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Abstract

Control systems that are subject to constraints due to physical limitations, hardware
protection, or safety considerations have led to challenging control problems that have
piqued the interest of control practitioners and theoreticians for many decades. In
general, the design of constraint management schemes must meet several stringent
requirements, for example: low computational burden, performance, recovery mech-
anisms from infeasibility conditions, robustness, and formulation simplicity. These
requirements have been particularly difficult to meet for the following three classes
of systems: stochastic systems, linear systems driven by unmodeled disturbances,
and nonlinear systems. Hence, in this work, we develop three constraint manage-
ment schemes, based on Reference Governor (RG), for these classes of systems. The
first scheme, which is referred to as Stochastic RG, leverages the ideas of chance
constraints to construct a Stochastic Robustly Invariant Maximal Output Admissi-
ble set (SR-MAS) in order to enforce constraints on stochastic systems. The second
scheme, which is called Recovery RG (RRG), addresses the problem of recovery from
infeasibility conditions by implementing a disturbance observer to update the MAS,
and hence recover from constraint violations due to unmodeled disturbances. The
third method addresses the problem of constraint satisfaction on nonlinear systems
by decomposing the design of the constraint management strategy into two parts: en-
forcement at steady-state, and during transient. The former is achieved by using the
forward and inverse steady-state characterization of the nonlinear system. The latter
is achieved by implementing an RG-based approach, which employs a novel Robust
Output Admissible Set (ROAS) that is computed using data obtained from the non-
linear system. Added to this, this dissertation includes a detailed literature review
of existing constraint management schemes to compare and highlight advantages and
disadvantages between them. Finally, all this study is supported by a systematic
analysis, as well as numerical and experimental validation of the closed-loop systems
performance on vehicle roll-over avoidance, turbocharged engine control, and inverted
pendulum control problems.
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Chapter 1

Introduction
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In control system applications, it is a common practice to design controllers that

handle tracking, disturbance rejection, and closed-loop stability. However, it happens

often that constraint enforcement is not rigorously considered in the control design

process. Nevertheless, as dynamic systems become downsized and performance is

maximized to its physical boundaries, it is exceedingly important for the control sys-

tems to be cognizant of the constraints. Constrained control schemes are designed

with the intention to preserve the integrity of hardware components and user’s safety,

while keeping the desirable closed-loop transient performance. To address the grow-

ing necessity of these schemes, control practitioners and theoreticians have explored

techniques that use steady-state clips on control commands to enforce constraints,

methods that address both tracking and constraint management, and schemes that

leverage set theoretic approaches to modify the control reference under certain cir-

cumstances to enforce constraints. The latter is the case of the reference governor,

which is an add-on mechanism that modifies the reference signal to closed-loop sys-

tems only if it predicts constraint violations, otherwise, the reference is not changed.

This dissertation presents the work that has been developed around RG to extend its

applicability and to overcome its shortcomings.

1.1 Motivation

The work developed in this dissertation was motivated by the necessity to study a

novel model-based control strategy with real-time capabilities for constrained sys-

tems in automotive applications, specifically turbocharged engines. Nevertheless, the

schemes and theory presented in this dissertation are not only applicable to these
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applications.

Automotive systems are becoming increasingly complex due to ever-stringent fuel

economy, emissions, and performance requirements. To meet these requirements,

most systems are pushed to operate closer to their physical constraints, making con-

trol of these systems a challenging task. For instance, in aggressively downsized tur-

bocharged engines, the engine is forced to operate close to the turbocharger hardware

limits, such as the turbocharger speed limit and the compressor outlet temperature

limit. If these limits are violated, the hardware integrity may be compromised. Con-

ventional hardware-protection strategies impose limits on the desired boost pressure

that are determined based on the steady-state relationships between pressure, tem-

perature and turbocharger speed. Although effective, this static approach does not

take into account system dynamics. Therefore, offsets often must be included in the

static limits to avoid constraint violation during transients. These offsets reduce max-

imum achievable boost pressure and therefore engine torque, potentially impacting

driveability and performance

The existing control literature offers various advanced state-of-the-art constraint-

management approaches. One common approach is founded on Lyapunov-based bar-

rier functions, wherein a barrier function is defined and the system is controlled away

from this barrier. A disadvantage of this approach is that it may be difficult to an-

alyze and synthesize. An alternative approach is Model Predictive Control (MPC),

wherein a model of the system is used to compute an optimal-control law to steer the

system away from the constraints. MPC is particularly attractive because it can per-

form both tracking and constraint management. However, in the automotive sector,

it can be challenging to replace legacy closed-loop engine controllers unless the al-

3



ternatives simultaneously minimize controller design effort, computational overhead,

and calibration effort. Also, MPC may not be amenable to real-time implementation

due to large computational overhead.

Another constraint-management approach is the Reference Governor (RG), which

uses a model of the system to modify the reference command to the closed-loop sys-

tem when constraint violation is predicted. In contrast to barrier or model predictive

approaches, RG is simple to develop and analyze and has a low computational com-

plexity. Furthermore, RG is an add-on mechanism to existing control strategies and

can be designed independently of the tracking controller. Despite the above attrac-

tive features, RG has a few shortcomings. First, many practical systems are affected

by stochastic noise. In the context of RG, these disturbances have traditionally been

treated by introducing conservative margins by considering the worst case disturbance

realizations and hence leading to conservative solutions. Second, if the constraints

are violated (for example, due to larger than expected or unmodeled disturbances),

the RG algorithm may get "stuck", i.e., permanently stay in infeasibility condition.

Currently, there is no theoretical development that would steer the system back from

constraint violation. Third, the RG cannot efficiently and effectively handle system

nonlinearities, which are inherent to almost all real systems.

The reference governor is the main focus of this dissertation, and the contributions,

presented here, address the problems mentioned above. By contributing to the RG

literature, this dissertation provides practical tools and a theoretical framework for

constraint management of a broad class of dynamical systems.
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1.2 Problem Statement

For the sake of clarity, the problem statement for each one of the constraint manage-

ment schemes presented in this work is explained separately.

1.2.1 Constraint Enforcement in Stochastic Lin-

ear Systems

Predictive control and constraint management have become important topics in the

past few decades. One of the commonly used methods, which has shown an increasing

acceptance by the industry, is Model Predictive Control (MPC) [5]. In recent years,

in addition to deterministic approaches, several probabilistic approaches to MPC

have also been developed. Examples are stochastic MPC for controlling average

number of constraint violations [6], probabilistic MPC [7], and scenario generation

MPC [8]. However, these probabilistic approaches may be numerically expensive and

not amenable to real-time implementation for systems with fast dynamics controlled

by slow processors. Furthermore, properties like stability and recursive feasibility are

still difficult to ascertain.

A computationally attractive alternative to MPC is the Reference Governor (RG)

[9]. The RG, initially proposed for linear systems in continuous-time [10] and then

extended to, and now mostly used in, discrete-time [11], is an add-on scheme for

enforcing pointwise-in-time state and control constraints by modifying, whenever re-

quired, the reference to a well-designed stable closed-loop system. A block diagram of

RG is shown in Fig. 1.1. To compute v(t), RG employs the so-called maximal output

5



admissible set (MAS) [12], defined as the set of all the initial inputs and states that

ensure constraint satisfaction for all times. To compute v(t), the RG solves a simple

linear program based on MAS at every timestep.

Reference
Governor

Closed-Loop
Plant

r(t) v(t) y(t)

x(t)

Figure 1.1: Reference governor block diagram, where y(t) is the constrained output, r(t)
is the reference, v(t) is the governed reference, and x(t) is the system state (measured or
estimated).

In the literature of RG, several works have been proposed in order to tackle un-

certainties on model parameters [13, 14] and uncertainties from exogenous distur-

bances [11, 15–17]. Unknown disturbances are typically assumed to belong to spec-

ified compact sets. The MAS is then designed based on the worst case scenario of

unrealized disturbances, which leads to a conservative margin that guarantees con-

straints satisfaction. However, the worst case scenario is highly unlikely to happen

in practice, and hence exceedingly conservative control signals (i.e., v(t) in Fig. 1.1)

are computed based on this approach. The introduction of probabilistic constraints,

also known as chance constraints, alleviates this conservatism as will be explained in

more detail in Chapter 3.

Chance constraints have been explored by stochastic MPC [18–20] with some

application examples, such as water control [21], power systems [22], and tempera-

ture control [23]. Also, works that explore the application of chance constraints to

stochastic MAS have been presented in [24,25]. For RG applications, however, chance

constraints have received little attention. The work presented in [26] studies the im-

plementation of chance constraints for RG application, by introducing confidence

6



ellipsoid sets that guarantee probabilistic invariance of a stochastic MAS.

1.2.1.1 Stochastic RG: Problem Statement

The first problem tackled in this dissertation is chance-constraint-based constraint

management of linear systems affected by exogenous stochastic disturbances using

the RG framework. In order to have a practical solution, the scheme must have

similar solves-times as standard RG.

As discussed previously, this is an open problem for stochastic systems, and there

is still a lack of solutions within the context of RG that can address it. Chapter

3 tackles this problem and proposes a computationally attractive solution that is

finitely determined and positively invariant.

1.2.2 RG for Linear Systems and Recovery From

Infeasibility Conditions

The problem of keeping constrained systems under feasible operational conditions,

while guaranteeing closed-loop tracking performance, has been studied under var-

ious schemes in control theory. One path is to solve the tracking and constraint

management problems simultaneously under the Model Predictive Control (MPC)

framework [27–31]. Even though this technique has been widely explored in the liter-

ature, it tends to be computationally demanding, limiting its applicability, especially

for systems with fast dynamics and/or high dimensionality. In addition, theoretical

guarantees such as stability are difficult to obtain in practice. Another path, followed

by practitioners who want to design the tracking and constraint management por-

7



tions modularly, is to implement an add-on constraint management mechanism to

a closed-loop system with a legacy tracking controller. Examples of the latter are:

anti-windup compensation [32], Lyapunov controllers with barrier functions [33], as

well as the Command Governor (CG) [9], and the Reference Governor (RG) [34].

For systems that are affected by unmeasured exogenous disturbances, an RG may

suffer from feasibility problems that can produce constraint violation. In such situa-

tions, there may be no feasible v(t) (see Fig. 1.1) to recover the output from constraint

violation.

In the literature, this recovery problem has received little attention. Relevant

works, such as the one presented in [3], show different RG and CG solutions to

tackle the infeasibility problem to compute the control signal v(t). The most closely-

related solution to the recovery problem is the command contraction introduced in [3],

which is based on contracting the reference in order to avoid constraint violations.

However, undesirable operating modes are induced by plant/model mismatch due to

nonlinearities.

Another related publication that studies infeasibility issues for the RG is found

in [13], where a robust nonlinear RG is proposed for a fuel-cell system. The authors

evaluate the case of parametric uncertainties that may push an RG to infeasibility.

They overcome the infeasibility problem by redefining the constraint set based on the

nominal plant model and sensitivity functions that consider parametric uncertain-

ties. This solution requires extra computation of the sensitivity functions obtained

from the linearization of the plant. A similar work is presented in [35], where a fast

RG is proposed. The latter implements a step disturbance observer and a nonlin-

ear/linear compensator. Also, a reduced-order load governor is studied in order to
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minimize complexity. The results obtained in [35] show that constraint violations

were minimized under plant/model mismatch due to nonlinearities.

1.2.2.1 Recovery RG: Problem Statement

The second problem tackled in this dissertation is the infeasibility conditions that may

lead to constraints violations, which arise in standard RG when the constrained linear

system is affected by unmodeled unknown disturbances. Within the RG framework,

the solution must be capable of finding a solution that recovers the constrained output

from constraint violations.

