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ABSTRACT 

 

The dynamic performance of a turbocharged diesel engine during transient operation has 

been studied in the present work. Based on the experimental results, a novel real-time 

control oriented diesel engine model was developed. In addition, an advanced fast 

predictive control approach was proposed and validated in a hardware-in-the-loop (HIL) 

simulation platform.  

 

For appropriate analysis of data obtained from engine transient operation, four alternative 

automated filtering methods, namely fast Fourier transform (FFT), low-pass, linear and zero-

phase filtering were implemented on the cycle-by-cycle in-cylinder pressure. Furthermore, 

the techniques to process instantaneous emission data and align the transient data from 

different analyzers were developed. In the experimental study, the effects of engine speed 

and exhaust gas recirculation (EGR) have been investigated through load increase tests at a 

constant engine speed between 1000 rpm to 2000 rpm with different EGR calibrations. The 

main findings, including spikes of pressure drop between the intake and exhaust manifold, 

drop of oxygen concentration and deteriorated emission behaviours are reported. In 

addition, the sensitivity of fuel properties on the effects of engine dynamic performance has 

been studied using hydrotreated vegetable oil (HVO) blends.  

 

The control-oriented diesel engine model was developed in Simulink with a fixed simulation 

step. The model is capable of simulating the main engine parameters such as the oxygen 

concentration, EGR mass flow, intake air mass flow, maximum in-cylinder temperature and 

IMEP in both steady state and transient operation of engine performance. Three main parts, 
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the air path model, combustion model and dynamic emission behaviour model constitute 

the engine model. Due to the simple structure, the model can run as a real-time simulator 

for engine control strategy development, reducing the experimental time and cost on real 

engine testing.  

 

The novel predictive control approach, model predictive control (MPC), was developed f or 

EGR and variable-geometry turbocharger (VGT) control in the air system of a turbocharged 

diesel engine. The oxygen concentration oriented control was designed and implemented in 

the real-time engine model. Compared with the conventional PID control method, MPC 

presents a good tracking performance of reference values with a shorter response time. 

Additionally, a great potential for emission abatement is illustrated. The HIL simulation 

platform was developed to present the real-time capability of the model-based control 

strategy. Small differences of outputs response between the pure model and the actual 

control unit are found in the validation results, proving that the developed MPC control can 

be implemented in real vehicle application.   
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1 CHAPTER 1  INTRODUCTION 

 

 

1.1 Background 

 

After the successful application of internal combustion (IC) engines by Nikolaus Otto (1876) 

and his counterpart Rudolf Diesel (1892), IC engines have become the most important 

power source for automotives during the last 140 years (Alagumalai 2014). Although the 

development of alternative fuel vehicles including electric, hybrid and solar powered cars 

has been rapid during this recent decade, some critical issues such as the limited power 

storage and high costs still hinder their wider application (Hannan, Azidin, and Mohamed 

2014). Meanwhile, many emerging technologies are being developed and implemented on 

modern automotive engines to further improve the energy conservation efficiency and 

reduce the emissions. Accordingly, IC engines are forecasted to remain the main power 

plant of vehicles in the 21st century (Gurney, Ahammad, and Ford 2009). 

 

1.1.1 Challenges of Fuel Economy and Emission Legislation 

 

With the growth of the global population and the car ownership rate, there is a rising 

concern about the increasing energy demand and environmental pollution from vehicles. As 

shown in Figure 1-1, it is estimated that the total demand for road transportation energy 

will increase steadily in the next two decades. Even though the share of new energy  supplies, 
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especially biofuels, shows continuous growth, fossil fuels will still be used by the majority. 

Considering that fossil fuels are non-renewable resources, in order to meet the growing 

energy demand, improving the fuel economy becomes an essential issue for the automotive 

industry.  

 

 
Figure 1-1  Annual Road Transportation Sector Energy Consumption by Fuel Type,  Global 

Market (Navigant Research 2014) 

 
In addition, the emissions from vehicles have drawn much attention from the general 

population and governments in recent years. The European Union introduced its first 

emission regulation in 1992 which included carbon dioxide (CO), hydrocarbon (HC), nitrogen 

oxide (NOx) and particulate matter (PM). As the concerns about the vehicle exhaust gas 

increase, the standard has become more and more stringent. The detailed EU emission 

regulation for diesel passenger cars is listed in Table 1-1. It is observed that each item of 

emissions has been largely reduced, i.e. the particulate matter limit in Euro 6 de creased 



 

3 
 

over 96% compared with that in Euro 1. Apart from the mass-based limit, the particle 

number limit was proposed in Euro 5b, elaborating the regulation of particulate matter. 

 
Table 1-1 European Emission Regulation for Diesel Passenger Cars 

Stage Date 
CO HC+NOx NOx PM PN 

g/km #/km 

Euro 1† 1992.07 2.72(3.16) 0.97(1.13) - 0.14(0.18) - 

Euro 2,IDI 1996.01 1.0 0.7 - 0.08 - 

Euro 2, DI 1996.01 1.0 0.9 - 0.10 - 

Euro 3 2000.01 0.64 0.56 0.50 0.05 - 

Euro 4 2005.01 0.50 0.30 0.25 0.025 - 

Euro 5a 2009.09 0.50 0.23 0.18 0.005 - 

Euro 5b 2011.09 0.50 0.23 0.18 0.005 6.0×1011 

Euro 6 2014.09 0.50 0.17 0.08 0.005 6.0×1011 

† Values in brackets are conformity of production (COP) limits 

Source: https://www.dieselnet.com/standards/eu/ld.php 

 
Traditionally, the study of engine efficiency and emission behaviour has focused on the 

steady-state performance. However, the majority of driving consists of engine transient 

operation and the fuel economy and exhaust emissions during transient conditions are 

much worse compared with those in the steady state (Constantine D. Rakopoulos and 

Giakoumis 2009a). As a result, the new European driving cycle (NEDC) as a representative 

cycle is designed to simulate driving scenarios and test the emissions’ level . In addition, a 

new driving cycle called worldwide harmonized light vehicles test procedures (WLTP) is 

being developed and is projected to be implemented in the near future. It will cover all 

possible driving situations and be much more aggressive compared with the NEDC; it 
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proposes a higher requirement for automotive manufacturers to pass the standard 

(Tutuianu et al. 2013). Accordingly, it is important to further research the potential of 

efficiency improvement and emission abatement for internal combustion engines, especially 

during transient operation. 

 

1.1.2 Development of Diesel Engine Technologies 

 

The diesel engine has been widely used in ground vehicle applications due to its high 

efficiency and power output. Compared with the early diesel engines, the modern 

counterparts are much smaller, lighter and quieter through the remarkable efforts of many 

generations of researchers and engineers. As mentioned in the last section, the primary 

challenges for IC engines now are the increasing demand for fuel economy and the stringent 

emission standards. Over the past ten years, a tremendous growth in the development of 

advanced technologies has been implemented in diesel engines.  
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Figure 1-2  Key Technologies for Downsizing a Diesel Engine (Nishio et al. 2013) 

 
Figure 1-2 shows a new generation of a downsized diesel engine featuring a variety of 

technologies. The high pressure common rail injection system with small diameter injector 

nozzles contributes to the highly efficient combustion. The dual EGR system consisting of a 

high pressure loop EGR (HP-EGR) and low pressure loop EGR (LP-EGR) provides the low 

pumping loss and NOx reduction simultaneously. The advanced turbocharger is utilized to 

raise the charging efficiency; thereby improving the fuel economy. As for the exhaust after-

treatment system, the diesel oxidation catalyst (DOC) is capable of reducing over 90% HC 

plus CO and the DPF can decrease more than 95% PM and PN (Tim Johnson 2008). 

Combining these technologies, a diesel engine can become rather clean and highly  efficient. 

Meanwhile, to control the diesel engine with more and more components and an 
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increasingly sophisticated structure, a powerful engine control unit (ECU) is being developed 

and approaches to optimize the control of engine parameters are required.   

 

1.1.3  Diesel Engine Modelling and Control 

 

Mathematical models have been developed and utilized to analyse the working process of 

IC engines for a long time. The rapid development of modern computers largely increases 

the computational capability and promotes the wide application of engine modelling. In 

addition, as the diesel engine continuously increases in complexity with a proliferation of 

engine sensors and control actuators, the engine modelling can not only facilitate the 

engine performance investigation and save the experimental costs, but also guide the 

development of engine control strategies (C. M. Atkinson et al. 2009). As shown in Figure 1-

3, with the evolution of emission legislations and the emerging control technologies, a 

variety of modelling techniques have been proposed. Generally, the computation cost and 

simulation accuracy is a trade-off (Millo, Rolando, and Andreata 2011); as a result, the 

designation of modelling techniques is dependent on the specific sub-system structure and 

purpose.  
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Figure 1-3  From top to bottom: Evolution of Regulations, Diesel Engine Control Technologies, 

Modelling Trends and Evolution of Modelling Techniques for Control (Grondin et al. 2004) 

 

Meanwhile, with the increase of engine complexity, the technical demand for engine control 

has been greatly increased. Table 1-2 lists the control parameters of diesel engines in recent 

generations. It is clearly shown that the number of control  parameters is growing and the 

proper control of modern diesel engines is critical and difficult. Many novel control 

strategies such as fuzzy logic control, neural network control and model predictive control 

have been developed for diesel engines (García-Nieto et al. 2008) (Omran, Younes, and 

Champoussin 2009) (Black et al. 2010b). However, there is a gap between the research and 

the complete application onto real engines due to various limitations. In other words, it is 

important to develop an approach to implement an advanced control strategy in diesel 

engine control. 
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Table 1-2  Diesel Engine Control Degree of Freedom (C. M. Atkinson et al. 2009) 

Year Number of Actuators 
Description of Independent Control 
Parameters 

2001 1 Injector valve 

2004 3 

Injector valve 

EGR valve  

VGT 

2007 6 

2 Injector valves 

EGR valve 

VGT 

Inlet throttle 

HC doser 

2010 7 

2 Injector valves 

EGR valve 

Turbo-compound engagement 

Inlet throttle 

HC doser 

Urea doser 

2015+ 10+ 

2 Injector valves 

EGR valve 

Turbo-compound engagement 

Inlet throttle 

HC doser 

Urea doser 

VVT 

 

 
Furthermore, the difficulty of transient engine control has dramatically increased due to the 

growth of engine control parameters and their complex interaction. It is reported that a 

conventional control method, such as PID control, has met its limitations with a highly inter-

coupled complicated air system (Anderson et al. 2012). Thus, there is a need to realize a 

better engine transient performance with the new control methodology.  
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1.2 Objectives and Approaches 

 

In this study, a turbocharged modern V6 diesel engine equipped with a common rail 

injection and EGR cooling system was tested. The main purpose of the research is to 

investigate the engine dynamic performance during transient operation and develop  an 

advanced fast predictive control approach based on a novel real-time engine model. To 

achieve the research objectives, the primary approaches are listed below: 

 Developing the techniques for appropriate post-processing of experimental data 

obtained from engine transient operation. 

 Conducting experimental study of dynamic performance on a turbocharged diesel 

engine with varied test sequences and different engine calibrations.  

 Constructing a control-oriented real time engine model with basic physical insight 

and simple structure based on the dynamic experimental data. 

 Implementing the MPC in the air system of a diesel engine and validating the control 

strategy on a new HIL simulation platform.  

 

1.3 Thesis Outline 

 

This thesis is divided into eight chapters. A summary of each chapter is presented.  

 

Chapter 1 - Introduction 
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This chapter states the background and motivation of the research. Also, a brief 

introduction of approaches in the study is given. 

 

Chapter 2 - Literature Review 

The literature relevant to the study is reviewed in this chapter. Firstly, a review of the 

development in modern diesel engines is discussed. Next, the previous research on the 

system delay features and deteriorated emission behaviour during engine transient 

operation is presented. Furthermore, the representative control -oriented modelling 

approaches and emerging control strategies for diesel engines are discussed. Finally, the 

application of HIL on engine control is reviewed. 

 

Chapter 3 - Development of the Experimental System 

The experimental system used in this study is introduced in this chapte r. Detailed 

information about the turbocharged diesel engine is given and the set up of  the engine 

operating system is described. Also, the experimental test facilities for engine performance 

measurement are introduced.  

 

Chapter 4 - Development of Methodology for Engine Transient Analysis 

Alternative automated approaches to process the in-cylinder pressure and related 

combustion parameters for engine transient operation are proposed and compared. 

Detailed methods to process the instantaneous emission data,  compensate for the 

analyser’s delay and aligning the transient data is developed. 

 

Chapter 5 - Analysis of Diesel Engine Transient Operation 
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The dynamic performance of a turbocharged diesel engine is investigated. The specific 

effects of gas exchange process during transient operation on engine combustion and 

emission behaviour are discussed at varied engine speeds and calibrations with 

conventional diesel and alternative fuel. 

 

Chapter 6 - Real-time Diesel Engine Modelling 

This chapter introduces the modelling approaches for the real-time control-oriented diesel 

engine; which include the air system, combustion and dynamic emission model. The 

validation results and analysis are also given. 

 

Chapter 7 - Model-based Fast Predictive Control 

The development of a model predictive control approach applied on the air system of a 

diesel engine is presented. The oxygen concentration oriented control is proposed and 

compared with conventional EGR rate; MPC and PID control are also compared and 

analysed. Finally, the validation of the control strategy is conducted on a HIL simulation 

platform. 

 

Chapter 8 - Conclusions and Future Work 

This chapter summarises the main findings and achievements in this research. Finally, some 

recommendations for future work are provided. 
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2 CHAPTER 2  LITERATURE REVIEW 

 

 

The aim of this chapter is to review the literature which is relevant to the study in this thesis. 

The scope of discussion covers major developments in modern diesel  engines, transient 

operation investigation, control-oriented modelling, engine control strategies and 

approaches to HIL simulation. 

 

2.1 Modern Diesel Engines 

 

Compression ignition (CI) engines were invented by Rudolf Diesel in 1895 and have become 

the dominant powertrain in heavy and light duty vehicles. Compared with their spark 

ignition (SI) counterparts, diesel engines have the significant advantage on thermal 

efficiency due to their higher compression ratio and fuel lean operation. In addition, 

incremental innovations in engine combustion, emissions abatement and input fuels have 

resulted in sophisticated but increasingly efficient and clean, modern diesel engines (Bonilla 

et al. 2014). Four main categories of the modern diesel engine development will be 

introduced respectively.  

 

 

 



 

13 
 

2.1.1 Gas Exchange Process 

 

In four-stroke cycle engines, the gas exchange process involves the intake and exhaust, 

which are to remove the burned gases and admit the charge for the next cycle (Heywood 

1988). To maximize the induction of air and retain the mass within the cylinder, new 

technologies are developed and applied.  

 

Turbocharging, as one approach to boost the intake air through a compressor driven by an 

exhaust gas turbine, has been commonly used in modern diesel engines (Stone 1999). The 

pressurised air at the inlet increases the mass flow rate of air; thereby allowing the 

corresponding augmentation of the fuel flow rate and enhancing the power output. To suit 

the wide range of engine operation points with varied boost pressure , VGT have been 

designed, which can regulate the exhaust gas by using pivoted nozzle vanes. ‘Ultra boost’, 

proposed by Bath University, is reported to demonstrate a 35% reduction in fuel 

consumption by extremely boosting the intake air pressure (Turner et al. 2014). Also, 

Chadwell and Walls proposed a new kind of turbocharger, SuperTurbo, which was coupled 

with a continuously variable transmission (CVT) and able to act as a supercharger at low 

engine speed (Chadwell and Walls 2010).  

 

Furthermore, a variable valve timing (VVT) mechanism, the process of varying the timing of 

valve lift events, has been more and more applied to diesel engines (Hansen, Kyritsis, and 

Lee 2009). Facing the increasingly stringent emission legislation and high fuel economy 

demand, diesel engines are required to precisely control the air charge in the mass flow rate 

and pressure. VVT can largely improve the compromises of valve timing in high engine 



 

14 
 

speed versus low engine speed and full load versus part load. In addition, significant 

emission reduction was realized by employing low temperature combustion (LTC) with the 

VVT technique (Yutaka Murata et al. 2008) (Y. Murata et al. 2006).  

 

 

Figure 2-1  Schematic of Dual Loop EGR System(Nam, Yu, and Cho 2011) 

 
EGR is in widespread use in diesel engines for NOx emission reduction. By introducing a 

certain fraction of exhaust gases into the intake manifold, some O2 in the intake air is 

replaced by CO2 or O2, resulting in lower flame temperature and a significant reduction in 

NOx (Ladommatos, Abdelhalim, and Zhao 2000). However, the application of EGR causes a 

particulate emission penalty, an increase of specific brake fuel consumption and the 

debasement of lubrication oil and engine durability (Maiboom, Tauzia, and Hétet 2008) 

(Benajes et al. 2008) (Jacobs, Assanis, and Filipi 2003). Accordingly, many efforts have been 

made to solve the issue. Akihama used a high EGR rate under stoichiometric condition to 

reduce the particulate and NOx emissions simultaneously (Akihama et al. 2001). Also, a dual 
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loop EGR system (low pressure EGR and high pressure EGR) was proposed as illustrated in 

Figure 2-1. A part of the exhaust air is made to flow back to upstream of the turbocharger as 

a supplement for high pressure EGR. The addition of low pressure EGR provides high 

flexibility in the air path and has presented improvement of fuel economy and emissions 

(Nam, Yu, and Cho 2011) (Heuwetter et al. 2011) (Yunyu et al. 2014).  

 

2.1.2 Combustion Process 

 

At the end of the compression stroke, the combustion process is initiated by the injection of 

liquid fuel and its spontaneous ignition after atomization and vaporization. In typical diesel 

combustion, the start is determined by the injection timing; the premixed combustion 

occurs at the local fuel-air mixture with a high equivalence ratio after a small period called 

ignition delay; diffusive combustion follows at the spray periphery. Emerging technologies 

are being investigated to increase the thermal efficiency and abate emissions.  

 

The common rail system features a high-pressure fuel rail supplying individual solenoid 

valves. It allows precise control of injection pressure, fuel injected quantity and injectio n 

timings while achieving multiple injections within one cycle (Carlucci et al. 2003). In a review 

of Wolfgang’s work, the experiment showed the possibility to improve the emissions by 

varying fuel injection pressure and realizing a pilot injection (Boehner and Hummel 1997). 

Generally, higher injection pressure results in small spray droplets and shorter injection 

periods, which improve the fuel atomization and provides more efficient utilization (C. Park, 

Kook, and Bae 2004) (Jindal et al. 2010). The pilot injection increases the temperature and 

pressure of the mixture in the combustion chamber; thereby shortening the ignition delay 
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of the main injection and reducing the fraction of fuel burned in the premixed phase 

(Mancaruso, Merola, and Vaglieco 2008). Meanwhile, the post injection (a small amount of 

fuel being injected after the main injection event) is reported to provide a high temperature 

late in the cycle and promote the soot oxidation (Dec and Kelly-Zion 2000). 

 

Also, different combustion strategies such as homogeneous charge compression ignition 

(HCCI), premixed charge compression ignition (PCCI) and reactivity controlled compression 

ignition (RCCI) have been studied by many researchers. HCCI is characterised by the fact that 

the mixture of air and fuel is compressed and auto-ignites at multiple sites within the 

combustion chamber (Yao, Zheng, and Liu 2009). Although a remarkable reduction of NOx 

and particulate matter can be achieved by large amounts of EGR with a lean air-fuel ratio 

(Iida and Igarashi 2000), HCCI engines have two main disadvantages. First, there is the 

difficulty in combustion phasing control since the auto-ignition is affected by many factors 

but no direct method for controlling the start of combustion is available (Stanglmaier and 

Roberts 1999). Additionally, they produce high HC and CO emissions due to low in-cylinder 

temperature, which is inevitable at a lean mixture and high EGR rate condition (Dec 2009). 

In PCCI combustion, fuel is injected early in the compression stroke, forming a long mixing 

period for a lean mixture and ignited by a second injection with a small amount of fuel (Lu, 

Han, and Huang 2011). The conditions for HCCI and PCCI combustion have been illustrated 

in Figure 2-2. Similar to HCCI, PCCI reduces the emissions primarily by lowering the 

combustion temperature. Accordingly, the operation range of PCCI is also limited with high 

THC and CO emissions. In addition, a new dual fuel engine combustion technology, RCCI, 

was proposed by Wisconsin University (Kokjohn et al. 2011). In the experiments, the 

utilization of gasoline and diesel can achieve remarkably high thermal efficiency and near 
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zero levels of NOx and particulate emissions (Splitter, Reitz, and Hanson 2010) (Splitter et al. 

2011). However, due to the complicated fuel strategy, there is a long way for RCCI to go 

before it is applied in real vehicles, especially for transient operation.  

 
Figure 2-2  Diagram of  -temperature Ranges for NOx and Soot Formation at the Regions for 

Conventional, HCCI and PCCI Combustion (Kim et al. 2008) 

 

2.1.3 Emissions Control  

 

One of the biggest challenges for modern diesel engines lies in the control of regulated 

emissions. Since a lean combustion mode is adopted in diesel engines at most operation 

ranges, a large amount of O2 is contained in the exhaust gas. Thus, dissimilar to gasoline 

engines, three-way catalysts (TWC), the mature and effective approach which relies on a 

stoichiometric mixture to carry out both oxidation and reduction reactions, cannot be 
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applied in diesel engines (York et al. 2010). Various emission control strategies have been 

developed, which can be classified into two aspects: in-cylinder and exhaust after-treatment 

techniques. 

 

For in-cylinder techniques, the representative methods are EGR and multiple injections with 

optimized control strategies on injection timings and quantities. The application of EGR has 

been introduced in section 2.1.1 discussing the gas exchange process. The main idea lies in 

lowering the combustion temperature and decreasing the intake oxygen concentration, two 

factors dominating the formation of NOx (Heywood 1988). The multiple injections and the 

new combustion modes realized by combining EGR and different injection strategies have 

been presented in the section on the combustion process. As shown in Figure 2-2, many 

researchers have employed various methods to achieve operation regions with low NOx and 

soot emissions (Natti and Henein 2012) (Choi et al. 2005) (Chiara and Canova 2009) (Cong et 

al. 2011).  

 

In order to meet the increasingly stringent emission legislation, a number of exhaust after-

treatment techniques have been developed to further reduce emissions. For modern diesel 

engines, the main issues of tailpipe emissions concern NOx and particulate matter. There is 

a trade-off between NOx and PM in most conditions and these two emissions are the 

primary goal of after-treatment techniques. The most common NOx after-treatment 

technology is selective catalytic reduction (SCR). The technology of SCR uses ammonia (NH3) 

derived from the rapid hydrolysis of on-board urea as the reductant to reduce NOx. To 

achieve high NOx conversion efficiency, the system requires above 300oC exhaust 

temperature and optimized hydrogen addition for various exhaust conditions (T V Johnson 
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2009). In the case of particulate emission abatement, the diesel particulate filter (DPF) and 

DOC are representative methods. DPF is efficient in reducing particulate matter (as high as 

95-98%), both in mass and number (Tim Johnson 2008). The soot particles are trapped when 

the exhaust gases flow through the honeycomb structured device consisting of ordered 

square channels. Meanwhile, DOC is widely used to control diesel particulate emissions 

through oxidizing CO, HC and organic fraction (SOF) to harmless products (Ambs and 

McClure 1993).  

 

2.1.4 Alternative Fuels 

 

Alternative fuels are gaining more and more attention as sustainable energy supplies 

(Hansen, Kyritsis, and Lee 2009). In light of the environmental consideration and price rise of 

traditional fossil fuel, the European Union has issued a 10 percent minimum target for 

renewable energy consumption in the transportation sector by 2020. For diesel engines, 

most of the popular alternative fuels are derived from natural lipid feedstock such as algal, 

vegetable oils and animal fats, called biodiesel. Since various biodiesels from different 

feedstocks have varied fuel properties, numerous experiments have been conducted to test 

the performance, emissions and durability of engines fuelled with biodiesel or its blend.  

 

Previous tests have shown that at full and partial loads, losses of engine power were 

observed ranging between 3% to 10%, mainly due to the lower gross heat value of 

combustion (GHV) of biodiesels (Kaplan, Arslan, and Sürmen 2006) (Çetinkaya et al. 2005). 

Also, many experimental studies on the fuel economy of biodiesel indicated that a small 

increase of brake specific fuel consumption (BSFC) was found and the increasing rate was 
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close to the reduction of the  heating value (Canakci 2005) (Dai Liu 2014). For the emission 

behaviours, most results presented that biodiesel fuels had slightly incre ased NOx and the 

most common explanations are the advanced injection and increased injection pressure 

caused by higher bulk modulus and viscosity (Nabi, Akhter, and Shahadat 2006) (Lapuerta et 

al. 2005). Meanwhile, significantly reduced particle emissions were reported by most 

researchers (Monyem and H. Van Gerpen 2001) (Cardone et al. 2002) (Lapuerta et al. 2005). 

The reasons for this were investigated and summarized: the oxygen content of biodiesel 

fuels contributed to convert carbon to CO or CO2 rather than soot (Frijters and Baert 2006); 

aromatics which are considered as the soot precursors are not contained in biodiesel fuels 

(Lapuerta, Armas, and Ballesteros 2002); the earlier start of combustion due to the high 

cetane number or advanced injection, which promotes the soot oxidation with a longer 

high-temperature period in the combustion (Cardone et al. 2002); the lower final boiling 

point of biodiesel fuels caused better vaporization (Lapuerta, Armas, and Ballesteros 2002).  

 

2.2 Diesel Engine Transient Operation  

 

Engine steady-state operation has been widely investigated and calibrated with the 

development of the techniques mentioned above and the mature engine calibration 

methods. However, the majority of an automotive engine operating pattern is transient 

operation and the exhaust emissions during transient periods, such as cold start, 

acceleration and deceleration, are a primary source of  pollution. This problem has attracted 

the attention of engine researchers and designers in recent years. Detailed measurement 

and analysis of engine behaviour under transient operating conditions are required to 

improve engine calibration. The performance and emissions of turbocharged diesel engines 
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under transient operation are significantly worse than those under steady conditions. 

Higher particulate matter and HC emissions are produced because of the difficulties in 

optimizing the transient response of the intake, injection and combustion systems 

(Wijetunge et al. 1999). The system delay features and emission behaviours in transient 

operation are reviewed in the following sections. 

 

2.2.1 System Delay in Transient Operation 

 

The delay of air supply and engine power increase is the most notable issue for 

turbocharged diesel engines transient operation. The fundamental study was initially 

conducted by Watson who compared a naturally aspirated engine with a turbocharged 

engine of the same displacement during rapid accelerations to full load, full speed 

conditions (Watson and Janota 1982). It was found that the fuel delivery responded rapidly 

but the boost pressure of the turbocharged engine built up slowly and the development of 

the air flow of both engines was close; thereby resulting in the transient torque deficit. 

Detailed measurement carried out by Catania also proved that the fuel injection system was 

able to instantaneously adapt to the new steady state position within a few cycles (Catania 

et al. 1996).  

 

The causes of the system delay in transient operation have been investigated by many 

researchers and can be classified into three aspects: mechanical, thermal and fluid dynamic 

phenomena (Constantine D. Rakopoulos and Giakoumis 2009a). The friction losses and 

inertia of a turbocharger are  the main mechanical factors; while the thermal contributor 

mainly indicates the heat transfer to the cylinder walls and exhaust manifold surfaces. The 
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detailed contributors of the system delay are illustrated in Figure 2-3. Although only a small 

amount of research has been reported on the improvement of the mechanical  and thermal 

aspects, many researchers claimed that the delay from fluid inertia and EGR effects, which 

accounted for the primary role of the delay, could be reduced (Alberer and del Re 2009) 

(Yunyu et al. 2014). First, it was reported that the adoption of a VGT largely improved the 

engine transient response by closing down the vane aggressively; thereby accelerating the 

compressor and compensating for the effect of rotational inertia (Wijetunge et al. 1999) 

(Filipi, Wang, and Assanis 2001). Also, the optimal closed loop control of EGR was developed 

and proved its effectiveness in lower NOx emissions and equivalent PM emission levels 

during transient conditions (Yokomura et al. 2004).  
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Figure 2-3  Schematic Illustration of the Main Contributions to the System Delay during 

Transient Operation of a Turbocharged Diesel Engine (Constantine D. Rakopoulos and Giakoumis 

2009a) 

 

2.2.2 Transient Emission Characteristics 

 

Due to the system delay of a turbocharged diesel engine, gaseous and particulate emissions 

during transient operation have presented rather high values compared with those in a 

steady state (C.D. Rakopoulos and Giakoumis 2006). Research on the transient emission 

characteristics of a turbocharged engine initially was carried out by simulation and indirect 

measurement. Arcoumanis and Jou predicted the formation of NO based on the cylinder 

local temperature and the heat release rate which were derived from measured cylinder 
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pressure during transient operation (Arcoumainis and Jou 1992). Conventional slow 

response analyzers were used to measure transient emissions and then they were 

recovered by reconstruction techniques for analysis (Chan 1996). However, these methods 

were not convenient and the results were hard to prove. 

