration results of the combustion model at early flame development stage 

(period between spark timing location and crank angle of 10% fuel burned, B0010), CA50, 

IMEPn, and NOx model at EVO. Correlation coefficients between simulated and 

experimental results are all larger than 0.96. The GT-POWER model is a mean value 

model, which is not able to simulate cycle-by-cycle combustion variations. 
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Table 5.1 Model Calibration Multipliers in GT-POWER 

 Calibration Parameters 

SI Turbulent 
Turbulent 

flame speed 

Flame kernel 

growth 

Taylor length 

scale 
Dilution effect 

Value 1.22 2.21 0.90 1.21 

NOx Model 
NOx 

multiplier 

N2 

oxidation 

rate 

N2 

oxidation 

activation 

energy 

N 

oxidation 

rate 

N 

oxidation 

activation 

energy 

OH 

reduction 

rate 

Value 0.16 3.0 0.23 1.44 4.63 0.51 

 

Table 5.2 Genetic Algorithm Settings 

Parameter Population 

size 

Number of 

generations 

Mutation rate Crossover 

rate 

Value 30 34 0.5 1 

 

 

Figure 5.4 GT-POWER Combustion Model and NOx model Calibration Results 
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Figure 5.5 is the complete GT-POWER engine model with the SIMULINK harness. For 

each upcoming engine cycle, E-NMPC based engine control system built in the 

SIMULINK environment receives the needed measurements from the GT-POWER engine 

model. Then, the E-NMPC sends the computed optimal combination of throttle angle, 

spark timing, intake and exhaust cam phasing, and wastegate opening percentage to the 

GT-POWER model through the SIMULINK harness 

 

 
Figure 5.5 GT-POWER Engine Model 

 

To validate the GT-POWER engine model, a transient test conducted in the test cell was 

used to determine the transient performance. To check the predictive performances of the 

engine plant model, the operating points in the first transient test were not included in the 

calibration data sets shown in Table 3.1. Experimental data including engine speed, 

ambient temperature, etc. and the engine control input for spark timing, intake valve cam 

timing, exhaust valve timing, were used as the inputs to the GT-POWER engine model. 

Figure 5.6 shows the validation results. Experimental data of CA50 and IMEP has cycle-

by-cycle combustion variations. Since the GT-POWER model is a mean value model, to 

examine the simulated CA50, the filtered CA50 was acquired by using the MATLAB 

function ‘filtfilt’, which performs the zero-phase filtering. The average model errors of 



80 

MAP, CA50, IMEPn, and gross IMEP are -0.03 kPa, -0.7 deg, 5.1 kPa, and 2.2 kPa, 

respectively. The transient performances of the GT engine model match well with the 

experimental data, which indicates that the developed GT-POWER engine model well 

captures nonlinear dynamics and is ready to be used as a plant model for the control system 

development and validation. 

 

Figure 5.6 GT-POWER Engine Model Transient Validation 

 

5.3 Control-Oriented Engine Models 

The completed set of control-oriented GTDI SI engine model consists of airpath models 

and in-cylinder models. As previously discussed, both physics-based and data-drive based 

modeling approaches have been utilized to obtain effective and computationally efficient 

models for real-time E-NMPC based engine control system. The control-oriented engine 
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models are calibrated using steady-state GT-POWER DOE simulations, and the operating 

points of DOE simulation are shown in Table 5.3. 

Table 5.3 GT-POWER Steady State DOE Simulation for Control-Oriented Engine Model 

Development 

Controlled 

Parameters 

Engine 

Speed 

(rpm) 

IMEPn 

(bar) 

CA50 

(deg 

ATDC) 

Intake 

Adv 

(deg) 

Exhaust 

Ret 

(deg) 

Wastegate 

Opening 

(%) 

Value 

1500, 

2500, 

3500 

2.5, 3.0, 

…,10.0,10.5 
8, 18 0, 25, 50 0, 25, 50 0, 50, 100 

 

5.3.1 Intake manifold dynamics model 

For the GTDI SI engine, torque delivery is controlled by preparing accurate amounts of air 

and fuel in the cylinder and igniting in-cylinder mixture at the appropriate crank position. 

The fuel injection system maintains the stoichiometric AFR (14.07) to maximize the 

efficiency of three-way-catalyst. To accurately and responsively deliver requested torque, 

the actuators in the airpath need to be manipulated such that the correct amount of fresh air 

is trapped in the cylinder at IVC. Considering the engine as a pump that inducts the air that 

flows through the throttle, the intake manifold, and intake valves, trapping the target 

amount of fresh air in the cylinder at IVC means providing corresponding boost pressure 

and throttle according to the needed MAP. Thus, correctly modeling the intake manifold 

dynamics and the boost pressure dynamics are two key aspects of estimating the fresh air 

mass trapped at IVC for torque delivery. 

 

For modeling the intake manifold dynamics, the mass balance and ideal gas law were used, 

as described in equation (5.2) and (5.3), 
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Where,  

�̇�𝑡ℎ_𝑎𝑖𝑟  Air mass flow through the throttle (g/s) 

�̇�𝑐𝑦𝑙_𝑎𝑖𝑟  Air mass flow into the cylinder (g/s) 

�̇�𝑀𝑎𝑛_𝑎𝑖𝑟  Air mass flow through the intake manifold (g/s) 

𝑉𝑀𝑎𝑛  Manifold volume (m3) 

R   Gas constant for dry air, 287 J/kg·K 

 

The fresh air mass flow through the throttle can be modeled as an ideal gas with constant 

specific heats flows through the orifice [26] as shown in equation (5.4). For an unchoked 

flow, when 𝑃𝑀𝑎𝑛 𝑇𝑀𝑎𝑛⁄  is larger than 0.528, air mass flow through the throttle is dependent 

on boost pressure, intake manifold pressure, and the effective opening area of the throttle. 

For a choked flow, 𝜓(𝑃𝑀𝑎𝑛 𝑇𝑀𝑎𝑛⁄ ) equals to 0.6847, and airflow through the throttle only 

depends on 𝑃𝑇𝐼𝑃 , 𝐶𝑑_𝑡ℎ , and 𝐴𝑡ℎ . Since both 𝐶𝑑_𝑡ℎ  and 𝐴𝑡ℎ  depends on throttle cross-

sectional open area, 𝐶𝑑_𝑡ℎ  and 𝐴𝑡ℎ  can be lumped together to form an integrated term 

expressing the cross-sectional opening area of the throttle, and there are many validated 

models for the lumped 𝐶𝑑_𝑡ℎ(𝜃𝑡ℎ) ∙ 𝐴𝑡ℎ(𝜃𝑡ℎ) term [26, 97]. Equation (5.6) describes the 

lumped term used in this study. Model coefficients, 𝑎1 to 𝑎4, were calibrated to match 

modeled fresh air flow through throttle with experimental data. The model coefficients 𝑎1 

to 𝑎4  are determined by constrained nonlinear optimization method using MATLAB 

function ‘fmincon’ to minimize equation (5.7). 
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Where, 

𝐶𝑑_𝑡ℎ  Discharge coefficients of the throttle body 

𝐴𝑡ℎ    Effective throttle cross-sectional opening area (m2) 

𝑇𝑇𝐼𝑃𝑑_𝑡ℎ   Throttle inlet temperature (K) 

Υ   Specific heat capacity ratio, 1.4 for dry air 

�̇�𝑡ℎ_𝑎𝑖𝑟_𝑒𝑥𝑝 Experimental air mass flow through the throttle (g/s) 

 