Infeasibility conditions in RG can produce undesirable closed-loop responses that

can lead to unsafe operating conditions. Therefore, proposing a solution that can

address this problem and still maintains the formulation simplicity and properties of

RG is the main goal of the scheme presented in Chapter 4.

1.2.3 Constraint Enforcement in Nonlinear Sys-

tems

Constraint management of nonlinear systems has been a challenging problem for

control applications, since it needs to handle a compound of non-trivial requirements,

such as: formulation complexity, closed-loop stability, real-time implementability,

and robustness, to mention a few. Consider, for example, the problem of constraint

handling in turbocharged gasoline engines. In this problem, constraints are imposed

on the gas temperature at the compressor outlet, as well as the rotational speed of

the turbocharger [9, 36, 37]. Imposing these constraints is, however, a challenging

9



task due to the highly nonlinear nature of the engine. In general, existing constraint

management schemes are either conservative (for example, due to the use of static

clips on the control input), computationally demanding (for example, due to the use

of a Nonlinear Model Predictive Control, i.e., NMPC [38]), or require Lyapunov or

Barrier functions that may be difficult to obtain in practice [33,39,40].

An approach to handle both constraints and tracking for nonlinear systems is

NMPC. However, NMPC may not be feasible for most practical applications due to

its complexity and computational burden. An alternative approach to NMPC is to

use a set of linear MPC controllers scheduled in real-time based on the operating

conditions (e.g., see [41] for an engine control application). However, note that since

MPC is not an add-on scheme, an approach like [41] may require the redesign of

inner-loop, legacy controllers. On the other hand, there are approaches that handle

tracking and constraint management separately. The former is handled by a primary

controller (e.g. PID, LQR, etc.), and the latter is tackled by the Reference Governor

(RG) [9,34].

Recently, the standard RG formulation has been extended to handle constraint

management of nonlinear systems. Some of these schemes still rely on linear prediction

models, for example the work in [3, 35, 42–45]. However, these may not guarantee

recursive feasibility [35,42]; demand more significant computational burden depending

on the system order, number of inputs, and computational power available for real-

time implementation [3,43]; may lead to a conservative steady-state response [44]; or

may not enforce the constraints for all times [45].

Other references have explored the use of RG schemes without linear prediction

models, and rely on Lyapunov-based methods [46,47]. The most recent development
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for this type of schemes is Explicit RG (ERG) [48–52], which manipulates the input to

a closed loop system continuously so the states always belongs to a safe invariant set.

For these Lyapunov-based schemes, the output admissible set is characterized by a

positively invariant ellipsoid, which may result in conservative solutions depending on

the application. Furthermore, obtaining a global Lyapunov function may be difficult

in practice.

1.2.3.1 RG for Nonlinear Systems: Problem Statement

The third problem that is tackled in this dissertation is constraint management of

nonlinear system using RG-based formulation. The solution must handle plant model

mismatch uncertainty and enforce the constraints. Also, it must be computationally

attractive, without introducing excessive steady-state margins, nor extremely conser-

vative solutions during transients.

As discussed previously, current schemes in the literature propose solutions that

are based on Lyapunov approaches, which may be overly conservative; and other

methods use linear models in their formulation but do not ensure constraint enforce-

ment for all times. Thus, this is still an open problem that is tackled in Chapter

5.

1.3 Original Contributions and Disser-

tation Outline

This dissertation contributes with the theoretical development of new RG-based

schemes, and practical and numerical examples of their implementation. Most of
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the content presented in this dissertation has been published or submitted to scien-

tific journals [53] or conference proceedings [45, 54]. Related developments that are

not included in this dissertation have been submitted to journals [55] and confer-

ences [56, 57]. The high level contributions of this work are:

• This work contributes to the field of set-theoretic constraint management with

focus a on discrete-time dynamical systems. Specifically, we develop novel RG

schemes that can handle the problems mentioned in Section 1.2. By contributing

to the literature with novel schemes in the RG framework, this dissertation

provides practical tools and a theoretical framework for constraint management

of a wider class of dynamical systems.

• Even though RG has been in the literature for at least three decades, more

work needs to be done in order to increase its industry acceptance. This work

contributes on this avenue by proposing efficient algorithms and theoretical

guarantees that can lead RG to have a major influence in the industrial scene.

The individual contributions per chapter are below.

Chapter 2 reviews, in more detail, different constraint management schemes that

have been developed in the literature. Also, this chapter discusses Model Predictive

Control (MPC) to highlight main differences with reference governors schemes. The

contributions of Chapter 2 are:

• Provide a comprehensive literature review of different constraint management

techniques.

• A technical explanation of RG and the different extensions of it.
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• A brief introduction to MPC and the main differences with respect to RG.

Chapter 3 [54] presents a stochastic RG that leverages a Stochastic Robustly

invariant MAS (SR-MAS). In order to construct a SR-MAS, we extend the earlier

ideas in the literature to Lyapunov stable systems with output constraints. It is

shown that the SR-MAS is less conservative than the deterministic approach. The

main contributions of Chapter 3 are:

• Analysis of the structural properties of MAS;

• Development of a SR-MAS for Lyapunov stable systems with constrained out-

puts.

• Development of an inner approximation of the SR-MAS, that can be computed

in finite time, and an algorithm to perform this computation.

• Analysis of the effects of feedthrough between constrained output and control

input and/or disturbance on the SR-MAS.

• Formulation of a stochastic RG that offers a less conservative response compared

to standard RG theory.

Chapter 4 [45] presents a novel RG formulation, named as Recovery RG (RRG)

applied to linear systems affected by exogenous disturbances, specifically those large

enough to cause constraint violation. This formulation is based on a set-theoretic

approach which includes external disturbances estimation within a new RG. The idea

is to update the MAS and compute a constraint-admissible input that recovers the

system from constraint violation at steady-state. The main contributions of Chapter

4 are:
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• Formulation of the RRG scheme that can recover from constraint violation when

unknown exogenous disturbances affect a system;

• Analysis of the recursive feasibility of the RRG;

• Theoretical guarantees of recovery from constraint violation by applying the

RRG scheme;

• Comparison between the standard RG and the RRG applied to a turbocharged

gasoline engine model.

Chapter 5 [53] presents a scheme to enforce constraints on nonlinear systems.

The scheme decomposes the design of the constraint management strategy into two

parts: enforcement at steady-state, and during transient. The former is achieved by

using the forward and inverse steady-state characterization of the nonlinear system.

The latter is achieved by implementing an RG-based approach, which employs a

novel Robust Output Admissible Set (ROAS), which is obtained using data from the

nonlinear system. The main contributions of this chapter are:

• A novel RG scheme for constraint management of nonlinear dynamical systems,

which maintains desirable properties of standard RG such as recursive feasibility,

formulation simplicity, and closed-loop stability. The inclusion of the forward

and inverse steady state map for constraint management, as well as the ROAS

for transient satisfaction, are also novel contributions.

• Theory, as well as methods and algorithms, to construct and tune the ROAS

based on experimental data and linear systems theory.
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• Extension of the theory from single-output to multi-output nonlinear systems,

as well as systems whose steady-state characterization may vary slowly with

time, which arise in practical applications.

• Validation of the scheme using simulations and experimentation on a turbocharged

engine.

Chapter 6 shows two practical simulation examples of nonlinear systems and the

implementation of TR-RG to them. The first system is an example of a vehicle

dynamics control application, where the idea is to enforce rollover stability by imple-

menting TR-RG. The second example is about an inverted pendulum, where TR-RG

is implemented to enforce constraints on the rate of change of the arm that maintains

the pendulum in the upright position. The main contributions of this chapter are:

• Study the versatility of TR-RG when a system does not satisfy all the assump-

tions for the implementation of TR-RG.

• Test the robustness of TR-RG for the cases when there are multiple outputs.

Chapter 7 presents the concluding remarks and observations of the work presented

in this dissertation. This chapter also shows the future works and possible extensions

of the theory presented here.

1.4 Statement of Impact

The development of new constraint management techniques for stochastic, linear,

and nonlinear systems has relevant implications on both theoretical and practical
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fronts. The former is seen for instance, in the stochastic RG, where the concept of

chance constraint is used to build a SR-MAS, which is positively invariant and finitely

determined. By developing this, we are extending the applicability of the theory of

RG to constraint management of stochastic systems. Also, by introducing the new

concept of ROAS, which can be constructed based on data, we are incorporating a new

form to robustify a constraint management technique based on linear system theory

that can be applied to nonlinear systems. On the practical aspect, by proposing

these new schemes that tackle issues like conservativeness of solutions, infeasibility

conditions, and robustness against plant/model mismatch; and providing algorithms

for their implementation, we are offering new tools to robustly design stochastic,

linear, and nonlinear closed-loop systems with constraint awareness capabilities and

their use in an industrial environment.

Throughout the work developed for this dissertation, we were able to share with

the control community, through journals and international conferences, our technical

contributions in the field of constraint management and reference governors. This

dissemination of knowledge has the intention of producing a significant impact on the

community interested in constraint awareness and set-theoretic approaches. Also, as

all new theories, we are on the shoulders giants, hence we are contributing to build

knowledge on top of the well-built-foundations established by great minds in the field

of constrained control.
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1.5 Notation

The following notations are used throughout this dissertation. Z+ denotes the set of

all non-negative integers. The set Zt denotes all non-negative integers up to t, where

t is a positive integer. Let V, U ⊂ Rn. Then, V ∼ U := {z ∈ Rn : z + u ∈ V, ∀u ∈ U}

is the Pontryagin-subtraction (P-subtraction). The interested reader can find more

details about the P-subtraction in [16]. The identity matrix is denoted by I. The

ball with radius r centered at c is denoted as Br(c) = {z : ‖z − c‖ ≤ r}. The interior

of the set V is denoted as int(V ). The zero matrix is denoted by 0n×n. The variable

t ∈ Z+ is the discrete time. The inequality Ax ≤ b is component wise. Throughout

the dissertation, x is used to denote a system state, output is denoted by y, u is used

for the control input command, and w is used to denote disturbances. Capital letters

are used to denote matrices, and lower case are for scalars and vectors.
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Chapter 2

Review of Constraint Management

Schemes
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2.1 Literature Review

Control engineers need to gather and analyze a significant amount of data (e.g., input

and output signals) in order to deliver a control law capable of satisfying stability,

tracking performance and disturbance rejection properties. This may sometimes be

a difficult task to accomplish. However, thanks to the advances in control theory,

more reliable control laws can be designed for a broad range of practical applications

nowadays. In addition to the properties mentioned before, constraint management is

quite important for all real applications, i.e., to have control laws that can guarantee

performance without violating physical and safety constraints under different operat-

ing conditions. Since the majority of control systems are exposed to constraints and

performance is stretched to its physical limitations, it becomes highly important to

develop mechanisms that enforce constraints while preserving desirable characteristics

of the transient response.

This chapter gathers some of the most recent works related to constraint man-

agement schemes. The main focus is around Reference Governor. However, other

strategies are analyzed in order to understand strengths and weaknesses.

2.1.1 Reference Governors

Reference governor was first proposed by Kapasouries in 1988 [58]. Since then, sev-

eral governor techniques have been proposed. The list includes and is not limited to:

scalar and vector reference governors, command governors, extended command gover-

nors, decoupled reference governor, recovery reference governor, stochastic reference

governor, incremental reference governors, feedforward reference governors, network
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reference governors, reduced order reference governors, explicit reference governor,

generalized reference governor, distributed reference governors, parameter governors,

and virtual state governors. Even though there are significant variations in terms

of the formulation and implementation of these techniques, the main idea is to pro-

tect the system from any possible constraint violation and try to preserve, whenever

possible, the response of the closed loop system designed by conventional control tech-

niques. One form to categorize the different governor schemes is by dividing them as

governors methods for linear and nonlinear systems.