 

Detailed research on transient emission characteristics has been made possible by the 

application of fast response exhaust gas analyzers. With the highly dynamic gas analyzers, 

even cycle-by-cycle emissions could be detected to study misfire during cold start (Davis and 

Peckham 2007). The load tip-in tests with different acceleration periods at constant engine 

speed were conducted and significant increases of both NOx and particulate emissions were 

observed when the ramp-up time became shorter (Hagena, Filipi, and Assanis 2010). Varied 

VGT settings were tested in full-load transient experiments and it was indicated that the 

opening of the VGT could lower the back pressure but not improve the emissions (Black et al. 

2010a). In both speed transient and load transient tests, the rapid change in EGR and intake 

charge composition were primarily responsible for the transient emissions (Glewen et al. 

2011). Specifically, as the load increases, the in-cylinder temperature rises due to more fuel 

being injected. The prolonged duration of diffusion combustion and oxygen deficiency 

caused by system lag contributes to the soot formation. Meanwhile, the EGR valve normally 

shuts rapidly to help boost the turbo, which results in an overshoot of NOx (Kang and Farrell 

2010).  
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Figure 2-4  Typical Profiles of NOx and Smoke During Load Step Tests (Yokomura et al. 2004) 

 
As shown in Figure 2-4, the different EGR strategies were compared and it was indicated 

that the air-fuel ratio was a key parameter to determine the emission behaviours. Also, the 

trade-off between NOx and particulate emissions still existed even during transient 
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operation (Yokomura et al. 2004). From the perspective of control, a better control  of the 

air-fuel ratio is a promising approach to optimize the transient emissions. 

 

2.3 Control-oriented Modelling of Diesel Engines 

 

Engine modelling has become a critical tool in the engine control design due to the 

increasing complexity of diesel engines. For various modelling approaches, although 

computation fluid dynamics (CFD) multi-dimensional modelling normally provides the best 

accuracy, the high cost of  computation hinders its application for engine control purposes 

(Ma, Xu, and Wang 2011); therefore CFD modelling is not included in this section. A number 

of representative diesel engine modelling approaches, classified as thermodynamic models, 

empirical models and semi-physical approximate models are introduced and compared. 

 

2.3.1 Thermodynamic Models 

 

The thermodynamic model is based on equations of energy and mass conservation. In order 

of complexity, three types of modelling techniques: (i) quasi -steady, (ii) filling and emptying 

and (iii) multi-zone models are classified (Heywood 1988). 

 

Quasi-steady Models 

 

Quasi-steady models have been applied on engine components of which transient 

responses can be assumed equal to a sequence of steady points. This technique represents 

the engine thermodynamics by basic crankshaft and turbocharger dynamics and empirical 
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relations (Grondin et al. 2004). The method was proposed by Ledger who simulated the 

brake torque of a turbocharged diesel engine based on a simple function of fuel injection 

quantity per cycle fm  and engine speed N (Ledger, Benson, and Furukawa 1973): 

Nkmkbmep f 21      Equation 2-1  

Where 1k  and 2k  indicate constants obtained from experimental data. 

 

Although the structures are simple, this method has been widely used in the simulation of 

engine power, air mass flow and exhaust temperature (Filipi, Wang, and Assanis 2001). It 

was found that combustion parameters from one engine cycle during transients could be 

considered as quasi-steady (Assanis et al. 2000). Apart from the gas flow and combustion, 

quasi-steady models were used to estimate the emissions on the basis of engine speed and 

load and provided a rough guidance of trends (Kirchen, Obrecht, and Boulouchos 2009).  

 

In brief, the quasi-steady model is suitable for real-time simulation due to its short running 

time. However, the accuracy of a quasi-steady model is low when the system is complex and 

intermediate processes are oversimplified. The other main disadvantage lies in its poor 

compatibility. It is difficult to transpose one quasi-steady model to other engines since the 

empirical relation in the model strongly relies on the experimental data.   

 

Filling and Emptying Method 

 

In order to overcome the drawbacks of quasi-steady models, diesel engine models with the 

filling and emptying (F&E) method, also called zero-dimensional models, were developed 
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(Watson and Marzouk 1977). In these models, the engine components are treated as a 

series of control volumes with the assumption that the gas mixture in each volume is at 

uniform state. Accordingly, the detailed process such as fuel droplet vaporization and spatial 

variation of mixture are ignored (Kumar, Kumar Chauhan, and Varun 2013). The schematic 

of a typical filling and emptying method model of in-cylinder simulation is shown in Figure  

2-5, which involves heat transfer
htQ ; mass flow through intake and exhaust valve inm  and 

outm ; work of the piston pistW  and combustion heat release combtQ . The model is able to 

simulate the combustion process based on the first law of thermodynamics (Watson and 

Janota 1982): 
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Equation 2-2 

Where u  represents the internal energy per unit mass of gas and 
0h  indicates the specific 

stagnation enthalpy.  
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Figure 2-5  Schematic of the Filling and Emptying Method Model of an Engine Cylinder  

 

Also, the F&E method has been widely employed for engine manifolds modelli ng (C D 

Rakopoulos, Michos, and Giakoumis 2005) (Chung, Kim, and Sunwoo 2005) (August et al. 

2008) (Wahlstrom and Eriksson 2011). In these models, the manifold volume and heat loss 

from the surface of the manifold could be considered. Although the effect of pressure wave 

was ignored, it was reported that most models showed acceptable accuracy at common 

diesel engine operating speeds.  

 

Mean-value Models  

 

Mean-value models (MVM) were proposed based on the filling and emptying method and 

quasi-steady models (Kao and Moskwa 1995). Compared to the F&E method, the significant 

feature of MVM involves a minimum set of differential equations to reduce the computation 
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cost for engine control design. In MVM, time is the independent variable and time scale is 

up to one engine cycle; discrete cycles of the engine are neglected with the assumption that 

all processes and effects are spread out over the engine cycle (Guzzella and Onder 2010). In 

a review of the literature, MVM has widespread use for simulation of a turbocharged diesel 

engine (Jankovic, Jankovic, and Kolmanovsky 2000) (Jung 2003) (Haiyan 2006) (L.Eriksson 

2007). For different purposes, the number of states in these models varied. Most of mean -

value diesel engine models designate the intake and exhaust manifold pressure, 

turbocharger and compressor mass flow dynamics as states. In Wahlstrom’s work, an eight-

state model was proposed, including the intake and exhaust manifold pressure imp , emp ; 

the oxygen mass fraction in the intake and exhaust manifold OimX , oemX ; the turbocharger 

speed tw and three states presenting the EGR and VGT dynamics 1
~

EGRu , 2
~

EGRu and VGTu~

(Wahlstrom and Eriksson 2011). The model structure is illustrated in Figure 2-6 and the 

results indicated that the temperature state in the model had minor effects on the dynamic 

behaviour.  

 

In spite of the simplicity, mean-value engine models are able to capture most of the 

fundamental characteristics of transient engine operation, especially the air system 

dynamics (Cieslar et al. 2014). As a result, this method has been commonly adopted for the 

engine control design of turbocharged diesel engines. 
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Figure 2-6  A Mean-value Model Structure of a Turbocharged Diesel Engine 

 

Multi-zone Models 

 

Multi-zone models of diesel engines were developed for the purpose of accurate prediction 

and study on engine combustion and emission pollutants. Compared with the approaches 

mentioned previously, multi-zone models consider the spatial and temporal variation of 

concentration and temperature within the control volume (Kouremenos, Rakopolous, and 

Karvounis 1987). As a result, detailed analysis of air-fuel distribution and calculation of gas 

composition is achievable. A number of research studies presented that the important 

combustion parameters such as heat release rate, IMEP and heat transfer could be 
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simulated by multi-zone models; meanwhile, NOx and soot emissions of diesel engines were 

predicted based on the related parameters (Kuleshov 2009)  (Boretti 2012) (Visakhamoorthy 

et al. 2012).  

 

Although the detailed mechanisms in multi-zone models enhance the accuracy of engine 

simulations, especially the combustion process and emission formation, rare direct 

application has been found on engine control strategy development, due to its complication 

and the huge computational time required. It was reported that the multi-zone models can 

be used to calibrate the mean-value models (Catania, Finesso, and Spessa 2011).  

 

2.3.2 Non-thermodynamic Models 

 

Non-thermodynamic models, also called “black-box” models were developed for complex 

systems with the minimum level of understanding. In these models, no fundamental 

principles are involved and the input-output behaviours purely rely on the experimental 

data (Grondin et al. 2004). Linear and non-linear “black-box” models are introduced in the 

following sections. 

 

Linear “Black-box” Models 

 

Due to the complexity of thermodynamic models, linear non-thermodynamic engine models 

were employed for initial controller design. These models are constructed based on 

identification of recorded data with adequate model structures such as the state-space and 

transfer function. It was reported that the pseudo-random binary sequence (PRBS) signal 
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could be added to the fuel rack position and record this signal and engine speed; thereby 

obtaining the discrete linear model (Jiang 1994). In addition, the step response fitting was 

employed in Winterbone’s work (Winterborne, Thiruarooran, and Wellstead 1977). The 

model was a transfer function G(s) with a delay term, represented as: 

 
Equation 2-3 

 

Where s indicated the Laplace variable; K ,T , a , b and c were the model parameters 

identified to fit the observed step response. 

 

The major advantage of linear “black-box” models is its short running time due to its 

simplicity. However, these models are only acceptably accurate in a certain operating range. 

Considering the strong nonlinearity of turbocharged diesel engines, the utilization is 

restricted.  

 

Nonlinear “Black-box” Models 

 

With the fast development of computer science, powerful computation capability facilitates 

the optimal identification techniques for nonlinear engine models. Two important 

approaches have been developed, i.e. nonlinear autoregressive Moving average with 

exogenous Input (NARMAX) models and neural networks.  

 

Billings reported a NARMAX model of a diesel  engine with the nonlinear difference equation 

(Billings, Chen, and Backhouse 1989): 
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   Equation 2-4  

 

Where u  indicated the fuel rack position and y represented the engine speed; 
na  was 

obtained by the identification based on dynamic experimental data. This method is able to 

capture the dynamics effectively even when the system is complex and with little physical 

insight.  

 

Meanwhile, neural network models have been commonly used for engine model 

development (Garg, Diwan, and Saxena 2012). With sufficient data from engine experiments, 

neural networks are capable of learning the complex, multi -dimensional and non-linear 

relationships between designated variables (C. Atkinson and Mott 2005). It was reported by 

He that a neural network engine model was able to predict the combustion parameters and 

emissions based on the inputs like engine speed, engine load, injection pressure, etc. The 

general schematic of the model is shown in Figure 2-7 (He and Rutland 2002). Furthermore, 

Alonso discussed the effect of the selection of the number of neurons in the model on the 

accuracy of the outputs and suggested that a larger number of neurons are required when 

the relationships are complex (Alonso et al. 2007). For example, the process of emission 

formation in a diesel engine is far more complicated than the fuel consumption.  
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Figure 2-7  Schematic of a Feedforward Neural Network Engine Model (He and Rutland 2002) 

 
Although the nonlinear “blackbox” models are rather powerful and computationally 

efficient, especially the neural networks, they are not perfect for engine modelling. The 

biggest issue of these models is over-fitting. The over-fitting derives from the inaccuracies of 

transient data and errors in synchronizing various parameters; as a result, the models would 

learn non-existent correlation and show poor accuracy in the extrapolation (I. Brahma and 

Chi 2011b). Also, due to the heavy dependence on the experimental data, “black-box” 

models are application-specific and the compatibility is poor. 

 

2.3.3 Semi-physical Approximate Models 

 

Semi-physical models which combine the characteristics of both thermodynamic and non-

thermodynamic models are built based on equations with physical insight; while the 

parameters in these models are measured or estimated by identification (Grondin et al. 

2004). It was found that the semi-physical models failed to capture the detailed complicated 

combustion during transient operation (C. D. Rakopoulos and Giakoumis 2006). However, 



 

36 
 

this method is an emerging and promising tool for on-line estimation of engine emissions 

and many related research studies have been explored (Grahn et al. 2012) (W. Park et al. 

2013)  (Finesso, Misul, and Spessa 2014) (Quérel, Grondin, and Letellier 2015). Quérel 

proposed a semi-physical model of NOx emissions based on the main phenomena in NOx 

formation and presented a good correlation with experimental data (Quérel et al. 2013). A 

semi-physical particulate matter emissions model, acting as a function of significant engine 

operating variables, was developed (Finesso, Misul, and Spessa 2014). It was reported that 

the air-fuel ratio and value of the chemical energy release at the end of the main injection 

were the dominant variables to predict the PM emissions.  

 

2.3.4 Comparison of Different Modelling Approaches 

 

After the review of all these modelling approaches, the trade-off between computation cost 

and fidelity is exhibited. It is easy to understand that the simulation time would increase 

when the model structure becomes more complex, to ensure higher accuracy.  Also, a simple 

structure and high compatibility are difficult to achieve simultaneously. The advantage on 

the computing time offered by models with a simple structure such as quasi -steady and the 

F&E method, is paid through their heavy dependence on empirical correlations; this is 

difficult to properly describe during transients (Guzzella and Onder 2010). In other words, 

there is no approach perfectly suitable for all the cases of engine modelling. Currently, a 

complete turbocharged diesel engine model includes the air path, in-cylinder combustion 

and exhaust emissions simulation; each subsystem of the engine has varied characteristics 

and complexity. As a result, a mixture of thermodynamic, “black-box” and semi-physical 

sub-models has been more and more adopted in diesel engine modelling (Millo, Rolando, 
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and Andreata 2011). The detailed development of one turbocharged diesel engine with 

various modelling approaches for its subsystems will be introduced in Chapter 6.   

 

In addition, it has been reported that the trend of engine modelling is to include more 

physical knowledge inside the model-based control design (Grondin et al. 2004). The semi-

physical models are considered as a good compromise between simplicity and genericity 

(D’Ambrosio et al. 2014).  

 

2.4 Emerging Control Strategies  

 

Many studies have been conducted to explore the new control strategies for turbocharged 

engines. Since the key factors determining the transient performance of a turbocharged 

diesel engine lie in the air path, i.e. the engine air-supply and EGR management as 

mentioned in the previous section, this review will focus on the application of these control 

strategies to the air management system of engines. Three types of representative control 

strategies, namely the fuzzy logic control, neural network control and model predictive 

control are introduced. 

 

2.4.1 Fuzzy Logic Control 

 

Due to the simple heuristic nature, tolerance to noise and the absence of the need of 

mathematical derivation, the fuzzy logic control strategy has been adopted in the air 

management of turbocharged diesel engines (R.S.Wijetunge et al. 2000). It is a control 
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structure emulating the method of humans making decisions at a certain set of 

circumstances (Pedrycz 1989). In order to implement the fuzzy logic control, the desired 

behaviour of actuators such as the VGT and EGR valves is required to be identified; a 

significant number of classes of inputs which normally indicate the errors are defined; and 

then the rule determining the controller could be summarized (Omran, Younes, and 

Champoussin 2009). Arnold proposed a fuzzy multivariable approach to simultaneously 

regulate the intake pressure and the air mass flow by controlling the VGT, EGR valve and 

throttle (J. F. Arnold et al. 2006) (J.-F. Arnold, Langlois, and Chafouk 2009). The structure of 

the controller is illustrated in Figure 2-8. It was reported that the fuzzy controller could 

provide effective control of the engine gas charge shown by the experimental and 

simulation results.  

 

 
Figure 2-8  Typical Structure of the Fuzzy Controller for Air Management(J.-F. Arnold, Langlois, 

and Chafouk 2009) 
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The structure of fuzzy logic control is simple so that the computational requirements are low 

and close to conventional PID control (J.-F. Arnold, Langlois, and Chafouk 2009). However, 

this strategy relies on the full understanding of the actuator’s behaviour, thereby 

determining the logic rule, which largely restricts the application to complex systems. In 

addition, a large amount of tuning is required to improve the control results.  

 

2.4.2 Neural Network Control 

 

As introduced in the previous section, neural networks have been commonly used to 

identify and represent the input-output correlation for engine modelling. Based on the 

powerful learning capability of neural networks, the neural network controller has been 

exploited and applied to some engine control scheme design (Black et al. 2010b).  

 

Omran proposed a methodology to obtain optimal control schemes and apply a neural 

network controller online to the engine (Omran, Younes, and Champoussin 2009). First, one 

complete engine model was developed and validated; next, the optimization process was 

defined and the optimization algorithm was adopted to search optimal control variables 

during dynamic courses; finally, the neural network with a feed-forward back-propagation 

algorithm was trained by the optimal control database and integrated into the real -time 

engine simulation. The proposed controller showed an apparent reduction in opacity over 

the ETC test cycle compared with the original control strategy. Liu developed an approach 

involving adaptive critic designs (ACDs) for engine control based on neural networks 

(Derong Liu et al. 2008). The schematic of the proposed neural network controller is shown 
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in Figure 2-9. The control references were set as air-fuel ratio (AFR) and torque (TRQ); Q(t) 

implied the critic network outputs function, which evaluated the control results.   

 

 
Figure 2-9  Structure of the Neural Network Engine Controller with Adaptive Critic Designs 

(Derong Liu et al. 2008) 

 

It was reported that the neural network controller was capable of realizing optimal control 

with low computation cost and good performance in a certain operation range (Nakayama 

et al. 2008). However, this method inherited the issues of neural networking modelling, i.e. 

limited robustness guarantees in the extrapolation and heavy dependence on a large 

amount of experimental data.  

 

2.4.3 Model Predictive Control 

 

Model Predictive Control is an emerging control framework based on optimisation 

(Maciejowski 2001). In light of the input/output constraints included and the high 

applicability to multi-input-multi-output (MIMO) systems, MPC has been applied to 
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increasingly complex diesel engines by many researchers. The basic idea of MPC is to solve 

an optimal control problem of a finite horizon at each control interval. Nonlinear and linear 

MPC approaches of diesel engines will be reviewed respectively.  

 

Nonlinear MPC 

 

Since the conventional control methods are not able to directly incorporate performance 

specification and constraints in a nonlinear system, the idea of nonlinear MPC was proposed 

(García-Nieto et al. 2008). The main difference from linear MPC lies in that the quadratic 

program (QP) of nonlinear MPC (NMPC) is required to be refreshed at each sampling instant 

(P Ortner et al. 2009). Herceg applied nonlinear MPC to the air path of a turbocharged diesel 

engine and showed the improved transient behaviour in the simulation; the setpoints were 

the intake manifold
s

ip , exhaust manifold pressure 
s

xp and compressor power ;s

cp while 

constraints were considered based on actuator limits and mechanical limits (Herceg et al. 

2006). The basic control structure is presented in Figure 2-10. Similarly, based on a linear 

parameter varying (LPV) engine model, Ortner developed a nonlinear MPC controller for a 

diesel engine air path and the reference was the air mass flow and boost pressure (P Ortner 

et al. 2009).  
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Figure 2-10  Structure of a Nonlinear MPC Diesel Engine Controller (Herceg et al. 2006)  

 

Although the nonlinear MPC shows an excellent tracking performance in the simulation, the 

biggest issue is its high computational complexity. As a result, nonlinear MPC is inapplicable 

to the real-time control currently. 

   

Linear MPC 

 

Due to the limitation that the standard linear MPC cannot directly deal with the nonlinear 

system, one approach has been proposed to implement MPC on engine transient control 

based on the identified local prediction models. One methodology of model-based control 

for the air path of diesel engines was developed by the Johannes Kepler University (Peter 

Ortner and Re 2007). First, a mean value model of the engine air path was constructed. Note 

that the model should have physical insight and be able to reflect the nonlinearity of the 

engine such as the dead zone, hysteresis and delays. Next, local linear models were 

identified in divided operating regions. Then, the optimal control problem was represented 

in a quadratic program so that MPC could be adopted to track the setpoints, the mass air 

flow and intake pressure. Cieslar proposed one model -based approach to the turbocharged 
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diesel engine air path (Cieslar et al. 2014). A Ricardo WAVE 1-D engine simulation model 

acted as the model plant; a MVM was used for the MPC formulation and an engine 

simulator; a simple driveline model was included to predict the longitudinal motion of the 

vehicle. The schematic of the control system is shown in Figure 2-11.  

 

 

Figure 2-11  Structure of a Linear MPC Control System (Cieslar et al. 2014) 

 

Furthermore, a new concept, explicit MPC (EMPC) was proposed (Bemporad 2001). It solves 

the quadratic program offline and stores the resulting piecewise affine control laws in a 

look-up table, so that only a linear control law rather than a complete quadratic 

minimization problem needs solving at each instant. The application of explicit MPC on 

turbocharged diesel engines was reported (Zhao et al. 2014). The main process of EMPC and 

standard MPC is the same, while the major difference in the implementation procedure is 

illustrated in Figure 2-12. It was reported that EMPC showed significantly lower computation 

cost and is applicable for fast-speed systems. 
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In summary, the possibility of a systematic means to the development of modern 

automotive engines control with an explicit treatment of constraints was found to be a key 

advantage of MPC, over the conventional procedures (Stewart and Borrelli 2008). 

 

Figure 2-12  Implementation Procedure of Explicit MPC on Diesel Engines (Zhao et al. 2014) 

 

2.5 Approach to Hardware-in-the-Loop  

 

Hardware-in-the-loop is a form of real-time simulation, adopted in the development and 

calibration of complex control systems. It differs from the pure real -time simulation by the 

addition of a real component in the loop (Bullock et al. 2004). The typical structure of  HIL 

simulation is shown in Figure 2-13. A plant model is implemented in the HIL system and an 

electronic control unit (ECU) is connected through I/O signals. Although the most effective 

way to test the control strategy is to implement it on the real plant, the HIL simulation plant 

has the advantage of flexibility, safety and low cost.  
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Figure 2-13  Typical Structure of a HIL System 

 
Due to the increasing number of control actuators in modern diesel engines, HIL has been 

more and more applied to the engine control development. Maroteaux developed a 

physical combustion engine model which was coded in S-functions Simulink blocks and 

implemented on a HIL simulation (Maroteaux and Saad 2013). The detailed set up of the 

system is shown in Figure 2-14. In the approach, some real engine actuators were controlled 

by the ECU and used as components in the loop, while other actuators were modelled by 

Simulink; one signal failure generator was included to simulate the failure situation; the ECU 

with embedded software was connected to the test bench. The whole system was able to 

work as a real car so that the control strategies of the engine could be validated and tuned. 

In addition, commercial engine models such as GT-POWER were reported to be 

implemented in a HIL simulation successfully; which largely facilitated the application of HIL 

in the automotive industry (Nanjundaswamy et al. 2011).  
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Figure 2-14  Set up of a HIL Real-time Simulation for Engine Control Development (Saad et al. 

2011) 

 
In brief, HIL simulation is efficient and desirable for transient engine control. It has been 

proved that the implementation of HIL is useful in the validation of real -time models and 

control strategies. One HIL platform was developed for real-time engine control by the 

author and will be introduced in Chapter 7. 

 

2.6 Summary  

 

In summary, this literature review focuses on major developments in modern diesel engines, 

transient operation investigation, control-oriented modelling and engine control strategies. 

Also, the approaches to HIL simulation for engine control development are discussed. 
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From the literature review, the main findings are summarized as the following: 

 

1. Modern diesel engines have become increasingly efficient and clean with the help of 

emerging technologies in gas exchange, in-cylinder combustion, emissions abatement 

and input fuels. Meanwhile, proper control of the progressively complex system is vital 

and desired. 

2. The exhaust emissions caused by engine transient operation are a major source of 

pollution so that detailed measurement and analysis of engine behaviour under 

transient operating conditions are required to improve engine calibration. It is indicated 

that the system delay of a turbocharged diesel engine is the dominant contributor to this 

issue. 

3. The modelling of engines has a long history and many approaches have been exploited 

for the development of engine control strategies. For a complete turbocharged diesel 

engine model, a number of subsystems have varied characteristics and complexity so 

that different approaches should be adopted. The semi-physical model is a promising 

method and considered as a good compromise between simplicity and genericity.  

4. Many new control strategies for the air path of turbocharged engines have been 

developed to improve the transient engine control. Although the simulation results are 

fine, a real-time controller which can be directly implemented to engine operation is still 

desired. Among the emerging techniques, MPC has proven to have appropriate 

robustness and computation cost. 

5. HIL simulation has been successfully implemented to engine control development. It is 

essential to validate the real-time capability and control performance with a HIL platform.  
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      CHAPTER 3  

3 DEVELOPMENT OF THE EXPERIMENTAL SYSTEM 

 

 

This chapter introduces the test facilities and set up of the experimental system used in this 

study. The specification of a turbocharged diesel engine, the set up of the engine test bench 

and operating system and the equipment to measure the engine performance are all 

presented. 

 

3.1 Introduction 

 

The test bench of this study was built for the engine cold start research. The primary feature 

of this test bench is one complete conditioning system which was installed to control the 

temperature of the input fuel, air, engine coolant and lubricant oil down to -20°C. Most of 

the experiments conducted by the author were in ambient conditions (20°C) but the 

capability of temperature control contributed to the repeatability and accuracy of the 

experiment results.  

 

Although the test bench and operating system were initially set up by Jaguar Land Rover, 

AVL and a previous PhD research student Dr Dai Liu, the author was responsible for 

maintaining the facilities and conducting the upgrade work for engine transient tests during 

his study. The maintenance included minor engine components’ failure fixing and facility 
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consumables replacement such as engine coolant and filters of the emission analyzers; 

while the upgrade work involved reconfiguration of the control system, setting up of 

automatic transient manoeuvres and installation of additional measurement facilities.  

 

3.2 Engine Specification 

 

The Jaguar Lion V6 3.0 Litre diesel engine used in the investigation is shown in Figure 3.1.  

 

Figure 3-1  Jaguar 3.0L Lion V6 Engine 

 

This engine is a modern diesel engine equipped with common rail injection, parallel 

sequential twin variable geometry turbochargers and a dual camshaft. High pressure EGR 

with a water cooler is employed to supply low temperature exhaust gas into the intake 

manifold with fast response. Also, a multiple injection strategy is adopted including two 

pilot injections, one main injection and one post injection for better engine combustion 

performance and high efficiency of emission after-treatment. During the engine operation 
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after warm up, the temperature of the engine coolant and oil is maintained at 90°C (±2°C); 

meanwhile the engine combustion air is fixed at 20°C. The schematic of the engine set-up is 

shown in Figure 3-2. 

 

 

Figure 3-2  Schematic of the Original Engine Set-up (Dai Liu 2014) 
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The detailed technical data of the engine is supplied in Table 3-1. 

  
Table 3-1 Specifications of the Jaguar V6 Engine  

Engine Type Euro 5 Diesel Max Cylinder Pressure 173 bar 

Stroke 90 mm Max Power 199 kW @ 4000 rpm 

Bore 84 mm Max Torque 600 Nm @ 2000 rpm 

Swept Volume 2993 cc Max Speed 5000 rpm @ no load 

Compression Ratio 16.1 : 1 Blow-by Limit 90 Litres/min 

 
 

3.3 Operating and Control System 

 

The engine operating and control system is essential for engine experimental study, 

especially for transient tests. This test bench is capable of full simulation of the transient 

duty cycle such as the new European driving cycle (NEDC) which is converted from on-board 

vehicle test and various transient manoeuvres designed by the researcher. The complete 

testing system with the diagnostics arrangement is illustrated in Figure 3-3. Three major 

parts: dynamometer, conditioning system and engine operating system will be introduced 

respectively. 
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3.3.1 Dynamometer 

 

The dynamometer used in this investigation is supplied by AVL. It is an AC machine with a 

squirrel cage rotor mounted with a torque flange, shown in Figure 3-4.  