Estimating the mass of fresh air inducted into the cylinder is important for torque delivery 

and fueling control. For modeling the fresh air mass flow into the cylinder, the speed-

density method has been widely used, as shown in equation (5.8). Since the components in 

the intake airpath restrict the amounts of air that can be inducted in the cylinder, the 

volumetric efficiency (ηv) is used to quantify the effectiveness of the air induction process 

[26]. 
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Where, 

𝜂𝑣  Volumetric efficiency (%) 

𝑉𝑑   Cylinder displacement volume (m3) 

 

Substituting equations (5.3) to (5.6) and (5.8) into equation (5.2), equation (5.9) gives the 

model of the intake manifold dynamic, which is a first order nonlinear differential equation.  
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5.3.2 Neural Network based Models 

The neural network is a popular system identification method that can capture nonlinear 

dynamics of MIMO systems, and mathematical equations can be derived from measured 

input and output signals to predict system behaviors. Different types of neural networks 

are being applied in the automotive industry [132], including feedforward neural networks 

(NNs), recurrent neural networks (RNNs), convolutional neural networks (CNNs), etc. For 

real-time implementation, the computational burden is related to the number of arithmetic 

operations used to compute the output of the model. Among various NNs, feedforward 

neural networks have the simplest architectures, which are computationally efficient and 

easy to be linearized. The feedforward NNs have been widely used for developing system 

models in MPC based engine control [103, 107, 133, 134]. In this study, the feedforward 
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NNs were used to estimate volumetric efficiency, throttle inlet pressure, IMEPn, NOx, 

Coefficient of variation of IMEP (COVIMEP) and knock intensity. 

 

Figure 5.7 shows the architecture of a typical multilayer feedforward NN. ‘m’ is the index 

of the hidden layer. ‘n’ is the index of the neuron numbers in each hidden layer. ‘Wm,n’ and 

‘bm,n’ are weights and bias for each neuron. ‘fnm’ represents the neuron with the activation 

function, as described in equation (5.10). Equation (5.11) is the summed input of each 

neuron. Considering the capabilities of capturing nonlinear dynamics and being easy to be 

linearized in the NMPC algorithm, the ‘logsig’ function was used as the activation function 

in all neurons in this work, as shown in equation (5.10). To prevent the activation function 

from being saturated, the ‘preprocessing’ block was used to normalize all inputs in the 

range of -1 and 1. The ‘postprocessing’ block after the output layer was used to convert 

normalized values to the values with the engineering units. 

 

( ) ( )( )  1 /  1  mnf p XX ex= + −  (5.10)  
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n
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j
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Where, 

𝑥j  Inputs of each neuron 
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Figure 5.7 Feedforward Neural Network Architecture 

 

During the NN development period, determining the NN’s layer number and the neuron 

number in each layer is a important step. As previously discussed, the computational 

burden is related to the number of arithmetic operations. For the purpose of the real-time 

implementation of the NN-based model, the objective is to find a NN with the minimum 

size that can provide the acceptable model accuracy. There are two statistical terms used 

to quantify the performances of the NN models. The first measure is the ‘bias’, which is 

the error between the known outputs of the training data set and the predictions of the NN 

using the inputs from the training data set. The second measure is ‘variance’, which is the 

difference between known targets of the validation data set and the outputs of the NN using 

the inputs from the validation data set. The optimal NN should ensure that both the bias 

and variance errors are within the acceptable error ranges. The common methods used for 

reducing the bias error are increasing the numbers of the neural and layers of the NN. 

However, increasing the size of the NN may lead to higher variance errors, which is known 

as the overfitting problem. To avoid the overfitting issue, the Bayesian regularization [135, 

136] method was used to train the feedforward NNs in this work. The feedforward NNs 

were trained using MATLAB, and the Bayesian regularization backpropagation method 

was used as the train function. Equation (5.12) is the lost function that needs to be 

minimized in the Bayesian regularization backpropagation, and it helps to prevent the 

weights of some neurons from being too large or too small by including a squared weights 

penalty. 
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Where, 

N   Number of training data points 

YNN   NN outputs for inputs from the training data set 

YExp   Experimental target data 

𝛼 and 𝛽   Hyperparameters in the Bayesian regularization 

 

Normally, the trial and error method is used to evaluate various configurations. However, 

this process is time consuming. This work proposes an auto-optimization method used for 

finding the best architecture of the feedforward NN for each data-driven based engine 

model, as shown in Figure 5.8. The experimental data used for developing the NN models 

were separated into two parts. 70% of the experimental data forms the training set, and the 

remaining 30% is the validation set. In this work, the Bayesian optimization was used to 

find optimal values of layer number and the number of hidden neurons in each layer for 

the feedforward NNs, which intends to minimize the RMSE between the NN validation 

results and the actual outputs of the validation date set. The neuron number was set to be 

within a range between 1 and 25 for each layer. It was found that 1-layer or 2-layer NNs 

are enough for control-oriented engine models, and the maximum layer number was set to 

be 2. At the end of the optimization process, the RMSE plot of validation data set was 

created, which specified the neuron number of each layer as the independent parameters, 

and RMSE was set to be the response parameter. Based on the RMSE plots, the NN with 

the minimum size and acceptable RMSE was selected for corresponding engine models.  
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Figure 5.8 Feedforward Neural Network Architecture Optimization 
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5.3.2.1 Volumetric Efficiency Model 

In a production engine calibration, the volumetric efficiency is normally determined from 

numerous experimental tests and implemented as look-up tables [137], which can be 

dependent on engine speed, MAP, intake manifold temperature, etc. Since on-road SI 

engines are always under transient operating conditions, interpolating or surface fitting 

methods are normally used to estimate ηv from multi-input lookup tables, and the 

accuracies and stabilities of ηv estimation are normally impacted by interpolating and 

fitting methods [138]. To overcome above issues, many researchers investigated the neural 

network based VE models [139-141], which take engine speed, MAP, intake and exhaust 

cam timings as inputs, considering the engines equipped with VVT. In [142], a volumetric 

efficiency model was developed using the energy balance, which includes the effect of the 

exhaust manifold pressure on gas exchanges process during the intake stroke. Equation 

(5.13) describes the input-output (I/O) mapping of the VE, and the neural network was 

used to predict VE. For the turbocharged engine, the wastegate opening percentage is 

included to consider the effect of exhaust pressure on VE. 

 

( ), , , ,v VE Eng Man IVC EVO wgf RPM P   =  (5.13)  

 

5.3.2.2 Throttle inlet pressure model 

As shown in equation (5.9), 𝑃𝑇𝐼𝑃  is one of the key parameters that impacts the intake 

manifold dynamics. The inlet air is compressed by the turbocharger compressor, which is 

connected to the turbine through the turboshaft. The energy of the exhaust gas stream is 

used to power the turbine. An electrical wastegate is used to regulate the amount of the 

exhaust gases flowing into the turbine, thus control the shaft rotating speed and the boost 

pressure level. Because of the mass moment of inertial of the turbine, the time is needed 

for the exhaust gases to spin the turbine to a certain speed and generate the desired boost 

pressure. This response delay is inevitable and normally called turbo lag, which describes 
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the time required to reach target engine power output in response to a throttle change. To 

precisely estimate the throttle inlet pressure, many researchers have investigated the 

physics based turbocharger models [143, 144] by incorporating manufacturer operating 

maps of the turbine and the compressor. The schematic of the turbocharger equipped on 

the test engine is shown in Figure 5.1. Table 5.4 lists the ordinates for the turbocharger 

maps. 