2.1.1.1 Governor Schemes for Linear Systems

2.1.1.1.1 Review of Maximal Output Admissible Sets

This section reviews the theory presented in [11,12]. Consider the closed-loop discrete-

time linear time-invariant (LTI) system given by:

x(t+ 1) = Ax(t) +Bv(t)

y(t) = Cx(t) +Dv(t),
(2.1)

where x(t) ∈ Rn is the state vector, v(t) ∈ Rm is the input, and y(t) ∈ Rp is

the constrained output vector. Over the latter, the following constraint is imposed:

y(t) ∈ Y , ∀t ∈ Z+, where Y ⊂ Rp is a specified compact polytope with the origin in

its interior. Similar to [11,12,15] the following assumptions are made:

A. 2.1.1. System (2.1) reflects the combined closed-loop dynamics of the plant with a

stabilizing controller. Consequently, the system is asymptotically stable (i.e. |λi(A)| <

1, i = 1, ..., n). Furthermore, it is assumed that the pair (C,A) is observable.
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The common feature of most reference governor schemes proposed in the litera-

ture is that they compute at each time instant a command v(t) such that, if it is

constantly applied from the time instant t onward, the ensuing output will always

satisfy the constraints. This idea is used to create what is known as the Maximal

Output Admissible Set.

2.1.1.1.1.1 Maximal Output Admissible Sets (MAS)

The MAS, denoted by O∞, is defined as the set of all initial states and inputs, such

that the output constraints are satisfied for all future times. To characterize the MAS

for system (2.1), the following assumption is made:

A. 2.1.2. In the construction of the MAS for (2.1), the control signal v(t) is assumed

to be constant for all times, i.e., v(t+ 1) = v(t),∀t ∈ Z+.

Using A.2.1.2, y(t) is expressed as a function of the initial state, x0, and the

constant input, v(t) = v0:

y(t) = CAtx0 + C(I − A)−1(I − At)Bv0 +Dv0. (2.2)

Based on (2.2), the MAS can be characterized as:

O∞ := {(x0, v0) ∈ Rn+m : y(t) ∈ Y, ∀t ∈ Z+} (2.3)

where y(t) is given in (2.2). The set O∞ defined in (2.3) is characterized by an

infinite number of halfspace intersections, which is impossible to compute in finite

time. However, a close inner approximation of O∞, which can be computed in finite

time, is readily available. To show this, the following set of steady-state admissible
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inputs is introduced:

V̄ := {v0 ∈ Rm : H0v0 ∈ Yss}. (2.4)

where H0 = C(I − A)−1B +D is the DC gain of system (2.1) from v(t) to y(t), and

Yss := (1− ε)Y for some 0 < ε� 1. Using V̄ , an inner approximations to O∞ can be

found, this is:

Ō∞ := {(x0, v0) ∈ Rn+m : H0vv0 ∈ Yss, y(t) ∈ Y, ∀t ∈ Z+}. (2.5)

Definition 2.1.1. The set Ō∞ is finitely determined if there exists t∗ ∈ Z+ such that

Ōt+1 = Ōt, ∀t ≥ t∗. This also implies that Ō∞ = Ōt∗ [12]. Where Ōt∗ is given by:

Ōt∗ := {(x0, v0) ∈ Rn+m : H0v0 ∈ Yss, y(j) ∈ Y, j = 1, . . . , t∗}.

For system (2.1) satisfying assumption A.2.1.1 and with the pair (C,A) observable.

Then, Ō∞ is finitely determined [59].

It was proved in [60] that properties of O∞ are inherited from properties of Y . If

Y is convex, closed, symmetric, and 0 ∈ int(Y ) then O∞ is convex, closed, symmetric,

and 0 ∈ int(O∞). Also, it was presented in [60] that if A is Schur, [A,C] observable,

and Y compact, then the maximal output admissible set O∞ is finitely determined.

This last result has contributed enormously to the implementation of the reference

governor, since it allows a finite computation of the maximal output admissible set

(2.5).

For the discussion that follows, the constraint set Y is assumed to be a convex

polytope, defined as :
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Y := {Sy ≤ s} (2.6)

Based on (2.6) we re-define Ō∞ as:

Ō∞ = {(v, x) : Hxx+Hvv ≤ h} , (2.7)

where the first rows of Hx, Hv, and h describe the steady state characteristics of the

response (with the ε margin) and the remaining rows are given by SCAt, S(C(I −

At)(I−A)−1B+D), and s, respectively, where s is the constraint or constraints that

need to be satisfied. With some abuse of notation, in the rest of the document O∞

will be used to refer to (2.5) or (2.7).

Before getting into the details of the different reference governors, we first explain

how a MAS is computed when a LTI is affected by disturbances.

2.1.1.1.1.2 MAS for Systems Affected by Additive Disturbances

Consider the discrete-time LTI system given by:

x(t+ 1) = Ax(t) +Bvv(t) +Bww(t)

y(t) = Cx(t) +Dvv(t) +Dww(t)
(2.8)

where in addition to the conditions of (2.1), the disturbance input satisfies w(t) ∈ W ,

whereW ⊂ Rd is also a compact polytope with the origin in its interior. System (2.8)

satisfies assumptions A.2.1.1, and for the construction of the MAS A.2.1.2 is satisfied.

Beside, the following assumption is imposed:

A. 2.1.3. The disturbances w(0), w(1), . . . are assumed to be independent and identi-

cally distributed (i.i.d) random vectors with a probability density function fw : W 7→
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R+ and
∫
W fw(w)dw = 1.

In order to define the MAS for system (2.8), we write y(t) as a function of the initial

state, x0, and the constant input, v(t) = v0, which is possible thanks to assumption

(A.2.1.2):
y(t) = CAtx0 + C(I − A)−1(I − At)Bvv0 +Dvv0

+ C
t−1∑
j=0

At−j−1Bww(j) +Dww(t)
(2.9)

We now define the sets Yt using the following recursion:

Y0 = Y ∼ DwW

Yt+1 = Yt ∼ CAtBwW

(2.10)

P-subtraction allows us to rewrite the requirement y(t) ∈ Y, ∀{w(j)} ∈ W, j = 0, . . . , t

as:

CAtx0 + (C(I − A)−1(I − At)Bv +Dv)v0 ∈ Yt

Now, consider the set Ot given below, which defines the set of all initial states and

inputs such that the output constraints are satisfied from time 0 to time t:

Ot :=
t⋂
i=0

Pi (2.11)

where Pi are defined by:

P0 := {(x0, v0) ∈ Rn+m, Cx0 +Dvv0 ∈ Y0},

Pi := {(x0, v0) ∈ Rn+m,

CAix0 + (C(I −A)−1(I −Ai)Bv +Dv)v0 ∈ Yi}

(2.12)
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The MAS, denoted by O∞, is the set of all safe initial conditions and inputs, such

that for any given disturbance, the output constraints are satisfied for all times. The

set O∞ is defined as the limit of Ot:

O∞ :=
∞⋂
i=0

Pi (2.13)

Since Y and W are polytopic sets (i.e., defined by an intersection of halfspaces), each

Ot is also polytopic. Thus, the set O∞ defined in (2.13) requires an infinite number

of halfspace intersections, similar to (2.3). Hence, a close inner approximation of the

set O∞ is used. To show this, introduce the set of all steady-state admissible inputs:

V := {v0 ∈ Rm : H0v0 ∈ Yss} (2.14)

where H0 = C(I − A)−1Bv + Dv is the DC gain of system (2.8), and Yss represents

the limit of Yt, i.e., Yss = limt→∞ Yt. Note that Yss requires infinite computations;

therefore, we shrink this set by introducing Ȳ := (1 − ε)Yt for some 0 < ε � 1 and

large t, and thus define an inner approximation of V :

V̄ := {v0 ∈ Rm : H0v0 ∈ Ȳ } (2.15)
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Using V̄ , close approximations to Pt and Ot can be found:

Ōt :=
t⋂
i=0

P̄i

P̄i := Pi ∩ (V̄ × Rn)

= {(x0, v0) ∈ Rn+m : H0v0 ∈ Ȳ ,

CAix0 + (C(I −A)−1(I −Ai)Bv +Dv)v0 ∈ Yi}

(2.16)

Finally, the set Ō∞ is defined as the limit of Ōt, and is an inner approximation of O∞.

Theorem 2.1.1. Suppose system (2.8) is asymptotically stable, with the pair (C,A) ob-

servable and 0 ∈ int(Ȳ ). Then, Ō∞ is finitely determined.

For proof, see [16].

2.1.1.1.2 Scalar Reference Governor (RG)

RG was first proposed in the continuous time framework, however a natural extension to the

discrete time domain has been widely adopted due to its mathematical simplicity. In this

last framework, the static RG was first introduced by Gilbert in 1994 [61]. The command

v(t) (see Fig. 1.1) is modified by:

v(t) = κr(t)

where the parameter κ ∈ [0, 1] is maximized subject to (x(t), v(t)) ∈ O∞. The static RG

has the disadvantage of generating oscillations on the command signal v(t) when constraint

violations are detected. Therefore, the dynamic RG substituted the static approach and the

first works of this new scheme appeared in 1995 proposed by Bemporad [62], Gilbert [11]

and Kolmanovsky [17].

From (2.2) and (2.5), it is possible to see that O∞ contains the predictions of the

output based on the current states and the input. Based on the predictions, the controller
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can anticipate if a constraint may be violated and then take corrective actions over the

reference. The idea behind RG is to calculate v(t) based on Ō∞ by implementing the

following dynamic equation:

v(t) = v(t− 1) + κ(r(t)− v(t− 1)) (2.17)

At each timestep, the RG solves the following linear programming problem:

maximize
κ∈[0,1]

κ

s.t. (x0, v0) ∈ Ō∞

v0 = v(t− 1) + κ(r(t)− v(t− 1))

x0 = x(t)

(2.18)

where κ is the factor that manipulates v(t) along the line defined between v(t−1) and r(t).

Note that κ = 0 means that in order to keep the system safe, v(t) = v(t − 1), and κ = 1

means that no violation was detected and, therefore, v(t) = r(t). A graphical representation

of how RG provides a solution that satisfy the constraints is presented in Fig. 2.1.

Figure 2.1: RG and O∞.
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2.1.1.1.3 Vector Reference Governor (VRG)

Note that (2.17) and (2.18) can be implemented to a Multi-Inputs Multi-Outputs (MIMO)

system. However, since (2.18) solves for one decision variable, κ, this implies that the

solution will prioritize the input with higher threat of constraint violation, i.e., RG will

lower the input value to avoid constraint violation. Hence, the other input channels may

be affected and performance may be deteriorated. When this problem was identified, the

Vector Reference Governor (VRG) was proposed to solve it. In VRG a diagonal matrix

K is used in order to command each input-output channel independently [11]. The VRG

formulation is defined as:

v(t) = v(t− 1) + K(r(t)− v(t− 1)) (2.19)

where K = diag(κi(t)). The values of κi(t), i = 1, ...,m, are chosen to minimize:

minimize
κi∈[0,1]

‖v(t)− r(t)‖

s.t. v(t) = v(t− 1) +K(r(t)− v(t− 1))

(x(t), v(t)) ∈ O∞

(2.20)

2.1.1.1.4 Command Governor (CG)

CG tackles the problem by computing v(t) directly, which is the main different with respect

to VRG. This technique was proposed by Bemporad [63] and Casavola [64] and it computes

v(t) by solving at each time step the quadratic program:

minimize
v

‖v(t)− r(t)‖2Q

s.t. (x(t), v(t)) ∈ Ō∞
(2.21)

with Q > 0. One of the advantages of this scheme is that it offers the possibility to have
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solutions that satisfy, |v(t)| < |v(t − 1)|, which is not possible for RG and VRG. However,

this approach demands more computational effort compared with the RG.