 

Figure 3-3  Layout of the Test Cell Arrangement 
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Figure 3-4  Transient Dynamometer in the Test Cell 

 

The torque and speed of the dynamometer are controlled by a control  cabinet which is 

connected to the main unit of the AVL PUMA system. The dynamometer controller has two 

modes, speed mode and torque mode. The speed mode indicates that the speed is settled 

directly and determined by the frequency of the AC motor, whi le the engine adjusts the fuel 

flow rate to achieve the desired load through the acceleration pedal (Zhang 2013). In 

contrast, the torque mode means that the torque is maintained by the AC motor while the 

engine accelerates to the desired speed. In this study, the speed mode is adopted due to its 

better dynamic performance and smaller fluctuation. In addition, for engine transient 

control, the torque flange utilized has been well calibrated and has low rotor weight and 

mass moments of inertia. Table 3-2 shows the specifications of the dynamometer. 
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Table 3-2 Specification of the Dynamometer on the Test Bench 

Model Dynodur 270 
Characteristic 
Tolerance 

<± 0.10 % 

Nominal Torque 485 Nm Linearity Deviation <± 0.05 % 

Nominal Power 270 kW 
Temperature Effect 
per 10K on the Output 
Signal 

<± 0.05 % 

Maximum Speed 10000 rpm 
Temperature Effect 
per 10K on the Zero 
Signal 

<± 0.05 % 

Mass Inertia 0.31 kgm2 

Relative Standard 
Deviation of the 
Reproducibility 

<± 0.03 % 

 

The absorbed performance curve of this dynamometer is illustrated in Figure 3-5. 

 

 

Figure 3-5  Engine Dynamometer Performance Curve of AVL Dynodur 270 
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3.3.2 Conditioning System 

 

In this test cell, the low temperature circuit of the conditioning system is supplied by chilled 

water from a 1500 litre tank. As illustrated in Figure 3-3, the cooling water is distributed to 

the fuel, air, engine coolant and lubricant oil conditioning system re spectively. In the cold 

testing mode, the chilled water needs to be cooled down to -29°C first, which takes 

approximately 8 hours; then the circulating to each conditioner is started. The detailed 

setting of cold testing can be found in Dai Liu’s thesis (Dai Liu 2014). For this study, only the 

ambient testing mode was used and the long chilling process was unnecessary. The 

introduction of the separate conditioner will follow in the next section. 

 

Fuel Conditioning System 

 

A fuel temperature control unit, AVL 753C, was installed for the conditioning of the input 

fuel. First, the diesel fuel was supplied from an external tank at ambient temperature; then 

two fuel filter units (coarse filter and fine filter) were used to filte r the diesel in order to 

protect the measuring equipment from soiling and subsequent damage; subsequently a fuel 

regulator was set at 1.5 bar to stabilize the fuel flow; a fuel mass flow meter was connected 

after the regulator for the precise fuel consumption measurement; finally, the fuel entered 

the conditioning system to achieve the desired temperature for the engine testing. The loop 

of the fuel conditioning system is shown in Figure 3-6. Apart from the cooling capability, one 

heat unit was integrated with the conditioning system. As a result, the temperature range of 

this fuel conditioner could be set between -20 to 80°C; however, the achievable fuel 

temperature depends on the cooling water temperature and the amount of heat retained in 
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the engine return fuel. At ambient mode, the temperature stability of the fuel conditioner is 

±0.1 K, which provides a stable fuel temperature for the engine and improves the 

measurement accuracy of the experimental study.  

 

 

Figure 3-6  Arrangement of Fuel Conditioning System 
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Engine Coolant and Oil Conditioning System 

 

There are two modules designed to provide cooling capability to the engine coolant and oil 

with the supply of chilled water respectively. The circuit of the  conditioning system is shown 

in Figure 3-7. Each module has one heat exchanger and one flow control valve in the loop. 

Through a PID controller on the flow valve, the temperature can be maintained at the 

desired value. As mentioned previously, in the ambient testing mode, the desired 

temperatures of the engine coolant and oil were set at 90°C. Considering the engine could 

be damaged at excessive high temperatures, a limit alarm is activated during the engine 

operation in case of the failure of the conditioning system. When the temperature of the 

engine coolant or oil is over 100°C, the system would automatically enter a stage called ‘cold 

run’ which means the engine would run at idling. This procedure would ensure the 

circulation of coolant and oil which would cool down the engine components, thereby 

protecting the engine. 

 

 (a) 
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 (b) 

Figure 3-7  Circuit of Conditioning System: (a) Engine Coolant; (b) Lubricant Oil 

 

Air Conditioning System 

 

The temperature of the engine combustion air was controlled by an AVL CONSYSAIR 1600 

unit. In addition, one dehumidifier was installed to adjust the relative humidity of the intake 

air according to the varied testing requirements. Independently from the engine operation 

condition, the desired temperature and humidity can be controlled at the given range with 

proper accuracy (±0.5°C and 3% relative humidity).  
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Figure 3-8  Engine Combustion Air Conditioning System 

 
For the ambient testing mode, the intake air temperature was maintained at 20°C and the 

dehumidifier was kept off since the ambient temperature conditioning did not involve a 

serious humidity issue. The temperature control capability is essential for long periods of 

experimental study such as driving cycle tests. Without the air conditioning system, the 

temperature of the intake air would increase with the increase of the testing time; as a 

result, the engine performance would deviate from the desired values.  
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3.3.3 Engine Operating System 

 

The AVL PUMA Open system is utilized to operate the whole test cell including the engine, 

dynamometer, conditioning system and emission analysers. It acts as the core of the testing 

system for control, monitoring and data acquisition.  

 

For the engine and dynamometer operation, the data transfer process has been presented 

in Figure 3-9. The demand values such as speed and torque are calculated and transferred to 

the output modules. Through the Fast-Front End Module Digital Analogue Converter 

illustrated as number 3, the digital demand values from the PUMA system are converted 

into analogue quantities (current/voltage); thereby controlling the actuators. Meanwhile, 

the PC board PCI illustrated as number 2 in the figure is set up to transfer all the signals 

between the PUMA system and the FEM modules. Similarly, the conditioning system is 

controlled through this method and can be adjusted by tuning the  PID parameters. 

 

 
 

Figure 3-9  Data Transfer between PUMA System and Test Bench 
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In addition, the monitoring data of the test bench components such as speed, frequencies, 

time period and events can be acquired through a unit called a Fast-Front End Module 

Controller. Accordingly, in the PUMA system, all the important parameters are monitored 

during the tests based on the real-time data communication capability of this system. 

 

Furthermore, calibration software entitled INCA from ETAS was installed in another desktop 

which was integrated with a CAN bus interface card ES580. Based on INCA, the information 

from the ECU was acquired and stored; meanwhile, some engine management parameters 

could be controlled such as the EGR rate, boost pressure, rail pressure, injection timing, etc. 

In order to monitor the information from the ECU in the PUMA system, ASAP3 

communication was set up through Ethernet. Therefore, the PUMA system is used as a data 

acquisition centre to record the experimental results from different sources.  

 

3.4 Engine Performance Measurements 

 

To capture the dynamic engine performance, there are a number of measurement facilities 

installed and used in the test bench. The measurement equipment was maintained and 

calibrated regularly. 

  

3.4.1 In-cylinder Pressure Measurement 

 

The in-cylinder pressure is measured by Kistler piezoelectric pressure transducers which 

have been fitted in the head of the cylinders (Kistler 2007). The pressure transducer uses a 
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piezoelectric crystal achieving high sensitivity in the operating temperature range and 

generates an electrical charge at 160 kHz. The measuring range is 0 to 250 bar, meeting the 

requirement of the investigation. Also, one AVL angle encoder was installed to provide 

pulses at every crank angle degree as a clock input and one pulse every cycle to determine 

the top dead centre (TDC).  

 

A multi-channel indicating system, AVL IndiModuls 621, was connected to the pressure 

transducers and the encoder for receiving the signals. The module was linked to a desktop 

which has the interface software IndiCom to present and record the in-cylinder pressure 

and related cycle-based values such as IMEP, peak in-cylinder pressure and the crank angle 

position, where 50% of the cumulative heat release occurs (HR50). In this study, the 

frequency of the in-cylinder pressure was set at every crank angle degree. Similarly to INCA, 

the data from IndiCom can be transferred to the PUMA system through Ethernet. However, 

due to the high frequency of the crank angle based in-cylinder pressure (around 5-12 kHz at 

normal engine operation), only cycle-based parameters were recorded in the PUMA system. 

  

3.4.2 Fuel Mass Flow Measurement 

 

In order to measure the engine fuel consumption, an AVL 735S fuel meter was installed in 

the test cell as illustrated in Figure 3-6. Fundamentally, this fuel meter is a Coriolis flow 

meter which is able to provide an instantaneous fuel consumption measurement. Integrated 

with the AVL 753C fuel conditioning unit, the system can have high accuracy and 

temperature stability. Before each test, an accuracy check and calibration were conducted. 

During the experiments, the fuel mass flow measurement system was monitored in the 
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PUMA system remotely to ensure proper running. In addition, the continuous gas bubble 

separation was set to avoid inaccuracy from bubbles in the fuel. The technical data of the 

fuel measurement system is listed below. 

 
Table 3-3 Technical Data of Fuel Mass Flow Measurement System 

Ambient Temperature 5 - 50 °C 

Fuels: 
Otto (EN228), Diesel (EN590), up to 6% 
Biodiesel and 20% alcohol 

Fuel Circulation Capacity: Standard 240 L/h, optional 450 L/h 

Pressure Control: 
Feed pressure: 0 – 6 bar 
Turn pressure: 0 – 0.5 bar 

Temperature Stability: < 0.02 °C 

Heating Power: 1.6 kW 

Cooling Power: 
1.6 kW at 10 °C spread and 0.5 bar cooling 
water differential pressure 

Interfaces: 2× RS232  

Power Consumption: 0.4 kW 

 
 

3.4.3 Additional Oxygen Concentration Measurement 

 

The accurate measurement of oxygen concentration is important to analyse the combustion 

and emission behaviour; however, only one oxygen sensor is installed downstream of the 

turbine in a conventional diesel engine for diagnostics, due to the cost and durability. 

Between the cylinders and the measuring point, the exhaust gas has to go through the 

exhaust pipes, exhaust manifold, turbine and a last small junction pipe. Each of these 

components has an influence on the gas pressure, temperature and composition, thereby 
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affecting the accuracy of the oxygen sensor. To minimize the transport and mixing delays, 

one additional oxygen sensor was positioned at the exhaust manifold upstream of the EGR 

valve. It should be noted that this change is only for experimental study because the oxygen 

sensor is not recommended for large temperature gradients and high pressure (Alberer and 

Re 2010). Moreover, another additional oxygen sensor was fitted in the intake manifold 

close to its pressure sensor. The data of the oxygen concentration in the intake and exhaust 

manifolds is able to provide specific information which is essential for the control of engine 

combustion. 

 

The oxygen sensors used in this study were Bosch LSU 4.9 wideband sensors. With an 

internal heater, the sensor reaches operating temperature within 20 seconds and has a 

response time of less than 100 milliseconds. As a result, the value from this sensor can be 

considered as instantaneous and is able to reflect the dynamic characteristics of air. To 

acquire the data, one MoTeC LTC (Lambda to CAN) monitor was connected to both the 

lambda sensors and CAN interface. The specific wiring diagram is shown in Figure 3-10. 

Basically, the data is first read by the MoTeC LTC and then transferred to the CAN signal 

which is received by the INCA and the PUMA system.  
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Figure 3-10  Wiring Diagram of Engine ECU and Lambda Sensors  

  
In addition, considering the high pressure dependency of the sensor, proper compensation 

is necessary. The method of compensation lies in the re-calibration of the pump cell current, 

pI . Fundamentally, the oxygen sensor measures the pump current while the oxygen 

compensation or the lambda is determined by a look-up table supplied by the manufacturer 

(Bosch 2014). The dependency of 
pI  on working pressure is illustrated in Figure 3-11 and 

the specific deviation of the sensor output signal is listed as below: 

 

 
   

 pkp

ppkpI
pI

p

p





0

00
    Equation 3-1  

 
Where the factor k is dependent on rich or lean combustion and described as k lean which is 

0.47 bar and krich which is 0.39 bar; p  is the measured working pressure and 0p is the 

default pressure 1 bar.  
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Figure 3-11  Deviation of the Pump Current of Oxygen Sensor from Pressure 

 
Based on the instantaneous value of the intake air pressure and exhaust pressure, the 

compensated value of the pump current can be acquired by this method. Then, the accurate 

oxygen concentration is obtained based on the look-up table from the manual of the Bosch 

lambda sensor (Bosch 2014). 

 

3.4.4 Gas Emission Measurement 

 

In this study, the gas emission measurement focuses on NOx and HC due to the primary 

challenge of the legislation. The sample point of the measurement locates downstream of 

the turbine and before the DPF. In order to capture the dynamic characteristics of the 

emission behaviour, two different kinds of emission measurement equipment, a 

Cambustion FID/CLD fast analyser and an AVL AMA i60 gas tower are used.  
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Cambustion Fast NOx and Fast FID Analyzer 

 

The ultra-fast response analysers CLD500 and HFR500 were installed in the test bench for 

NOx and HC emissions respectively. The analysers are shown in Figure 3-12. 

 

 

Figure 3-12  Cambustion CLD500 Fast NOx and HFR500 Fast FID Analyser 

 

The Cambustion CLD500 is a chemi-luminescence detector used for the NO or NOx 

concentration measurement, featuring a short time response as low as 2 ms T10-90% 

(Cambustion 2013). As the location of the detectors in the remote sample heads is 

positioned close to the sample point in the engine, the mixing and transport delay of the 

sample are minimized. The principle of the CLD500 is illustrated in Figure 3-13. The NO from 

the sample gas and the O3 from the ozone reacts in the chamber, emitting light. The 
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photons produced are detected by a photo multiplier tube (PMT) and then the voltage is 

outputted based on the photon counter.  

 

 

Figure 3-13  Principle of the CLD500 Analyzer 

Source: http://www.cambustion.com/products/cld500/cld-principles 

 

Similarly, the Cambustion HFR500 is a flame ionisation detector (FID) used for total 

hydrocarbon measurement with a short time response of 0.7 ms T10-90% (Cambustion 2012). 

The HFR500 FID detector is also housed in the remote sample head and located close to the 

sample point. The basic principle of the HFR500 is shown in Figure 3-14. There is a hydrogen 

flame in the chamber provided by fuel gas and air. The hydrocarbons in the sample gas 

produce ions when they are burned in the flame. Then the ion collector is used to detect the 

ions and the current across the collector can indicate the rate of ionisation; thereby 

obtaining the concentration of HC in the sample gas. 

 

http://www.cambustion.com/products/cld500/cld-principles
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Figure 3-14  Principle of the HFR500 Analyzer 

Source: http://www.cambustion.com/products/hfr500/fast-fid-principles 

 

AVL AMA i60 

 

The AVL AMA i60 emission bench is used to measure the gaseous toxic substances in the 

test cell as well, as shown in Figure 3-15. It combines basic functions for performing a 

gaseous emission measurement including CO, CO2, NOx, HC and O2.  A computer is equipped 

to control and monitor the emission bench meanwhile the instantaneous data is transferred 

to the PUMA system directly through Ethernet at 10 Hz. The system was automatically 

calibrated by span and zero calibration gas before each testing.  

http://www.cambustion.com/products/hfr500/fast-fid-principles
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Figure 3-15  AVL AMA i60 Emission Bench 

 
Due to the long sample line, an air filter, sample flow regulator and pump are required for 

this gas emission bench; as a result, the response time of the i60 is much longer compared 

with the emission outputs from the Cambustion gas analysers. However, in light of the 

stable condition after the regulation, the accuracy and repeatability of the i60 is better. In 

addition, the integrated data acquisition system with PUMA facilitates the synchronization 

of data from the emission analysers and other engine measurement facilities. The selected 

specification of AVL AMA i60 is listed in Table 3-4. 
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Table 3-4 Specification of AVL AMA i60 

Component NOx THC O2 

Measurement 
principle 

CLD FID 
Magneto-pneumatic 
detection (MPD) 

Range (DSR) 0-50 -10000ppm 
0-10-500ppmC 
0-1000-50000ppmC 

O2   0-1-25% 

Repeatability (zero) <±0.5% FS <±0.5% FS <±0.5% FS 

Repeatability (span) <±0.5% RS <±0.5% RS <±0.5% RS 

Drift (Zero) <±0.5%FS/8h <±1%FS/8h <±1%FS/8h 

Drift(span) <±0.5%FS/8h <±1%FS/8h <±1%FS/8h 

Noise <±1%FS <±1%FS <±1%FS 

Linearity <±1%FS or <±2%RS <±1%FS or <±2%RS <±1%FS or <±2%RS 

T90 
NO: within 1.5 sec 
NOx:  within 2.0 sec 

<1.5sec <2.5 sec 

Sample flow rate 1.5  l/min 1.5  l/min 1.0 l/min 

 

In the table, FS indicates full scale and RS means relative saturation.  

 

3.4.5 Particulate Matter Measurement 

 

Besides the gaseous emissions, particulate emissions were measured in this test cell, using 

the Cambustion DMS500, which can measure time-resolved particle number (PN) and their 

spectral weighting in the 5 nm to 1000 nm size range with a time response of 200 ms 

(Giakoumis et al. 2012). The equipment is presented in Figure 3-16. 
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Figure 3-16  DMS500 Fast Particulate Spectrometer 

 
One dilution system of the DMS500 is fitted to avoid particle condensation and block the 

sample line before the sample gas enters the particle classifier. The dilution consists of two 

stages: first, the sample gas is diluted in the heated sampling head whi ch is close to the 

engine sample point at the dilution ratio of 5:1; next, a rotating disk diluter is involved and 

the further dilution ratio can be controlled at the range of 200:1 to 1:1 by adjusting the 

speed of the rotating disk (Cambustion 2011). This controllable dilution is essential since the 

proper particle concentration of the diluted sample gas may vary during the engine 

transient operation.  

 

After the suitable dilution, an aerosol charger and particle electrical classifier in the DMS500 

is utilized to separate the particles. The particles in the diluted gas are charged and then 
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enter the classifier containing a high voltage electrode. Based on the electrical mobility, the 

charged particles can be accurately classified in the electrode rings and the numbers of 

particles are acquired through the charge quantities. The principle is illustrated in Figure     

3-17. 

 

Figure 3-17  DMS500 Particle Classifier and Charger (Zhang 2013) 

 
The DMS500 allows the nucleation and accumulation modes to be processed separately, 

enabling a particle measurement programme (PMP) comparable number concentration 

measurements without the use of a volatile particle remover (VPR). Particulate mass (PM) 

was determined by the calculation of DMS at real-time particle mass concentration. Since 

the nucleated particulates are sensitive to the sampling condition and the proportion of  the 

total PM is small (Burtscher 2005), only the accumulation mode mass was considered in this 

study. The real-time particle number and particulate mass were measured and recorded to 

illustrate the effect of transient operation on particulate matter.  
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3.5 Summary 

 

This chapter introduces the experimental system developed for this study. One Jaguar V6 

diesel engine was used and fitted in the test bench. The operating and control system was 

set up to run the engine in the designed transient manoeuvres with a powerful transient 

dynamometer. The advanced conditioning system was adopted and provided the capability 

of temperature control during the experiments. The AVL PUMA system and INCA software 

were utilized to monitor and record the data from the testing facilities.  

 

A number of engine performance measurement facilities were integrated in the test bench. 

Considering the focus of this study is on transient operation, all of the facilities are capable 

of measuring instantaneous data and have a relatively short response time. The 

measurements such as in-cylinder pressure, oxygen concentration, NOx, HC and particulate 

matter are crucial for the transient investigation and development of engine modelling.  
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             CHAPTER 4   

4 DEVELOPMENT OF METHODOLOGY FOR ENGINE 

TRANSIENT ANALYSIS  

 

 

In this chapter, the techniques developed for the appropriate post-processing of data 

obtained from engine transient operation are introduced. Four alternative automated 

approaches have been developed and applied on the in-cylinder pressure data diagnostics 

for the analysis of combustion characteristics. The methods to calculate the cycle-by-cycle 

heat release rate and comparison of different filtering techniques are then presented. 

Detailed methods to process high-frequency instantaneous emission data, to compensate 

for the analysers’ intrinsic delay and to align the transient data are developed. Finally, the 

transient data quality is discussed. 

 

4.1 Introduction 

 

The objective of the present study is to develop a methodology for the measurement and 

processing of data during transient engine tests. The main issues concerned are the noise 

and time alignment of data; whereas in steady state operation, because of data averaging, 

these issues don’t cause any significant problems in the interpretation of the data. Noise 

levels compared to signal strengths are low enough for typical data processing methods to 

be used. However, these methods eliminate some high-frequency fluctuations which may 
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contain data on the intrinsic combustion instability of fuels.  Particularly, apart from the 

diesel engine, data from one gasoline engine is used as a reference. The detailed 

information of the gasoline direction injection (GDI) engine is supplied in the Appendix. The 

unprocessed data presents some characteristic differences of combustion behaviour during 

transient operation for these two fuels. The time alignment issue is significant in emission 

measurements for transient operation and it arises from two delay times; one is associated 

with the sensors’ response time and the other is the transport delay time.   

 

4.2 Combustion Diagnostic Data Processing 

 

The classic combustion diagnostic in engine studies relies on in-cylinder pressure which 

provides the most important information on the burning rate and overall engine 

performance. High-frequency components in the pressure signal cannot be observed with a 

low sampling frequency; meanwhile a high sampling frequency introduces digitization noise, 

deteriorating the quality of the signal (Syrimis and Assanis 2003). The purpose of filtering is 

to produce a physical representation of the in-cylinder pressure for combustion analysis. 

The most common method to filter the in-cylinder pressure is to average the data from 100 

to 200 cycles in steady state experiments. Considering the different requirement of a 

transient experiment, cycle-by-cycle variation cannot be neglected due to the possible 

incomplete combustion or knock phenomenon during tests, so that the averaging method is 

unsuitable. Thus, proper filtering of engine in-cylinder pressure data is necessary in the 

transient tests because of the high frequency of the signals and inherent pressure 

oscillations.  
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4.2.1 Filtering 

 

Two series of in-cylinder pressure traces from gasoline and diesel engine tests are used to 

study the filtering effectiveness of the in-cylinder pressure for combustion analysis during 

transient operation. For the gasoline engine test, the engine load was increased from 60 to 

120 Nm at a constant speed of 1500 rpm and the spark timing was advanced from 25° BTDC 

(Before Top Dead Centre) to 35° BTDC. For the diesel engine test, the load was increased 

from 60 to 240 Nm with advanced two pilot injections at 1500 rpm as well. Furthermore, 

one test was operated in the gasoline engine when the engine was driven by the motor at 

1500 rpm without combustion for the comparison and analysis of the pressure signal. The 

in-cylinder pressure sensors used in both tests were Kistler piezoelectric transducers with a 

natural frequency of 130 kHz. The data of the successive in-cylinder pressures during the 

load transient tests at a constant engine speed were recorded at a frequency of every crank 

angle degree (around 9 kHz considering an engine speed of 1500 rpm). The MATLAB 

programming language is used to write the filtering code because of the availability of a 

range of analytical tools and its ability to process large amounts of data automatically.  

 
(a)      (b) 
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(c) 

Figure 4-1  FFT Power Spectrum of the In-cylinder Pressure Signal during the Load Increase 

Experiment 

 (a) Gasoline Engine; (b) Diesel Engine; (c) Engine with No Combustion 

 

First, FFT on the in-cylinder pressure data of each test was conducted to examine its spectral 

characteristics. As shown in Figure 4-1, the constant engine speed of 1500 rpm which means 

12.5 Hz as an engine firing frequency, determined the spectrum of the in-cylinder pressure. 

The power at 12.5 Hz was the highest in all the cases. The higher frequency components are 

higher harmonics of the pressure wave in the cylinder. It is found that the shapes of the FFT 

power spectrum of these tests are different. In the gasoline engine  case and the ‘no 

combustion’ case, the power was reduced gradually when the frequency increased. 

However, in the diesel engine case, the power becomes very low in the range about 180 Hz 

and then increases until 300 Hz. This phenomenon is expected to be a result of multiple 

combustions within one cycle in the diesel tests. When the frequency is even higher, this 

would be expressed in the in-cylinder pressure profile as fluctuation in the shape. The 

sources of fluctuation could be classified into three aspects: 
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1. Noise from the instruments including the pressure transducer and cable  

2. Engine vibration 

3. Intrinsic instability of combustion. 

 
The main objective of filtering the in-cylinder pressure is to remove the noise from the first 

two aspects and achieve good visualization while retaining the important information of the 

combustion analysis. As shown in Figure 4-2, when the engine is purely driven by the motor 

and no combustion occurred, the noise is found in the whole cycle. Therefore, when the 

frequency is very high and the related power becomes very low, it is reasonable to assume 

those components as noise and can be neglected with little effect on the heat release 

analysis.  

 

 

Figure 4-2  In-cylinder Pressure Profile @1500 rpm with No Combustion 

 

To explore the proper filtering method for the in-cylinder pressure of the transient engine 

tests, four simple alternatives of filtering techniques are presented and compared in the 

next section. 
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FFT Filtering 

 

As discussed above, the in-cylinder pressure trace is normally accompanied with low power 

higher harmonics and noise, which should be removed for the combustion analysis.  FFT 

filtering method is employed by defining a cut-off frequency of the filter and removing 

Fourier components with frequencies higher than the cut-off frequency.  Based on the 

information from Figure 4-1, the cut-off frequency of the gasoline engine case is set at 

400Hz for these tests and the frequency of the diesel engine case is 800Hz.  

(c)        (d) 

Figure 4-3  The In-cylinder Pressure during the Load Increase Experiment  

(a) Original Signal in Gasoline Engine; (b) FFT Filtered Signal in Gasoline Engine; 

 (c) Original Signal in Diesel Engine; (d) FFT Filtered Signal in Diesel Engine. 

(a)        (b) 
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Figure 4-3 presents the original and FFT filtered in-cylinder pressure traces of the gasoline 

engine and the diesel engine during the load increase test. In the gasoline engine case, it is 

obvious that the original data has a number of  inherent pressure oscillations and they are 

most probably the noise from instruments and engine vibration. The FFT filtering 

smoothened out the data properly and kept the main characteristic of each cycle. In the 

diesel engine case, since the data is collected from the combustion analyser AVL Indicom, it 

was already filtered once before generating the outputs. The original pressure seems 

acceptable and the FFT filtered data was excessively smooth, especially the peak of the 

pressure. 

 

Low-pass Filtering 

 

In terms of noise elimination of the signal, low-pass filtering is one of the most common 

signal processing methods used. Therefore, Butterworth low-pass filters were applied on 

the in-cylinder pressure trace during the load transient tests. The filter order was set at 2 

and the cut-off frequencies were set the same as the FFT filter, 400Hz and 800Hz.  

 

Due to the intrinsic characteristic of the low-pass filter, the phase of the filtered in-cylinder 

pressure is found to be retarded in comparison with the original signal. However, the phase 

delay is constant for each cycle owing to the crank-angle based pressure data. Thus, the 

low-pass filtered data has been shifted afterwards to fit the crank angle degree for 

combustion analysis. The low-pass filtering largely smoothens out the pressure data of the 

gasoline engine and diesel engine as shown in Figure 4-4. Nevertheless, the distortion of the 

profile is apparent; it is caused by the frequency response of the Butterworth filter being flat 
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in the pass band. Detailed comparison and discussion of different filters are presented in a 

later section. 

(a)      (b) 

Linear Filtering 

 

The LTI (Linear Time-Invariant) filter is a common method of signal processing and a FIR 

(Finite-duration Impulse Response) filter was employed for the in-cylinder pressure profiles 

processing. Basically, the filter was used to find a running average of the pressure signal in 

order to reduce the noise. Its input-output relation is: 





M

k

k knxbny
0

)()(      Equation 4-1  

Where y(n) represents the nth value of the output array; similarly x(n-k) means the (n-k)th 

value of the input array; M is the filter order, set as 4 in this study and the coefficient bk is 

1/5 correspondingly. The outputs of the linear filter present a phase delay relative to the 

original data which is determined by the order of the filter. In order to calculate the heat 

(a)        (b) 

Figure 4-4  The Low-pass Filtered In-cylinder Pressure during Load Increase Experiment 

(a) Gasoline Engine; (b) Diesel Engine. 
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release rate correctly, the filtered data was shifted afterwards. In Figure 4-5(a), it is found 

that the in-cylinder pressure during the combustion period was smooth after the linear 

filtering while the fluctuation is apparent when the pressure is lower in other periods.  