 

Table 5.4 Ordinates for Turbocharger Maps 

Mechanical 

Component 
Compressor Turbine 

Map Output �̇�𝑐 𝜂𝑐 �̇�𝑡 𝜂𝑡 

Input 𝑃𝑐_𝑜𝑢𝑡 𝑃𝑐_𝑖𝑛⁄ , 𝜔𝑡𝑢𝑟𝑏 𝑃𝑡_𝑜𝑢𝑡 𝑃𝑡_𝑖𝑛⁄ , 𝜔𝑡𝑢𝑟𝑏 

Where,  

𝑃𝑐_𝑜𝑢𝑡  Compressor outlet pressure (Pa) 

𝑃𝑐_𝑖𝑛   Compressor outlet pressure (Pa) 

𝑃𝑡_𝑖𝑛  Turbo inlet pressure (Pa) 

𝑃𝑡_𝑜𝑢𝑡  Turbo outlet pressure (Pa) 

𝜂𝑐   Compressor efficiency 

𝜂𝑡   Turbine efficiency 

�̇�𝑐   Air flow rate through the compressor (g/s) 

�̇�𝑡   Air flow rate through the turbine (g/s) 

 

For cycle-by-cycle engine control, the slow dynamics of intercooler outlet temperature is 

ignored, and 𝑃𝑇𝐼𝑃  is assumed to be the same as 𝑃𝑐_𝑜𝑢𝑡 . Lumping parts between the 

compressor and the throttle, the throttle inlet pressure can be modeled using the ideal gas 

law and the mass balance, as described in equation (5.14). Newton’s second law is used to 

model the dynamics of the rotating turboshaft, described in equation (5.15), where 𝐽𝑡 is the 
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inertial of assembled parts, including the turboshaft, the turbo, and the compressor. 

Equations (5.16) and (5.17) are torque models of the turbine and the compressor 

respectively [136]. Equation (5.18) describes the dynamics of the turbine inlet pressure, 

and equation (5.20) calculates the total exhaust mass flow out of the cylinder. The 

wastegate mass flow rate is modeled using equation (5.19). 
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Where, 

𝐶𝑝_𝐸𝑥ℎ   Specific heat of exhaust gases at constant pressure (J/kg·K) 

𝐶𝑝_𝐴𝑖𝑟   Specific heat of fresh air at constant pressure (J/kg·K) 
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𝑇𝑡_𝑖𝑛  Compressor outlet temperature (K) 

�̇�𝐸𝑥ℎ  Exhaust gas mass flow rate from the cylinder (g/s) 

�̇�𝑊𝐺  Exhaust gas mass flow rate passes the wastegate (g/s) 

𝑉𝑡_𝑖𝑛  Total volume between the exhaust manifold and the turbine (m3) 

𝐶𝐷_𝑊𝐺    Discharge coefficients of the wastegate 

 

Using manufacturer maps and substituting equations (5.15) to (5.20) into the equation 

(5.14), gives the physics-based turbocharger model, where the throttle inlet pressure can 

be estimated using the equation (5.21), where 𝜂𝑐 , 𝜂𝑡 , 𝑃𝑐_𝑖𝑛 , 𝑃𝑐_𝑜𝑢𝑡 , 𝑃𝑡_𝑖𝑛 , 𝑃𝑡_𝑜𝑢𝑡 , 𝑇𝑐_𝑖𝑛 , 

𝑇𝑐_𝑜𝑢𝑡 , and 𝑇𝑡_𝑖𝑛  are all intermediate parameters. Since the turbocharger maps are 

discontinuous and nonlinear, directly using maps in the controller will cause discontinuity 

of the control system. Fitting methods, like surface fitting and polynomial fitting, are 

needed to represent the maps in the control algorithm. As the turbocharger model is 

nonlinear, fitting the nonlinear and discontinuous maps may significantly reduce the model 

accuracy and add additional complexities to the controller. Other parameters, like 𝐶𝐷_𝑊𝐺 , 

𝐴𝑊𝐺, 𝑉𝑡_𝑖𝑛, and 𝑉𝑐_𝑜𝑢𝑡 also need to be accurately measured and calibrated. For real-time 

cycle-by-cycle engine control using NMPC, evaluating the above physics-based 

turbocharger models and taking partial derivatives of above nonlinear equations with 

respect to control signals in the NMPC algorithm are time consuming, and additional 

numerical differentiation and integration algorithms that are suitable for online 

implementation are required. 

 

_ _ _ _ _ _ _
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For developing the control-oriented models used in the control system, system 

identification is widely used to derive computationally efficient mathematical models using 

measured input and output signals. In this study, equation (5.22) represents the throttle inlet 

pressure dynamics in an input-output (I/O) mapping form. The neural network was used to 

predict 𝑃𝑇𝐼𝑃. In this study, we assume that the measurements of the turbo speed is available. 

 

( ), , , , , ,TIP TIP Eng Man th IVC EVO wg turbP f RPM P     =  (5.22)  

 

5.3.2.3 IMEPn Model 

In this work, IMEPn is used as the tracking reference in the E-NMPC. Equation (5.23) 

describes the definition of IMEPn in the thermodynamic point of view. Normally, IMEPn 

is calculated from measured in-cylinder pressure over the entire engine cycle (720°). As 

previously discussed, predicting the crank angle-based in-cylinder pressure is not 

applicable for real-time cycle-based engine control, so IMEPn was modeled using a 

feedforward NN in this work. In equation (5.23), 𝜂𝑛_𝑖𝑛𝑑 is the indicated thermal conversion 

efficiency, which is the ratio of the actual work per engine cycle to the total chemical 

energy of certain amount of injected fuel released from the combustion [26]. For a specific 

engine with the fixed cylinder volume (𝑉𝑑) operated under stoichiometric condition, 𝜂𝑛_𝑖𝑛𝑑 

is mainly affected by MAP, exhaust pressure, CA50 [145], the effective compression ratio 

controlled by IVC [146], and effective expansion ratio controlled by EVO [147, 148] have 

high impact on IMEPn. Combining the 𝜂𝑣  modeled using Equation (5.13), IMEPn 

described by equation (5.23) can be modeled using equation (5.24), which is formulated in 

the I/O mapping form. 
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( )50, , , , , ,
nn IMEP Eng Man Man IVC CA EVO WGIMEP f RPM P T    =  (5.24)  

Where, 

𝜂𝑛_𝑖𝑛𝑑  net indicated thermal conversion efficiency 

𝑄𝐿𝐻𝑉  Lower heating value of E10, 41282 KJ/Kg 

𝐴𝐹𝑅𝑆𝑡𝑜𝑖  14.07 for E10 

 

5.3.2.4 NOx Model 

One of the objectives of the presented engine control system is minimizing engine out NOx 

emissions. In this work, NOx is measured by a Cambustion fast gas analyzer in the unit of 

parts per million (ppm). For an SI engine operated under the stoichiometric condition, 

thermal mechanism is the dominant factor that leads to NOx formation, and the reactions 

of N and O2 take place in the high temperature burned gas region. Although the physics-

based NOx model described by the extended Zeldovich mechanism includes detailed 

chemical reactions, the requirements of the precise modeling of in-cylinder chemical 

reactions and high computation effort make it not suitable for the online model-based NOx 

control application. The formation of NOx is sensitive to the maximum cylinder 

temperature, residual burned gas fraction (RGF) of the gas mixture, and spark timing [26]. 