2.1.1.1.5 Extended Command Governor (ECG)

This technique was used first in 1997 by Bemporad [63] and years later an important work

coming back to it was proposed by Gilbert in 2011 [65]. It is based on the notion that

predictions (2.2) are a special case of:

y(t) = CAtx0 + C(I −A)−1(I −At)Bv̂ +Dv̂ (2.22)

where v̂ is the sum of two parts. One that comes out of an optimization problem ρ̄ and a

vanishing part µ̂(·), that is:

v̂(·) = ρ̄+ µ̂(·) (2.23)

the variable µ̂ is the output of a fictitious autonomous system, given by:

χ(t+ 1) = Aχχ(t)

µ̂(t) = Cχχ(t)
(2.24)

where Aχ is Schur matrix. The initial conditions of (2.24) are other design decision that

can be used to improve performance of the ECG. The optimization problem defined for

ECG is:

(ρ̄(t), χ(t)) = arg min
ρ̄,χ

1
2‖ρ̄− r(t)‖2Q + 1

2‖χ‖
2
P

s.t.

ρ̄,
x(t)

χ


 ∈ O∞ (2.25)
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where χ is the state for the fictitious autonomous system, P > 0 satisfies the discrete time

Lyapunov inequality, A>χPAχ − P < 0, and O∞ is defined based on the predictions (2.22).

Thanks to the introduction of (2.24), ECG has a larger domain of attraction with respect

to CG/RG. Also ECG offers a faster response (especially in the case of systems with rate

limited actuators).

2.1.1.2 Governor Schemes for Nonlinear Systems

This section explores RG-based schemes that are applied to nonlinear systems. The schemes

used for nonlinear systems follow, in some sense, the same ideas presented for linear systems

in the previous section.

2.1.1.2.1 RG and CG Design Based on Model Linearization

A heuristic approach proposed by Vahidi can be found in [35], where three different

methods were proposed to overcome the challenges of implementing the RG on a nonlinear

plant. The first approach implements a look-up table that gathers the steady-state values

for the states that correspond to different input command signals, denoted as Γ(v(t)). Based

on this, an adjustment state is computed as:

xadj = xnon(t)− Γ(v(t)) + (I −A)−1Bδv(t), (2.26)

where A and B are obtained from the linearized model, δv(t) is the input to the linearized

plant, and xnon(t) corresponds to the measured nonlinear states at each time step. Note that

availability of the nonlinear states is important to implement this method. The adjusted

state from (2.26) is fed to O∞, which was computed based on a linear model. A second

approach presented in [35] is to treat the difference between the constrained outputs of the
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nonlinear system and linear model as a state with constant dynamics, this is:

x(t+ 1) = Ax(t) +Bv(t)

w(t+ 1) = w(t)

y(t) = Cx(t) +Dv(t)

(2.27)

where the extra state w(t) = ynon(t) − (δy(t) + yeq), with ynon(t) being the nonlinear

constrained output that needs to be available at each time step, and yeq represents the

constrained output around the linearization point. One of the drawbacks of this approach

is that the constrained output has to be measurable, which may not always be the case.

Also, O∞ based on (2.27) becomes:

O∞ := {(x, δv, w) ∈ Rn+m+p : Cx+Dδv + w ∈ Y }. (2.28)

Note that the dimensionality of the set defined in (2.28) grows with the number of artificial

states w, which depends on the number of constraint outputs. Also, since the assumption

behind the augmented state, w(t), is to be constant, recursive feasibility (i.e., obtaining a

solution, v(t), at each time step) may not be guaranteed. In order to overcome the issue of

dimensionality, a third solution based on the reduction of the linearized model is proposed

in [35]. This last solution suffers of conservatism of the input signal commanded to the

system. A comparison of the computational burden of each one of the methods proposed

in [35] showed that the reduced order scheme has the lowest number of flops operations

performed per time step.

An application of the approach that considers the difference between the nonlinear

and linear outputs is presented in [42]. Another useful method to approach nonlinear

systems is through the implementation of feedback linearization, which renders the state

dynamics linear and hence the prediction of the state evolution becomes computationally
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straightforward. However, feedback linearization transformations may lead to non-convex

admissible sets, for those cases, [66] and [67] propose an approximation of O∞ through

convex regions and mixed-logical-dynamic.

In [3] different approaches are presented to solve constraint management on nonlinear

systems by leveraging linear models. One uses a nonlinear/linear compensator that con-

siders the difference between the linear and nonlinear constrained outputs (similar to [35]

that uses (2.27)); another approach implements a multi-point linearization, which gener-

ates different O∞ sets. Since nonlinearities may push the RG to infeasibility conditions, [3]

proposes a solution that the authors called constrained command RG, which basically com-

putes the governed input that is in a minimum distance from the reference and it satisfies

the constrains.

An alternative for constraint management of nonlinear systems based on linear ap-

proaches is studied in [68], where the nonlinear system is embedded into a Linear Parame-

ter Varying (LPV) system that is controlled through an RG and a gain-scheduled tracking

algorithm. A similar approach is presented in [69], where CG is implemented based on

embedding the nonlinear system model into a family of Linear Time Varying polytopic

uncertain models. We will discuss more in detail about LPV in Section 2.1.1.3.

2.1.1.2.2 RG and CG Design Based on Nonlinear Model

The first approach, known as Robust RG, was proposed by Bemporad [46]. This technique

requires to solve the following optimization problem:
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κ(t) = max
κ∈[0,1]

κ

s.t. v = v(t− 1) + κ(r(t)− v(t− 1))

x̂(t+ k + 1|t) = f(x̂(t+ k|t), v)

h(x̂(t+ k|t), v) ≤ 0, k = 0, ...k, k∗

h(x̄v, v) ≤ −ε

(2.29)

where x̂ is the predictive trajectory propagation of the state, which is computed by simu-

lating the nonlinear model. The equilibrium of the state is defined as x̄v = f(x̄v, v). The

parameter ε > 0 is sufficiently small and k∗ ∈ Z+ is sufficiently large such that if the con-

straints are satisfied up to k∗, then they are going to be satisfied for k > k∗ [46]. In general

this is a non-convex problem due to f(·). However, since (2.29) is a scalar optimization

problem, a solution can be found by bisections or grid search. Other similar works were

proposed by Gilbert and Kolmanovsky [47], Garone [49] and Nicotra [48,70,71].

In [47] a generalization of both prediction-based and Lyapunov function-based nonlinear

reference governors applicable to constrained systems with disturbances is presented. The

idea of this method is to define a continuous function S(x, v) so that, for any pair (x(t), v)

such that S(x(t), v) ≤ 0 is satisfied, if v is kept constant from t onward, the trajectory

x̂(t+ k|t), k ≥ 0 is:

• Safe: constraints are never violated, i.e h(x̂(t+ k|t), v) ≤ 0,∀k ≥ 0;

• Strongly returnable: there exists a finite integer k∗, which may depend on x(t), such

that S(x̂(t + k∗|t), v) < 0, which means that after a finite time k∗ the trajectory

returns to the interior of the set {(x, v) : S(x, v) ≤ 0}.

Given such a function S(·), κ(t) can be chosen at each time instant t by solving the

following scalar optimization problem:
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κ(t) = max
κ∈[0,1]

κ

s.t. S(x(t), v(t− 1) + κ(r(t)− v(t− 1))) ≤ 0

h(x̄v, v(t− 1) + κ(r(t)− v(t− 1))) ≤ −ε

(2.30)

A similar approach is presented in [72], where O∞ is built based on the nonlinear plant

trajectories. However, a safe margin is built on the constraint set in order to account for

the difference between the nonlinear and linear plant, and parameters uncertainties on the

model. Specifically, if the nonlinear system function is given by:

ẋ = f(xn, r, θ0)

ynon = g(xn, r, θ0).
(2.31)

Under the assumption of having continuous differentiable f and g functions, a sensitivity

function can be computed as a solution of the system linearization. This is performed

around the nominal values of the parameters and the worst cases of parameter variations.

The constraint ynon ∈ Y , where Y is the constraint set, becomes:

ynon + (δzθ)>(θ − θ0) +M‖θ − θ0‖2B ⊂ Y, ∀θ ∈ Θ, (2.32)

where δzθ is the sensitivity function based on the trajectories of the linearized system; B is

the unit ball; M considers the difference between the nonlinear and linearized system. Note

that (2.32) considers the distance among parameters that consider uncertainties.

2.1.1.2.3 Explicit RG (ERG)

The idea is to ensure constraint enforcement by continuously manipulating v(t) so x(t)

always belongs to a safe invariant set centered in the steady state x̄v(t). This scheme is

based on Lyapunov function V (x, v) and a bound of this function Γ(v). The reference is
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computed based on the integration of:

v̇ = kΓ[Γ(v)− V (x, v)] r − v
max{‖r − v‖, ε}

(2.33)

where kΓ and ε are design parameters. The main difficulty of this approach is to find

a suitable function V (x, v). Also, by the nature of a Lyapunov-based formulation, ERG

may lead to conservative solutions. Main works of this scheme have been proposed by

Nicotra [48,70,71,73,74], and Garone [49].

A extension of this work developed by Nicotra and Garone is presented in [50], where

the governed command is computed based on the dynamic function:

v̇ = δ(x, v)ρ(r, v), (2.34)

where δ(x, v) is the dynamic safety margin that can be computed based on four meth-

ods: trajectory based approach, Lyapunov based approach (similar to finding the threshold

Lyapunov function, Γ(v), in (2.33)), invariance-based approach, and returnability-based

approach. The other part of (2.34) is the navigation field function, which corresponds to

ρ(r, v). The latter may be computed based on a waypoint method or a vector field method.

The dynamic safety margin presented in [50] is a continuous function that considers the sys-

tems’ dynamics. On the other hand, the navigation field function provides the trajectory

that needs to be followed by the input command, v, up to the reference r. One of the main

assumptions in [50] is that the reference is steady-state admissible, which may not always

be the case, however, they addressed the case of non admissible references by introducing a

distance function that is minimized subject to output constraints satisfaction. An extension

to discrete-time systems with parametric uncertainties is presented in [52].

35



2.1.1.2.4 Parameter Governor

Proposed by Kolmanovsky and Sun J. [75,76], the main idea of parameter RG for nonlinear

systems is to adjust a parameter θ(t) ∈ Θ, of a nominal control law so as to optimize over a

finite horizon the predicted system response subject to constraints. The objective function

to minimize is:

J(t) = ‖θ‖2ψθ +
T∑
k=0

Ω(x̂(t+ k|t), θ(t), r(t)) (2.35)

The parameter θ is assumed to remain constant over the prediction horizon. This

reduces computational and implementation effort, and simplifies the analysis. The system

model is defined as:
x(t+ 1) = f(x(t), u(t))

xi(t+ 1) = xi(t) + z(t)− r

z(t) = hzx(x(t))

(2.36)

where z is the output that is supposed to track the reference, r, and the control law u(t)

incorporates the parameter θ(t). This scheme has similarities with model predictive control,

that is analyzed in Section 2.1.2.

2.1.1.2.5 Output Feedback RG

This approach presents a formulation for nonlinear systems with unmeasurable states [77].

This method utilizes an ellipsoidal region in which the state is guaranteed to lie. Such

a region can be obtained by using the set-valued observer [78]. For this scheme, in the

presence of noise and/or disturbance, somewhat conservative conditions are introduced for

the finite-time settling of the modified reference to the original one and for the convergence

of the state to the neighborhood of the equilibrium.