     

 

Zero-phase Filtering 

 

Zero-phase filtering is one of the useful filtering methods to process a digital signal (function 

name, filtfilt, in the MATLAB program). The data was filtered in both forward and reverse 

directions. The result of this filtering has precisely zero phase distortion and magnitude 

modified by the square of the filter's magnitude response. The filter could be described by 

the difference equation: 





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)()()(     Equation 4-2  

 

Figure 4-5  The Linear Filtered In-cylinder Pressure during Load Increase Experiment 

(a) Gasoline Engine; (b) Diesel Engine 

(a)        (b) 
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Where y(n) represents the filter output; x(n-k) means the input value; {
ka , 

kb } are the filter 

coefficients. The filter was set as an FIR filter with filter order of 2. 

 

The zero-phase filtering has an advantage for in-cylinder pressure data processing and 

experimental data analysis. It is capable of processing data for each individual cycle because 

it does not rely on periodicity of the engine combustion, which is important for FFT and low-

pass filtering. The in-cylinder pressure profiles after the zero-phase filtering are presented in 

Figure 4-6. Similarly to the linear filter used, the output of the filtering signal depends on the 

values of the adjacent data points. Due to the nature of transient experiments, the tendency 

of change in the in-cylinder pressure is important. In this study, two data points before and 

two data points afterwards are considered in the filtering due to the set filter order.  

 

 

In general, the four automated filtering techniques are all capable of largely smoothing the 

pressure data and removing the main fluctuation. The cycle-by-cycle profiles are clearly 

presented and show the main trend of change during the engine transient tests. Since the 

Figure 4-6  The Zero-phase Filtered In-cylinder Pressure during Load Increase Experiment  

(a) Gasoline Engine; (b) Diesel Engine 

(a)        (b) 
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engine combustion analysis is mainly dependent on the study of the heat release rate 

calculated by the in-cylinder pressure, the detailed comparison and discussion of the effect 

of filtering techniques on combustion analysis will follow later.  

 

4.2.2 Heat Release Analysis 

 

The engine rate of heat release (RoHR) is calculated from in-cylinder pressure traces for 

each consecutive cycle during the transient tests where the quasi-steady state is assumed 

for each engine cycle. The present analysis is based on the first law of thermodynamics 

(Heywood 1988). Considering the amount of heat loss to the surroundings is much lower 

than the net heat release during the load change tests, due to the slow rate of heat transfer 

compared to the heat release rate, heat transfer and crevice effects are neglected in the 

calculation. 

dt

dP
V

dt

dV
P

dt

dQn

1

1

1 








    Equation 4-3  

Where   is the specific heat capacity ratio; P is the in-cylinder pressure and V is the 

instantaneous volume.  

 

Since the value of a specific heat capacity ratio depends on the gas mixture composition, it is 

calculated by an equilibrium program. Specifically, the adiabatic process is assumed in the 

compression stroke and most of expansion stroke. Due to the assumption of the adiabatic 

process, the polytropic index is calculated by the pressure data of every cycle when air prior 

to combustion and burned gases individually are considered as  . Although the specific heat 
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capacity ratio obtained in this method cannot reflect the composition at any given location 

in the cylinder, it can reflect the variation of properties during the transient operation .  

 

 

 

 

 

 

 

 

Figure 4-7  Calculated Cycle-by-cycle Heat Release Profiles in the Gasoline Engine; 

 (a) Based on Original Pressure Data; (b) FFT Filtered Pressure; (c) Low-pass Filtered Pressure; (d) 

Linear Filtered Pressure; (e) Zero-phase Filtered Pressure. 

(a)        (b) 

(c)        (d) 

(e)     
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The calculated cycle-by-cycle RoHR profiles with different filtering of the gasoline engine 

tests are presented in Figure 4-7. The RoHR profiles based on the FFT filtered and low-pass 

filtered in-cylinder pressure are smooth without an additional process; while the profiles 

with the original pressure signal are full of spikes. The main reason is that differentiation in 

the calculation amplified the higher frequency components. Variations of combustion in 

each engine cycle are illustrated clearly. It is shown that variations of the combustion phase 

are especially large during a low load period. In general, the combustion phase is advanced 

with the advancing of spark timing during engine transients. As for the linear and zero-phase 

filtering cases, the noise is reduced by averaging but there are a number of ripples in the 

RoHR profiles, especially in the late combustion period. The noise of the low in -cylinder 

pressure was amplified through differentiation and erroneously incorporated as heat 

release. In short, the linear filter and zero-phase filter could reflect the primary cycle-by-

cycle combustion performance, but the RoHR required further smoothing for proper 

visualization.  

 

To compare the effect of different filters on combustion analysis specifically, two engine 

cycles during the load increase tests were picked for detailed comparison. The 50th and 

120th cycles are selected, as the former is approximately in the middle of the load increase 

and the latter occurs close to the end of the load increase.  
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Figure 4-8  In-cylinder Pressure and RoHR Profiles of Two Representative Cycles with Different 

Filtering in the Gasoline Engine Test 

 

In Figure 4-8, it is apparent that the low-pass filtered data has the most distortion both in 

amplitude and phase. The changes in important parameters like the peak cylinder pressure 

and peak pressure position by the low-pass filter render them improper for combustion 

analysis; while they could be easily used to illustrate the trends in experimental works. The 

processed data by either the linear filter or the zero-phase filter is very close to the in-

cylinder pressure and RoHR profiles. It is interesting that in the 120th cycle, the original heat 

release rate has an obvious drop after the peak and the data from the linear filter and zero-

phase filter keep this feature, while the FFT filter does not. Considering the engine heat 
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release pattern, this drop is probably due to the in-cylinder pressure oscillation rather than 

a sudden reduction of heat release. Thus, the profile from the FFT filtered data is closer to 

the real situation than the results from other filters. In the 50th cycle, the engine load is 

lower and the difference of RoHR obtained from the data filtered by different filters is tiny, 

except for the results from the low-pass filtered data. 

 

It should be noted that the removal of high-frequency components from the in-cylinder 

pressure data can cause loss of some combustion characteristics. For instance, knock cannot 

be detected when the cut-off frequency is low in the application of FFT and low-pass filters. 

Meanwhile, the moving average filters, like the linear and zero-phase filtering, in this study 

are attenuating the fluctuation in essence. It is difficult to distinguish the small noise from 

instruments and combustion instability. In this gasoline engine case, FFT filtering was the 

best suited filter for investigation of transient engine combustion performance. Linear and 

zero-phase filtering are capable of roughly smoothing the profiles and retaining the main 

combustion information. The low-pass filtering is inappropriate to investigate the heat 

release analysis due to the series distortion. 

 

Similarly, the RoHR profiles with different filtering of the diesel engine tests are presented in 

Figure 4-9. In the profile based on the original pressure data, although the figure has a small 

fluctuation, it can be seen that two spikes before the main combustion clearly show the 

influence of two pilot injections at the beginning of the transient operation and a small peak 

occurred after the main combustion, due to the post combustion.  Also, the cycle-by-cycle 

RoHR profiles based on the FFT filtered and low-pass filtered in-cylinder pressure are 

smooth and show the main trend of the heat release during the transient operation. 
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However, the two spikes from the pilot injections are missing in those two profiles; this 

means the combustion information is incomplete. Higher cut-off frequencies are tested on 

the FFT and low-pass filters but the difference is very small. Those two filters are not able to 

retain the high-frequency components caused by combustion based on the current sampling 

frequency. Meanwhile, the linear and zero-phase filtering removed the most fluctuations 

and retained the main characteristics of the combustion. 

 (c)        (d) (a)        (b) 

(c)        (d) 
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Figure 4-10  In-cylinder Pressure and RoHR Profiles of Two Representative Cycles with Different 

Filtering in the Diesel Engine Test 

Figure 4-9  Calculated Cycle-by-cycle Heat Release Profiles in the Diesel Tests; 

(a) Based on Original Pressure Data; (b) FFT Filtered Pressure; (c) Low-pass Filtered Pressure; (d) 

Linear Filtered Pressure; (e) Zero-phase Filtered Pressure. 

 

(e) 



 

92 
 

In the designed test sequences, two cycles, the 5th and 40th are chosen for detailed analysis 

to represent the changing process. At the 5th cycle, as mentioned above, it is observed that 

two pilot combustions occurred at 0 to 10 o ATDC. The differences of the filtered in-cylinder 

pressure profiles in this range are small, but the corresponding profiles of the heat release 

rate show interesting differences. Since the frequency components of the pilot combustion 

are close to the noise of the instrument, if either FFT or low-pass filters are applied, the pilot 

combustion information cannot be reconstructed, which is unacceptable. While the linear 

and zero-phase filters attenuate the noise and therefore retain more combustion 

information. At the 40th cycle, the retarded main injection timing resulted in two spikes in 

the in-cylinder pressure and there is one small peak in the RoHR due to the post injection 

and the low-pass filtered in-cylinder pressure being less accurate. The RoHR calculated from 

the low-pass filtered data almost misses all the important information. Besides, the RoHR 

profile of the FFT filtered pressure data tends to be in smooth arcs and does not correctly 

represent the main combustion profile, especially close to the post injection phase. Similarly 

to the 5th cycle, the linear and zero-phase filters simply smoothes the jagged edges and 

keeps the main shape of the RoHR. 

 

As discussed above, in this diesel engine case, FFT and low-pass filters are not suitable to 

investigate the combustion characteristics. Based on the Nyquist–Shannon sampling 

theorem, the small combustions in the diesel engine require a much higher sampling 

frequency to recognize the noise and combustion instability and thereby visualize the 

combustion information correctly after filtering. The linear filtering is able to preserve the 

combustion phase but tends to excessively attenuate the peak of combustion. The zero-

phase filtering is the most appropriate method on balance, considering its convenience of 
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examination and information preservation. All in all, the suitable filtering method for the 

cycle-based in-cylinder pressure is dependent on the objective and the specific case. For the 

single injection combustion, FFT filtering can easily smooth the curve of pressure and 

produce a presentable and reliable RoHR profile. For the multiple injection combustion, 

zero-phase filtering is the best option to batch process the original in-cylinder pressure in 

the current sampling frequency. In the case with the relatively low sampling frequency, it is 

required to maintain high-frequency components containing useful information; a moving 

average filter such as the zero-phase filter is best. In the case with the relatively high 

sampling frequency, the FFT filter is better due to its advantage on removing the 

unnecessary noise and keeping the phase. 

 

4.3 Transient Emission Data Processing 

 

Instantaneous emissions, including the NO, HC and particulate matter, were measured in 

the engine transient experiments. The CLD500 and HFR500 were used as the gaseous 

emission analysers; they had short response times of 2 ms and 0.7 ms T10-90% respectively 

(Cambustion 2012) (Cambustion 2013). The fast response provides the possibility of 

measuring the cycle-by-cycle variation of emissions with high sampling frequencies. In these 

tests, the acquisition rates of NO and HC were chosen as 10 kHz. However, the data 

collected contained high-frequency noise and it was necessary to filter the data sets 

(Pickering and Brace 2007). 
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Figure 4-11  FFT Power Spectrum of Instantaneous NO and HC during the Load Increase 

Experiment 

 

The FFT of a set of instantaneous NO and HC from diesel transient experiments was 

conducted before filtering. Figure 4-11 illustrates the high correlation of the engine speed 

and time-resolved emissions. NO is produced at high temperature combustion, thus the 

peak of NO corresponds to the cyclic firing frequency, 12.5 Hz. The frequency of HC Fourier 

components coincided with the firing frequency as well, but with lower cyclic oscillation 

than NO due to the variety of HC emission formations. 

Figure 4-12   (a) Raw Data of Instantaneous NO and HC during the Load Increase Experiment; 

(b) FFT Filtered Data of Emissions 
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Figure 4-13  Mean Value Determination of Instantaneous Emission according to Engine Speed 

 
In Figure 4-12, the raw and FFT filtered instantaneous NO and HC emissions are presented. 

Owing to the high acquisition frequency and intrinsic characteristics of the facility, a high 

level of noise exists in the emission data, especially for HC. After the data is filtered against 

high-frequency components, the breadth of data is still unsuitable for examination and 

analysis. The variation in the measured emissions is derived from the continuously varying 

combustion of each cycle and the changing exhaust flow due to the exhaust valve switching. 

The detailed variations in HC/NO emissions are depicted in Figure 4-13. Furthermore, the 

sample points of the emissions analysers were downstream of the exhaust manifold and 

samples included exhaust air from all six cylinders. As a result, the observed variations are 

meaningless for the emission analysis in this test.  

 

Considering each cylinder fires every 720° CA and combustions occur every 120o CA for the 

six cylinder four-stroke engine, a linear mean value filter over each engine rotation was 

designed to fully adapt the process characteristics (Kessel 1999), as in the equation below: 
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Where L is the variable length of one combustion cycle; n is the number of engine cycles; 

ffiring and facquisition represent the frequency of the engine combustion and signal acquisition 

respectively.  

 

The filter provided a good compromise between the noise attenuation and response quality 

of the data. In general, the data is processed by cyclic calculation and became cycle based. 

Figure 4-14 shows linear mean value outputs of transient emissions. The data contained 

accurate information of every engine cycle and specific values could be determined versus 

time. 

 

Figure 4-14  Linear Mean Values of Instantaneous Emissions 
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The particulate number and mass were measured by DMS with a frequency of 10 Hz. Due to 

the relatively low acquisition frequency and the included processing tool, it is not necessary 

to further filter the data. 

 

4.4 Alignment of Transient Data 

 

As discussed above, engine transient experiments usually involved more than one 

acquisition system with different acquisition rates. There is a need to combine all signals 

together before the detailed investigations. Accordingly, the data time alignment obtained 

from different acquisition systems is an important issue during data processing. 

 

The following factors should be considered in the time alignment of transient data:  

a) Discrepancy on the timeline of the data due to different starting time and sampling 

frequency. 

b) Analyser’s response time is determined by the internal sensors and related operation 

principles. 

c) Transport time between readings of engine parameters and corresponding emissions; 

since time is needed for exhaust gas to travel from the engine to the exhaust 

sampling point. 

 

For recording the data from Fast FID and Fast NOx, a LabVIEW code is applied, triggered by a 

signal from the engine operating system through Ethernet. The AVL AMA i60 is connected 

with the PUMA system and the gaseous emission data is recorded automatically. One 

analogue input of the torque signal from the operating system is connected to the DMS for 
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particulate emission alignment with the engine data; since the tests designed were load 

transient tests with a constant engine speed. Some basic combustion information, the crank 

angle based parameters such as IMEP and peak pressure, are transmitted to the PUMA from 

the combustion analyser Indicom. The engine control parameters from the ECU are 

transmitted to the PUMA through ASAP3. Based on the PUMA system, the data from most 

of the analysers are collected in the same timeline. Besides, through statistical comparison 

of torque signals, the discrepancy originating from other acquisition systems can be 

determined as well.  

 

4.4.1 Analyser Dynamics Compensation 

 

For the gaseous emission measurement, the AVL AMA i60 was employed in the transient 

experiment as well. Differing from Fast FID and Fast NOx discussed in the last section, the 

analysers of AVL AMA i60 have a far longer response time which cannot be neglected. The 

detailed information of the individual analysers is shown below. 

 
Table 4-1  Technical Calibration Data of AVL AMA i60 

 
FID (THC) CLD (NO) CLD (NOx) CO2 

Rising time [s]: 

T10-T90 
1.00 1.00 1.00 1.00 

Falling time [s]: 

T90-T10 
0.92 1.02 0.92 0.69 
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In the important emission data of THC and NOx, both have around a one second response 

time, which has a significant influence on the analysis of the results. Therefore, the dynamic 

characteristic of the analysers is required to be compensated accordingly. 

 

The intrinsic response delay is reasonably assumed as a first order inertial element existing 

in the analyser. The transfer function can be expressed as below: 

Ts
sG


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1

1
)(     Equation 4-6  

Where T  is the time constant. In this study, T is calculated according to the definition of 

rising time T10-T90 as shown in Figure 4-15(a). The rising time and falling time of FID and CLD 

are set as 1 second. Therefore, T in this function is 0.45. 

 

To cancel the response delay, could be achieved by multiplying with its inverse function:  
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To meet the principle of causality, a realization pole has to be added into the function:  

newTs
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)(     Equation 4-8  

Where newT is set as 0.1, a much lower value than T; which means the initial element has 

been compensated (Systems et al. 2005). The transfer function does not have a steady state 

error, the stability of the outputs is ensured.  
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 (a) 

(b) 

Figure 4-15  (a) The Output of Classical First Order Initial Element (T=1) with Unit Step Function;  

(b) Measurement and Compensation of NOx from i60 during the Transient Test 

 

The difference between the original NOx data and the output after compensation is shown 

in Figure 4-15(b). It has illustrated that the response delay has been corrected during the 

sudden rising and falling process. It is worth noting that the dynamic corre ction includes a 

differential element which tends to increase fluctuation in the data. Therefore, newT cannot 

be too small to avoid unacceptable noise. 
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4.4.2 Transport Delay Estimation 

 

After the compensation for the analysers response delay, transport time is required to be 

estimated to align the time-series data properly. The common method of transient emission 

alignment is to focus on the starting moment of the engine’s operation change. In Figure 4-

16, diesel engine parameters and transient emissions during the load increase test are 

presented on the same timeline after time-alignment. The NO emissions change a little at 

the beginning of the load increase; while the air-fuel ratio decreased dramatically. This 

change could be used for time-alignment. In addition, the peak-to-trough method (I. 

Brahma and Chi 2011a) is employed to align the transient emission data. A trade-off 

between NO and EGR fraction exists in diesel engine operation. Thus, it can be deduced that 

the NO peak corresponds with EGR fraction minima during the transient tests. The 

correspondence is marked at 17.5 seconds as presented. Besides, the statistical method 

could be applied to determine the time delay as well. In Figure 4-16(a), the engine 

parameters and particle number during the load decreased test are presented. For the 

gasoline engine, the air-fuel ratio has a strong negative correlation with particulates. The 

period of the air-fuel ratio data was selected from the beginning of the spark timing change 

until the 10th second when the engine almost reached its steady state. Meanwhile, a series 

of particle number data starting with different moment (±0.1s due to 10 Hz rate) was picked 

with the same length. Then, the negative correlation coefficients of data sets were 

compared and the highest value was chosen as the correct time-alignment. 
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(a) 

(b) 

Figure 4-16  Engine Performance and Emission Behaviour during the Load Transient Test; (a) 

Gasoline Engine; (b) Diesel Engine 

 
In summary, the time alignment was based on the identification of relationships between 

engine parameters and emissions during transient tests. The proper method was 

determined by the correct and accurate correspondence of the data.   
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4.5 Discussion on Transient Data Quality 

 

Investigation often reveals that the reliability and accuracy of analysis and model generation 

is closely related to the quality of the data used (Beattie, Osborne, and Graupner 2013). For 

the engine transient operation tests, simply increasing the number of tests cannot improve 

the data quality due to the complicated process and dynamic characteristics, let alone the 

waste of testing time and instruments resources. Therefore, in order to ensure the data 

quality in this study, corrective measures are summarized and employed as shown in Table 

4-2. 

 
Table 4-2  Overview of Corrective Measures to Maintain Transient Data Quality  

 Human Errors 
Environment  

Inconsistency 
Equipment Issue Post-processing 

Corrective 

Measures 

Automation 

Testing 

Advanced 

Conditioning 

System 

Calibration Before 

Tests 

Noise Filtering 

Dynamic 

Compensation 

Warning System Standardization 
Proper 

Maintenance 
Data Alignment 

 

Also, in order to quantify the test data quality, the Coefficient of Variation (COV) is 

introduced and would be considered in the experimental study and results analysis. The 

expression is shown as below: 

𝐶𝑂𝑉 =
𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛

𝑀𝑒𝑎𝑛
    Equation 4-9  
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The COVs of important parameters such as IMEP and emissions during the steady state of 

repeated tests are used to monitor the condition of the test facility. Although this study 

focuses on engine transient behaviour, the stable performance of steady state is the 

foundation of reliable transient data.  

 

4.6 Summary 

 

Measurements and processing methods of instantaneous data during engine transient tests 

are developed and discussed in this chapter. The methods are classified into combustion 

diagnostic data processing, transient emissions data processing and transient data time-

alignment. 

 

From the FFT power spectrum, low power higher harmonics and noise in the in-cylinder 

pressure data is detected mainly due to the electrical instrumentation and engine vibration. 

For transient tests, four methods are employed to filter cycle-by-cycle in-cylinder pressure 

signals. FFT filtering is the best suited method in gasoline engine tests. The filter designed 

eliminated most pressure fluctuation and provided smooth RoHR profile s for each cycle. The 

processed data outputs from the linear and zero-phase filters were close but small pressure 

fluctuations remained in the processed pressure signal resulting in relatively large 

fluctuations in the calculated RoHR curve. As for the low-pass filter, the distortion of 

amplitude and phase are  much greater compared to other filters, making the low-pass filter 

the least acceptable option. In the diesel engine tests, the sampling frequency is relatively 

low due to the complicated characteristics of multiple injection combustion. A moving 
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average filter such as the zero-phase filter, presents the best performance on balance, 

considering its convenient examination and information preservation.  

 

Also, a detailed method is developed to filter high-frequency instantaneous emission data. 

The FFT filter is used to remove data noise and then cycle based averaging is employed. The 

filtered emission data contains accurate information for each engine cycle and it is more 

suitable for data analysis of engine transient performances. 

 

One approach to compensate for the analyser’s long response time is developed and three 

methods for the time-alignment of transient data are summarized. The synchronization by 

the starting moment of the engine operation change is useful for emission data which is 

sensitive to changes of certain engine parameters. The peak-to-trough method is applied 

where clear one-to-one correspondence between two data occurred. When the trend of 

correlation between data was not apparent, the statistical method could be successfully 

applied for data alignment. 
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CHAPTER 5  

5 ANALYSIS OF DIESEL ENGINE TRANSIENT OPERATION 

 

 

In this chapter, the experimental study of a turbocharged diesel engine during transient 

operation is conducted. The specific change in the air system is investigated in test 

sequences at different engine speeds and different calibrations on EGR. The specific effects 

of gas exchange process on combustion performance and emission behaviour are discussed. 

Finally, an alternative fuel is used to study the sensitivity of fuel properties in effecting the 

dynamic performance during transient operation.  

 

5.1 Introduction 

 

Turbocharged diesel engines are becoming mainstream products in most countries’ vehicle 

market. The utilization of the available exhaust gas energy through a turbocharger largely 

increases the efficiency of the diesel engine with the cooperation of EGR. However, the 

engine transient response deteriorates with the use of a turbocharger and the resulting 

response delay is called turbo-lag. The employment of a VGT has improved the turbo-lag to 

some extent, especially at low engine speed (Constantine D. Rakopoulos and Giakoumis 

2009b). To study the dynamic performance on a turbocharged diesel engine during transient 

operation, experiments have been designed and conducted with an automated operation 

system.   
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In this study, the engine speed is maintained at a constant value with a step change of load 

from 20% to 45%; the reason to choose these operation modes is because they are 

frequently used in vehicles with the EGR valve changed from a high value to the minimum 

while the secondary turbo is not involved. The transition period is defined as the time from 

the beginning of the load step to next steady state. In addition, the EGR is set at different 

calibration maps to analyse and compare the effect of different control strategies on the 

engine air path. Since the detailed value in the EGR calibration map is confidential, the 

settings of the EGR are abbreviated as ‘lowest’, ‘low’, ‘medium’, ‘high’ and ‘highest’. The 

detailed test conditions are listed in the table below. 

 
Table 5-1  Test Conditions for Engine Transient Operation 

Engine speed (rpm) 1000 1250 1500 1750 2000 

Transition period 

(sec) 
1 5 

EGR setting Off Lowest Low Medium High Highest 

Fuel Diesel HVO30 HVO60 

 
 

5.2 Engine Speed Effects 

 

Compared with the fuel injection system, the air path of a turbocharged engine has a slower 

response during transient operation, worsening the combustion and emission behaviour. 

For a turbocharged diesel engine, the air path change is complicated at different engine 

speeds. The parameters which can reflect the instantaneous trends of dynamic performance 

are designated to analyse the detailed effects in transient operation. Cycle-by-cycle in-
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cylinder pressure data and heat release rate are presented to explore the combustion 

performance. Also, real-time emission behaviour is measured and discussed.  

 

5.2.1 Gas Exchange Process 

 

Boost Pressure 

 

The boost pressure is dependent on the exhaust gas entropy drop and is controlled by a 

coupled VGT and EGR system in the modern turbocharged engine. The air supply is the most 

important influence in engine transient conditions and it is determined by the engine speed 

and inlet pressure. Therefore the boost pressure is the key factor in analysing these dynamic 

characteristics of an engine. Firstly, the EGR valve is fully closed (EGR off) to explore the VGT 

effect on the boost pressure during the engine load transients.  

 

As shown in Figure 5-1, the boost pressure profile of each test has varied response times 

and characteristics at different engine speeds. The vane of the VGT is closed when the VGT 

position is equal to 0% and is fully open when it is 100%. In theory, the opening of the VGT 

would decrease the velocity of the exhaust gas into the turbocharger, thereby lowering the 

boost pressure. For this engine, the VGT control is in open loop mode when load is low and 

turns to a closed loop mode when load increases. This switch of control mode is shown 

clearly in the 5s load increase test. During the first three seconds, the VGT moves to around 

22% in each case, as illustrated in Figure 5-1 (d). Then, it changes rapidly to achieve the 

desired boost pressure value in the closed loop control. It is noticed that there is a long 

response time, approximately 2 seconds for the VGT position to affect the boost pressure. 
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For example, in 5s load transients when the engine speed is 1750 rpm, the dramatic rise of 

VGT at the 3rd second contributes to the small drop of boost pressure at the 4th second. Also, 

it is observed that the boost pressure at low engine speed increases more slowly and with 

smaller amplitude compared with that at high speed during load increased transients, 

although the VGT position is lower and the load designated is the same. When the engine 

speed is 1000rpm, the VGT opens the vane position quickly to adapt to the expected larger 

gas flow. However, due to the initial low value of the intake air flow at a low engine speed, 

the exhaust gas energy is insufficient to boost the intake pressure quickly; meanwhile the 

opening of the VGT vane reduces the exhaust flow velocity, deteriorating the process. When 

the VGT turns to the closed loop control, the VGT position is reduced and the boost pressure 

rises immediately. Thus, the delay of reducing the VGT position in the original control 

strategy contributes to the poor dynamic performance of the air supply at low speed.  
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(a)      (b) 

    

(c)      (d) 

Figure 5-1  Boost Pressure Profile and VGT Position during Load Increase Test - When EGR is 

off at Different Engine Speeds and Different Load Increase Periods 

 

In the 1s transient case of 1500rpm engine speed, the boost pressure rises to 1500hPa 

rapidly then slowly increases to almost 1600hPa. Compared with the low engine speed, the 

more exhaust energy from the larger intake air flow at a higher engine speed results in a 

faster response of the boost pressure. While the quick opening and the following overshoot 

of the VGT at the beginning of the transition leads to a delay of boost pressure in reaching 

the next steady state value. In the 2000 rpm cases, the small drop of VGT benefits the fast 

growth of boost pressure, which is shown as the boost pressure at around 1.5th second.  
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(a)      (b) 

 

(c)      (d) 

 

(e)      (f) 

Figure 5-2  Boost Pressure Profile with VGT and EGR Valve Position during Load Increase Test 

when EGR is Involved 

 

Figure 5-2 presents the boost pressure profiles when EGR control is involved as the original 

calibration. It is indicated that the boost pressure in light load mode is lower in the EGR 

valve open case compared with when the EGR is off. This can be easily explained by the 
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decline of exhaust gas energy for the turbocharger since part of exhaust gas flows back to 

the intake manifold. In the 1 second load transients, due to the involvement of EGR, the 

closed loop control of the VGT drops to a low value at around 1 to 3 seconds to promote the 

increase of boost pressure. As shown in the 1000 and 1250rpm cases, even though the EGR 

valve quickly closes and a higher proportion of exhaust gas flow through the turbocharger is 

expected, due to the dynamics of the exhaust flow, boost pressure has a longer response 

time to increase compared with that in the EGR off case. When the engine speed is higher, 

boost pressure begins to increase earlier but reaches the next steady level value more 

slowly; it is expected to be derived from different EGR ratio settings in varied engine speeds. 