The total residual gas trapped at IVC comprises two parts. The first part is burned gas 

remained in the cylinder after the exhaust process, which is trapped at IVO. The second 

part is exhaust gas re-breathed from the exhaust manifold into the cylinder during the 

positive valve overlap period [26]. The total RGF is governed by the relative pressures of 

MAP, in-cylinder pressure, and exhaust manifold during the gas exchange phase, which is 

controlled by intake and exhaust cam timings and engine speed. The exhaust pressure is 

affected by the wastegate opening percentage. Both the RGF and the combustion phasing 

impact the maximum in-cylinder temperature. Based on the above discussions, a 
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feedforward NN was used to predict the total NOx formation at EVO, as described in 

equation (5.25). 

( )50, , , , , ,NOx Eng Man Man IVC CA EVO WGNOx f RPM P T    =  (5.25)  

 

5.3.2.5 Knock Model 

Engine knock is caused by self-ignition of the in-cylinder mixtures ahead of the flame front, 

which results in an extremely rapid release of the chemical energy and results in high local 

pressures in the combustion chamber [26]. Engine knock is an abnormal combustion, and 

severe engine knock will damage the engine. In the production engines, the knock sensors 

are used detect the know events. Both map-based feedforward controller and closed-loop 

feedback controller are used to suppress the knock. In the E-NMPC based engine control 

system, a predictive knock model is crucial for avoiding engine knock and safely operating 

the engine within the limits. Knock intensity is one of the popular knock metrics used to 

correlate to the significance level of the engine knock. Equation (5.26) shows the knock 

intensity calculation using the in-cylinder pressure signals [149], and both the engine speed 

and in-cylinder pressure determine the calculation of 𝐾𝐼𝐸𝑥𝑝. Where, 𝑃𝑓 is the filtered in-

cylinder pressure, 𝜃 is the crank angle, and t is the time for the corresponding crank angle. 

As previously discussed, instead of predicting the in-cylinder pressure for knock 

prediction, a NN-based control-oriented knock model was developed and used in the 

feedforward loop to suppress the knock in the upcoming engine cycle, using available 

control signals and production sensor measurements. Various experimental validated 

empirical correlations have been developed to predict the knock intensity, and equation 

(5.27) shows the general form of KI correlation models [150], where T and P are 

temperature and pressure. In this work, there was no EGR. Instead, the residual gas fraction 

controlled by VVT is considered in this work. In equation (5.27), the pressure and 

temperature of the end gas are the key parameters for correlating the knock intensity, which 

are affected by MAP, IVC, CA50, and 𝑇𝑀𝑎𝑛. Thus, equation (5.28) is the control-oriented 

KI correlation model used for knock prediction in the future cycles. Due to the confidential 
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contents of the knock test data, the experimental KI values were normalized into a specific 

range. Normalized KI values were used to train and validate NN-based KI model. 
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( )50, , , , ,KI Eng Man Man IVC CA EVOKI f RPM P T   =  (5.28)  

Where,  

𝑐1 to 𝑐7  Model coefficients 

EGR  Exhaust gas recirculation 

 

5.3.2.6 COV of IMEP Model 

Cycle-to-cycle combustion variations (CCVs) are natural characteristics of all SI engines, 

which are normally described by cyclic fluctuations of IMEP. Cyclic combustion variations 

have been studied through measurements of in-cylinder pressure traces using in-cylinder 

pressure sensors and visualization of cycle-by-cycle in-cylinder flame propagation via flow 

field measurement by particle imaging velocimetry [32, 151]. There are three main factors 

resulting in CCVs, variation in in-cylinder flow motions, variation in mass of fuel and air 

in each cycle, and variation in mixture composition in the cylinder and near spark plug 

[26]. All above three factors are impacted by engine operating conditions, which results in 

different levels of CCVs. Since higher cyclic combustion variations may lead to higher 

engine vibrations and worse drivability, which can be perceptible to the driver, the 

manufactures set the threshold of CCVs to ensure the drivability and comfort. COVIMEP 

is commonly used to indicate the levels of CCVs. Many researchers developed different 

types of models to correlate the COVIMEP with engine operating conditions, including 
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neural network based models [152, 153], polynomial regression models [154, 155], etc. 

Based on the available sensors and control signals, a control-oriented COVIMEP model 

was built using a NN. In modern engines, VVT is widely used to introduce residual gases 

into the cylinder, which helps to improve the fuel economy and decrease the emissions. 

However, more RGF results in longer burn durations, which leads to higher CCVs. In this 

study, engine speed, MAP, and cam timings were included to consider the effects of the 

in-cylinder flow motions. CA50 was used to reflect the effect of combustion process on 

the CCVs, where combustion phasing/durations are affected by RGF. Equation (5.29) 

describes the I/O mapping of the developed COVIMEP model in this work. Experimental 

data were used to train and validate the COVIMEP model. 

 

( )50, , , ,COV Eng Man IVC CA EVOCOVIMEP f RPM P   =  (5.29)  

 

Table 5.5 summaries the developed control-oriented engine models. The KI model and the 

COVIMEP model were calibrated using experimental data. The other models were 

calibrated using the GT-POWER DOE tests data listed in Table 5.3. 

 

Table 5.5 Control-Oriented Engine Models 

Modeled 

Parameters 
Method R2 RMSE 

�̇�𝒕𝒉_𝒂𝒊𝒓 
Ideal gas with constant specific 

heats flow through the orifice 
0.99 0.43 g/s 

𝑷𝑴𝒂𝒏 
Mass conservation and ideal gas 

law 
0.99 0.5 kPa 

𝑷𝑻𝑰𝑷 

Neural 

Network 

1 layer, 5 

neurons 
0.99 0.18 kPa 

𝜼𝒗 
1 layer, 19 

neurons 
0.99 0.4% 

𝑰𝑴𝑬𝑷𝒏 
2 layer, [14 4] 

neurons 
0.99 6.6 kPa 
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𝑵𝑶𝒙 
2 layer, [11 4] 

neurons 
0.99 18 ppm 

𝑪𝑶𝑽𝑰𝑴𝑬𝑷 
1 layer, 13 

neurons 
0.97 0.3% 

𝑲𝑰 
2 layer, [17 2] 

neurons 
0.99 0.1 

 

5.4 E-NMPC Development 

5.4.1 E-NMPC Formulation 

Control-oriented dynamic models developed and calibrated in the previous sections are 

used to model the engine dynamics and predict the future engine behaviors over the 

prediction horizon. The engine is controlled in the cycle domain. The discrete time 

nonlinear state-space model described in equation (5.30) is used in E-NMPC. 

 

( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( )( )

1 , ,

, ,

X k f X k U k V k

Y k f X k U k V k

 + =


=

 (5.30)  

 

The state vector X consists of the intake manifold pressure and the throttle inlet pressure. 

There are five control variables in the control vector U, throttle angle (𝜃𝑡ℎ), intake cam 

advance angle (𝜃𝐼𝑉𝐶), combustion phasing (𝜃𝐶𝐴50), exhaust cam retard angle (𝜃𝐸𝑉𝑂), and 

wastegate opening percentage (𝜃𝑊𝐺). V is a measured disturbance vector consisting of 

three online measurements, engine speed (𝑅𝑃𝑀𝐸𝑛𝑔), intake manifold temperature (𝑇𝑀𝑎𝑛), 

and turbo shaft speed (𝜔𝑡𝑢𝑟𝑏 ). The temperature difference between throttle inlet and 

throttle outlet is ignored, that is 𝑇𝑇𝐼𝑃 is the same as 𝑇𝑀𝑎𝑛. Equation (5.34) are discrete state 

equations. The output vector consists of three outputs, including IMEPn, cylinder air mass 

trapped at IVC (𝑚𝑐𝑦𝑙_𝑎𝑖𝑟), and NOx emission at EVO.  