2.1.1.2.6 Incremental RG

Proposed by Tsourapas [79] in order to reduce the computational effort to solve the problem
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(2.29), which is distributed over time by checking the feasibility of a single value of v(t)

that differs from v(t− 1) by a fixed and "small enough" step size.

So far, some RG-based schemes have been presented for linear and nonlinear systems.

In most of the methods that have been discussed, the main common factor is that they

all rely on some type of admissible set to compute an input command that satisfies the

constraints. In the methods discussed previously, the admissible set may be computed based

on LTI models, Lyapunov methods (i.e., invariant ellipsoids), or considering nonlinear states

trajectories. Next, we present the case for Linear Time Varying (LTV) or Linear Parameter

Varying (LPV) systems.

2.1.1.3 Set Theoretic Approaches to Build Robust Invariant Sets for Lin-

ear and Nonlinear Systems with Polytopic Uncertainty

In this section, we study the techniques based on polytopic set theory approaches that have

been proposed for linear time varying (LTV) or linear parameter varying (LPV) systems of

the form:
x(t+ 1) = A(t)x(t) +B(t)v(t),

y(t) = Cx(t) +Du(t) ∈ Y,
(2.37)

where x ∈ Rn, y ∈ Rp, and v ∈ Rm. It is assumed that assumption A.2.1.2 holds to build

the robust invariant set, hence we can reformulate (2.37) as:

x(t+ 1) = Φ(t)x(t)

y(t) = C̄x(t) ∈ Y,
(2.38)
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where Φ(t) =

A(t) B(t)

0 Im

 and C̄ =
[
C D

]
. The constraint set Y is a polytope with

0 ∈ Y , which is defined as:

Y = {y : Ayy ≤ by} (2.39)

It is assumed that Φ(t) belongs to a given uncertainty polytope:

∆ =
{

Φ ∈ R(n+m)×(n+m) : Φ =
L∑
i=1

λiΦi,
L∑
i=1

λi = 1, λi ≥ 0
}
. (2.40)

Also, it is assumed that (2.38) is robustly asymptotically stable, this is:

lim
k→∞

(
max

Φ(t)∈Ω,t=0, ..., k−1,||x(0)||=1
||x(k)||2

)
= 0 (2.41)

The problem of constraints satisfaction for systems with polytopic uncertainty has been

addressed in several works in the literature. For instance, [80] proposes an efficient algorithm

to build a robust invariant admissible sets for (2.38) using the vertices of the uncertainty

polytope and by imposing state and input constraints on the predictions. It is shown

in [80] that the resulting set is maximal admissible and that it converges in finite time when

condition (2.41) is satisfied. The robust positive invariant (RPI) set presented in [80] has

the form:

Or∞ = ∩ki=0Si =
{
x ∈ Rn+m : Asix ≤ bsi

}
(2.42)

where initially As0 = AyC, bs0 = by, and for i = 1, . . . , k :

Asi =


Asi−1Φ1

...

Asi−1ΦL

 , bsi =


bsi−1

...

Asi−1

 (2.43)

Other works explore different strategies to compute RPI sets for systems like (2.38)
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under condition (2.40). [81] uses the ideas of contractive sets, where it is stated that if a

set is λ-contractive, with λ ∈ [0, 1], then it is robustly positively invariant for a system like

(2.38). The construction of RPI sets based on geometrically motivated methods for systems

affected by unknown disturbances is explored in [82]. The work in [82] can be considered an

extension of the work presented in [80] to systems affected by additive disturbances and an

improvement on the algorithm to compute RPI sets. Furthermore, it is shown in [82] that

by implementing what they called a tree-structured algorithm, it is possible to significantly

reduce the number of linear programs to build the minimal representation of the RPI set.

Open source software that support the work presented in [82] can be found in [83,84].

It is proposed in [85] an inner approximation of the maximal RPI set can be found

by starting from an initial RPI set, which is sequentially enlarged by adding at each step

vertices until no further addition is possible. Other works that explored the construction of

RPI sets for systems like (2.38) can be found in [86–91].

2.1.1.3.1 Data-driven Approach

A data-driven approach uses the measurements from the system or model to build an RPI

set. The work presented in [92] proposes an approach of this nature to approximate a

control RPI set while simultaneously picking an optimal admissible uncertain model. The

latter is defined as a model that explains a finite measurement history. The type of model

that is considered in [92] has the form:

x(t+ 1) = Âx(t) + B̂u(t) + Êd(t) + Ãx(t) + B̃u(t) + Ẽd(t) + e(t) (2.44)

where x ∈ Rn, u ∈ U ⊂ Rm is the control constrained command, d ∈ D ⊂ Rl is the

exogenous measured disturbance, Â, B̂, Ê represent the nominal model matrices, Ã, B̃, Ẽ

are the matrices related to the multiplicative uncertainty, e ∈ Rn is additive uncertainty,

and D and U are polytopic sets bounded and known a priori. It is assumed in [92] that
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the uncertain model and the uncertainty bounds have an affine structure as a function of a

parameter π, e.g., Â = Â(π), where Â is an affine mapping in π (similarly for B̂ and Ê).

The parameter π is selected based on linear inequalities on π that are solved based on data

measurements obtained from the system for different operating conditions. Also, this work

proposes two algorithms to build a polytope control RPI set iteratively while selecting the

optimal uncertain model based on the available system data.

Another data-driven approach is presented in [93], where an active learning technique is

used to build an RPI set by selecting the most informative sample(s) from a pool of unlabeled

samples based on its current knowledge of the learning problem, thereby restricting the

training set size without degrading performance. The algorithm presented in [93] uses

information directly from a discrete nonlinear system (considering the sampling rate at

which the data is available) without using a model like (2.38), i.e., it can be applied just

from data information without having an actual model of the system. Other works that

have explored the implementation of machine learning to obtain RPI sets can be found

in [94,95] and references therein.

2.1.1.3.2 Lyapunov-based

In this section ellipsoidal invariant sets for LTV systems are explored. First, recall that

the positive invariant set for a linear system like (2.38) can be expressed as the quadratic

Lyapunov inequality:

Φ>PΦ− P < 0

In [96] the idea of expressing the RPI as a set of quadratic Lyapunov inequalities is used,

this is:

Φ>i PΦi − P < 0, i = 1, . . . , L (2.45)
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This set of conditions is nice because it is convex in P , which means that given a P1 and

P2 that satisfy the inequalities, thus the convex combination of P1 and P2 also does.

Besides using the quadratic common Lyapunov inequalities as shown in (2.45), piecewise

Lyapunov function can also be involved in RPI, which is introduced in [97]. The piece-wise

Lyapunov functions have the form:

V (x) = max{xTH1x, x
TH2x}, H1 > 0, H2 > 0 (2.46)

and

V (x) = min{xTH1x, x
TH2x}, H1 > 0, H2 > 0 (2.47)

If H1 and H2 satisfy the following inequalities:

ΦT
1 H1Φ1 −H1 < 0, ΦT

2 H2Φ2 −H2 < 0

(1− δ2)(ΦT
1 H2Φ1 −H2) + δ2(H2 −H1) < 0

(1− δ1)(ΦT
2 H1Φ2 −H1)− δ1(H2 −H1) < 0

for δ1, δ2 ∈ [0, 1]. Then, the function V (x) = max{xTH1x, x
TH2x} is a valid Lyapunov

function to build RPI.

Similarly, if H1 and H2 satisfy the following inequalities:

ΦT
1 H1Φ1 −H1 < 0, ΦT

2 H2Φ2 −H2 < 0

(1− δ2)(ΦT
1 H2Φ1 −H2)− δ2(H2 −H1) < 0

(1− δ1)(ΦT
2 H1Φ2 −H1) + δ1(H2 −H1) < 0

Then, V (x) = min{xTH1x, x
TH2x} is also a valid Lyapunov function to build RPI.
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The differences between the piecewise Lyapunov function and the quadratic Lyapunov

function are that the first can only be used when L = 2, but it offers a better estimation of

RPI than that of the second.

Other types of Lyapunov functions have been involved in RPI such as polynomial func-

tions [98], Set-Induced Lyapunov Functions [99], and parameter dependent Lyapunov Func-

tions [100].

2.1.1.3.3 LMI methods

Other approaches to build Robust Positive Invariant (RPI) sets explore the use of Linear

Matrix Inequalities (LMI). The work presented in [101] proposes an algorithm to obtain an

RPI for system (2.38). The main idea is to obtain an invariant set given an initial set Ω0,

which is defined as:

Ω0 = {x ∈ Rn : F0x ≤ 1} (2.48)

where F0 ∈ Rl×n. From here the idea is to expand the given set Ω0 by finding λ =

[λ1, . . . , λl], where λi > 0,∀i = 1, . . . , l. The resulting RPI has the H-form (halfspace form):

Ω = {x ∈ Rn : F0x ≤ λ} (2.49)

In order to get the optimal λ, first, L (i.e., number of uncertainties) Semi-Definite Programs

(SDPs) need to be solved and then a single Linear Program (LP) is used to get the final

vector λ. An important aspect to correctly implement the algorithm presented in [101] is

that Ω0 has to be invariant.

Another application of linear matrix inequalities is presented in [102] which combines

and improves two complimentary algorithms to improve constraint handling of MPC for

LPV systems. The first algorithm, from [103], constructs linear robustly stabilizing feedback

controllers (u = −Fx) to ensure that the given initial state x̄ ∈ Rnx lies within a feasible
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invariant ellipsoid E of the form

E ≡ {x|x>Px ≤ γ}, (2.50)

with γ > 0 and where P = P> � 0, P ∈ Rnx×nx satisfying the Lyapunov inequality

P − (Ai −BiF )>P (Ai −BiF ) >Q+ F>RK

i = 1, . . . , p
(2.51)

where Q = Q> > 0 and R = R> > 0 are respectively the state and input cost matrices.

Additionally, the matrices Ai, Bi, represent the vertices of the uncertainty polytope, with

p ∈ Z+ denoting the total number of vertices. The above problem is solved via the following

optimization problem:
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min
γ,Y,Z=ZT>0

γ,

subject to 1 ∗

x̄ Z

 > 0,



Z ∗ ∗ ∗

Q
1
2Z γI ∗ ∗

R
1
2Y 0 γI ∗

AZ +BY 0 0 Z


> 0,

 Z ∗

(Au)[j,:]Y 1

 > 0, j = 1, ...,mu

 Z ∗

(Ax)[j,:]Z 1

 > 0, j = 1, ...,mx

(2.52)

where mu and mx denote the number of rows in matrices Au and Ax respectively and

asterisks are used to denote the corresponding transpose of the lower block part of symmetric

matrices. The optimal solutions to this problem are denoted γ◦, Y ◦, Z◦, and the feedback

matrix F becomes

F = −Y ◦(Z◦)−1, (2.53)

the Lyapunov function V (x) = xTPx can be solved with

P = γ◦(Z◦)−1, (2.54)
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and the RPI set is described by

E = {x|xT (Z◦)−1x ≤ 1}. (2.55)

Furthermore, LMI (2.52) imposes that the invariant ellipsoid E should lie within the state

constraints. The second algorithm that [102] utilizes to build RPI sets is first presented in

both [80] and [104]. This algorithm constructs a polyhedral RPI set, denoted P, for LPV

systems. The main contribution of [102] is the introduction of polyhedral RPI sets (from [80]

and [104]) in the controller synthesis method of [103] to improve constraint handling and

create a more optimal controller. This result can be applied either off-line to compute

robustly stabilizing linear feedback controllers with guaranteed feasibility, or can be applied

on-line in a receding horizon fashion.