Besides, in the 5 seconds load increase tests, boost pressure of each case reached the next 

steady state level slightly more slowly than that in the 1 second tests; however, the delay of 

boost pressure at each engine speed is still apparent.  

 

Pressure Drop between Intake Manifold and Exhaust Manifold 

 

The pressure difference between the intake manifold and the exhaust manifold largely 

determine the EGR mass flow. Due to the employment of a VGT and the replacement of the 

waste gate, the exhaust manifold pressure of this engine is higher than the intake manifold 

pressure in most situations. During the valve overlap period, higher pressure drop indicates 

that a large amount of  residual gas would flow back to the cylinder or intake system, 

influencing the control of the EGR ratio and the efficiency of the discharging exhaust gas. 

More importantly, pumping loss would largely increase with excessively high pressure drop; 

thereby reducing the total engine efficiency and dynamic response during transient 

operation.  
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(a)      (b) 

Figure 5-3  Pressure Drop Profiles during Load Increase Transient Tests:  

(a) 1 Second Load Increase; (b) 5 Seconds Load Increase 

 

Figure 5-3 presents the comparison of pressure drop profiles during load increase tests at 

different engine speeds with the original calibration of EGR. Obvious spikes of pressure drop 

are found at around 2nd second in the 1 second load increase tests. Based on Figure 5-2, 

during the period of spikes, the VGT keeps at a relatively low value to increase the gas flow 

velocity and boost pressure; meanwhile it obviously raises the back pressure rapidly. 

Specifically, in the cases of 1000, 1250 and 1500rpm, the VGT position is around 15% while 

the pressure drop of the 1500rpm case has the biggest spike. The energy from the 

turbocharger has a serious delay in boosting the intake pressure which leads to the spike of 

pressure drop and higher engine speed with higher pressure drop. For the 1750 and 

2000rpm cases, since the VGT position is slightly higher than the low engine speed cases, 

the pressure drop has a lower peak value. In addition, in the case of the 5 seconds load 

transients, a lower peak pressure drop value is found mainly due to the smaller air mass 

flow when the VGT is at a low position. Thus, low VGT position contributes to the form of 

pressure drop peak and the trade-off exists between the fast increase of the boost pressure 

and low pressure drop during transients.  
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In-cylinder Pressure at IVC 

 

Although one air mass flow sensor was installed in the engine, it is difficult to measure the 

instantaneous air flow rate entering the cylinder due to the dynamics of the intake system 

and intrinsic response characteristics of the flow meter. In this study, to explore the 

dynamic performance of the intake air to the cylinder, the cycle -by-cycle in-cylinder 

pressure at the intake valve close (IVC) position is compared; since the pressure basically 

reflects air input in the cylinder (Grahn and Tomas 2011). This is based on the ideal gas law 

and the neglect of cylinder-by-cylinder variation. 

 

As shown in Figure 5-4 (a), there is an in-cylinder pressure drop for each case after the EGR 

valve reaches its lowest position, but this drop is most apparent for the 1000 rpm and least 

for the 2000 rpm tests. This indicates the air amount in the cylinder during this period is far 

lower than the required value for the 1000 rpm test. Since the EGR valve is almost shut after 

transition at 1000 rpm, the slowly increased boost pressure and dynamic of the intake 

system including the intercooler, intake pipe and manifold, result in a delay of compensating 

initial intake air and this drop is caused. For all the cases except for 1000 rpm, a small peak 

of in-cylinder pressure is found before it reaches the next steady value. This peak probably 

derives from the high pressure drop value resulting in suddenly increased exhaust gas back 

flow to the cylinder. Then, the pressure drop is reduced and the boost pressure is increased 

resulting in the in-cylinder pressure rising to the next steady level. 
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(a)      (b) 

Figure 5-4  Profiles of In-cylinder Pressure at IVC Position during Transient Operation 

 

 Oxygen Concentration and Air-fuel Ratio 

 

In modern diesel engines, EGR is widely employed to reduce the NOx emissions and it 

becomes an important manipulated variable in the control strategy. Currently, EGR control 

relies on the simulated EGR ratio or intake mass air f low measured far away from the intake 

manifold. It is difficult to predict an instantaneous EGR ratio and the error always exists 

between the measured and predicted values. In addition, with the same EGR ratio, the 

oxygen concentration in the intake manifold can be different during transient operation due 

to the dynamic characteristics of the gas flow. Thus, in order to specifically investigate the 

combustion performance during engine transient operation, the oxygen concentrations in 

the intake manifold (O2_i) and in the exhaust manifold (O2_e) are measured and presented 

in the tests.  
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(a)      (b) 

 

(c)      (d) 

 

(e)      (f) 

Figure 5-5  Comparison of Oxygen Concentration and EGR Ratio during Load Increase at 

Different Engine Speeds 

 
In the 1 second load transient of the 1000rpm case, it is noticed that the oxygen 

concentration in the intake has a tiny drop before the rise to the next stage value. It can be 

explained by the excessively high EGR flow entering the intake manifold due to the high 
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pressure drop in the transient conditions. Similarly, in the 1 second cases at a high engine 

speed, the trend of the drop is found as well and becomes more obvious. As an obvious 

drop of oxygen concentration in the exhaust occurs at the beginning of each case, although 

the EGR ratio only has a small spike at a higher engine speed, it can be seen that the exhaust 

gas from the rich combustion during the transient periods facilitates the drop of oxygen 

concentration. In other words, the EGR flow does not reduce rapidly during the transient 

operation; meanwhile the faster response of the fuel injection leads to rich combustion, 

causing insufficient O2_i and worsening the combustion further. Compared with the 1 

second cases, the longer period of transition does not largely improve the deficiency of 

oxygen in the intake manifold. The EGR valve closes gradually and the mismatch of the air-

fuel ratio still exists, resulting in a low oxygen concentration in the intake manifold. 

Therefore, the rapidly changing oxygen concentration presents more information about the 

combustion during the transient periods compared with the EGR ratio obtained in this study. 

 

The nominal air-fuel ratio is obtained and calculated from the ECU signal, mass air flow and 

injected fuel quantity. Although this value cannot reflect the local air-fuel mixture 

composition, it is able to reveal the global characteristics in the cylinder. The air-fuel-ratio 

normally has a drop during the acceleration period, which would affect the oxygen 

concentration in the exhaust gas (Wijetunge et al. 1999). In Figure 5-6 (a), it is shown that 

the nominal air-fuel ratio drops rapidly at the beginning of transition and settles at one 

steady value at around the 3rd second, nearly the same trend as with O2_ac. While in the 5 

second load transient periods, the minimum value of the air-fuel ratio at each speed is 

higher than that in the 1 second transient period; showing that the longer period of 

transition does mitigate the mismatch between the intake air and fuel injection. 
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(a)      (b) 

Figure 5-6  Comparison of Nominal Air-fuel Ratio during Load Increase Tests  

 

5.2.2 Combustion Characteristics 

 

Based on the understanding of gas exchange process during engine transient tests, 

combustion characteristics are investigated by measuring the cycle-by-cycle in-cylinder 

pressure and analysis of the heat release rate. The methods used for the calculation of the 

heat release rate in this study have been introduced in the previous chapter. Detailed 

comparisons of combustion performance during transient tests are introduced.  

 

Heat Release Rate Analysis 

 

To illustrate the specific change of combustion characteristics, representative cycles were 

picked from the transient tests at different engine speeds. The EGR ratio, boost pressure 

and injection signals were obtained and are presented. It should be noticed that there is a 

tiny delay between injection signal and actual injection event in the tests (Zhang 2013). 
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(a)      (b) 

 

(c)      (d) 

 

(e)      (f) 

Figure 5-7  Heat Release Rate of Representative Cycles during Load Increase Test @1000rpm 

with Original Calibration 

 

The profiles of the in-cylinder pressure and heat release rate during the transient test are 

plotted in Figure 5-7. At the 4th cycle, the engine is at low load and the change of operation 

mode does not start. Two heat release profiles by pilot injections are clearly shown with the 
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short ignition delay. At the 8th cycle, the amount of fuel injection increases and post 

injection strategy is employed. Since the boost pressure is unchanged compared with the 4th 

cycle, the fuel from the advanced pilot injection undergoes a longer ignition delay due to 

lower in-cylinder pressure during atomization and evaporation. Only a small amount of fuel 

from the first pilot injection actually burns before the start of the second pilot i njection. 

From the 13th cycle to the 85th cycle, there is no post injection again and only one heat 

release occurrs before the main injection. In addition, it is observed that the ignition delay 

of the pilot injection becomes slightly shorter during this period. This derives from two 

factors: lower EGR ratio and higher in-cylinder temperature with higher load. The amount of 

fuel injection is the same at the 33rd and 85th cycles, but slowly increased intake air and less 

heat transfer to the warmer cylinder wall improves the efficiency with higher IMEP.  

 

Figure 5-8 presents the heat release rate and in-cylinder pressure of the load increase test 

at 1500rpm. Similarly, the 4th cycle is chosen to show the combustion at the start stage. At 

the 9th cycle, the post injection begins and the heat release is clearly shown in the late stage 

of combustion. It is the same with the low speed case; the fuel from the first pilot injection 

cannot combust until it is combined with the second pilot injection and forms a small peak 

of heat release. At the 23rd cycle, the injected fuel amount reaches the maximum while the 

boost pressure is far lower than the required value with insufficient oxygen in the cylinder. 

As a result, the IMEP of the 23rd cycle is smaller than that of the 33rd cycle and the fuel from 

post injection barely burns. 
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(a)      (b) 

   

(c)      (d) 

Figure 5-8  Heat Release Rate of Representative Cycles during Load Increase Test @1500rpm 

with Original Calibration 

 
When the engine speed is 2000rpm, the periods between multiple injections are relatively 

shorter and ignition delays of the injections become longer in the crank angle. It is observed 

that with increased engine speed, RoHR associated with the two pilot injections is less 

pronounced. At 1000 and 1500 rpm, two separate peaks are clearly observed at the early 

stage of the transient period, corresponding to the two pilot injections. However, at 2000 

rpm with higher in-cylinder pressures, the peaks of heat release are small and short. Since 

droplet vaporization rate is very sensitive to its environmental pressure, droplets of the two 

pilot injections’ evaporation rates decrease with increasing in-cylinder pressure and 

consequently combustion rates and RoHR are reduced. The increased in-cylinder pressures 

are caused by the higher boost pressure required for high engine speed. It is noticed that 
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the pilot injections are advanced to compensate for the increased evaporation time. In 

addition, apparent fluctuations of RoHR are found at the late phase of combustion during 

high engine speed transient conditions. One possible factor is the poor atomization and 

evaporation of fuel in transient operation due to relatively colder cylinder temperature 

compared with steady state. The other factor is the high amount of exhaust gas in the 

cylinder deteriorating the local oxygen concentration, resulting in more fuel combusted 

irregularly in the late phase.     

 

 

(a)      (b) 

 

(c)      (d) 

Figure 5-9  Heat Release Rate of Representative Cycles during Load Increase Test @2000rpm 

with Original Calibration 
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Combustion Performance 

 

From the in-cylinder pressure and RoHR data, several combustion parameters can be 

obtained. In this section, the crank angle position, where 50% of cumulative heat release 

occurs (HR50) and the maximum heat release rate (HRmax), are used to explore the 

combustion performance during transient operation at different engine speeds, as 

presented in Figure 5-10. HR50 is an important parameter which shows the combustion 

phase and significantly affects the combustion efficiency. Additionally, HR50 is relatively 

independent of engine speed and load, which facilitates the study of combustion during 

transient operation.  

 

Figure 5-10 (a) shows that there is a peak of HR50 at around 1 second of each load increase 

test; and is higher when the engine speed increases. For this phenomenon, one factor is the 

application of post injection in this period, as shown in last section. The other factor is that 

more fuel is injected to reach a higher load but the low oxygen concentration results in a 

lower proportion of the premixed combustion and incomplete combustion, retarding the 

combustion phase. In the high engine speed case, the phenomenon is more obvious due to 

the shorter period for air-fuel mixing before the main combustion. The value of HRmax 

reflects the intensity of combustion and it shows an interesting trend in Figure 5-10 (b). At 

low speed, HRmax increased steadily during the load increase test, which implies most of fuel 

burned completely. However, at high speed as in the 1750 and 2000 rpm cases, one drop of 

HRmax is observed at around 1 second before it rises to the value of the next steady state. 

Based on the RoHR in Figure 5-8 (b), the heat release of main combustion rises slowly and a 

lot of fuel burns at the late combustion phase, explaining the drop of HRmax. Also, the higher 
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EGR ratio with lower oxygen concentration at high engine speed contributed to the low 

HRmax.  

 

 

(a)      (b) 

Figure 5-10  Combustion Performance at Different Engine Speeds during Load Increase Test: (a) 

HR50; (b) Maximum of Heat Release Rate 

 

5.2.3 Emission Behaviour 

 

Four types of emissions: nitrogen oxide (NOx), hydrocarbon (HC), particulate number (PN) 

and particulate mass (PM) during the load increase tests at different engine speeds are 

presented. The instantaneous emission data shown has been processed to compensate for 

the transportation and analyser’s delay by the methods introduced in Chapter 4.  

 

Gaseous Emissions 

 

In Figure 5-11, it is found that NOx increases steadily at low engine speed while a valley of 

NOx occurs at high engine speed. This can be explained by the oxygen concentration and 

EGR ratio in Figure 5-5. At low engine speed, the oxygen concentration increases rapidly 
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after a tiny drop due to the close of the EGR valve. The rapid increase of oxygen 

concentration results in high NOx emissions. In contrast, the EGR ratio is relatively higher in 

the high speed case; a big drop of oxygen concentration is found and it brings about the low 

NOx during the transition. Additionally, the combustion temperature increases and ignition 

delay is reduced; the NOx emissions increase accordingly. Compared with the 1 second 

transient periods, the long period of transition does not apparently change the trend of NOx 

emissions. One overshoot of NOx is noticed in the 1000 rpm test and it is highly likely 

derived from unstable boost pressure at low engine speed. Therefore, the crucial role of 

oxygen concentration in NOx emissions during transient operation is evident and the 

combustion temperature shows a strong correlation with the NOx emissions. 

 

As for hydrocarbon emissions, the profile in each case shares the same trend, one sharp 

peak at the load increase test, a higher engine speed with higher peak value of HC. Low 

oxygen concentration during transient conditions at high engine speed is expecte d to be 

responsible for this phenomenon. Furthermore, post injection is used during the load 

increase. In the oxygen deficient condition, the fuel from post injection combusts 

incompletely, resulting in a great deal of HC. In Figure 5-9, there is a high proportion of 

combustion which happened at that last phase; this proves this interpretation. Interestingly, 

unlike the NOx emissions with a slow increase, the HC decreases from the peak value 

dramatically to the next steady state condition. The relatively slow change of combustion 

temperature has little effect on HC.  
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(a)      (b) 

 

(c)      (d) 

Figure 5-11  Gaseous Emission Behaviour during Load Increase Tests  

 
In the 5 second transient periods, the overshoot of HC emissions at a high engine speed is 

largely reduced; while the value at 1000 rpm is close compared with that in the 1 second 

transients. Additionally, the HC emissions of 1500 rpm show the highest peak value, even 

though the air-fuel ratio of 1500 rpm is not lower than that at the higher engine speed. It is 

revealed from Figure 5-5, the oxygen concentration before combustion dominates the 

formation of HC during transients, since a large amount of incomplete combustion occurs in 

insufficient oxygen. Thus, the oxygen concentration is a good control objective to reduce the 

HC emissions during transient operation. 
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Particulate Matter 

 

Regarding the particulate matter at different engine speeds, in general one obvious 

overshoot of PN and PM in each case occurs during the load change. Combining Figures 5-5 

and 5-12, the oxygen concentration in the exhaust and air-fuel ratio correspond well with 

PN and PM both in 1 second and 5 second transient cases. It proves that particulate 

emissions heavily depended upon these two factors during the load transition (Hagena, 

Filipi, and Assanis 2010). Due to the turbocharger lag, there are more fuel-rich zones at the 

start of the transient operation as discussed earlier. In this oxygen-deficient atmosphere, 

thermal and oxidative pyrolysis of fuel molecules initiates the formation of particles (Suzuki 

et al. 2003).  

 

In addition, it is found that particulate mass has a small drop at around 1.5 seconds in the 

1750 and 2000 rpm tests. Connected with the delay of HR50 and drop of HRmax in Figure 5-9, 

it is expected that in a high engine speed condition, the low oxygen concentration and 

shorter period of air-fuel mixing largely postpone the combustion phase and decrease the 

temperature in the cylinder. As a result, mild combustion in the later stage reduced the soot 

formation at that time. However, with the increase of oxygen concentration and fuel 

amount, the rapid premixed combustion raises the temperature and favours the formation 

of particulates. In the comparison of two different transition periods, the peak value of PN 

at each engine speed in both cases is close; however, the PM varies almost by an order of 

magnitude, indicating that the average size of particles formed is smaller. In other words, 

the higher air-fuel ratio during the load increase abates the overshoot of particulate mass, 
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inhibiting the soot agglomerate process but a high amount of particles are still generated by 

insufficient oxygen concentration. 

 

 

(a)      (b) 

 

(c)      (d) 

Figure 5-12  Particulate Matter of Load Increase Test at Different Engine Speeds  

 

5.3 EGR Effects 

 

In this section, the EGR calibration map is modified to achieve different EGR dynamic 

behaviour during the engine transient operation, as shown in Table 5-1. The EGR effects on 
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gas exchange process are discussed and meanwhile the combustion performance and 

emission behaviour are presented. 

 

5.3.1 Gas Exchange Process 

 

The boost pressure profiles and related valve position at different EGR settings are shown in 

Figure 5-13. With different EGR valve positions, the VGT position adjusts accordingly in the 

transient period. For the lowest EGR case, the boost pressure increases fastest and reaches 

a high value within one second, so that the VGT opened the vane earlier than in the other 

cases to compensate for the overshoot. This benefit comes from an almost closed EGR  valve 

which causes most of exhaust gas to flow through the turbocharger at the beginning of the 

transient periods. Additionally, the boost pressure profile of each case shares a small drop 

since the VGT opens the vane for compensation. Interestingly, because of the open loop 

control mode, the VGT position stays exactly the same at the beginning of transition in each 

case, but the boost pressure presents different responses. The results state that the EGR 

valve has a strong effect on the rise of the boost pressure at the starting stage of 

acceleration. From the control perspective, EGR has a higher priority in affecting the boost 

pressure compared with the VGT in light of the delay of energy transition from exhaust gas 

entropy to intake air. 
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(a)      (b) 

 
(c) 

Figure 5-13  Comparison of Boost Pressure Profiles with Different EGR Settings during Load 

Increase Test: (a) EGR Valve Position; (b) VGT Position; (c) Boost Pressure 

 

 

Figure 5-14  Comparison of Pressure Drop Profiles in 1 Second Load Increase Test with 

Different EGR Settings 
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As shown in Figure 5-14, the lowest EGR case results in an earlier rise of pressure drop since 

a larger value of exhaust gas flows through the turbocharger and the earlier opening of the 

VGT vane quickly decreases the pressure drop down to a low value. Apart from the response 

difference at the beginning of the transient periods, the pressure drop of each case has a 

close maximum value and ultimate steady value. Due to the closed-loop control of the VGT, 

the boost pressure is maintained well after the transition and the pressure drop keeps the 

same value with different EGR valve positions. Thus, the EGR ratio has an obvious effect on 

pressure drop response during transient conditions but the VGT plays a more important role 

determining the value of pressure drop after the stability of the boost pressure.  

 

 

(a)      (b) 

 

(c)      (d) 

Figure 5-15  Comparison of Oxygen Concentration with Different EGR Settings during Load 

Transient Tests 
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With different EGR calibrations, the comparisons of oxygen concentration in the intake and 

exhaust are shown in Figure 5-15. In the low and lowest EGR cases, the EGR valve starts at a 

low position and fully closes during the transient periods, which leaves the EGR ratio at 

almost zero. As a result, no drop of oxygen concentration before combustion occurs in these 

two cases; but the serious reduction of oxygen concentration in the exhaust seems 

inevitable in each case. In the case of the highest EGR, the high EGR ratio at the beginning of 

the transition results in an obvious reduction of O2_i due to the intake of exhaust air with 

deficient oxygen. Then severe over-rich combustion forms, as shown from the oxygen 

concentration after combustion. Thus, a high initial EGR valve position leads to insufficient 

oxygen in the intake air during the transient operation and deteriorates the combustion 

with an unacceptable air-fuel ratio.  

 

5.3.2 Combustion Characteristics 

 

Due to the multiple injection strategy, it is difficult to obtain the traditional combustion 

parameters such as ignition delay and combustion duration accurately, espe cially in 

transient operation. Accordingly, some alternative cycle-based parameters are presented 

and discussed, namely, HR50, peak in-cylinder pressure and peak in-cylinder temperature. 

 

Combustion Performance 

 

Figure 5-16 (a) shows the profile of HR50 during the load increase tests at 1500 rpm. At the 

steady state condition before the transition, it is clearly shown that when the injection 

timing remains the same, the increase of EGR ratio delays the HR50, with the expected 
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longer ignition delay of the main injection and lower temperature. When the load increases, 

HR50 of each case is postponed at the beginning stage. As discussed in the previous section, 

insufficient oxygen concentration and post injection contribute to this phenomenon. It is 

noticed that except in the low and lowest EGR cases, one obvious advance of HR50 occurs in 

the original and high EGR cases. Since the main injection timing is around 5 ATDC in the test 

shown in Figure 5-8, when HR50 is advanced to almost 10 ATDC, it is highly possible that a 

large amount of fuel from the main injection does not burn in these cycles due to a low 

oxygen concentration and temperature from the high EGR ratio. Besides, the heat release 

from the main injection and post injection is expected to be low in the meantime. Thus, 

combined with the profiles of oxygen concentration in the intake, during the transient 

operation, a higher EGR ratio caused a slower response of boost pressure and intake air; 

meanwhile, more EGR mass itself aggravated the insufficient oxygen concentration, which 

largely deteriorated the combustion. In contrast, a low EGR case could cause the misfire of 

the pilot injection and maintain a relatively steady HR50, which improve s the total 

combustion efficiency.  

 

From the profiles of peak in-cylinder pressure, a sudden increase in the high and highest 

EGR cases is found. This further proves the interpretation that the fuel of the pilot injection 

burns at a late phase, close to TDC. Apart from that, it is observed that the lower the EGR 

ratio setting, the faster the peak pressure increases to the next steady level. This can be 

explained by the boost pressure change. Since the response of the boost pressure in a low 

EGR setting is preferable, as discussed in the previous section, the fuel inje ction amount 

which is limited by boost pressure is capable of increasing faster.  
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(a)      (b) 

Figure 5-16  Comparison of Combustion Performance with Different EGR Settings during Load 

Increase Test: (a) HR50; (b) Peak In-cylinder Pressure 

 
The in-cylinder temperature is calculated from the in-cylinder pressure and instantaneous 

volume by the ideal gas law based on the assumption that the mass in the cylinder is 

constant after IVC; the peak value of each cycle during the transient periods was picked and 

presented in Figure 5-17. Even though this method neglected the fuel-air mixing process, 

the global trend in the transient period can be illustrated. It is shown that the peak in-

cylinder temperature rises rapidly and has an overshoot in low and lowe st EGR cases. While 

in the cases of high EGR, the temperature has one drop, corresponding to the explanation 

about HR50.  

 

 

Figure 5-17  Comparison of Peak In-cylinder Temperature with Different EGR Settings during 

Load Increase Tests 
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Dynamics and Stability 

 

For transient operation, dynamic behaviour with different EGR settings is compared. Figure 

5-18 shows the profiles of IMEP and BMEP with the instantaneous fuel injection quantity. 

The BMEP is calculated based on measured torque and engine displacement. There is one 

assumption in this comparison; the cylinder by cylinder variation is neglected. It is shown 

that the fuel injection amount increases earlier in a low EGR case compared with the other 

cases. This is due to the fuelling limitation by the boost pressure and the better response of 

boost pressure in the low EGR case resulting in a faster increase of fuel injection. 

Accordingly, IMEP and BMEP rise more rapidly than in other cases. Besides, a drop of IMEP 

is found both in the high EGR and in the original case, even though the fuel injection 

increased at that time. It indicates that the combustion phase delay mentioned in Figure 5-

16 derives from incomplete combustion. Therefore, during a load increase event, slow 

response of intake air and high EGR would lead to poor combustion and power loss, which 

should be avoided.  

 

 

(a)       (b) 
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(c) 

Figure 5-18  Comparison of Dynamic Behaviour during Transient Tests:  

(a) IMEP; (b) BMEP; (c) Injected Fuel Amount 

 
After the transient process, the stability of the engine is compared with different EGR 

settings in this study. To analyse it quantitatively, the COV of IMEP in the transient 

operation as one important measure of cyclic variability is used. The value is calculated by 

the standard deviation in IMEP divided by the mean IMEP of the last 20 cycles.  

100
IMEP

COV IMEP
transient


    Equation 5-1  

 
As shown in Figure 5-19, the maximum and average COV presents the same trend. In the 

cases of low EGR and lowest EGR, the COV is lower compared with the other cases; mainly 

because the relatively stable and higher oxygen concentration assures complete combustion 

during transient operation. When the EGR ratio increases, the COV appears as a larger value. 

The drop of IMEP presented in Figure 5-18 is able to show the instability of the combustion 

and reflects it clearly in the COV. Interestingly, it is found that the highe st EGR case had a 

smaller COV than the original EGR case. This meant that an excessively high EGR ratio largely 

deteriorated the combustion efficiency and reached a status of steady poor combustion.  
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Figure 5-19  Comparison of Stability with Different EGR Settings during Load Increase Tests 

 

5.3.3 Emission Behaviour 

 

Gaseous Emissions 

 

Figure 5-20 (a) presents the instantaneous NOx emission profiles of different EGR settings 

during load increase tests. As expected, higher NOx emissions are found when the EGR ratio 

is lower in general. It is observed that when the EGR ratio is low, NOx increases faster; while 

in the case of high EGR, a longer delay of increase occurs. In the first two seconds, NOx 

remains a low value even though the fuel injection amount and IMEP increases  in the 

original and high EGR cases; this is caused by the serious drop of oxygen concentration 

before combustion, as previously mentioned. Besides, it is noticed that NOx increased 

slowly after the transition in each case; which shows the thermal lag in transient periods 

and the effect of cylinder temperature on NOx emissions. 
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In low and lowest EGR cases, HC emissions are much lower compared with the other cases. 

Although the fuel injection amount increases earlier and O2_e is rapidly reduced at the 

beginning of the transient period, as shown in Figure 5-15, the HC emissions do not 

dramatically increase as in the high EGR case. Thus, with a low EGR rate, the peak of HC 

during transients can be avoided when the oxygen concentration is sufficient and the global 

air-fuel ratio is not low enough to cause incomplete combustion, showing O2_e as positive. 

In addition, a slow decrease of HC after transition is observed. The better atomization of the 

fuel with the increased in-cylinder temperature during transients is expected to be 

responsible for this phenomenon. 

 

 

(a)      (b) 

Figure 5-20  Gaseous Emission Behaviour in Load Increase Tests with Different EGR Calibrations: 

(a) NOx; (b) HC 

 

Particulate Matter 

 

As for the particulate matter, it is shown that EGR has an obvious effect as well. Unlike the 

trend of HC, one apparent peak of particulate number and mass is observed in low and 
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lowest EGR cases. During the load increase, particulate number rises rapidly with the 

increased fuel amount. The time of the peak value corresponded with the drop of  oxygen 

concentration in the exhaust as well. It proves that the air-fuel ratio, oxygen-fuel ratio more 

specifically, has a strong correlation with particulate emissions during transients. According 

to the discussion about HR50, lower cylinder temperature is expected in the initial transient 

operation. This would enhance the accumulating process of soot. On the other hand, due to 

the longer ignition delay during the transient operation, the remaining time after 

combustion decreases, this deteriorates the soot oxidation. 