99 

( )
( )

( )
Man

TIP

P k
X k

P k

 
=  
 

 (5.31)  

  

( )

( )

( )

( )

( )

( )

50

th

IVC

CA

EVO

WG

k

k

U k k

k

k











 
 
 
 =
 
 
 
 

 (5.32)  

  

( )

( )

( )

( )

Eng

Man

Turb

RPM k

V k T k

k

 
 

=  
 
 

 (5.33)  

  

( )
( )

( )

( ) ( ) ( ) ( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( ) ( ) ( ) ( )( )

( )

( )
( )

( )

( )
( )( ) ( )( )

( )
_

, , , , , ,1
1

1 , , , , , ,

120

Man Eng Man TIP th IVC EVO wgMan

TIP TIP Eng Man th IVC EVO wg turb

c Eng d

v Man

Man

Man

Man TIP

D th th th th

Man

f RPM k P k P k k k k kP k
X k

P k f RPM k P k k k k k k

n RPM k V
k P k

V
P k

R T k P k
C k A k

V

   

    



 

  +
 + = = 

+     

 
−   +


+

=
  

( )

( )

( )

( )

( ) ( ) ( ) ( ) ( ) ( ) ( )( )

30

, , , , , ,

EngMan

TIPTIP

TIP Eng Man th IVC EVO wg turb

RPM kP k

P kR T k

f RPM k P k k k k k k    

  
  
  

  
                

 
  

 (5.34)  

  

( )

( )

( )

( )

( ) ( ) ( ) ( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( ) ( )( )
( )

( )

( ) ( ) ( ) ( ) ( ) ( ) ( )( )

50

_

50

, , , , , ,

, , , ,

, , , , , ,

nIMEP Eng Man Man IVC CA EVO WG

n

d
cyl air VE Eng Man IVC EVO wg man

man

NOx Eng Man Man IVC CA EVO WG

f RPM k P k T k k k k k
IMEP k

V
Y k m k f RPM k P k k k k P k

T k R
NOx k

f RPM k P k T k k k k k

   

  

   

 
  
  

= =       
   

  

 (5.35)  

 

The objectives of the engine control system are to track the torque request while 

minimizing fuel consumption and NOx emission. An optimal control problem (OCP) has 

been formulated to minimize a quadratic cost function as described in equation (5.36). In 

the cost function, the first term is for tracking the requested IMEPn, which aims to 

minimize the squared error between the request IMEPref and the system output IMEPn. The 

cycle-based fuel consumption and NOx emission over the control horizon are minimized, 

which are described by the second and the third term, respectively. To prevent 
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unreasonable rapid changes of control actions, which may drive the system to be unstable 

or result in oscillated system behaviors, many researchers added constraints to limit the 

change rate of control signals and demonstrated the closed-loop stability of linear, discrete-

time systems under MPC [156]. In addition to directly imposing the constraints for change 

rate of control actions, a penalty term is included in the cost function to help stabilize the 

system. A, B, and C are nonnegative weighting factors. D1 to D5 nonnegative are weighting 

factors for change rates of control signals. These eight tunable variables need to be 

calibrated to satisfy the control objectives and desired system performances. Delivering the 

torque requests has the highest priority in the engine control system. Therefore, ‘A’ is the 

dominant calibration parameter so that the torque tracking is always satisfied. Since 

controlling VVT to achieve fuel consumption minimization conflicts with NOx emission 

reduction under some engine operating conditions, ‘B’ and ‘C’ are balanced in a way that 

reducing the NOx emission within minimizing specific fuel consumption. The weighting 

factors, D1 to D5, are used to prevent aggressive control actions and ensure the smooth 

torque tracking performance.  
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  (5.36)  

 

As discussed before, systematically handling the system constraints is one of the key 

features of MPC. The cost function in equation (5.36) is subject to constraints in equation 

(5.37). The first type of constraint limits the operating ranges of all mechanical actuators 

to ensure the physical feasibility of the system. Since the VVT actuators driven by 

hydraulic devices have the slowest response and time are needed to open and close the 

throttle and the wastegate, constraints are added to movement rate of actuators, which were 

determined from vehicle driving tests. COVIMEP and KI are used to avoid abnormal 

combustion and ensure the engine stability and avoid engine knock, respectively. Finally, 
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𝑃𝑇𝐼𝑃  – 𝑃𝑀𝑎𝑛  ensures the air flow direction and sets the upper working boundary of the 

turbocharger. 
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 (5.37)  

 

5.4.2 E-NMPC Implementation for SIL Co-simulation 

For cycle-by-cycle engine control, nonlinear constrained OCP in equations (5.30) to (5.37) 

needs to be solved once per cycle. Therefore, online algorithm with fast computational 

speed is crucial for real-time NMPC. This paper uses real-time iteration (RTI) based 

scheme developed in [157] to solve OCP, which is a sequential quadratic programming 

(SQP) based online solver for NMPC. For real-time implementation, the ACADO code 

generation tool presented in [158] and [159] was utilized to generate efficient C-code that 

solves the NMPC problem using SQP-based RTI algorithm. SQP is an iterative method for 

constrained nonlinear optimization and derives a locally optimal solution of the original 

OCP through applying the Newton search directions. In ACADO, an active-set QP solver, 

qpOASES, developed in [160] has been integrated and used to solve a sequence of QPs. 

Since the cost function in equation (5.36) only has least-squared terms, the generalized 

Gauss–Newton method is selected to approximate the Hessian matrices in QPs. To speed 
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up the SQP calculations and converge to the optimal solution faster, the warm-start 

technique is used in the SQP. The optimal active set solution of predicted states and control 

actions from the previous QP is used as the initial starting values for the next QP. For the 

SIL co-simulation, as illustrated in Figure 5.2, a 1D high-fidelity GTDI SI engine model 

was built in the GT-SUITE environment, and all other models were developed in 

SIMULINK environment. The GT-POWER engine model receives five control signals 

from the SIMULINK models, and the SIMULINK models take feedback measurements 

from the GT-POWER engine model. The generated C-code of E-NMPC was integrated 

into the Simulink using an S-Function. The E-NMPC S-Function receives the cycle-based 

feedback measurements from the GT-POWER engine model and outputs optimal control 

signals to the GT-POWER engine model. Since the intake manifold dynamics model 

described in equation (5.9) is a first-order system, the time constant of the intake manifold 

system can be described by equation (5.38), which has the unit of seconds and depends on 

the volumetric efficiency and engine speed. Since the engine is controlled in the cycle 

domain, equation (5.39) converts the unit of the time constant in equation (5.38) from 

seconds into engine cycles. Assuming the engine speed is 3500rpm and ηv is 50%, with a 

step throttle change, it will take 4 cycles to reach a new intake manifold pressure. To make 

E-NMPC respond fast and effectively capture the intake manifold dynamics, the control 

horizon of E-NMPC is set to be 4 cycles in this study.  
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5.5 Performance Assessment with SIL Co-simulation 

In this section, the performance of E-NMPC based engine control system are examined 

over two transient engine operating scenarios through the SIL co-simulation between 

SIMULINK and GT-SUITE. Two scenarios were duplicated in the engine dyno test cell 

by controlling the engine speeds and the pedal positions based on the recorded values 

during the vehicle tests. The production and instrumentation sensors showed in Figure 2.2 

were used to record the engine data, and the recorded control actions were used as the 

baseline for comparing with E-NMPC based engine control results.  