Next, we list other governor schemes that may not fit within the categories presented

previously.

2.1.1.4 Other Governor Schemes

The following sections present a brief description of other reference governors schemes.

2.1.1.4.1 Reduced Order RG

This was part of Kalabic’s Ph.D. thesis [66]. The main idea of this scheme is to decompose

the system in slow and fast subsystems, as presented below where the subscripts s and f

represent slow and fast respectively, this is:

xs(t+ 1) = Asxs(t) +Bsv(t)

xf (t+ 1) = Afxf (t) +Bfv(t)

y(t) = Csxs(t) + Cfxf (t) +Dv(t)

(2.56)
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Note from (2.56) that the input v(t) is considered for both subsystem. The reduced

order governor enforces the constraint on the reduced system treating the contribution of

the fast system as a bounded disturbance. From [105], it is implied that if the reduced

order model can be made second order, an efficient and fast implementation of the RG

computations is possible.

2.1.1.4.2 Network RG

This scheme applies to cases when there is a communication between plant and the governor

in a synchronous or asynchronous fashion. In those cases, the Network RG accounts for the

time delays in the communication between the plant and the scheme in order to enforce the

constraints. The main references are [46,106–112].

2.1.1.4.3 Virtual State Governor (VSG)

VSG is a modular control system design that aims at integrating multiple actuators, each

equipped with an assigned non-modifiable feedback control law, while enforcing constraints

and minimizing the use the actuators, which are expensive to operate [113]. Given a con-

strained plant with a group of actuators, this scheme generates virtual states xi ∈ Rn and

defines a nonlinear mapping function g(x) that is assigned to the controllers in place for the

actual system state x. This scheme modulates the effects of the controllers by modifying the

state from which the feedback is computed. The virtual states are obtained by decomposing

the actual state in a way that minimizes the usage of the expensive actuator while ensuring

constraint satisfaction. A quadratic program (QP) is implemented to perform the decom-

position of the actual state and is based on a MAS and a Lyapunov function of the loop

involving the expensive actuator. This scheme have been used for engine control, energy

management in HEV and aerospace.
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2.1.1.4.4 Governors and Fault Tolerance

After the occurrence of a fault (e.g. loss of an actuator) if a system is not able to achieve

the same nominal performance, then it may not be enough to reconfigure only the feedback

control law, but also the control objectives (i.e., references) should be modified [114–116].

This is the idea behind the governors and fault tolerance scheme, which optimizes a design

parameter θ(t) that can be used to add offset to the nominal system after a failure in order

to counteract some of the offsets of the fault.

2.1.1.4.5 Decentralized CG and Distributed CG for Large Scale and Mul-

ti-Agent Systems

This scheme is applied to systems consisting of N dynamically coupled subsystems which

are subject to local and global constraints. The initial solutions make use of the feedforward

command governor approach developed in [117], which can reformulate the decentralized

reference management problem as a static problem of determining, at each decision step, the

local references vi(t), i = 1, ..., N , such that the aggregated vector v(t) = (v1(t), ..., vN (t)) is

admissible. Also, the variation of v(t) within two update times is constrained in the set of

admissible variations ∆V , i.e., v(t+1)−v(t) ∈ ∆V . Sequential approaches of this constraint

management scheme [118] allow only one agent at a time to modify its command. Parallel

approaches are schemes where all the agents are allowed to move the command at the same

time and each agent makes a local decision assuming that the other agents will make the

worst choice.

Casavola proposed in [119] the Distributed CG, which consists of the design of dis-

tributed supervision strategies based on multi-agent CG ideas for networked interconnected

systems in situations where the use of a centralized coordination unit is impracticable. The

main idea of this scheme is to allow agents, that are not jointly involved in any coupling

constraint, to simultaneously update their control actions without violating constraints.
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2.1.1.4.6 Controller State and RG (CSRG)

This scheme proposes a RG capable of resetting the internal closed-loop system states as

necessary to avoid constraint violation [120]. Thanks to internal states resetting, CSRG

enlarges the constraint admissible domain of attraction and improves performance. In

[120], two reset controller states are studied: controller state governors for constrained

stabilization problems; and controller state and reference.

2.1.1.4.7 RG for Switching Systems

[121] and [122] propose a method that relies in its capability to avoid constraint violation

and loss of stability regardless of any configuration change in the plant/constraint structure

by commuting the system configuration (model plant + CG) with a more adequate one.

To this end, the concept of model transition dwell time is used within the proposed control

framework to formally define the minimum time necessary to enable a switching event under

guaranteed conditions on the overall stability and constraint fulfillment.

Another work proposed by Taguchi [123] combines RG with controller switching. An-

other approach was proposed by Kolmanovsky [76].

2.1.1.4.8 Prioritized RG

Prioritized RG was proposed by Kalabic and Kolmanovsky in [124]. Two methods were

proposed to prioritized constraint enforcement and prioritized reference tracking. The

first method uses a CG-based formulation and relaxes the constraints through the use of

quadratic penalty functions on slack variables. This is done in order to weight constraint

infringement against desired reference set-points, and hence achieve a balance between

tracking performance and constraint enforcement. The second method applies the RG to a

prioritized list of inputs in order to maintain the set-point with highest priority as close as

possible to its desired value.
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2.1.1.4.9 Feed-Forward CG

This scheme was proposed by Garone, Tedesco and Casavola [117, 125], the feed-forward

CG is a strategy for input and state-related constrained discrete-time LTI systems subject

to bounded disturbances in the absence of explicit state or output measurements. The idea

behind such an approach is that, if sufficiently slow (which makes it very conservative) and

smooth transitions in the reference modifications are acted on the CG unit, the state evolu-

tions remain not too far from the space of feasible steady states because of the asymptotic

stability of the system.

2.1.1.4.10 RG and Learning Methods

An example of this type of schemes is presented in [51], which proposes a formulation

that exploits Lyapunov-based methods, through the implementation of ERG, plus learning

algorithms. Another technique that uses machine learning methods to learn the MAS based

on data is presented in [126].

In [127] a new RG-based scheme is proposed with an Iterative Learning Control (ILC)

for tracking performance improvement of a system without an exact plant model.

As studied so far, the core of RG implementation is the construction of a MAS’s. For

nonlinear systems or systems with uncertainty, the computation of an admissible set is

not an easy task, hence works like the one presented in [128] study the computation of

stability regions for constrained nonlinear systems using support-vector machine learning.

A similar method is presented in [129], where a learning scheme is used to obtain a constraint

admissible region.

Table 2.1 summarizes a comparison between the different governors schemes that have

been presented in this overview. Table 2.2 presents some recent works about RG and CG

in the different industrial fields.
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Table 2.1: Comparative table between different governor schemes

• A: Formulation based on a LTI model.

• B: Formulation based on a nonlinear model.

• C: No computationally expensive.

• D: Non conservative.

• E: Robust to exogenous disturbances.

• F: Robust to plant/model mismatch.

Schemes A B C D E F
RG X 7 X X X 7

VRG X 7 X X X 7

CG X 7 X X X 7

ECG X 7 X 7 X X
Robust RG 7 X 7 X X 7

ERG X X X 7 X X
RG Based on LTI for Nonlinear Plants X 7 X X X 7

Parameter RG 7 X 7 X 7 X
Output Feedback RG 7 X X 7 X X

Incremental RG 7 X 7 X X X
RG/CG for LTV 7 7 7 X X X

RG for Switching Systems X 7 X X X X
Reduced Order RG X 7 X X X 7

Network RG X 7 X X X 7

Virtual State Governor X 7 X X 7 7

Governors and Fault Tolerance X 7 X X X 7

Decentralized and Distributed CG X 7 7 X X 7

CSRG X 7 X X X 7

Prioritized RG X 7 X X X 7

Feed-Forward CG X 7 X X X 7

RG and Learning Techniques X X 7 7 7 X
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Table 2.2: Applications of RG and CG

Field Application References

Automotive

Turbocharged gasoline engines [42,66,130,131]
Diesel engines [43,132–134]

Other engine applications [135–137]
Fuel cell [35, 72,138,139]

Chassis and dynamics control [67,140,141]
Aerospace – [10,142–149]

Power Networks – [115,150–153]
Precision
Mechatronics
Manufacturing

[67,141,154]
– [155,156]

[26,157]

2.1.2 Model Predictive Control

Model predictive control (MPC) is a scheme that tackles the problems of tracking per-

formance and constraint satisfaction for SISO or MIMO systems. MPC has its origins in

optimal control and its basic concept is to use a dynamic model to forecast system behavior

and optimize the forecast to produce the best decision. An attractive feature of MPC is

that it allows the design of multivariable feedback controllers with similar procedural com-

plexity as single variable ones. Also, MPC allows for the specification in the design phase of

constraints on system inputs, states, and outputs, which are then enforced by the controller.

At the beginning of the 21st century several books were published about MPC [27,158–161].

MPC captured the attention of control engineers for industrial applications thanks to

a set of papers at the end of 1970s. These publications were related to petrol-chemical

applications [162–164]. Dynamic Matrix Control (DMC) is outlined in [163], which is an

important basis of MPC theory. Other important works on MPC were published in the

late 1980s in [1, 165, 166]. In [165, 166] the first exposition of Generalized Predictive Con-

trol (GPC) was introduced. MPC has been widely applied in petro-chemical and related

industries where satisfaction of constraints is particularly important because of efficiency
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demands.

Fig. 2.2 shows the main idea of MPC. Reference [1] is a survey paper about MPC theory

and implementation, which discusses the MPC algorithm formulation, the implications of

DMC, as well as Model Algorithmic Control (MAC).

Figure 2.2: The moving horizon MPC [1]

From [167] the general formulation of MPC is presented in (2.57), where t is the discrete

time index and for a vector, v, the notation v(k|t) denotes the value of v predicted k steps

ahead of t, based on information up to t. The optimizer of (2.57) is the control input

sequence U(t) = u(0|t), ..., u(N − 1|t)). The objective function is defined based on the

terminal cost F and the cost function L. The prediction horizon is defined by N and the

control horizon is defined with Nu. Normally N > Nu, the infinite horizon is defined when

N =∞, however for practical reasons a finite long enough prediction and control horizons

are defined.
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minimize
U

F (x(N |t)) +
N−1∑
k=0

L(x(k|t), y(k|t), u(k|t))

s.t. x(k + 1|t) = f(x(k|t), u(k|t)),

y(k|t) = h(x(k|t), u(k|t)),

xmin ≤ x(k|t) ≤ xmax, k = 1, ..., N

ymin ≤ y(k|t) ≤ ymax, k = 1, ..., N

umin ≤ u(k|t) ≤ umax, k = 1, ..., Nu

x(0|t) = x(t),

u(k|t) = κ(x(k|t)), k = Nu, ..., N − 1

(2.57)

There are several MPC formulations depending on the model type (i.e., LTI, LTV,

nonlinear, unmeasured uncertainties, among others.) and based on the definition of the

objective function. A common formulation of the cost function is presented in (2.58):

‖x(N |t)‖P +
N−1∑
k=0
‖x(k|t)‖Q + ‖u(k|t)‖R + ‖y(N |t)‖S (2.58)

where Q,R, S, and P are weight matrices (very often diagonal matrices). Also, when (2.58)

is applied to LTI systems, we can categorize it as linear MPC.

2.1.2.1 Differences Between RG and MPC

RG can be categorized as a set-theoretic predictive control technique for constraint man-

agement. Hence, it is expected to have similarities and differences with MPC. These are

studied in this section.