 

Moreover, it is found that the peak value of particulate number in each EGR case is close 

while the peak value of particulate mass varied, with a higher value with a higher EGR 

setting. This means that the average size of particulates formed in a higher EGR setting is 

bigger than that in the lowest EGR tests. Due to the EGR, some soot in the exhaust is 

returned back into the cylinder, aggravating the formation of soot in the oxygen-deficient 

condition during the transient operation and small particles were easily adhered to the soot 

from the exhaust gas. Hence, in view of both the load response performance and particulate 

emissions, EGR should be lower in transient operation than the steady state calibration 

value to reduce the particulate emissions. 

 



 

140 
 

 

(a)      (b) 

Figure 5-21 Comparison of Particulate Matter in Load Increase Tests with Different EGR 

Calibrations: (a) Particulate Number; (b) Particulate Mass 

 

NOx-PM Trade-off 

 

After the EGR calibration map is modified, the emission characteristics vary accordingly. In 

order to compare and illustrate the emission behaviour quantitatively, it is necessary to 

normalize the transient emissions by considering engine power outputs. The data analysed 

for each test is selected only for the load transient period and the steady operation data are 

omitted; i.e. only data of the first 5 seconds for the load step tests is used. In this way, only 

the transient data are compared and the influence of steady operation is cut off.  

 

The emission analysers NOx concentration output data are in parts per million (ppm) which 

are converted to brake specific NOx (BSNOx) in g/kWh from accumulated NOx (g) and 

output power (kWh) using the following equations (Constantine D. Rakopoulos et al. 2010): 

dtmm
MW

MWppm
gNOx fuelair

Exhaust

NOx

tt

t

NOx
n

)(
10

)(
5

6
  





   Equation 5-2  
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output dt
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kWhW
5

9550
)(     Equation 5-3     

 
Where 

NOxMW and 
ExhaustMW  stand for the molar mass of NOx and exhaust air; 

airm  and 

fuelm  are the fuel and air mass flow rate; n stands for engine speed. 

 

Also, PN output data is converted to numbers using the following equations:  

dtmm
MW

ccNPN fuelair

Exhaust

tt

t

PN

n

)(
7.22

10/ 3

5

  




  Equation 5-4  

 
In the above equation, the 22.7 is litres per mole, since the DMS500 calculates particle 

concentrations at 0 °C and 100 kPa.  

 

 

Figure 5-22  Trade-off between NOx and PM during Load Increase Tests 

 
Figure 5-22 presents the trade-off between NOx and PM in the transient tests after the 

normalization, using the original brake specific emission results at 1000 rpm as the 

reference data. It shows that when the total EGR rate is increased through the change of the 
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EGR calibration map, the number of the particulate matter in the transient tests would drop 

dramatically at each engine speed. However, it comes with the penalty of the augmenting of 

the NOx emissions. Adjusting the EGR map setting can move along the NOx-PM trade-off 

curve, but it is difficult to minimize both target values. Thus, an optimal control strategy of 

EGR and the VGT is necessary. 

 

5.4 Sensitivity of Alternative Fuel 

 

To determine the sensitivity of alternative fuel on engine performance and emissions during 

transient operation, HVO blends are used as test fuels for the investigation and comparison 

purposes. The test sequences are load increase with a constant engine speed. The torque 

and speed settings are kept the same for each fuel in each transient sequence. 

 

5.4.1 Fuel Properties 

 

HVO is a remarkable alternative diesel fuel, made by a refinery-based process that converts 

vegetable oils and animal fat into paraffinic hydrocarbons. In this study, the HVO blends are 

all supplied by Shell Global Solutions UK. HVO30 and HVO60 stand for the 30% and 60% 

blend ratio of HVO with the conventional diesel by mass. The properties of the test fuels are 

listed in Table 5-2. 
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Table 5-2  Properties of Diesel and Two Fuel Blends 

Property Diesel HVO30 HVO60 

Carbon Content (% 

wt) 
85.9 85.5 85.1 

Hydrogen 

(% wt) 
13.6 14 14.4 

Cetane Number 56.7 58.8 64.3 

Aromatics 

(% wt) 
24.87 17.78 10.37 

Lower Heating Value 

(MJ/kg) 
42.72 42.76 43.66 

Viscosity 

(10-3 Pa∙s) 
3.6 3.49 3.43 

Density  (kg/m3) 832.7 815.5 798.7 

Oxidation Stability 

(Hrs) 
18.6 40+ 40+ 

 

The cetane numbers of HVO blends are higher than those of diesel. This means HVO blends 

have a shorter ignition delay and better cold start performance. This property affects the 

emission behaviour in both steady state and transient operation. In addition, since HVO is a 

mixture of paraffinic hydrocarbons and it is free of aromatics which play an important role 

in soot formation (Aatola et al. 2008), it has a lower particulate matter emission. Although 
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DPF are common equipment in modern diesel vehicles, it is an advantage to have low PM 

emissions to face the increasing stringent emission standards.  

 

Compared with traditional biodiesel such as rapeseed methyl ester (RME) or soy methyl 

ester (SME), HVO has a better oxidation stability and lower viscosity. Oxidation stability is 

important for vehicle fuel systems. Poor oxidation stability limits the concentration of 

biodiesel blends and also high viscosity has an adverse influence on the injection system 

(Sugiyama et al. 2011).  

 

5.4.2 Combustion Characteristics 

 

Figure 5-23 shows the maximum cylinder pressure during the 5 seconds load transient 

period fuelled with HVO30, HVO60 and diesel. All types of fuels show similar cylinder 

pressure trends and values. Based on this observation and since their energy density is very 

close, it is expected that they have comparable emissions. Previous research also proves 

that HVO does not result in lower torque at the same indicated value of injection  duration 

as diesel (Sugiyama et al. 2011). Thus, although the engine is not calibrated for HVO blends, 

its transient responses are highly consistent as those of diesel.  
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Figure 5-23  Cylinder Pressure Comparison of HVO Blends and Diesel for Load Transient Tests 

@ 1500 rpm 

 

 

Figure 5-24  Comparison of HR50 of Alternative Fuels during Load Increase Tests  

 
The HR50 of all the fuels during the load transient events is presented in Figure 5-24. 

Despite HVO’s higher cetane number, the main combustion progress of HVO blends are not 

advanced compared with diesel in this engine during both the steady state and transient 

operation. This phenomenon can be explained by the following factors:  
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1. The engine was equipped with a common-rail system in which the physical properties of 

the fuels had little influence on the injection timing. 

2. The injection strategy is two pilot injections before the main injection, which decreases 

the effect of biodiesel’s higher cetane number on reducing the ignition delay.  

3. The fluidity of HVO blends is close to diesel (Table 5-2) resulting in little difference in the 

injection properties. 

 
From Figure 5-25, it is evident that HVO blends have a shorter ignition delay and higher heat 

release in the first pilot injection due to their higher cetane number; resulting in a higher 

internal gas temperature and a longer high-temperature period before the main injection. 

As for the main injection and post injection, the difference between diesel and HVO blends 

is tiny.   

 

 

Figure 5-25  Average Rate of Heat Release during Load Transient Tests 
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5.4.3 Emission Behaviour of Alternative Fuel 

 

The time-resolved NO emissions of each fuel tested are shown in Figure 5-26 (a). Obvious 

drops are found in each case before the NO emissions increase to new steady state levels. 

This observation can be explained by a higher EGR ratio and low oxygen concentration as 

discussed previously. The NO emissions of HVO blends have the same trend as diesel but 

they are slightly higher in levels for transient operation. In order to compare the emissions 

of different fuels, the BSNO of each fuel type is calculated, as in Figure 5-27. About 14% 

higher NO emissions are found for HVO30 and about 30% for HVO60 in the transient tests. 

Previous research has shown that HVO blends have lower NO emissions comparable to 

diesel (Pflaum et al. 2010). One reason for this discrepancy is the two pilot injections used in 

the test engine while other researchers operated with either a single injection or two 

injections strategies. Based on Figure 5-25, it is evident that HVO blends have a shorter 

ignition delay and higher heat release in the first pilot injection resulting in a higher internal 

gas temperature and longer high-temperature period before the main injection. It is 

reported that the critical time period for NO formation is between the start of combustion 

and shortly after the occurrence of peak cylinder pressure (Heywood 1988). Thus, more NO 

emissions are generated after the pilot injection for the HVO blends.  

 

Regarding the HC emissions, a sharp spike of HC concentration appears after a small hump 

during the 5 seconds load increase period as shown in Figure 5-25 (b). It is clear that HVO 

blends have lower HC emissions than diesel in transient operation, because the main 

composition of HVO is paraffin which reacts more easily than aromatics. Thus, HVO blends 

have higher combustion efficiency at high fuel-air equivalence ratio and lower temperature 
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during load transient operation. Also, HVO blends have shorter recovery periods f or the HC 

concentration to be reduced to the steady state value. When load increases to the required 

value, the HC emission of the HVO blends rapidly reaches a very low concentration but 

diesel has a small delay for the reduction of HC. This is also attributed to the lower 

concentration of aromatic compounds for HVO blends. When the internal gas and wall 

temperature was lower than the steady state value because of the thermal inertia, aromatic 

compounds were hard to combust. 

 

In Figure 5-26, 20% and almost 30% lower HC emissions were produced by HVO30 and 

HVO60 respectively, compared to diesel. The difference between HVO30 and HVO60 is very 

small; this is because the branched paraffin, the main composition of HVO, is not easy to 

break down in low combustion compared to liner paraffin and naphthenic. With less 

aromatic compounds, a higher ratio of HVO blends does not have the advantage of  fewer 

HC emissions during the load transients. 

 

 

(a)      (b) 
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(c)      (d) 

Figure 5-26  Real-time Emission Behaviours of Engine Load Increase Tests:  

(a) NO; (b) HC; (c) Particulate Mass; (d) Particle Number 

 
In Figures 5-26 (c) and (d), the time-resolved particle number and particulate mass of HVO 

blends and diesel are presented. There is a small hump before the large spike in the 

particulate matter because of the post injection, the same as for the HC emissions. As for 

the comparison of fuel type, the HVO blends have lower PN and PM than diesel. With the 

HVO ratio increased, both the peak values of particle number and particulate mass are 

reduced. Meanwhile, the peak periods of the HVO blends are shorter than those of diesel, 

which is similar to the HC emissions. Unlike traditional biodiesel which contains oxygen, 

HVO is composed of paraffin only and no aromatic compounds, which play an important 

role in soot formation (Kopperoinen, Kytö, and Mikkonen 2011).  

 

Also, it is found that the particulate mass of HVO60 in three load transient operation is just 

60% of that of diesel; while reduce of particle number is 20%. HVO30 has a very close 

particle number to diesel and lower particulate mass relatively.  
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Figure 5-27  Standardized Emission Behaviour of Alternative Fuels during Load Transient Tests  

 
To analyse the problem, particle size distribution for all the fuel types during transient 

operation are presented in Figure 5-28. It is clearly shown that the number of accumulation 

mode particles decreases and the mean diameters are reduced with a longer acceleration 

period for all the tested fuels. Meanwhile, nucleation mode particles change a little in the 

different tests.  

 

Figure 5-28 Particle Size Distribution of Alternative Fuels during Load Increase Period 
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In the nucleation mode, the HVO blends produce more particles during the load transient 

operation; while the mean diameters are similar to diesel. Small particles (5 to 10 nm) are 

produced by the HVO blends; whereas diesel has no particles in this size range. In previous 

studies, increased fuel injection pressure is associated with the increased concentration of 

particles at small sizes for biodiesel (Chuepeng et al. 2011). However, the same fuel injection 

pressure is applied to all the tested fuels (with close viscosity and energy density of HVO) in 

this study. Since oxidation and pyrolysis products of fuel molecules have typically included 

acetylene with its higher analogues and also polycyclic aromatic hydrocarbons (PAH) 

(Heywood 1988), HVO blends produced less PAHs and smaller particulate by containing 

fewer aromatics.   

 

In the accumulation mode, the HVO blends have lower particle numbers and smaller particle 

sizes. Interestingly, in 30 to 60 nm diameter range, the HVO blends are highly consistent 

with diesel. However, in the larger sizes, HVO blends produce less particulate matter due to 

having fewer aromatics, as discussed previously. Due to the greater mass of larger particles 

and the relatively negligible mass of small particles, HVO blends have a lower total of PM 

than diesel in all the tests. 

 

5.5 Summary 

 

During transient operation, the gas exchange process plays an essential role in engine 

combustion performance and emission behaviour. The experimental study on a 

turbocharged diesel engine is presented. Specifically, the effects of engine speed and EGR 
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are discussed and analysed. Also, the sensitivity of fuel properties on the effects of engine 

dynamic performance during transient operation is tested using alternative fuels. The major 

findings are summarized: 

 

Engine Speed Effects 

1. The boost pressure at low engine speed increases more slowly with smaller 

amplitude during load increase tests, compared with the pressure at high engine 

speed. It is mainly due to the initial low value of the intake air flow at low e ngine 

speed and the exhaust gas energy is insufficient to boost the intake pressure. As a 

result, the VGT position has a more significant influence on boost pressure at a 

relatively high engine speed.   

2. At high engine speed, obvious spikes of pressure drop are found in the transition of 

the load increase tests. This derives from the delay of the energy at the turbocharger 

to boost the intake pressure. Also, the low value of the VGT position contributes to 

the form of the pressure drop peak.  

3. One apparent drop of oxygen concentration in the intake manifold is observed at 

high engine speed during transient operation. The EGR flow does not reduce rapidly 

due to the transport delay; meanwhile the faster response of the fuel injection leads 

to rich combustion, intensifying the deficiency of oxygen. Accordingly, incomplete 

combustion and excessive HC and PM emissions occur, up to 10 times the steady 

state value within this period. 

4. The delays of the combustion phase, from 3 to 15 crank angle degrees, occur at the 

transition and are larger when the engine speed increases. Employment of a post 
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injection strategy, less proportion of premixed combustion and incomplete 

combustion contribute to the delays.   

 

EGR Effects 

5. The low EGR valve position facilitates the faster rise of the boost pressure during load 

increase tests when the VGT keeps constant. Meanwhile, earlier peaks of pressure 

drop are also observed. 

6. The drop of oxygen concentration in the intake during transients is eliminated when 

the EGR rate is down to 30%; while a higher EGR rate leads to the insufficient oxygen 

and deterioration of the combustion with an unacceptable air-fuel ratio. 

7. In general, lower NOx emissions and higher HC and particulate emissions are 

observed with a higher EGR ratio case. Within the transient period, only adjusting the 

EGR map setting can move along the NOx-PM trade-off curve, but it is difficult to 

minimize both values. An optimal control strategy of the EGR and VGT is necessary. 

 

Sensitivity of Alternative Fuel 

8. With the increase of the HVO ratio, from 0 to 60%, the HVO blends produce more NO 

emissions than diesel due to a shorter ignition delay in the pilot injections and they 

have lower HC emissions and a shorter recovery period under each condition, due to 

fewer aromatic compounds. 

9. The total PN and PM of the HVO blends are less than for diesel, up to 40% lower. In 

the nucleation mode, the HVO blends have higher particulate concentrations with a 

similar mean diameter; in the accumulation mode, HVO blends produce fewer 

particles and smaller particulate than diesel. 
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     CHAPTER 6  

6 REAL-TIME DIESEL ENGINE MODELLING  

 

 

In this chapter, the detailed description of control-oriented engine modelling is introduced. 

The objective of the modelling is to build a model with basic physical insight and a simple 

structure for real-time control of EGR valve and VGT position. Also, nonlinear dynamic 

emission models of NOx and particulate matter are introduced. The engine model 

integrated with the emission models is able to act as a complete model plant for model-

based control. Lastly, the results and discussion are presented. 

 

6.1 Introduction 

 

Based on the discussion and analysis in the previous chapter, gas exchange process during 

transient operation plays an important role in engine combustion and emission 

characteristics. There is a need to develop a novel control strategy to optimize the control of 

the air-related actuators. Building an engine model plant is an essential step in order to 

reduce the cost of experimental work and avoid unnecessary damage to the engine . Since 

the application of the air system model is a relatively slow process and requires low 

computational complexity, mean-value models are chosen in this study. After limited fitting 

on some key parameters, the engine model can be easily applied to an individual engine. 

Considering the high complexity and difficulty in emission prediction, nonlinear dynamic 
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models through a system identification approach were constructed. Unlike the conventional 

data driven emission models, basic physical principles are considered and the parameters 

closely related to combustion characteristics are chosen and processed as the inputs of 

these models. With a small quantity of experimental results, the emission models can be 

quickly developed with reasonable accuracy in a wide range. 

 

6.2 Control-oriented Engine Model 

 

The detailed methodology of engine model development is introduced and presented in this 

section. The assumption and suitability of models are discussed as well.  

 

6.2.1 Model Outline 

 

The control-oriented engine model was developed using Simulink with a fixed simulation 

step. The sample time was set as 0.1 seconds in light of most parameters in the tests were 

acquired in 10 Hz, which kept the simulation and experiment data in accord. The model is 

capable of simulating both steady state and transient operation of an engine performance in 

a certain range. The EGR valve position, VGT position, engine speed and fuel injection 

amount are designated as variables in the model. The model consists of three major parts: 

the air system model, engine combustion model and dynamic emission models. The main 

outputs of the model include the EGR rate, oxygen concentration, IMEP, NOx and 

particulate matter.  
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Figure 6-1  Qualitative Input-output Relation of the Control-oriented Engine Model 

 
The structure of the whole control-oriented engine model showing the relationship 

between the engine parameters and modules is given in Figure 6-1. As shown, the whole 

modelling is based on four variables listed in the first row. These variables are chosen 

because they can be manipulated easily in a real engine and act as the fundamental 

variables in engine calibration. In order to simulate the engine transient operation, dynamic 

behaviour is considered in modelling when parameters with a slow response are involved 
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such as air flow rate, intake pressure and emission behaviour. Additionally, since many 

parameters are mutually coupled and obtained by deduction, limited errors and fluctuations 

in parameters are inevitable in a few operation modes. Detailed discussion and results of 

this issue will be presented later. The working range of the variables in the engine model is 

listed in Table 6-1. 

Table 6-1 Adjustable Range of Variables in the Engine Model 

 
Engine Speed 

(rpm) 

Fuel Injection 

Amount (mg/hub) 

EGR Valve Position 

(%) 
VGT Position (%) 

Min 1000 5 5 10 

Max 2000 40 80 40 

 
 

Detailed descriptions of each module in each part of the model are given in the following 

section. 

 

6.2.2 The Air System Model 

 

As mentioned previously, for a turbocharged diesel engine, one of the main problems is the 

delay in the air system during transients. Therefore, it is important to develop the air system 

model with proper dynamic characteristics. In this study, the main parts in the air system 

included the turbocharger, intake manifold, engine cylinder, exhaust manifold, EGR valve 

and VGT. The structure of the system is shown in Figure 6-2. 
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Figure 6-2  Schematic of Air Path of Turbocharged Diesel Engine 

 
As presented in Figure 6-2, the air system is a highly inter-coupled system. For instance, the 

EGR mass flow is determined by the EGR valve position, upstream pressure and downstream 

pressure of the EGR valve. Meanwhile, the pressure in the exhaust manifold largely 

determines the upstream pressure of the EGR and the exhaust air through the turbo, having 

an influence on intake pressure which can be assumed as downstream pressure of the EGR 

valve. Besides, the intake pressure plays an important role in engine combustion, thereby 

having a close relationship with exhaust pressure. In order to start the simulation from the 

chosen four variables, two parameters, intake pressure and exhaust pressure , are directly 

calculated through a neural network, similar to the look-up table method. The main 

advantages of using a neural network and not an equation with physical insight in these two 

parameters are the reasonable accuracy and stability during transients with low 

computation cost. Due to the mutually coupled characteristics, if all the parameters are 

obtained through deduction, one tiny error would result in unacceptable inaccuracy in some 

operation modes, especially in the transient cases. More importantly, the turbocharger 

modelling involves complicated efficiency maps which require a large amount of 
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experimental data. In real application, the pressure signal can be easily measured by a 

pressure transducer with preciseness and quick response. The simulation of pressure is only 

for the engine modelling work before being applied in real engine control.  

 

The neural network of the intake and exhaust pressure was trained by 270 groups of steady 

state experimental data. A two-layer feed-forward network was employed and the network 

was trained with the Levenberg-Marquardt back propagation algorithm. Since the VGT and 

EGR valves are pneumatically actuated, rate limits of opening and closing were added into 

the model. In order to reflect dynamic characteristics, transport delay was considered and 

the model was tuned based on transient experimental data. Also, the effect of a reservoir in 

the intake system was noticed so that a FIR filter was added and tuned to simulate the 

dynamic characteristics. The detailed results will be presented in the following subsection. 

The engine intake and exhaust pressure model is given in Figure 6-3. 

 

 
Figure 6-3  Intake and Exhaust Pressure Model 
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Dynamics of the Boost System 

 

From Figure 6-2, it is found that the air path starts from the intake air. The fresh air after the 

air filter goes through the compressor and intake air cooler, namely the boost system. The 

boost system was assumed as one receiver with a fixed volume. The reservoir effect was 

considered through adding one item based on change of intake pressure. The mass flow 

through the compressor and intercooler was determined by the equation: 

int_int_ p
TR

V
mm

cooler

boost
bcairair

 


     Equation 6-1  

Where 
int_airm  is the air mass flow after the intake air cooler; 

bcairm _
  is the air mass flow 

before the compressor; 
boostV is the volume of the boost system; R is the specific gas 

constant, given by the molar gas constant divided by the molar mass of the gas, 0.287 J/(g∙K); 

coolerT is the temperature of air in the cooler, set as 300 K according to the test data and 
intp

is the derivative of the intake pressure. The 
bcairm _

 can be validated by a measurement value 

through the air flow meter and the data signal obtained in the ECU. The model of the 

dynamics of the boost system is given in Figure 6-4. 

 
Figure 6-4  Model of the Dynamics of the Boost System 
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EGR Mass Flow 

 

The simulation of mass flow through the EGR valve is one of the cores of the whole model 

since EGR has a strong influence on engine combustion and emission behaviour. The EGR 

mass flow was modelled as a simplification of the compressible flow restriction with variable 

area (Heywood 1988). In this study, the pressure difference between the EGR valve 

upstream and the exhaust manifold was ignored to avoid unnecessary complexity of the 

model. Also, the temperature of the EGR gas after the EGR cooler was assumed as a 

constant due to the minor effect on model accuracy (Wahlstrom and Eriksson 2011). The 

EGR mass flow 
EGRm  is given by the equation (Guzzella 2010):  
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   Equation 6-2  

 

Where 
)(EGRvDC is the discharge coefficient of the EGR valve; )(EGRvA  is the open area of 

the valve, which is a function of the EGR valve position ; R is the specific gas constant, 

0.287 J/(g∙K);
EGRvusp  and EGRvusT represent the valve upstream pressure and temperature; 

EGRvdsp is the valve downstream pressure. Also, the flow function )(  is defined by:  
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    Equation 6-4  

Where  is the specific heat ratio, set as 1.3 and 
crp  is the critical pressure where the flow 

achieves a sonic condition in the narrowest part. The model of the EGR mass flow and flow 

function is developed in Simulink and given in Figure 6-5 and Figure 6-6.  

 

 

Figure 6-5  EGR Mass Flow Model 

 
 

 

Figure 6-6  Flow Function in the EGR Mass Flow Model 
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Cylinder Charge 

 

The air mass flow through the engine cylinder was simulated based on the ideal gas law. 

When the intake valve is closed (at IVC), the current intake pressure was assumed as the in-

cylinder pressure and the cylinder volume at IVC can be calculated using the equation 

(Stone 1999): 
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Equation 6-5  

 
Where 𝑉𝑑 is the cylinder displacement volume; 𝑉𝑐 is the clearance volume; 𝜃 is the current 

crank angle (CAD); 𝐵 is the bore diameter; 𝑅 is the crank radius; 𝐿 is the length of rod and 𝑟𝑐 

is the compression ratio. The crank angle in this case is IVC, 160o BTDC.  

 

The equation of cylinder air mass is given below: 

IVC

IVCIVC
filling

RT

Vp
m


      Equation 6-6  

 

Where 
fillingm  is the air mass in each cylinder volume; IVCp  and IVCV represent in-cylinder 

pressure and cylinder volume at IVC; R is the specific gas constant, 0.287 J/(g∙K) and IVCT is 

the temperature of the in-cylinder air. In this study, IVCp  was assumed as the intake 

pressure. Although the temperature of the air and EGR gas mixture varied in different 

operation modes, the temperature in this case was assumed as a constant, 300K. As shown 

in the equation, the reasonable range change of gas temperature has little influence in the 
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calculation and the temperature cannot be measured and validated. Lastly, the cylinder 

charge flow rate can be obtained by multiplying the engine speed and number of cylinders. 

The cylinder-by-cylinder variation was also ignored to reduce the cost of computation. 

Compared with the experimental steady state data, the correlation coefficient of the 

cylinder air mass flow is 0.95, which indicated the assumption is reliable. The model of  the 

cylinder charge is given in Figure 6-7. 

 

 
Figure 6-7  Model of the Cylinder Charge 

 

Dynamics of the Intake Manifold 

 

The intake manifold is assumed as a receiver, similar to the boost system. As shown in 

Figure 6-2, the inputs are the air mass flow from the boost system and the EGR mass flow; 

while the output is the air mixture flow into the cylinder. Dynamic behaviour was reflected 

by considering the reservoir effect of the air flow. The equation is shown below: 
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Where 
int_airm  is the air mass flow after the intake air cooler; 

EGRm  is the mass flow through 

the EGR valve; 
fillingm is the air mass flow rate through the engine cylinders; R is the specific 

gas constant, 0.287 J/(g∙K); 
intT is the temperature of the air in the intake manifold, assumed 

to be a constant 300 K; 
intV  is the volume of the intake manifold and 

intp is the derivate of 

the intake pressure. The model of the intake manifold is given in Figure 6-8. 

 

 

Figure 6-8  Model of the Intake Manifold 

 

EGR ratio 

 

In this study, the EGR ratio is defined as: 

EGRair
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    Equation 6-8  

 

Where 
int_airm  is the air mass flow after the intake air cooler and EGRm  is the mass flow 

through the EGR valve. For this engine, the EGR flow joined into the intake manifold through 
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a Venturi tube and the transport delay of the EGR mass flow from the EGR valve to the 

intake manifold is ignored. 

 

Oxygen Concentration Model 

 

The oxygen concentration was not measured and taken into consideration in most research. 

However, as mentioned in the previous chapter, the oxygen concentration is able to reflect 

air dynamic characteristics during engine transient operation and has a significant influence 

on engine combustion and emission behaviour. Therefore, it is essential to simulate the 

oxygen concentration in the intake and exhaust in order to develop a dynamic model which 

is closer to the real-life situation. The relationship of the oxygen concentration with the 

mass flow and EGR rate is given as follows: 

acEGRofreshbctotal OmXmOm _22_2      Equation 6-9  
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acfillingstoichfuelbcfilling OmAFRmOm _2_2       Equation 6-11  

 

Where totalm , freshm  and EGRm represent the mass flow rate of the total mixture, fresh air 

after the compressor and EGR; bcO _2  and acO _2  are defined as the oxygen concentration in 
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the intake manifold (before combustion) and in the exhaust manifold (after combustion); 

2oX  is the oxygen concentration of the atmosphere, set as 20.9% in this case; 
fillingm  is the 

air mass flow rate through the engine cylinders; 
fuelm is the fuel injected amount, it is to be 

noted that the unit is converted to grams per second to keep the calculation correct;

stoichAFR  is the stoichiometric air-fuel ratio for diesel fuel and   is a factor to compensate 

the efficiency of fuel combustion at different operation modes. The oxygen concentration 

model is given in Figure 6-9. 

 

Figure 6-9  Oxygen Concentration Model 

 

In general, the air system model is developed in Simulink and the model size is 270 KB, small 

enough to be embedded into the engine ECU. More importantly, the model is capable of 

operating in real time. The wiring diagram of the air system model is shown in Figure 6-10. 
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Figure 6-10  Wiring Diagram of the Air System Simulink Model 

 

6.2.3 Engine Combustion Model 

 

As the model is for the purpose of real-time control, a detailed thermodynamic mechanism 

is not involved in the engine combustion modelling, considering the great amount of 

computation time necessary. Combustion is often assumed as quasi-static since it has much 

faster dynamic characteristics compared with the air path (Benz, Onder, and Guzzella 2010). 