 

The first scenario is a transient test with intermittent ramps, which includes both speed/load 

transient and steady-state operating conditions. The engine operating conditions in both 

scenarios were recorded by the production engine controller during vehicle track tests. In 

the first transient test, there are five representative steady-state non-knocking engine 

operating conditions selected from the vehicle track tests, which covers from low 

speed/load conditions to high speed/load conditions. The first transient test cycle is used to 

check if the E-NMPC can quickly find the optimal set of control signals to achieve all three 

objectives, including tracking torque requests, minimizing fuel consumption, and reducing 

NOx emission. The second scenario is real-world vehicle driving tests, which include both 

gradual accelerations and decelerations of a vehicle and aggressive pedal tip-in/tip-out 

driving conditions. This driving test is used to examine the overall performances of the 

developed engine control system, including the torque tracking accuracy, specific fuel 

consumption and NOx emission over the entire drive cycle.  

 

5.5.1 Transient Test Assessment 

Figure 5.9 shows engine performance of the first transient test. The engine speed is from 

1500 rpm to 3500 rpm, and the IMEPn is from 250 kPa to 840 kPa. It can be seen from 

Figure 5.9 that the E-NMPC based engine control system can smoothly and accurately 
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track the target IMEPn without violating both the combustion stability constraint 

(COVIMEP) and the knock limit (KI). Under low speed/load conditions, between cycle 1 

and 140, the E-NMPC can operate the engine near the combustion stability limit to 

minimize specific fuel consumption and decrease NOx emission. Over the entire test, the 

absolute errors of MAP prediction and IMEPn tracking are below 2 kPa and 30 kPa, and 

the relative errors of above two terms are within 3% and 5%. The RMSE errors of MAP 

prediction and IMEPn tracking are 0.5 kPa and 10 kPa, respectively.  

 

 

Figure 5.9 E-NMPC Engine Control Performances of the First Transient Test 
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As showed in Figure 5.10, the control actions obtained by E-NMPC safely manipulate 

actuators with the consideration of the constraints listed in equation (5.37). The change 

rates of control signals considered in the cost function result in stable movement of 

controlled actuators. As indicated by ‘GT Feedback CA50’ in Figure 5.10, the adaptive 

spark timing management can track the optimal CA50 targets obtained from E-NMPC. The 

maximum absolute errors of CA50 tracking are below 1.5 CA degrees over the entire test 

and the RMSE error and the average error are 0.3 and 0.2 CA degrees, respectively. The 

wastegate is opened to minimize the exhaust back pressure during the entire transient test, 

which helps to reduce the ISFC by decreasing the PMEP. 

 

Figure 5.10 E-NMPC Engine Control Actions of the First Transient Test 
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5.5.2 Economic Performances Validation 

To evaluate the economic performance of the presented E-NMPC based engine control 

system, steady-state GT-POWER DOE simulations with sweeping of control actuators 

were conducted, which includes sweeping of CA50, intake cam timing, exhaust cam 

timing, and wastegate position. These DOE tests were used to examine if the control 

actions obtained by the E-NMPC can operate the engine within the best specific fuel 

consumption regions with minimum NOx emission.   

 

5.5.2.1 VVT Control Evaluation 

Figure 5.11 and Figure 5.12 are the contour plots of ISFC and cumulative NOx emission 

at EVO with sweeping of CAM timings, while CA50 was maintained at 8 deg ATDC. The 

red stars in Figure 5.11 and Figure 5.12 are average VVT control actions obtained from E-

NMPC under first transient operating condition. Comparing Figure 5.11 and Figure 5.12, 

it can be observed that the global minimum ISFC regions do not overlap with global 

minimum NOx areas. In Figure 5.12, the combinations of the earliest IVO and the latest 

EVC result in minimum NOx, where the RGF are maximized by the largest valve overlaps. 

Higher RGF leads to lower peak in-cylinder temperature, which reduces the NOx 

formation. However, for low speed/load condition, the best specific fuel consumption 

region (SFC) is located at the upper-left corner in Figure 5.11.(a), and this result agrees 

with the low speed/load experimental results conducted on 1.0L Ford engine [161]. In 

Figure 5.11.(a), although the late IVC deteriorates the ISFC with less effective compression 

ratio, retarding the EVO compensates this effect by increasing the effective expansion 

ratio. Late IVC also decreases PMEP by increasing the MAP through pushing gases back 

to the intake manifold, which increases the ISFC. Regarding higher speed/load conditions, 

as shown in Figure 5.11. (b) to Figure 5.11.(c), the best SFC are located at lower-right 

regions, and these results also agree with experimental data shown in [161]. The maximum 

IVC advance results in the highest effective compression ratio, and the proper EVO retard 

increases the effective expansion ratio. Under higher speed/load conditions, advancing IVC 
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is more valuable than retarding EVO, which could be caused by less effective blow-down 

process. The GTDI SI engine is a dynamic system with nonlinear behaviors. Under certain 

speed and load conditions, the response surfaces of fuel consumption for variable valve 

timing may have multiple local minimum fuel consumption points [161]. It can be observed 

that Figure 5.11.(b) and (c) have multiple local optimal regions of the ISFC. The non-

convex response surface of fuel consumption can lead MPC to return nonoptimal solutions. 

In addition, MPC with multiple local optimal points may results in discontinuity of the 

controller. Based on above discussion, it is impossible to operate the engine within optimal 

regions to simultaneously achieve the minimum SFC and the minimum NOx by only 

including the single penalty of either fuel consumption or NOx emission in the cost 

function.  

 

By incorporating both the fuel consumption penalty and the NOx emission penalty in 

equation (5.36), the proposed E-NMPC based engine control can derive the best achievable 

combinations of IVC and EVO to minimize the ISFC and reduce the NOx. Figure 5.11. (b) 

and (c) demonstrates that the developed E-NMPC can avoid nonoptimal solutions and 

operate the engine within achievable minimum fuel consumption regions. From Figure 

5.10 to Figure 5.12, it can be seen that the E-NMPC can derive the continuous and smooth 

optimal VVT control actions during the speed/load transition periods. In this work, the 

weighting factors of fuel consumption and NOx emission were balanced in a way that the 

engine was operated within the minimum SFC region first. Then, ‘C’ term in equation 

(5.36) was calibrated to reduce the NOx emission, till the engine was controlled near the 

borders of minimum ISFC regions. To adapt this E-NMPC based engine system to different 

control objectives and engine operating conditions, such as further reducing fuel 

consumption under part load or decreasing NOx emission under high engine load, adaptive 

techniques can be applied to have automated weightings on the fuel consumption penalty 

and NOx emission penalty based on engine operating conditions.   
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Figure 5.11 ISFC Results of GT-POWER DOE CAM Sweep Under Different Engine 

Speed and IMEPn with Fixed 8 degATDC CA50 and Wide Open Wastegate (Red stars 

are optimal CAM timings calculated by E-NMPC) 

 

 

 
Figure 5.12 NOx Results of GT-POWER DOE CAM Sweep Under Different Engine 

Speed and IMEPn with Fixed 8 degATDC CA50 and 100% Wastegate Opened (Red stars 

are optimal CAM timings calculated by E-NMPC) 
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5.5.2.2 CA50 Control Evaluation 

Figure 5.13 shows the CA50 sweep under two different speed/load conditions with fixed 

VVT timings. In both operating conditions, retarding the CA50 results in lower NOx 

emission, and this is due to the decreased peak in-cylinder temperature. When retards the 

CA50 from 8 deg ATDC to 10 deg ATDC, the NOx emission decreases 7.5% at 2000 rpm, 

and the NOx emission decreases 4.7% at 3000 rpm. Regarding the SFC, the optimal CA50 

is 8 deg ATDC at 2000 rpm. When the speed and load increases to 3000 rpm and 830 kPa 

IMEPn, the optimal CA50 is advanced to 6 deg ATDC. From Figure 5.13, it can be see 

that the ISFC increases 0.1% at 2000 rpm and the ISFC increases 0.4% at 3000 rpm when 

retards the CA50 from 8 deg ATDC to 10 deg ATDC. Figure 5.10 shows that the CA50 

obtained by E-NMPC are continuously retarded when the engine speed and load are below 

3000 rpm and 830 kPa IMEPn, which intends to decrease NOx and sacrifice a little bit 

SFC. The trends of the E-NMPC computed CA50 agree with the above discussion, because 

the ISFC is less sensitive to CA50 under lower engine speed and load operating conditions. 