In Section 2.1.1.1.1, it was explained how a MAS is built by leveraging assumption
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A.2.1.2 and the predictions of the closed-loop linear system (2.1). In the case of MPC,

predictions are used to compute an optimal control command to satisfy both tracking and

constraint enforcement. However, in this context, instead of a MAS, the concept of maximal

invariant constraint admissible set, which we denote as OM∞ , is introduced. This one has a

different meaning than O∞ and arises when closed-loop stability is enforced with MPC. To

better explain this consider the discrete-time LTI plant:

x(t+ 1) = Ax(t) +Bu(t)

y(t) = Cx(t) +Du(t)
(2.59)

where x ∈ Rn is the state, y ∈ Rp is tracking output, and u ∈ Rm is the control command.

For (2.59), we consider, first, the unconstrained problem. The following performance index

is defined:

J(z, x) = x(N |t)>Px(N |t) +
N−1∑
k=0

x(k|t)>Qx(k|t) + u(k|t)>Ru(k|t) (2.60)

where z = [u(0|t), ..., u(N − 1|t))]>, Q = Q> > 0, P = P> > 0, and R = R> > 0. The goal

is to find the sequence z∗ that minimizes (2.60).

From (2.59) we can define the input to state relation as:

x(t+ k|t) = Akx(t) +
k−1∑
j=0

AjBu(k − 1− j|t) (2.61)
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We can write (2.59) and (2.61) in the matrix form as:

J(z, x) =x(0|t)>Qx(0|t) +



x(1|t)
...

x(N − 1|t)

x(N |t)



>
Q̄︷ ︸︸ ︷

Q 0 . . . 0
...

... . . . ...

0 . . . Q 0

0 . . . 0 P





x(1|t)
...

x(N − 1|t)

x(N |t)



+



u(0|t)
...

u(N − 2|t)

u(N − 1|t)



> 

R 0 . . . 0

0 R . . . 0
...

... . . . ...

0 . . . 0 R


︸ ︷︷ ︸

R̄



u(0|t)
...

u(N − 2|t)

u(N − 1|t)



(2.62)



x(1|t)

x(2|t)
...

x(N |t)


=



A

A2

...

AN


︸ ︷︷ ︸

T̄

x(t) +



B 0 . . . 0

AB B . . . 0
...

... . . . ...

AN−1B AN−2B . . . B


︸ ︷︷ ︸

S̄



u(0|t)
...

u(N − 2|t)

u(N − 1|t)


︸ ︷︷ ︸

z

(2.63)

where x(t) represents the current time t state value. From (2.62) and (2.63), we can

rewrite (2.60) as follows:

J(z, x) = 1
2z
> (R̄+ S̄>Q̄S̄)︸ ︷︷ ︸

H

z + x(t)> 2T̄>Q̄S̄︸ ︷︷ ︸
F>

z + 1
2x(t) 2(Q+ T̄>Q̄T̄ )︸ ︷︷ ︸

L

x(t) (2.64)

Now, by noticing that the L part of (2.64) can be disregarded by the optimization

problem, we get:

minimize
z

f(z) = 1
2z
>Hz + x(t)>F>z (2.65)
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Recall that x(t) is the current initial condition that is assumed to be available. Finally,

the solution to (2.65) is given by:

∇f(z) = Hz + Fx(t) = 0 =⇒ z∗ = −H−1Fx(t)

=⇒ u(t) = −
[
Im 0 . . . 0

]
H−1Fx(t) = Kx(t)

(2.66)

From (2.66) it is possible to imply that an unconstrained linear MPC problem is just a

linear state-feedback problem.

Now, if we consider polytopic constraints on the control command and state as u ∈ U

and x ∈ X respectively. Problem (2.65) can be formulated as in (2.57), this is:

minimize
z

1
2z
>Hz + x(t)>F>z

s.t. Gz ≤W
(2.67)

where G and W are computed similarly to the matrices in (2.62) and (2.63) and based on

the constraint values for the state and input, as well as matrices S̄, T̄ , and initial condition

x(t). Now, (2.67) is a standard quadratic programming problem with Nm optimization

variables (i.e., z ∈ RNm). Fig. 2.3 shows a graphical representation of how a solution to

(2.67) is found by solving a QP problem.

Figure 2.3: Admissible set and cost function curves.
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After solving (2.67), the input u(0|t) is applied and the remaining optimal values are

ignored. By doing this, it is possible to have feedback at each time step through x(t).

Implementing MPC by solving problem (2.67) for a stable plant (2.59) may suffice to

have a closed-loop stable system. However, in the case of regularizing an unstable plant

(2.59) with the same MPC, there are no guarantees of stability. In such a case, the idea

of terminal constraint and terminal invariant set are introduced [161]. Problem (2.67) is

modified to:
minimize

z

1
2z
>Hz + x(t)>F>z

s.t. Gz ≤W

x(N |t) ∈ Xf

(2.68)

where Xf is an invariant terminal set under the control law u(t) = Kfx(t) that satisfies:

x(t+ 1) = (A+BKf )x(t) ∈ Xf , ∀x ∈ Xf

Xf ⊂ X,Kfx ∈ U,∀x ∈ Xf
(2.69)

where Kf is a LQR controller gain. The terminal constraint can be defined as presented

in (2.68) or can be defined as x(N |t) = 0. The difference between the two methods is that

the latter leads to a smaller domain of attraction [168]. A common choice for Xf is the

maximal invariant constraint admissible set, OM∞ , for a controlled system. The set OM∞ for

system (2.59) under the control law u(t) = Kfx(t) is given by:

OM∞ :=
{
x|Ākx ∈ X,Kf Ā

kx ∈ U ∀k ≥ 0
}

(2.70)

where Ā = A + BKf . All input and state constraints are satisfied for the closed-loop

system using the LQR control law for x ∈ OM∞ . In this case the terminal cost function, i.e.,

x(N |t)>Px(N |t) given in (2.60), can be designed to be a continuous Lyapunov function in

the terminal set by ensuring that P is the solution to the corresponding Lyapunov equation.
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This ensures that (2.68) enforces closed-loop stability [161].

To summarize, note that the definition of OM∞ is similar to the definition of O∞ presented

in Section 2.1.1.1.1, with the main difference on how the input command is assumed to be

computed. However, their applicability is conceptually different. The former is used in MPC

to compute a maximal invariant terminal set that helps to enforce stability of the closed-

loop system, while in RG, O∞ is used for constraint enforcement only. In RG, closed-loop

stability is enforced by noticing from (2.17) that for a constant r(t), v(t) forms a monotonic

sequence over a compact set, which implies that v(t) must converge to a constant [59]. In

MPC, the prediction horizon, N , is a design parameter which must be carefully selected to

avoid excessive computational burden. This problem can be solved by Explicit MPC [169],

however, for high order systems the computational load may be significant. This is not

a problem for RG, since O∞ is computed offline, and even in the presence of high order

systems, there are techniques in the literature that allow further reductions of the number

of rows of O∞ to minimize memory and computational burden [17]. Even though MPC can

use different prediction and control horizons to reduce the number optimization variables

to consider (as suggested by (2.57)), RG solves just for one optimization variable at each

time step, which drastically reduces computation load.

In terms of the practical considerations for the implementation of MPC vs. RG. The

former may be used in the cases when tracking and constraint enforcement are required, and

when there is zero or no significant effort to replace legacy controllers. The latter, since it is

an add-on mechanism, does not require to change legacy controllers and the implementation

and calibration effort is significantly less, for example in automotive applications.

Next, we briefly study some of the different MPC schemes that have been proposed in

the literature.
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2.1.2.2 Implicit MPC

Implicit MPC is a form of control in which the control action is obtained by solving online,

at each sampling instant, a finite horizon optimal control problem in which the initial state

is the current state of the plant. The challenge of MPC on embedded hardware is to obtain

the optimal solution while taking into account limited resources of the implementation

hardware. Traditionally, the optimal solution is obtained either by an iterative numerical

procedure (referred to as implicit MPC), or by evaluating the explicit representation of

the MPC feedback law, which is obtained off-line using parametric programming (referred

to as explicit MPC). Both approaches have their pros and cons. Implicit MPC requires

more computational resources, but it is able to handle large systems. Explicit MPC, on the

other hand, requires less online computation, but the off-line construction of the feedback

law scales badly with increasing dimensionality of the problem. Moreover, the memory

footprint of the explicit solutions can easily violate limits of the available memory storage.

Implicit MPC is implemented as explained in the previous section.

2.1.2.3 Hybrid and Time Varying Models

LTI dynamics can be substituted by piecewise affine (PWA) dynamics as presented in (2.71),

this is:
x(k + 1|t) = Ai(k|t)x(k|t) +Bi(k|t)u(k|t) + φi(k|t)

y(t) = Ci(k|t)x(k|t) +Di(k|t)u(k|t) + ζi(k|t)

i(t) : Hx
i(k|t)x(k|t) +Hu

i(k|t)u(k|t) ≤ Kx
i(k|t)

i(t) ∈ {1, ..., s}

(2.71)

It is possible to implement the objective function (2.58) in the system (2.71) for the

case when the one-norm or infinity-norm is used, in such case the problem becomes a

Mixed Integer Linear Program. If the 2-norm is used, then the problem becomes a Mixed
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Integer Quadratic Program [170].

For a time varying system, (2.58) can not be used since the LTV system is changing at each

step. Therefore, different formulations should be applied.

Other works related with hybrid systems as PWA, continuous and discrete system,

discontinuous systems are in the literature [171–174]

2.1.2.4 Distributed MPC (DMPC)

For multi-agent systems where a centralized controller is not implementable, DMPC can be

used to ease the control and state constraints in MIMO systems. It is easier to implement

than centralized MPC if it is possible to decompose the original control problem into a set

of smaller problems of controlling a set of subsystems of the original system, each subsystem

having its own controller (or agent) and, possibly, its own objective. Further work in the

area are found in [175–178]

2.1.2.5 Embedded MPC

MPC implementation is normally used for systems with "slow" dynamics. However, some

researchers have considered the development of MPC models to control small but fast

dynamic systems using an embedded system, (i.e., a computer system, usually a micro-

controller or microprocessor, with a dedicated function). Bemporad developed a method

for ultra-fast MPC [179]. Other works using MCU and FPGA are in [180,181]

2.1.2.6 Robust MPC

This scheme considers the case when the decision variable is also a control sequence, but

the disturbance is taken into account in the optimal control problem solved online. The

state and control constraints, and the terminal constraint if employed, are required to be

satisfied for all possible disturbance sequences. The objective function is defined as:
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maximize
w

{F (xu,w(N |t)) +
N−1∑
k=0

L(xu,w(k|t), y(k|t), u(k|t))|w ∈W} (2.72)

where w is the disturbance sequence. Works using this formulation are [182, 183]. An

extension of robust MPC to nonlinear systems is presented in [184].

2.1.2.7 Stochastic MPC

For robust MPC, the disturbances were assumed to be bounded and constraints were re-

quired to be satisfied for all possible realizations of the disturbance process. In stochastic

MPC, on the other hand, disturbances are assumed to be stochastic and not necessarily

bounded and (at least some) constraints are softened, i.e., not required to be satisfied for

all realizations of the disturbance. Methods related to this problem are in [185–188]

2.1.2.8 Adaptive MPC

The problem of adaptive MPC has received very little attention. For this problem, it is as-

sumed that the states are accessible and a parameter θ is defined, such that it lies in a known

compact set Θ. The continuous nonlinear system has the form ẋ = f(x, u) + g(x, u)θ. The

adaptive control problem is more difficult if uncertainty in the form of additive disturbance

and measurement noise are present. Works related to this topic are [189,190]

2.1.2.9 Explicit MPC and Multiparametric Programming

One of the main reasons why MPC is categorized as a technique for systems with slow

dynamics is because a solution to the problem (2.57) is computed online each time step.