In this study, IMEP and the maximum in-cylinder temperature were chosen as the outputs 

of the combustion model. IMEP is an important evaluation of engine combustion, directly 

reflecting the efficiency and it can be used as the reference for emission control. As 

discussed in Chapter 5, the maximum in-cylinder temperature was obtained from the in-

cylinder pressure data. The value is suitable to show the trends of combustion in transient 

operation and plays an essential role in NOx emission modelling. In the simulation of both 
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parameters, the approach employs physical insight to separate the influence of related 

variables and then simplification into a low-dimensional model.  

 

IMEP 

 

In this study, the IMEP model is a nonlinear function of related variables. At first, fuel mean 

effective pressure is defined (Guzzella and Onder 2010): 

d
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p






     Equation 6-12  

 

Where 
mp  is the fuel mean effective pressure; 

lH  is the lower heating value of diesel, set 

as 42.6 Mj/kg; 
m  is the fuel injected amount per combustion cycle and 

dV  is the cylinder 

displaced volume. 

 

Based on the 
mp , the equation of IMEP can be expressed as below: 

 meee pOmIMEP  ),,( _2    Equation 6-13  

 

Where e  is the combustion efficiency; e  is the engine speed; m  is the fuel injected 

amount per combustion cycle and 
eO _2

 is the oxygen concentration in the exhaust. 

Normally, the combustion efficiency can involve many variables such as air-fuel ratio, EGR 

rate, injection timing. However, the model with more variables requires a vast number of 

experimental results and unnecessary over-fitting, since some variables are mutually related. 

In this case, the focus of the modelling is on the air path control so the fuel injection related 

variables like injection timing and rail pressure are ignored. Besides, the oxygen 



 

170 
 

concentration in the exhaust is capable of reflecting the change of air-fuel ratio and EGR 

rate and the correlation coefficients of the simulation results both in steady state and 

transient operation are acceptable.  

 

Maximum In-cylinder Temperature 

 

Essentially, the rise of the in-cylinder temperature is due to combustion and volume change. 

Considering the stationary regulation of volume change, the modelling of in-cylinder 

temperature is based on the fuel burning process. For the compromise of performance 

between accuracy and complexity, a similar equation to the IMEP is given: 

lee HmOmfT   ),,( _2max    Equation 6-14  

 
Where 

maxT  is the maximum in-cylinder temperature per cycle; f  is the factor to convert 

ideal combustion energy to in-cylinder temperature; 
e  is the engine speed; 

m  is the fuel 

injected amount per combustion cycle; 
eO _2
 is the oxygen concentration in the exhaust and 

lH  is the lower heating value of diesel. The engine combustion model is given in Figure 6-11. 
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Figure 6-11  Engine Combustion Model 

 

6.2.4 Nonlinear Dynamic Emission Models  

 

Emission control is an important target for the automotive industry and is driven by more 

and more stringent legal requirements. Due to the difficulty and high cost of installing an 

on-board emission measurement analyser in a vehicle, many efforts have been made to 

predict the emissions and design the virtual sensors. However, it is difficult to predict engine 

emissions either theoretically or by numerical simulation. Many approaches such as quasi-

steady models, multi-zone models and neural networks have been investigated as 

introduced in Chapter 2. After the comparison and compromise between accuracy and 

complexity, the nonlinear autoregressive model with exogenous inputs (NARARX) is 

employed in this study to develop the control-oriented emission models.  
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The nonlinear ARX model is an extension of a linear model. The linear ARX model can be 

represented as (Ljung 1999): 
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Where y(t) is the output; u(t) is the input and e(t) is the noise; na and nb are the maximum 

lags for the system input and output.  

 

The output y(t) can be considered as a weighted sum of past output values and current and 

past input values. Therefore, the equation is rewritten as a product: 
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Equation 6-16  

Where )1(,),1(),(),(,),2(),1(  nbtututunatytyty   are delayed input and 

output variables, called regressors. The linear ARX model predicts the output y( t) as a 

weighted sum of its regressors.  

 

To create a nonlinear ARX model, the structure is extended as: 

 
))1(,),1(),(),(,),2(),1(()(  nbtututunatytytyfty   

Equation 6-17  

 
Where )(f  is a nonlinear function; inputs to )(f  are model regressors. The nonlinear 

mapping function used in this study is wavelet network. 
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In a simulation scenario, the nonlinear ARX model included both nonlinear and linear 

functions. The block diagram representing the structure is given in Figure 6-12.  

 

Figure 6-12  Structure of Normal Nonlinear ARX model 

The nonlinearity estimator block can be expressed as (Mathworks 2014): 

))(()()( rxQgdrxLxF T     Equation 6-18  

Where x is a vector of the regressors; )( rxLT   is the output of the linear function block; 

)(( rxQg   is the output of the nonlinear function block; r is the mean of the regressors; d is 

a scalar offset; Q is a projection matrix which makes the calculations well conditioned. 

 

In order to identify the dynamic characteristic of emission formation, the order and delay of 

model inputs and outputs are tuned based on transient emission data from experimental 

results. Unlike the pure theoretical modelling or traditional statistic model, the method of 

nonlinear ARX model involves some physical insights through system identification in the 

linear function and achieves reasonable accuracy with low computation cost by the setting 

of the nonlinear function. Most importantly, these models can be generated in Simulink so it 

is compatible in a Matlab environment. The detailed approaches of dynamic emission 

models, namely, NOx, particulate number and particulate mass are introduced as in the 

following subsections.  
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NOx Model 

 

NOx is one of the major emissions from internal combustion engines, especially diesel 

engines due to their fuel-lean combustion strategy. The NOx formation can be categorized 

as a prompt formation process, a fuel formation process and the thermal formation process 

(Fernando, Hall, and Jha 2006). As the prompt formation occurs when hydrocarbon 

fragments react with nitrogen, which is only common in fuel-rich combustion and the fuel 

formation process requires that nitrogen is chemically bound in the fuel, while standard 

diesel fuel does not contain nitrogen inherently, only the NOx thermal formation process is 

considered (Tesfa et al. 2014). Since NOx emissions are mainly composed of nitric oxide (NO) 

and nitrogen dioxide (NO2) and NO is the predominant product, the well-known extended 

Zeldovich mechanism was used as the fundamental of the modelling (Heywood 1988). The 

equation is given as below: 

ee NO
TTdt

NOd
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69090
exp(
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2/1
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16 
   Equation 6-19  

 
Where ][NO  represents the species concentration of NO; eO ][ 2

 and eN ][ 2  denote the 

equilibrium concentration of oxygen and nitrogen; T is the instantaneous in -cylinder 

temperature. It should be noted that the in-cylinder temperature varies within each 

combustion cycle and the equilibrium concentration is not homogenous. The  accurate 

thermodynamic simulation requires many parameters which are difficult to obtain in a real 

experiment. Therefore, for the control-oriented model, proper simplification is made in this 

study. The parameters designated for this model are oxygen concentration in the intake and 

maximum in-cylinder temperature. These two parameters can be measured or calculated 

based on experimental results and simulated in the model introduced in the previous 
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section. The lambda sensor and in-cylinder pressure transducer can be installed in the 

vehicle for further application in the future. In order to utilize the known thermodynamic 

regulation and reduce the dimensions of the model, the equation above is converted to the 

structure shown as: 

]][,[])log([ _2max iOTfNOx      Equation 6-20  

 

Where ][NOx  and ][ _2 iO  are the concentration of NOx and oxygen in the intake; while 
maxT  

is the maximum in-cylinder temperature. Although the formation of NOx is affected by 

other factors such as swirl intensity and fuel injection characteristics, which are not included 

in this model, these factors are assumed to be largely compensated through the nonlinear 

identification. The NOx model is given in Figure 6-13. 

 

 

Figure 6-13  Model of NOx Emissions 

 

Particulate Matter Model 

 

The prediction of particulate matter is far more complicated than NOx. The level of 

particulate matter is influenced by two mechanisms, soot formation and soot oxidation 

simultaneously. In general, the formation of soot is mainly dependent on the fuel-air 
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equivalence ratio. A large amount of soot is formed when combustion occurs at high fuel-air 

equivalence ratios; while the oxidation of soot is mainly dependent on the temperature and 

the availability of oxygen in the late combustion phase (Heywood 1988). Due to the 

complexity of its mechanism, a detailed physical-based model of particles is not suitable for 

real-time modelling. Similar to the NOx model, the method of the nonlinear ARX model was 

used to identify the regulation and develop the dynamic model.  Also, particulate matter 

have been found to correlate better with exponentials of input signals (Indranil Brahma, 

Sharp, and Frazier 2010). In this model, three parameters are chosen: maximum in-cylinder 

temperature, fuel injection amount and corrected equivalence ratio. The selection of in-

cylinder temperature is due to its influence on soot oxidation and the fuel injection amount 

determines the operation mode, which is critical in prediction. The corrected equivalence 

ratio is defined by mass of oxygen to fuel amount. The reason not to use the traditional 

equivalence ratio lies in its neglect of oxygen concentration difference in the intake air and 

the corrected ratio 
c can be expressed as: 
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Where totalm  and 
fuelm denote the total intake air flow and fuel injected amount per unit of 

time; iO _2  and eO _2  are the oxygen concentration in the intake and exhaust manifold; 

stoicAFR  is the stoichiometric air-fuel ratio of diesel fuel. Owing to the increasing interest in 



 

177 
 

PM size and concentration levels, the particulate number and particulate mass are 

designated as the outputs of the emission model. Therefore, the particulate number can be 

represented as: 

],,[])log([ max fuelc mTfPN     Equation 6-24  

 
Where [PN] is the concentration of particulate number in units of n/cc. The structure of 

particulate mass modelling is the same. The PN and PM emission model is shown in Figure 

6-14. 

 

 
Figure 6-14  Model of PN and PM 

 

6.3 Validation of the Model 

 

In this section, the results of the models including the air path, combustion and emissions 

will be presented and discussed. The model is obtained from three groups of the 

experimental data from engine transient tests introduced in the previous chapter and 
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validated by the rest of the two groups of data. The simulation results of the model with the 

proposed method show a good correlation with the measurement data. 

 

6.3.1 EGR Mass Flow and Oxygen Concentration  

 

The EGR mass flow rate is mainly controlled by the EGR valve and it is widely used as the 

control reference of the valve position. Since there is no direct measurement equipment of 

EGR mass flow rate in the test bench, the measured value shown in this study was 

calculated based on the intake air flow rate and oxygen concentration. The oxygen 

concentration in the intake and exhaust were measured by a lambda sensor and 

compensated with pressure. Figure 6-15 and Figure 6-16 show the comparison of measured 

data and simulation of EGR mass flow rate and oxygen concentration in engine tests of load 

step with constant engine speed and speed change with constant load. Also, dynamic 

relative errors were calculated to illustrate the deviation. The dynamic error between a 

measured parameter 
measy  and a modelled parameter 

mody  was calculated as: 
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In Figures 6-15 and 6-16, it is observed that EGR mass flow and oxygen concentration in the 

intake show good prediction at steady state, up to 6% error. Meanwhile the oxygen 

concentration in the exhaust presents slightly larger errors; this is mainly due to the 

complexity of combustion in the cylinder. The cycle-by-cycle variation and detailed 

combustion mechanism are not included in this modelling so that the simulation of exact 

oxygen consumption in each combustion cycle has a small deviation. In transient operation, 
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it is indicated that the simulation results have an apparent error during some operation 

mode changes. The maximum errors of the EGR mass flow rate and oxygen concentration in 

the intake and exhaust are 44.6%, 27.4% and 58.8%, respectively. For this phenomenon, one 

factor is that the EGR valve and VGT have a clear overshoot at the transition and the 

simulation based on these variables tends to excessively magnify this influence, resulting in 

the main discrepancy between simulation and measured value. Another factor is that it is 

difficult to match each transport delay in different load change steps due to the complicated 

air path characteristics and simplification of the model. The deviations of oxygen 

concentration in the intake and EGR mass flow during transients are smaller than those of 

the oxygen concentration in the exhaust, due to the same reasons introduced previously.  In 

general, the simulation shows a fair agreement with the experimental data and most 

importantly, the model is capable of capturing most peaks and troughs of air path  

parameters during transients, reflecting the air path characteristics properly.  
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(a) 
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Figure 6-15  Comparison of Simulation Results and Measurement Data during Load Change 

between 20% and 35%; (a) Model Inputs; (b) EGR Mass Flow; (c) Oxygen Concentration in Intake; 

(d) Oxygen Concentration in Exhaust 

(c) 

(d) 
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Figure 6-16  Comparison of Simulation Results and Measurement Data during Load Change 

between 20% and 45%; (a) Model Inputs; (b) EGR Mass Flow; (c) Oxygen Concentration in Intake; 

(d) Oxygen Concentration in Exhaust 

(c) 

(d) 
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In order to evaluate the dynamic simulation results more quantitatively, the model fit is 

defined as (Mathworks 2014): 
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Where y is the measured output; ŷ  is the simulated model output; y  is the mean of the 

measured data sequence and ‘  ’ represents the Euclidean distance. 

Table 6-2 Model Fit of EGR Mass Flow Rate and Oxygen Concentration 

 

EGR mass flow 

rate 

O2 

concentration 

in intake 

O2 

concentration 

in exhaust 

Load 20% - 35% 80.5 72.7 67.9 

Load 20% - 45% 79.4 74.1 66.3 

 

 

As shown in Table 6-2, the simulation is more accurate at tests of load between 20% and 

45%. Since the intake air flow is larger at higher load, the influence of error from the EGR 

valve at a low position, as mentioned above, is reduced.  

 

6.3.2 IMEP and Maximum In-cylinder Temperature  

 

Compared with the air path, engine combustion has much a faster response in transient 

conditions and is mainly determined by the fuel injection amount. As a result, it is easier to 

simulate the related parameters such as IMEP and  in-cylinder temperature. The comparison 

of measurement and simulation is presented in Figure 6-17. It is clearly shown that the 

simulation value of the IMEP has a good correlation with the measured data in most cases. 

The model fit of the IMEP is 92.96. As for the in-cylinder temperature, due to the intrinsic 
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combustion instability, the measured data has apparent fluctuation both in transient and 

steady state which cannot be reflected in simulation. However for the control purpose, the 

quasi-static model has the capability to follow the trend and shows reasonable accuracy.  

  

(a) 
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 (b) 

Figure 6-17  Comparison of Simulation and Experimental Data of the IMEP and Maximum in-

cylinder Temperature; (a) Load Step between 20% and 35%; (b) Load Step between 20% and 45% 
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6.3.3 NOx and Particulate Matter  

 

As introduced in Chapter 2, it is rather difficult to predict the emissions of an internal 

combustion engine, especially in transient operation. Deviation of simulation is always 

caused by many factors or detailed mechanisms which are not included in models. In this 

study, the objective is to develop a dynamic model with a mixed physics and statistics 

approach as a means to predict the relative influence of controllable variables such as an 

EGR valve and the VGT position. The simulation is based on the assumption that the 

emission formation depends, in a deterministic way, on the designated inputs such as in-

cylinder temperature, oxygen concentration and equivalence ratio. Therefore, the trend 

change of the emissions is more important than the average value of the estimation in this 

modelling.  

 

It should be noted that the functional structure of the emission model is derived with a 

nonlinear ARX approach. The data collected from different engine map settings is used for 

validation. Figures 6-18, 6-19 and 6-20 show the comparison between simulation results and 

measured data during load increase steps at different engine speeds. It is presented that the 

nonlinear ARX model approach can predict the NOx satisfactorily, based on the inputs of the 

experimental data. When the validated engine setting is changed, the simulation of NOx is 

capable of reflecting the basic trend during transients. However when the emission model is 

integrated with the combustion model, the deviation of NOx becomes larger. This is mainly 

due to the sensitivity of the NOx model to the oxygen concentration. One tiny error or delay 

of the oxygen concentration would have a huge impact on the prediction results of NOx. As 

for particulate number and particulate mass prediction, the model fit is slightly worse in the 
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simulation with the inputs of the measured data. As shown in Figure    6-17 (a), the small 

trough of the particulate number after the peak is not identified well in the nonlinear model. 

Accordingly, in the validation, the similar trend is not reflected in the particulate number 

prediction. However, it is observed that the results of the particulate matter simulation 

integrated with the combustion model are much better than those of NOx. In Figure 6-18 (b) 

and Figure 6-19 (b), the difference of the particulate number prediction between the engine 

model case and the measured inputs case is acceptable. It is highly possible that the PM 

model is identified with no detailed physical equation and the parameters are more 

nonlinearly constructed. Besides, the error from the emission model inputs such as oxygen 

concentration and in-cylinder temperature, which is simulated by the engine model, would 

inevitably increase the error of the emission prediction.   

 

All in all, there shows a small deviation between the measured value and the prediction of 

the emissions with limited parameters and simple structure. However the main trends of 

the emission behaviour with a change of engine parameters can be reflected. The emission 

model is meaningful to act as a reference for actuator control and development of a control 

strategy.  
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Figure 6-18  Comparison of Simulation and Experimental Data of NOx and Particulate Matter 

during a Load Increase from 25% to 45% at 1250 rpm; (a) Simulation based on Identification Data; 

(b) Validation 

(a)      (b) 
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Figure 6-19  Comparison of Simulation and Experimental Data of NOx and Particulate Matter 

during a Load Increase from 25% to 45% at 1500 rpm; (a) Simulation based on Identification Data; 

(b) Validation 

 

 

(a)      (b) 
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(a)      (b) 

 

Figure 6-20 Comparison of Simulation and Experimental Data of NOx and Particulate Matter during 

a Load Increase from 25% to 45% at 2000 rpm; (a) Simulation based on Identification Data; (b) 

Validation 
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6.4 Summary 

 

In order to implement the engine model-based control, it is necessary to develop a reliable 

and efficient model plant. In this chapter, the detailed modelling approaches for the air path, 

combustion and emission behaviour of a turbocharged diesel engine are introduced. The 

validation results of the engine modelling are also presented.  

 

The developed model can simulate the main engine parameters such as the oxygen 

concentration, EGR mass flow, intake air mass flow, maximum in-cylinder temperature and 

IMEP. In addition, two important emissions of a diesel engine, NOx and particulate matter 

can be predicted with reasonable accuracy. In general, the model is capable of working as a 

simulator of an engine in both steady state and transient operation, reducing the 

experimental time and cost on real testing. Based on limited experimental data, the model 

can easily match different engines by updating the parameters and training the networks. 

Since the structure of the model follows the law of physics, the model can be implemented 

in the ECU for vehicle application.  

 

The simulation results of engine parameters show a fair agreement with the experimental 

data. The fit of the EGR mass flow and oxygen concentration in the intake and in the exhaust 

during transient operation are 80%, 73% and 67% respectively. Also, the model is capable of 

capturing most peaks and troughs of the air path parameters during transients, reflecting 

the air dynamic characteristics properly. As for the dynamic emission model, the NOx and 

PM predictions present an acceptable accuracy. The main trends of the emission behaviour 
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following the change of engine parameters can be predicted. The emission model is capable 

of acting as a reference for the actuators’ control strategy development. 
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   CHAPTER 7   

7 MODEL-BASED FAST PREDICTIVE CONTROL 

 

 

This chapter presents an advanced fast predictive control approach applied on the air 

system of a turbocharged diesel engine. Oxygen concentration control on the EGR valve and 

VGT position, rather than conventional fresh air mass or EGR rate oriented control, is 

proposed and designed with the model predictive control approach.  Also, a comparison of 

the MPC and conventional PID control strategies is conducted. Lastly, a new HIL simulation 

platform is described for testing and validating of the real-time engine model and MPC 

control strategy.  

 

7.1 Introduction 

 

Due to the highly nonlinear behaviour of a diesel engine air path and inter-coupled control 

parameters, conventional control strategies such as PID have difficulty to achieve precise 

control of the air management process. New control strategies such as predictive, neural 

and fuzzy control have been proposed concerning the issue (Arnold et al. 2006) (Langthaler 

& Re 2008) (Catania et al. 2011). However, there are still some limitations shown in the 

previous research such as poor robustness guarantees and a high requirement of 

parameters needing tuning, as mentioned in Chapter 2. Moreover, the traditional set-point 

variables used such as fresh air flow and EGR rate are subject to disturbances and 

uncertainty in light of their intrinsic measurement. In this study, an advanced model -based 
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predictive control approach based on oxygen concentration was developed and it was 

integrated with the dynamic engine model. The engine model was validated in Chapter 6 

and it was able to reflect the nonlinear behaviour of dead zones, hysteresis and delays in a 

diesel engine air system. The reason for using MPC as the control strategy was its ease of 

input and output constraints treatment and its intrinsic suitability to cope with multivariable 

systems (Maciejowski 2001). In order to incorporate the MPC controller, local linear models 

were identified from the data generated by the dynamic nonlinear engine model. It was 

proved that a number of linear models were able to cover the whole operating range of the 

nonlinear system (Ortner et al. 2006). The block diagram of the model -based predictive 

control strategy is presented in Figure 7-1.  

 As shown in Figure 7-1, the engine operation condition determines the local linear model 

and designed controller. The MPC controller is a Multi -Input Multi-Output (MIMO) system, 

which processes the reference values and plant output variables then produces the 

manipulated variables. The reference values are set points of the target parameters 

required for the control strategy. The model plant is the engine model and integrated 

dynamic emission model for estimating the performance. The whole control system could 

Figure 7-1  The Block Diagram of the Engine Model-based Predictive Control Strategy 
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be operated in real time with a microprocessor on a HIL simulation platform. Details of the 

control strategy implementation and control results are presented in the following sections.  

 

7.2 Model-based Control Design 

 

The model plant linearization and implementation of the control strategy on a diesel engine 

are presented in this section.  

 

7.2.1 Model Plant Linearization 

 

The air path of a turbocharged diesel engine is a highly nonlinear system and the engine 

model developed with physical insight is far too complicated to operate and be embedded 

online for predictive control schemes. It is essential to acquire simplified mathematical 

models which can provide acceptable accuracy and reduce the computational efforts in 

order to process systems with fast dynamics. Since the MPC relies on linear models as the 

model plant, the approach of multiple local linear models has been used. The idea is based 

on using a set of local linear models to accommodate local operating regimes (Camacho and 

Bordons 2005). This method was proved capable of reproducing the main dynamics of 

nonlinear plant from experiments (Garcia-Ortiz, Langthaler, and Del Re 2006). In this study, 

different regimes of the engine operating conditions are defined based on the engine speed 

and fuel injection; for each regime a local linear state-space model was developed. The 

engine speed and amount of fuel injection are two parameters widely used in engine 

calibration for the inputs of the look-up table to define the operation mode. Also, the 
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output constraint in the controller can be easily referred according to the setting of the 

previous calibration for each operation point; since the state -of-the-art calibration in a 

steady state can provide fine set-points on a manipulated variable. The representative 

operation points for defining each local linear model are listed i n Table 7-1. 

 
Table 7-1  Representative Operation Points for Local Linear Models  

Point 
Engine Speed 

 (rpm) 

Fuel Injection Amount 

(mg/hub) 

1 1000 6.5 

2 1000 21 

3 1250 7.5 

4 1250 20 

5 1500 8 

6 1500 20 

7 1500 30 

8 1750 8 

9 1750 20 

10 1750 30 

11 2000 20 

12 2000 31 

 

In order to generate the data for local linear models, the air system model introduced in 

Chapter 6 was employed. Compared with the conventional method in which the linear 

identification is based on measured experimental data, linearizing the nonlinear engine 

model plant locally provides more flexibility, reduces the risk of damaging the engine and 

lowers the experimental costs. The process of system identification would cause a small 

deviation by its very nature, but the designed closed-loop control can eliminate the error. 

Accordingly, the small deviation of the simulated value from the model plant and the 



 

198 
 

experimental data is acceptable; this will be presented and explained in the following 

sections. The input spaces of the state-space model are u  and w  and the output is y, as 

shown below: 

T

e

T

VGTEGR mwuuu ][][   

T

ii pOy ][ 2     Equation 7-1  

 
Where u  represents the manipulated variables; 

EGRu  and 
VGTu  are defined as EGR valve 

position and VGT position in %; while w  indicates the measured disturbance where 
e  and 

m  are defined as the engine speed and fuel injected amount; 
iO2
 and 

ip represent oxygen 

concentration in the intake manifold and intake pressure respectively. As discussed in 

Chapter 6, the EGR valve and VGT valve positions were the essential control variables in the 

air path of the diesel engine. Due to the direct and significant influence on engine 

combustion and emission characteristics, oxygen concentration was used as one of the 

outputs which could be measured locally and accurately during engine transients, compared 

to the conventional parameter, EGR ratio or fresh air mass. 

 

The structure of the model plant is shown in Figure 7-2. The engine speed and fuel injection 

quantity are set as constant, added to some small normally distributed random numbers, 

determining the operation point. To simulate the step change of the valve positions, 

random noise is added into inputs which have a reasonable range based on the 

experimental data. It should be noted that although the engine model is developed 

considering the intrinsic dynamic characteristics of the actuators, there are differences 

between the actual position and the desired value which derive from the band-limited white 
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noise component. In order to make the linear model more realistic, inputs such as EGR valve 

position and VGT position are processed by a rate limiter to reflect the actual positions 

relative to time, which are physically achievable by the valves; they were obtained from the 

experimental data. 

 

The linear models are obtained by system identification with prediction error minimization 

(PEM) method (Ljung 1999). The identified model is a discrete-time state-space model with 

the form: 

)()()()( tKwtButAxTstx   

)()( tCxty       Equation 7-2  

 
Where )(tx is the state identified for the model plant; Ts  is the sample time; A, B, K and C 

are the matrix estimated. In this study, the sample time is set as 0.1 second considering the 

data frequency of model plant. The order of each state-space model is picked from the 

Figure 7-2  Structure of Model Plant for Identification of Local Linear Models  
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required accuracy in the range of 1 to 10 in each case after estimation. Considering the large 

time constant of the engine air path system, forward and backward prediction horizons are 

tuned in order to capture the main dynamic characteristics and maintain stability during 

steady state (Ljung 2014).  

 

As shown in Figure 7-3, the state-space model identified is able to reflect the main trend of 

outputs with a maximum deviation of 6.2% after step change; as a result, the state-space 

model can be used as prediction model for the model -based control.  

 

 

Figure 7-3  Validation of State-space Model 

 



 

201 
 

7.2.2 Implementation on a Diesel Engine Air System 

 

MPC is employed in this study to optimize the control of engine transient behaviour due to 

its advantage in dealing with MIMO control; especially when the system has a large time 

constant. Basically, MPC solves an optimization problem through using a specific model to 

predict the future response of the process and determining the manipulated variables at 

each control interval. To clarify, the principle of MPC is illustrated for an SISO system in 

Figure 7-4. Three steps are summarized for this process: 

 
1. Formulation of reference trajectory 

In order to allow an attenuation of the error, a reference trajectory y ref is calculated 

based on measured output and set point ysp. The yref is formed as a first-order 

exponential trajectory by default. 

 

2. Calculation of prediction trajectory 

The output prediction yp on a horizon Tp is obtained from inputs and measured 

outputs based on the model in the controller. 

 

3. Setting of input trajectory 

The input trajectory on a horizon Tc is set using optimization calculation to achieve as 

close a match as possible between the reference and output prediction. The first 

element of the input trajectory is applied in the next control interval.  
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Figure 7-4  Principle of MPC 

 

The objective of an optimization problem is usually represented as a cost function: 

(Bemporad, Morari, and Ricker 2014) 

)()()()()( kkukukyk zJzJzJzJzJ      Equation 7-3  

Where 
kz  is the optimization problem decision, given by: 

])1()1()([ k

TTTT

k kpkukkukkuz     Equation 7-4  

 
The denotation of each term in )( kzJ  is listed below, respectively.  

 

)(yJ  is the cost function for output reference tracking: 
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Where k  is the current control interval; p  is the prediction horizon; yn  is the number of 

plant output variables; )( kiky j   and )( kikrj  denote the predicted value and reference 

value of j th plant output at i th prediction horizon step; y

js  is the scale factor for j th plant 

output and y

jiw ,
 is the tuning weight for j th plant output at i th prediction horizon step. 

 

)(uJ  is the cost function for manipulated variable tracking: 
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Where un  is the number of manipulated variables; )(arg, kiku ettj   is the target value for 

j th manipulated variables at i th prediction horizon step. In some applications, the 

controller is ordered to keep selected manipulated variables near specified target values.  