The CA50 is advanced to optimal points at high engine speed and load operating 

conditions, this is because the fuel consumption penalty is more weighted than NOx 

emission penalty in equation (5.36) and the gradient of reducing ISFC is larger under higher 

engine speed and load operating conditions. 

 

Figure 5.13 ISFC and NOx Results of GT-POWER DOE CA50 Sweep with 100% 

Wastegate Opened 
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5.5.3 Real World Driving Cycle Assessment 

In order to examine the overall performances of E-NMPC engine control, a real-world 

driving cycle is used for SIL simulation. The process of fuel consumption and NOx 

emission comparison between the baseline engine control and the E-NMPC engine control 

is described in Figure 5.14. During on-road vehicle track test, the driver pedal position and 

engine speed are logged in the test vehicle. These logged values are fed to the dynamometer 

controller in the MTU APS test cell, and the test engine is controlled by the baseline engine 

controller to reproduce the engine operating conditions during the track test. During the 

dynamometer test, five control signals from the baseline engine control are recorded. To 

evaluate the fuel consumption and NOx emission of the baseline engine control, the above 

recorded control signals are fed to the GT-POWER engine model. The recorded engine 

speed and interpreted IMEPn are inputs of the E-NMPC engine controller. The E-NMPC 

controller issues the control actions to the GT-POWER engine model. The average ISFC 

and specific NOx emission described in equation (5.40) and (5.41) were used as the metrics 

for quantification and comparison of fuel consumption and NOx emission between the 

baseline engine control and E-NMPC engine control over the entire driving cycle. Equation 

(5.42) and (5.43) are used to quantify the differences of SFC and NOx emission between 

baseline engine control and E-NMPC engine control. 
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Figure 5.14 Process of Fuel Consumption and NOx Emission Comparison 
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Where, 

𝐼𝑆𝐹𝐶𝐴𝑣𝑒  Average indicated specific fuel consumption over the entire  

   driving cycle (g/KW·h) 

𝑁𝑂𝑥𝐴𝑣𝑒  Average NOx emission over the entire driving cycle (g/KW·h) 

𝑡𝑐𝑦𝑐𝑙𝑒  Total time of the driving cycle 

�̇�𝑓𝑢𝑒𝑙  Fuel flow rate (g/s) 

𝑃𝐼𝑛𝑑  indicated power (KW) 

MW  Molecular weight (g/mol) 

 

Figure 5.15 and Table 5.6 shows the speed/load map of the driving cycle test and details 

of engine acceleration/deceleration conditions. The transient engine speed profile was 

implemented in the GT-SUITE environment, and the E-NMPC receives the signal of 

IMEPn in the SIMULINK environment. The entire transient test takes 206 seconds and 

includes 2151 cycles of data. 

 

Figure 5.15 Dyno Test Engine Operating Points: Replicated from Real-Word Driving 

Cycle 
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Table 5.6 Real-Word Driving Cycle Engine Acceleration/Deceleration Conditions 

Max speed acceleration/deceleration 

(rpm/s) 

Max load (IMEPn) 

acceleration/deceleration (bar/s) 

Acceleration Deceleration Acceleration Deceleration 

876 -700 14.3 -12.3 

 

Figure 5.16 and Figure 5.17 shows engine performances and E-NMPC control actions for 

the real-world driving test. Table 5.7 summarizes the performances of E-NMPC regarding 

IMEPn tracking and control-oriented engine model accuracies. From Figure 5.16 and Table 

5.7, It can be observed that the E-NMPC based engine control system can track the target 

IMEPn with respecting both the combustion stability constraint (COVIMEP) and the knock 

limit (KI) during the entire driving test. For all pedal tip-in maneuvers, it can be seen that 

E-NMPC quickly advances IVC. This is because advancing IVC helps to trap enough air 

in the cylinder at higher engine speed and increase the peak in-cylinder pressure, which 

results in fast delivery of increased driver’s torque request. For the tip-in events at low to 

medium engine speed/load conditions, like from cycle 400 to 500 and cycle 1400 to 1500, 

EVO are retarded to increase the expansion work for fast increased load tracking. For pedal 

tip-out maneuvers, it can be observed that E-NMPC retards IVC, advances EVO, and 

immediately retards CA50 to decrease the engine torque output. Since spark timing is the 

fastest control actuation in the SI engine, sudden retard of CA50 helps to compensate for 

delay of intake manifold pressure dynamics during the tip-out event. 

 

The third and fourth sub-plots in Figure 5.16 are the instantaneous ISFC and specific NOx 

emission. Compared to the baseline engine control, E-NMPC based engine control results 

in less fuel consumption and NOx emission over 84% and 99% of total cycles respectively. 

Table 5.8 summarizes the average fuel consumption and NOx emission over the entire 

driving cycle. E-NMPC based engine control reduces SFC by 1.9% and reduces the NOx 

emission by 47.9%. Under low speed/load operating conditions, like from cycle 1 to 66, 

cycle 400 to 800, and cycle 1163 to 1216, E-NMPC manipulates the VVT to run the engine 
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at COVIMEP limit by introducing longest valve overlap to achieve minimum SFC and 

reduce NOx emission. Under high engine speed/load operating conditions, like from cycle 

142 to 245 and cycle 8602 to 960, E-NMPC issues the earliest IVC and appropriate EVO 

to reach the achievable operating points with minimum fuel consumption and NOx 

emission. The wastegate is widely opened under majority of the driving cycle to have 

minimum exhaust back pressure, which helps to reduce the SFC. 

 

 

Figure 5.16 E-NMPC Engine Control Performances of the Real-Driving Cycle Test 
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Figure 5.17 E-NMPC Engine Control Actions of the Real-Driving Cycle Test 

 

Table 5.7 IMEPn Tracking and Control-Oriented Model Prediction Performance of E-

NMPC Engine Control 

 

IMEPn 

Tracking 

(kPa) 

MAP 

Prediction 

(kPa) 

Boost 

Pressure 

Prediction 

(kPa) 

Volumetric 

Efficiency 

Prediction 

(%) 

EVO NOx 

Prediction 

(PPM) 

Absolute 

Mean 

Error 

1.1 0.1 0.5 1.6 11 

RMSE 16.4 1.0 1.9 4.3 49 
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Table 5.8 E-NMPC Engine Control vs. Baseline Engine Control 

ISFCAve (g/KW·h) NOxAve (g/KW·h) 

Baseline E-NMPC Baseline E-NMPC 

232.3 228.0 2.90 1.51 

ISFCAve_Diff (%) NOxAve_Diff (%) 

1.9 48 

 

5.6 Summary 

This chapter presents an E-NMPC based cycle-by-cycle engine control system for a GDTI 

SI engine. The presented E-NMPC aims to produce the requested IMEPn and 

simultaneously minimize the fuel consumption and NOx emission with consideration of a 

comprehensive set of engine operating constraints. To work with E-NMPC, a control-

oriented MIMO GTDI SI engine model has been developed by combining both physics-

based and neural-network based models. The E-NMPC model and control-oriented engine 

models were implemented in SIL environment using SIMULINK S-function blocks. The 

Adaptive Spark Timing Management model was implemented by a MATLAB function 

block in Simulink. The entire model-based engine control system was developed in 

MATLAB/SIMULINK and SIL testing was performed with a calibrated high-fidelity 1D 

GT-POWER engine model.  