 

)(uJ  is the cost function for manipulated variable move suppression: 
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This function is to measure the performance of manipulated variable moves so that small 

variable adjustments can be achieved. 

 

)(J  is the cost function for constraint violation: 

2)( kkzJ       Equation 7-8  
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Where 
k  denotes a slack variable, defined as quantifying the worst case constraint 

violation, at control interval k ;   is the constraint violation penalty weight. Constraint 

violations occur in some application. )(J  is employed to measure the corresponding 

performance. 

 

The model used for prediction in MPC is a state-space model and it is assumed that the state 

)(tx  is available at the current time t. The optimization generates an optimal control 

sequence and the value in this sequence is applied to the process. In order to solve the 

optimization problem, the cost function equation above is converted to the form: (Rawlings 

1999) 
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Where the column vector  '

1

' , 




uNtt uuU  ; 

tkt
x


 represents the predicted state vector at 

time t+k, obtained by applying the input space 1, ktt uu   to the model; uN  and 
yN  are the 

control and prediction horizon, respectively; the matrixes Q and R denote the weighting on 

state and input; P and L are the terminal constraint and the control function.  
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In this study, the manipulated variables are the EGR and the VGT position; while the 

measured disturbances are engine speed and fuel injected amount. As introduced above, 

these four parameters compose the inputs of the prediction model in MPC. The set points 

for the controller are oxygen concentration and intake pressure. The spe cific structure of 

the MPC controller is illustrated in Figure 7-5. 

 

The control interval is set as 0.1 seconds according to the model plant. The major tuneable 

parameters in this case are the prediction horizon, control horizon and output weights. In 

each operation mode, these parameters require cooperated tuning based on the local 

model and constraints. It should be noted that although increasing the weight of an output 

can achieve a faster response of the output tracking, an excessively large weight would 

result in instability and fluctuation due to the dynamic characteri stics of the model. Fine 

tuning of the controllers is applied to the engine model plant in order to obtain a fast 

response of the outputs with little overshoot, avoiding unstable behaviour because of the 

nonlinear nature of the system. 

 

Figure 7-5  Structure of MPC Controller for Diesel Engine Air Path 
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7.3 Comparison of Control Strategies 

 

The detailed results and discussion of model-based control application on the air path of a 

diesel engine are presented in this section. For comparison, conventional gain -scheduled 

PID control is employed as reference. Also, EGR rate oriented control is presented and 

compared with novel oxygen concentration oriented control.  

 

7.3.1 Comparison between MPC and PID Control 

 

In order to compare the performance of the novel MPC control strategy and conventional 

PID control, the results of representative cases are presented below. For PID control, two 

separate controllers are used to feedback the control oxygen concentration and intake 

pressure individually. For fair comparison, in each case, the PID controllers are well tuned to 

minimize the response time with little fluctuation. The system control tuner in 

MATLAB/Simulink was used for the tuning and the anti -windup method is employed to 

improve the stability.  

 

In Figure 7-6, the performance of two control strategies is compared in a change of oxygen 

concentration where the intake pressure is fixed at the operation point of engine speed as 

1500 rpm and fuel injected amount as 20 mg/hub. To evaluate the two control strategies, 

three key parameters, overshoot, response time and settling time are used and li sted in 

Table 7-2. It is observed that for the MPC case, the value of oxygen concentration changes 

rapidly to follow the reference; the response time is 0.5 seconds. In comparison, the PID 

control makes a little overshoot but the response time is 1.3 seconds, far slower than that in 
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the MPC. Additionally, the overshoot for the MPC case is 9.4%, which is bigger compared 

with the PID but it is acceptable considering the emission results. As for the settling time, 

these two control strategies show little difference. Accordingly, the MPC presents better 

behaviour of tracking the set points of the oxygen concentration compared with the PID 

control.  

 

 

Figure 7-6  Comparison of MPC and PID - Step in Oxygen Concentration and Constant Intake 

Pressure @1500 rpm, 20 mg/hub 
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Table 7-2  Optimum Achievable Control Characteristics by Different Control Strategies for a 

Step Change in Oxygen Concentration  

 MPC O2  PID O2  MPC p PID p 

Overshoot (%) 9.4 1.3 1.8 3.6 

Response time (s) 0.5 1.6 1.3 3.1 

Settling time (s) 4.1 4.9 4.4 5.5 

 
 

Furthermore, as shown in the actuator’s profiles (EGR valve position and VGT position), the 

EGR valve in the MPC closes steadily at the step change while in PID control, it has a softer 

change. More importantly, for the MPC, the VGT position adjusts immedi ately when the 

reference value changes while the position in PID control has an obvious delay. The 

difference largely determines the performance of the intake pressure, which shows an 

opposite change. This can be explained by the intrinsic nature of the two control strategies. 

Due to the model in the controller, the MPC is able to adjust the coupling parameters and 

compensate for the oxygen concentration demand through both the EGR valve and VGT 

position. However, the VGT position is close-loop controlled by the intake pressure 

individually in PID control. As a result, the move of VGT lags behind the variation of the EGR 

valve, maintaining the intake pressure. The emission characteristics, NOx and particulate 

mass are simulated based on the dynamic emission model introduced in the previous 

chapter. It is observed that both NOx and PM have a lower value in the MPC case compared 

with the PID. The faster decrease of oxygen concentration before combustion contributes to 

the lower value of NOx. Similarly, the PM emissions in the MPC benefit from the stable 

intake pressure and the corresponding larger intake air amount.  
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The profiles of two control strategies at a constant oxygen concentration and step in the 

intake pressure at an operation point of engine speed as 1250 rpm and fuel injected amount 

as 20 mg/hub are presented in Figure 7-7. It is shown that the response time of the intake 

pressure in the MPC is apparently shorter than that in the PID in this case. Meanwhile , the 

apparent overshoot of oxygen concentration is observed. Similar to the last case, the 

overshoot of oxygen concentration in the MPC is larger than that in the PID, of up to 5.2%. 

This is mainly caused by the aggressive behaviour of the VGT position as shown. Also, the 

opposite trend of the oxygen concentration is observed due to a similar reason as explained 

in the previous case. Interestingly, it can be noticed that the NOx and PM emissions in the 

MPC are largely decreased compared with the PID control; this is mainly derived from the 

fast response of the intake pressure. Although the emission data is obtained from the 

dynamic emission model, it shows great potential for solving the trade-off between NOx and 

PM during engine transient operation by applying MPC. 
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Figure 7-7  Comparison of MPC and PID - Step in Intake Pressure and Constant Oxygen 

Concentration @1250 rpm, 20 mg/hub 

 

Table 7-3  Optimum Achievable Control Characteristics by Different Control Strategies for a 

Step Change in Intake Pressure 

 MPC O2 PID O2 MPC p PID p 

Overshoot (%) 5.2 1.1 0.9 0 

Response time (s) 1.1 1.5 1.4 4.6 

Settling time (s) 1.0 3.8 3.6 4.2 

 

 
The simultaneous step of oxygen concentration and intake pressure is tested in both control 

strategies and shown in Figure 7-8. For the oxygen concentration tracking, the MPC shows a 
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faster response, 0.3 seconds, with little overshoot compared with PID control. Meanwhile, 

the intake pressure value has a small difference between the two control strategies. The 

relatively slow response of the MPC in the intake pressure derives from the higher output 

weight of oxygen concentration tuned in the controller. In order to achieve a fast response 

of oxygen concentration and avoid high NOx emissions, the VGT position in the MPC has a 

small drop in the beginning to boost the EGR mass flow growth. 

 

 

Figure 7-8  Comparison of MPC and PID - Step in Oxygen Concentration and Intake Pressure 

@2000 rpm, 31 mg/hub 
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Table 7-4  Optimum Achievable Control Characteristics by Different Control Strategies for a 

Step Change in Oxygen Concentration and Intake Pressure 

 MPC O2 PID O2 MPC p PID p 

Overshoot (%) 2.5 0.4 0 0.1 

Response time (s) 0.3 1.4 1.8 1.6 

Settling time (s) 2.8 1.8 1.6 1.4 

 

In general, MPC shows a better performance in dealing with the air path of a diesel engine 

compared with PID control. It could be found that the response time of the PID control is 

longer and fluctuation occurs when the tuning of the controller is marginally aggressive, as 

shown in Figure 7-8. In contrast, MPC is able to achieve and settle at the reference value 

faster at the expense of little overshoot. Also, the potential of MPC on  emission control 

during transient conditions is found. 

 

7.3.2 Comparison between Oxygen Concentration and EGR Rate Oriented 

Control 

 

As discussed in Chapter 5, EGR rate and oxygen concentration have significant influence on 

transient engine performance. In theory, these two parameters are  inter-related and both 

are able to control EGR valves. However, since the oxygen concentration can be measured 

accurately and locally by a lambda sensor with a short response time, it provides more 

information and has higher reliability during the transients. For the original setting, a gain -

scheduled PID controller with the EGR rate as the feedback parameter is employed in this 

engine. The disadvantage of this strategy lies in that the value of the EGR rate is calculated, 
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which is not sufficiently accurate during transients and the PID controllers require tuning on 

a large number of parameters. In this study, one EGR rate oriented MPC strategy is 

implemented on a model plant and compared with the proposed oxygen concentration 

control strategy.  

 

As mentioned in the previous section, oxygen concentration oriented MPC uses oxygen 

concentration and intake pressure as the reference values. For the EGR rate oriented MPC, 

the tracking parameters are the EGR rate and intake pressure instead. The set points of the 

EGR rate and oxygen concentration are set as the same in both strategies for clear 

comparison. The prediction horizon and control horizon are set as 20 and 2 in each case. In 

Figure 7-9, the profiles of the air path parameters during the step change are presented. It is 

revealed that different control strategies result in diverse profiles. For oxygen concentration 

tracking, MPC O2 shows a short response time with small overshoot; while the MPC EGR 

rate has a slow response. However, both control strategies can settle at a steady value 

within 5 seconds. Relatively, since EGR rate tracking is not considered in the MPC O2 

controller, the overshoot of the EGR rate is apparent and the settle time is close to that in 

the MPC EGR rate, the same as the oxygen concentration. As for intake pressure, the MPC 

EGR rate has a better tracking performance in most cases. This indicates the trade-off 

between oxygen concentration and intake pressure tracking during the step. When the 

controller has a shorter response in the oxygen concentration, the other control target of 

the intake pressure is compromised. The trade-off can be adjusted through tuning the 

output weights in the design of the MPC.  
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Figure 7-9  Comparison of O2 Oriented and EGR rate Oriented Control Strategy 

 

The corresponding EGR valve and VGT position profiles are illustrated in Figure 7-10. The 

MPC EGR rate shows a slightly slower reaction in the EGR valve positioning. Meanwhile, the 

VGT in the two control strategies presents different trends during the step change. This can 

explain the main difference of the intake pressure performance in Figure 7-9. For instance, 

the sharp drop at around 5 seconds in the MPC EGR rate contributes to the fast rise of the 

intake pressure; while the small peak in the MPC O2 delays the increase of the intake 

pressure and facilitates the tracking of the oxygen concentration. 
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Figure 7-10  Profiles of Actuators during Transient Operation  

 
The emission behaviours of the two control strategies shown in Figure 7-11 have small 

differences. The main difference lies in particulate mass. In light of the faster response of 

the oxygen concentration, PM in the MPC O2 has a lower value, especially during the fall 

step. 

 

In general, both control strategies are able to follow the reference value without large 

errors and reach steady state within an acceptable period. It should be noted that the 

oxygen concentration and EGR rate in this case are both simulated in the same model; the 

issue of instantaneous EGR rate measurement has not been reflected. Therefore, 

considering the advantage of the direct measurement of the oxygen concentration by a 

lambda sensor, the oxygen oriented control strategy is feasible and promising for real 

application in turbocharged diesel engines. 
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Figure 7-11  Comparison of Emission Characteristics between O2 Oriented and EGR rate 

Oriented Control Strategy  
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7.4 Validation on a Real-time Hardware-in-the-Loop Simulation 

Platform  

 

The setup and configuration of a hardware-in-the-loop platform is introduced in this section. 

The model-based control strategy proposed is validated on the simulation platform in real 

time. The results of the simulation are presented and discussed in the last part of the 

section.  

 

7.4.1 Setup of the HIL Platform 

 

A HIL simulation is a rapid, low-cost prototyping test method for digital controller design. In 

this study, the HIL simulation replaces the simulated control system including the proposed 

control strategy with a real hardware controller, which interacts with the rest of the model 

on the simulator in real time. The purpose of a HIL system is to provide all of the electrical 

stimuli required and test the control strategy in a real ECU. Since the mathematical models 

used in the simulator present a reasonably accurate representation of the real process, the 

controller parameters can be tuned and tested in the platform directly. Besides, testing with 

HIL can largely reduce the time on experimental test but provide high flexibility and perfect 

repeatability (Zwaanenbug 2008). Therefore, it is essential to test a controller function with 

a simulated process before the controller is applied to the real process.  
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Figure 7-12  Block Diagram of HIL Simulation Setup 

 

Figure 7-12 shows the setup of a HIL simulation platform for EGR-VGT control with an 

external hardware controller and engine Simulink model. A personal computer is used as 

the target PC to operate the Simulink model and real-time signal convertor. With the real-

time diesel engine model, the target PC can provide the real-time value of the oxygen 

concentration and intake pressure, which works similarly as in a real diesel engine. The HIL 

serial transfer module acts as a bridge between the physical variables from the Si mulink 

model and the signals from the hardware controller. Most importantly, the EGR-VGT 

management strategy is implemented in the hardware controller ARM STM32F417Ix. The 

detailed specification of the controller is listed in Table 7-5.  
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Table 7-5  Specification of ARM STM32F417lx 

Peripherals STM32F417Ix 

Flash memory in Kbytes 512 1024 

SRAM in Kbytes 192(112+16+64) 

FSMC memory controller Yes(1) 

GPIOs 140 

Channel 12-bit ADC 24 

Maximum CPU frequency 168 MHz 

Ambient temperature –40 to +105 °C 

Package LQFP176 

 

The detailed work flow is illustrated in Figure 7-12 also. Firstly, the variables from the 

Simulink model, including set points and measured values,  are processed to serial signals 

through a PC parallel to serial convertor. Then, the serial signal is sent to the ECU serial to 

parallel convertor through a HIL serial transfer module. After the controller receives the 

parallel signal, the control algorithm is executed and the control signals such as the EGR 

valve and VGT position are converted to serial signals and sent back to the Simulink model. 

Thus, a closed HIL simulation loop is implemented.  

 

7.4.2 Parameters Configuration of the Platform 

 

In order to flash the Simulink model into the ARM controller, the STM32 toolbox of the real-

time workshop (RTW) in MATLAB is employed to generate the C-code directly from Simulink 

and convert the C code to a hex file. Then the hex file is downloaded to the ARM controller. 
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Basically, there are two models used in the HIL platform. The first is the controller model for 

code generating, including the PID and MPC controller; while the other is the real-time 

diesel engine model, which predicts the outputs such as oxygen concentration, intake 

pressure and emissions based on four variables as introduced in Chapter 6.  

 

 

Figure 7-13  Simulink Structure of Controller Model for Code Generating 

 

Figure 7-13 presents the Simulink structure of the controller model. A discrete MPC 

controller, introduced in the previous section, is included in the model. Also, to compare the 

results of the MPC, the PID controller is embedded as well. Due to the low cost of the 

hardware and easy implementation, the serial signal is widely used for data transmission. In 

this study, the control signals are converted to serial type via UART Tx module. Similarly, the 

measured values from the engine model are converted to a parallel type via the UART Rx 

module. To realize the real-time action in the VGT-EGR controller, the ECU sample time is 

defined as 0.01 s. The UART sample time is set as 0.1 s to ensure the capture of this data 
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from the ECU. Since the engine model is developed with the sample time at 0.1 s, the 

sample time of the MPC and PID controller is kept as 0.1 s. 

 

Figure 7-14 shows the Simulink structure of the PC model. The PC is operated under the 

Windows 7 system, communicating with the ARM controller through the R232 serial port. In 

order to realize the real-time simulation, the baud rate of the serial is set as the maximum, 

115200 bps.  To compare the reaction of the HIL and Simulink, a multiport switch is 

implemented to change the control mode. Similarly to the controller model in the ECU, the 

sample time of the PC model is set as 0.1 s. 

 

7.4.3 Validation of MPC on HIL Platform 

 

Based on the development of the HIL platform and parameters configuration introduced 

above, the performance of both the MPC and PID control of a diesel engine air system is 

Figure 7-14  Simulink Structure of PC Model 
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tested on a HIL simulation platform. In order to validate the capability of real -time HIL 

simulation, the response of pure simulation on a model, model -in-the-loop (MIL) and the 

actual ECU responses, HIL, are compared with the same step of reference value designed. 

The comparison of the profiles is shown in Figure 7-15.  

 

(a)

(b)



 

223 
 

(c)

(d) 

Figure 7-15  Comparison of Simulation Results with HIL; (a) Oxygen Concentration in Intake; (b) 

Intake Pressure; (c) EGR Valve Position; (d) VGT Position 

 
In Figure 7-15, it is observed that with the step of the oxygen concentration set points, both 

MPC and PID controllers are able to track the step and settle at a steady value in the HIL 

platform. It is clearly shown that the response time of the MPC is shorter than the PID 

control as discussed in the previous section. Also, small lags of both measured values and 

actuator positions are found. There are two factors for this phenomenon. First, although the 

signal transmission between the hardware is rather fast, the time cost still has an influence 
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on the actuators’ behaviour. When the PC outputs signal, the ARM controller must receive 

the step of the signal behind one sample time (0.1 second in this case). The other factor lies 

in the computation of the ARM controller. Due to the requirement of on-line prediction and 

calculation of MPC based on an identified model, the difference of computation speed 

between an ARM controller and PC is non-negligible. This also explains why the deviation of 

the MPC is slightly larger than PID.  

 

 

Figure 7-16  Validation of MPC on HIL Platform 
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To verify the controller at the variety of set points, various step reference values of oxygen 

concentration and intake pressure are applied. As shown in Figure 7-16, the results on the 

HIL platform present good tracking of the set points in most steps. Al so, the deviation of 

simulation and HIL is acceptable, which proves the capability of real-time control on the 

developed HIL platform.  

 

7.5 Summary 

 

In this chapter, an advanced fast predictive approach to control the air system of a 

turbocharged diesel engine is developed and introduced. The state-space models are 

obtained by the system identification technique based on the dynamic engine model 

introduced in Chapter 6. Then, the linear model is utilized in an MPC controller as the model 

plant for the development of the control strategy. The primary advantage of the MPC lies in 

the capability of handling a highly coupled MIMO system. Two essential parameters, EGR 

valve and VGT position are properly controlled by the developed MPC approach. Compared 

with the conventional PID control method, the main control target of oxygen concentration 

in the MPC method has a rapid response with a maintained boost pressure profile; thereby 

showing a great potential for emission abatement. Furthermore, a comparison of  MPC 

approaches with different references is conducted between oxygen concentration oriented 

and EGR rate oriented. It is proved that both control strategies are able to follow the 

reference value without large errors and reach steady state within an acceptable period. 

Considering the advantage of the direct measurement of the oxygen concentration by a 

lambda sensor, the oxygen oriented control strategy is feasible and promising for real 

application in turbocharged diesel engines. 
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One HIL simulation platform is developed to present the real-time capability of the model-

based control strategy. The validation results on the HIL platform show good tracking of the 

set points and the difference between the pure model and actual ECU response is tiny and 

acceptable. It means that the developed MPC control can be implemented in real vehicle 

application.   
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8 CHAPTER 8  CONCLUSIONS AND FUTURE WORK 

 

 

The research work in this thesis has focused on the dynamic performance of a turbocharged 

diesel engine during transient operation and the study of an advanced fast predictive 

control approach with a novel real-time diesel engine model. In addition, the techniques for 

processing the experimental data from engine transient tests are developed to facilitate the 

investigation and model construction. The main conclusions of the thesis are presented, 

followed by suggestions for future work.  

 

8.1 Conclusions 

 

The conclusions in this study are divided into four parts and presented below, in the order 

that the chapters appear. 

 

Methodology for Engine Transient Analysis 

 

Measurement and processing methods of instantaneous data during engine transient tests 

have been developed. For combustion diagnostic data processing, four alternative 

automated filtering methods, namely FFT, low-pass, linear and zero-phase filtering are 

implemented on cycle-by-cycle in-cylinder pressure data obtained from gasoline engine and 

diesel engine transient tests. FFT filtering is the best suited method for gasoline engine tests 
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since it eliminates most pressure fluctuation and provides smooth RoHR profiles; whilst 

retaining the significant information of the engine combustion. In diesel engine tests, due to 

the multiple injection strategy, the noise and combustion instability cannot be recognized 

through FFT or low-pass filtering with the original sampling frequency. A moving average 

filter such as a zero-phase filter presents the best performance on balance, considering the 

advantages of its convenient implementation and preservation of information. 

 

The high-frequency instantaneous emission data has been properly processed through FFT 

filtering and cycle-based averaging. The filtered emission data presents high suitability  for 

data analysis of engine transient performances. A method to compensate for measurement 

facilities with a long response time has been developed and tested. Furthermore, the peak-

to-trough method has been successfully applied to the experimental data for time -

alignment. 

 

Engine Dynamic Performance during Transient Operation 

 

For the experimental study of engine dynamic performance, various transient experiments 

were designed and conducted. The effects of engine speed and EGR are investigated 

through load increase tests at a constant engine speed between 1000 rpm to 2000 rpm with 

different EGR calibrations. In addition, the sensitivity of dynamic performance to fuel 

properties is studied using alternative fuels. The main conclusions are summarized as 

follows: 
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1. During the load increase tests, apparent spikes of pressure drop are found, derived 

from the delay of the energy at the turbocharger to boost the intake pressure. 

Meanwhile, due to the slow response of the EGR flow, a serious deficiency of oxygen 

in the cylinder is observed, resulting in incomplete combustion and excessive HC and 

PM emissions. 

2. At higher engine speed, the faster growth of boost pressure with larger amplitude is 

present at the load transition, along with lower oxygen concentration and larger 

delays of the combustion phase, due to the increased exhaust gas energy. From the 

control point of view, the VGT position has a more significant influence at high engine 

speed. Also, the overshoot of HC emissions is more serious when the engine speed 

increases, but the value in steady state is close in different cases.  

3. As the EGR calibration is modified, spikes of pressure drop can be found in each case. 

Nevertheless, the low EGR valve position facilitates the faster rise of boost pressure 

and abates the drop of oxygen concentration at load transition. As regards the 

emission behaviour, the NOx-PM trade-off still exists within the transient period and 

an optimal control strategy is necessary to minimize both NOx and PM. 

4. When fuelled with alternative fuels, the trend of the emission behaviour is similar 

compared with conventional diesel. In conclusion, more NO emissions and lower HC 

emissions with a shorter recovery period were observed with the increase of the 

HVO ratio. Also, the total PN and PM of the HVO blends are less than diesel, up to 

40%; higher particulate concentrations in the nucleation mode and fewer particles 

which are of a smaller size are produced by the HVO blends during the  transient tests.  

 



 

230 
 

 

Control-oriented Diesel Engine Modelling 

 

A control-oriented turbocharged diesel engine model including the air path, combustion and 

dynamic emission behaviour has been developed. The detailed conclusions of the model are 

presented below: 

1. The developed model is able to simulate the main engine parameters such as the 

oxygen concentration, EGR mass flow, intake air mass flow, maximum in-cylinder 

temperature and IMEP. During transient operation, the fit of the EGR mass flow and 

oxygen concentration in the intake and exhaust manifold are 80%, 73% and 67% 

respectively. In addition, two important emissions of a diesel engine, NOx and 

particulate matter can be predicted with reasonable accuracy. 

2. The dynamic model is capable of capturing most peaks and troughs of important air 

path parameters during engine transient operation. The main trends of the 

instantaneous emission behaviour following the change of engine parameters can be 

reflected. 

3. Due to the simple structure, this model can run as a real -time simulator for engine 

control strategy development, reducing the experimental time and cost on real 

engine testing. Combined with the RCP facility, the model can be implemented in the 

ECU for vehicle application. 

4. The model has high genericity and can be modified to match different engine s. With 

the basic physics insight, it is easy to update the parameters and train the networks 

based on limited experimental data. 
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Model-based Fast Predictive Control 

 

The advanced fast predictive control approach of MPC is developed and implemented in the 

air system of a turbocharged diesel engine for EGR and VGT control. The approach mainly 

includes the state space model development through system identification; the controller 

structure build up; and the development of a control strategy based on the linear model 

plant. In the varied step cases, the MPC control strategy presents a good tracking 

performance of the reference value. Compared with the conventional PID control method, 

the main control target of the oxygen concentration in the MPC method has a rapid 

response with a maintained boost pressure profile; thereby showing a great potential for 

emission abatement. Furthermore, oxygen concentration oriented and EGR rate oriented 

MPC strategies are compared and this shows the feasibility of new oxygen concentration 

oriented control, considering the advantage of direct measurement of the oxygen 

concentration by a lambda sensor. 

 

One HIL simulation platform is developed to present the real -time capability of the model-

based control strategy. The validation results on the HIL  platform show good tracking of the 

set points and the difference between a pure model’s and the actual control unit’s response 

is tiny and acceptable. This means that the MPC control which was developed can be 

implemented in real vehicle application.   
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8.2 Future Work 

 

Supported by the JLR project “advanced control of diesel engines”, the test bench used in 

this study will be updated with a Pi Innovo Open ECU which provides the full capability of 

rapid prototype control including the modification of maps and embedded control strategies. 

Based on the research in this thesis, some recommendations for future work are outlined.  

 

Identification of Engine Air Path Transient Performance  

 

Restricted by the conventional ECU, it is noticed that the original control s trategy and 

calibration have inevitable influence on the investigation of engine transient performance. 

With the advanced Open ECU, the control parameters of interest can be easily manipulated 

and meanwhile the remaining parameters are well maintained. Due to the complicated and 

inter-coupled air path of  a diesel engine, the proper control of the actuators is rather 

essential and the detailed dynamic characteristics can be identified in this approach. As a 

result, researchers are able to develop more accurate and reliable engine models. 

 

Integration of Air Path and Fuel Injection System Control Strategies 

 

The MPC approach has been successfully applied to a diesel engine air path control in this 

study. It would be interesting to develop the control strategy for the fuel injection system. 

Currently, the fuel injection in diesel engines is feedforward controlled and there is great 

potential to improve the combustion efficiency with an advanced strategy. In addition, the 

control of the air path and fuel injection system can be integrated for further investigation.  
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Development of Fast MPC Approach 

 

As the engine management becomes increasingly complicated, there is always a need to 

improve the computation speed of models and controllers. Based on the standard MPC 

approach developed in this thesis, the parameters in the MPC controller can be modified 

and optimized to achieve a faster speed. Moreover, it is suggested that some alternative 

MPC approaches such as explicit MPC or nonlinear MPC can be tested. 

 

On-board Implementation of MPC Control 

 

With the Open ECU, it is achievable to implement the developed control strategy on a real 

engine through the complier. As a result, the model-based controller can not only be tuned 

based on off-line experimental data and an engine model, but also be optimized with the 

on-board realization. In this method, the engine control environment would be close to the 

real application and further validation could be conducted for the MPC approach.  
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9 APPENDIX 

 

 

Experimental Setup for Gasoline Engine Test Bench 

 

Engine 

 

The gasoline engine used as reference for engine transient analysis was a Jaguar SI/HCCI 

Dual Mode V6 Research gasoline Engine.  

Table A1  Technical Data of the Gasoline Engine 

Engine Type Jaguar V6 GDI 

Displacement Volume 3.0 Litres 

Bore 89 mm  

Stroke 79.5 mm  

Rod 138mm 

Fuel ULG95 

Compression ratio 11.3 

Max Valve Lift (SI/HCCI) 9/3 mm 

Valve Duration (SI/HCCI) 260/160 CAD 

Intake valve timing Variable 

Exhaust valve timing Variable 

Air/Fuel ratio Variable 

 

The engine was operated on SI mode in these experiments.  
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dSPACE Engine Control System 

 

The dSPACE real-time control system was developed by dSPACE Ltd. The processor of the 

dSPACE hardware has very high computational capability and is assembled with many I/O 

supports which help the customers with configuration depending on their needs. 

 

 

Figure A1  Schematic Diagram of the Gasoline Test Bench
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