The performance of the E-NMPC engine control system was examined over two transient 

engine operating scenarios through the SIL simulation. In the first transient test, analysis 

has been conducted and the results demonstrate that the E-NMPC engine control system 

can stably and accurately track the driver’s torque request and operate the engine within 

best achievable SFC regions and reduce the NOx emissions. In the real-world driving cycle 

test, E-NMPC based engine control is able to track the requested IMEPn with average 

absolute error of 1.1 kPa. Compared to baseline engine control, E-NMPC based engine 

control reduces the SFC by 1.9% and reduces the NOx emission by 48%. In the future, the 

presented E-NMPC engine control system can be easily adapted to different engine 

operating scenarios and applications, such as the cold start, by modifying the weighting 
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factors in the cost function and extending the control-oriented engine models to cover wider 

engine operating conditions. 
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6 Conclusions and Future Work 

6.1 Conclusions 

In conclusion, this research develops a model-based cycle-by-cycle GDTI SI engine 

control system, which aims to deliver requested IMEPn, reduce the fuel consumption and 

NOx emissions with the consideration of engine operating constraints. Compared to 

traditional engine control system, the developed model-based engine control system can 

simultaneously achieve multiple objectives by systematically controlling all actuators, 

which has high potential to significantly reduce calibration efforts and shorten production 

cycle.  

To achieve fast and accurate CA50 control, a framework of model-based feedforward 

ignition timing management using a computationally efficient control-oriented combustion 

model has been proposed. The combustion model uses only the information at and before 

the intake valve close (IVC) and considers the engine operating conditions. With only 64 

calibration points, a RMSE of 1.7 degree and R2 of 0.95 shows the accuracy of the 

calibrated combustion model. On-road vehicle testing data is used to evaluate the 

performance of the developed model-based burn duration and ignition timing algorithm. 

From the transient tests, the developed combustion model is shown to cover wide engine 

operating conditions. When comparing the model predicted burn duration and ignition 

timing with experimental data, 83% of the prediction error falls within ±3 CAD. From the 

results of two different transient tests, the developed control-oriented combustion model 

has good interpolation/extrapolation ability and dynamic response. With the proper 

selection of the boundary calibration points, the control-oriented combustion model can be 

easily adapted to different engines, which contributes to shorten the engine development 

cycle. The dynamic burn duration and ignition timing prediction algorithm has been 

proposed to output the burn duration and the feedforward spark timing at IVC for the 

coming cycle based on the desired CA50. From the results of transient test, it can be 

observed that this algorithm only needs less than 5 iterations to predict the accurate burn 

duration based on the desired CA50 target. The algorithm can be easily implemented into 
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the engine ECU for the real-time combustion phasing control without heavy computational 

burden. 

In the fourth chapter, an RLS-VFF based adaptation algorithm is developed to handle 

operating-point-dependent model errors, which helps to maintain the accuracy of 

combustion model and ignition timing prediction throughout the engine lifetime and further 

reduces the need of calibration. A novel variable forgetting factor considers both cyclic 

combustion variations and base model errors is integrated into the RLS algorithm, which 

avoids fault adaptation and assists the adaptation algorithm to be stable. The developed 

RLS-VFF based adaptation is able to expand the working ranges of the original model-

based feedforward ignition timing management and cover the entire engine operating 

conditions without additional calibration efforts. From the transient test, the developed 

VFF-RLS-based model adaptation technique helps to reduce average prediction error of 

burn duration from 1.5 CAD to 0.1 CAD, and the average ignition timing prediction error 

is reduced from 1.4 CAD to 0 CAD. Since 99% of cycles converge within 3 iterations, it 

shows the capability of online application. Based on the stochastic characteristics of cycle-

to-cycle combustion variation, a CA50 observer is proposed using an adaptive Extended 

Kalman Filter and developed combustion model. The AEKF-based feedback CA50 

estimation has been evaluated using heavy transient test and the results show the accurate 

and fast estimation of CA50 under transient operating conditions. Compared to traditional 

CA50 estimation using a moving average method, the AEKF algorithm successfully 

‘filters’ out the ‘stochastic noise’ and provides ‘filtered’ CA50 estimation without 

significant cycle delays. 

In the fifth chapter, a model-based control system for cycle-by-cycle control of a GTDI SI 

engine using an economic nonlinear model predictive controller has been developed to 

simultaneously achieve three objectives: instantaneous delivery of requested IMEPn, 

minimization of fuel consumption, and reduction of NOx emissions. A control-oriented 

MIMO GTDI SI engine model has been developed to predict the future engine behaviors 

by incorporating both physics-based and data-driven modeling approaches. The control-

oriented MIMO engine model is calibrated using DOE simulation results from a high-
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fidelity 1D GT-POWER engine model, which has been calibrated and validated by 

experimental engine data. The performance of the E-NMPC engine control system has been 

evaluated through the SIL co-simulation between SIMULINK and GT-POWER using two 

transient tests. The first transient test demonstrates that the developed E-NMPC engine 

control system can track the IMEPn targets within 3% error and operate the engine within 

the best achievable minimum fuel and NOx emission regions through coordinating VVT, 

ignition timings, and wastegate opening percentages. The second transient test is used to 

quantify the overall performance of entire model-based engine control system. Over the 

entire driving cycle, the average error of IMEPn tracking is 5 kPa. Compared to baseline 

engine control, the proposed model-based engine control system reduces the SFC by 1.9% 

and reduces the NOx emission by 48%. The E-NMPC based engine control system can be 

easily adapted to different engine design and future upgrading by recalibrating system 

models used in MPC. Adaptive techniques can be applied to introduce adaptive weightings 

on the fuel consumption penalty and NOx emission penalty to achieve different control 

objectives based on engine operating conditions.  
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6.2 Future Work 

This research work provides a framework of the model-based control for cycle-by-cycle 

GTDI SI engine control. The future work is suggested as follows:  

• Since the in-cylinder pressure sensor is costly, modify the model-based 

feedforward ignition timing management for combustion phasing control by 

eliminating in-cylinder pressure sensors. 

• The E-NMPC based engine control system is developed and calibrated for normal 

engine operating conditions after the engine warmup stage. The adaptation method 

can be integrated to expand the working ranges of the control system, such as cold 

start. 

• Knock control in a SI engine is a stochastic process and has many uncontrolled 

noise factors that change the onset of knock including effective fuel anti-knock 

index (AKI), deposits, humidity, intake air temperature, etc. Therefore, in addition 

to feedforward combustion knock prediction, a closed-loop knock controller is 

needed to control SI combustion knock effectively. 

• The E-NMPC based engine control system can be utilized for assistance/assessment 

of production calibration and tuning for steady-state and transient engine control.  

• Implement E-NMPC based engine control system in prototyping system for further 

development, verification, and validation. 
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