This is significantly computational expensive due to solvers programming that needs to be

implemented to solve the optimization problem online. Explicit MPC proposes a solution

to this problem by implementing multiparametric programming to pre-solve the objective
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function offline. By doing so, the control law is computed by a continuous and piecewise-

affine function [169]. In other words, given the optimization problem:

minimize
z

h(z, x)

s.t. g(z, x) ≤ 0
(2.73)

the explicit MPC solves it offline for all x(t) ∈ X, where X is assumed a polytope of the

form:

X = {x ∈ Rn : Sx ≤ s} ⊂ Rn (2.74)

The explicit MPC control law that explicitly defines the relation between the control

law u(x) and the state x(t) is defined by

u(x) =



F1x+ g1 ifH1x ≤ k1

...
...

FMx+ gM ifHMx ≤ kM

(2.75)

Solutions of (2.75) are obtained by implementing multiparametric programs [191,192].

2.1.2.9.1 Mutiparametric Quadratic Programming

The main tool to solve explicit MPC problems is multiparametric QP (mpQP). The algo-

rithms proposed in the literature to solve this kind of problems are based on Karush-Kuhn-

Tucker (KKT) conditions for optimality. The general formulation for the mpQP is defined

as [192]:

V ∗ = 1
2x
′Y x+ min.

z

1
2z
′Hz + z′F ′z

s.t. Gz ≤W + Sx

(2.76)
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Bemporad proves in [169] that the optimizer z∗ : X 7→ Rn is piecewise affine and

continuous over the set X of parameters x for which the problem is feasible and the function

V ∗ : X 7→ R associating with every x ∈ X the corresponding optimal (2.76) is continuous,

convex, and piecewise quadratic. The paper [192] and reference within , presents a detailed

explanation of multiparametric programming methods for explicit MPC.

2.1.3 Other Constraint Management Methods

2.1.3.1 Barrier Lyapunov Functions

A Barrier Lyapunov Function (BLF) is a scalar function V (x), defined with respect to an

autonomous system, ẋ = f(x), on an open region D, with the following properties [33]:

• Containing the origin.

• It is continuous.

• Positive definite.

• It has continuous first-order partial derivatives at every point of D.

• It has the property V (x)→∞ as x approaches the boundary of D.

• It satisfies V (x(t)) ≤ b∀t ≥ 0 along the solution of ẋ = f(x) for x(0) ∈ D and some

positive constant b.

Constraint control is tackled by using BLFs that grow to infinity when its arguments

approach some limits. Hence, by ensuring boundedness of the BLF in the closed loop, it is

ensured that those limits are not transgressed. Several works related to nonlinear systems

and BLF methods have shown significant results in the constraint management domain. The

work presented in [33] shows the implementation of a symmetric and asymmetric BLF for a

63



SISO nonlinear system with constrained output. Also, [33] shows the implementation of an

adaptive control scheme with BLF to handle parametric uncertainties. A similar approach

is presented in [193] which proposes an adaptive controller with BLF for a pure-feedback

nonlinear system with full state constraints. In [193] the design scheme combines BLF with

dynamic surface control (DSC).

BLF implemented on nonlinear systems with time-varying output constraints is ana-

lyzed in [194], where an asymmetric time-varying BLF is implemented to handle constraint

satisfaction and an adaptive controller is used to work with parametric model uncertainty.

This combination helps to ensure constraint satisfaction during the transient phase of online

parameter adaptation. A similar work for static constraints is developed in [195]. Other

works related to BLF implementations with adaptive and robust control are [196–198] and

references within.

2.1.3.2 Constraint Management and Machine Learning

Artificial intelligence techniques have been combined with BLF in order to work with model

parametric uncertainties and constraint satisfaction. [199] proposes an adaptive neural net-

work (NN) controller with BLF for the trajectory tracking of a marine surface vessel in

the presence of constrained output and parametric uncertainties. The adaptive neural net-

work approximates the unknown model parameters and with the BLF the complete control

scheme avoid constraint violations. Reference within [199] provides more information about

works using artificial intelligence for models with parametric uncertainties.

In [200] a Takagi-Sugeno Fuzzy logic controller with nonlinear local models is imple-

mented for constraint satisfaction in the controller input and output; the results are verified

on an inverted pendulum. The work proposed in [201] gathers neural networks with DSC in

order to propose an adaptive NN control for a strict feedback nonlinear system. A similar
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work is proposed in [202], where a NN is used with adaptive controller for tracking perfor-

mance and a BLF is implemented for constraint satisfaction, also a disturbance observer is

implemented for a nonlinear system.

Other works that explore learning techniques for constraint management are presented

in [203–205], where algorithms are provided to learn parametric constraints based on demon-

strations. Robotics applications are considered for this type of constraint learning methods.
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Chapter 3

Stochastic Reference Governor
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A stochastic RG formulation based on SR-MAS is presented in this chapter [54]. This

one is based on a Stochastic Robustly invariant MAS (SR-MAS), which is built by leveraging

the ideas presented in [24]. To accomplish this, first, several important structural properties

of MAS and SR-MAS are proved, which, to the best of the author knowledge, have not been

previously presented in the literature. These properties are used to extend the results in [24]

to systems that are Lyapunov stable, which arise in RG applications, and systems with

output constraints instead of state constraints. An algorithm to compute the SR-MAS is

presented. Numerical simulations are presented to show that the stochastic RG can provide

probabilistic guarantees of constraint satisfaction.

3.1 Structural Analysis of Ō∞

An important element for the development of the SR-MAS, and hence stochastic RG, is the

effect of P̄0 on the structure of Ō∞, which we analyze in this section.

First, as we show in the following theorem, even with initial conditions outside of Ō∞,

the system states converge to Ō∞ under the system’s natural dynamics and, consequently

constraints imposed over the output will be satisfied.

Theorem 3.1.1. Assume (A.2.1.1) and (A.2.1.2) hold. If (x(0), v(0)) /∈ Ō∞ and v(0) ∈

int(V̄ ), then there exists a time T ∈ Z+ such that ∀t ≥ T, (x(t), v(t)) ∈ Ō∞, which implies

that y(t) ∈ Y .

Proof. Definition (2.4), together with the condition v(0) ∈ int(V̄ ), implies that the steady

state value of y(t), i.e., yss := limt→∞ y(t), satisfies yss ∈ int(Ȳ ). This, in turn, implies

that there exists a ball around yss such that B(α, yss) ⊂ Ȳ for some α > 0. Finally, by

convergence of y(t) → yss, there exists a finite time T ∈ Z+, such that ∀t ≥ T, y(t) ∈

B(α, yss), which implies that y(t) ∈ Ȳ , ∀t ≥ T . Therefore, by definition of Ō∞, we have
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that (x(t), v(t)) ∈ Ō∞.

Next, to study the effects of the halfspace P̄0 on Ō∞, we proceed to remove this halfspace

from (2.13). The resulting set will be evaluated under the system’s natural dynamics.

Theorem 3.1.2. Assume (A.2.1.1) and (A.2.1.2) hold. Let Ω := ⋂t∗
i=1 P̄i. If (x(0), v(0)) ∈

Ω \ P̄0, then, y(0) 6∈ Y and (x(1), v(1)) ∈ Ō∞.

Proof. From the definition of P̄0 in (2.16), if (x(0), v(0)) ∈ Ω \ P̄0, then (x(0), v(0)) 6∈ P̄0

and, thus, y(0) 6∈ Y . The second condition in the theorem follows by definitions of Ω above

and P̄i in (2.16).

From Theorems 3.1.1 and 3.1.2, we note that by changing the structure of Ō∞ and

introducing a set like Ω, we may have constraints violation for a finite time. However, as

time progresses, the constraints will eventually be satisfied (under the assumptions stated

in Theorem 3.1.1). From this observation, it is possible to think about clever mechanisms

to increase the size of MAS (i.e., to make it less conservative), for systems that can handle

constraint violation for a finite time. This idea is exploited in the Section 3.2 to create the

SR-MAS.

Remark 3.1.1. Theorem 3.1.2 states that excluding P̄0 from Ō∞ (i.e., when (x(0), v(0)) ∈

Ω) may lead to constraint violation; however, the system recovers from violation after one

timestep under its natural dynamics. This conclusion may not hold if assumption (A.2.1.2)

is violated, i.e., if the input is not constant. As an example, consider a system with direct

feedthrough between the input and the output (i.e., Dv 6= 0) and a reference governor in

the loop operating on Ω (instead of Ō∞). In this case, the system may never recover from

constraint violation because, with RG, v(t) is not held constant for all times, and RG may

actively keep the state in Ω \ Ō∞ for a sustained period of time. Note, however, that if

Dv = 0, then P̄0 can be safely excluded because this halfspace does not contribute to the

computation of the control signal v(t).
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In this section we studied the structure of Ō∞ under conditions that are not normally

evaluated in the literature, that is, (x(0), v(0)) /∈ Ō∞. This condition showed importance

of P̄0 and correspondingly Y0.

3.2 Stochastic Robustly Invariant Max-

imal Admissible Sets (SR-MAS)
In section 2.1.1.1.1.2, we defined the set Ō∞ based on the worst case scenario of the dis-

turbance sequence w(t) ∈ W . This idea tends to build a large conservative margin over

the constrained output, which is not always the best solution. Thus, we introduce in this

section a SR-MAS based on chance constraints, with the aim of providing a less conservative

solution for systems like (2.8).

In order to ease the exposition that follows, we first proceed to rewrite system (2.8)

based on the assumption (A.2.1.2). For notational simplicity, we consider the case of one

input, i.e., m = 1. The resulting augmented dynamics are:

x̄(t+ 1) = Āx̄(t) + B̄ww(t)

y(t) = C̄x̄(t) +Dww(t)
(3.1)

where x̄(t) =

x(t)

v(t)

 , Ā =

A Bv

0 1

 , C̄ =
[
C Dv

]
, B̄w =

Bw
0

. Considering system (3.1),

we impose the probabilistic constraint

Pr(y(t) ∈ Y |x̄0) ≥ 1− β (3.2)

for some 0 < β < 1.
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Expression (3.2) is known as a chance constraint. Based on this type of constraint and

by adopting the ideas presented in [24], we proceed to define the SR-MAS for (3.1). First,

expression (2.12) now becomes:

P βt := {x̄0 ∈ Rn+1 : x̄(0) = x̄0, P r(y(t) ∈ Y ) ≥ 1− β,

∀{w(j)} ∈W, j = 0, . . . , t}
(3.3)

and the SR-MAS Oβ∞ is defined as:

Oβ∞ :=
∞⋂
t=0

P βt (3.4)

Similar to the study developed in [24], the set Oβ∞ is not positively invariant and it is

not easy to compute. However, a positively invariant inner approximation, which is finitely

determined, can be obtained, thanks to the introduction of the following set:

Sz(β) := {Γ : Pr(z ∈ Γ) ≥ 1− β} (3.5)

where z is a vector of random variables. The set Sz(β) is the collection of all sets with

probability measure greater than 1− β.

Based on the set Sz(β), the chance constraint (3.2) is redefined by noting that:

1− β ≤ Pr(y(t) ∈ Y |x̄(0) = x̄0)

= Pr(C̄Ātx̄0 + C̄
t−1∑
j=0

Āt−j−1B̄ww(j)

+Dww(t) ∈ Y |x̄0)

= Pr(wt ∈ Γt(x̄0))

(3.6)

where wt := [w(0); ...;w(t)] ∈W t+1 and Γt(x̄0) := {wt : C̄Ātx̄0 + C̄
∑t−1
j=0 Ā

t−j−1B̄ww(j) +
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Dww(t) ∈ Y }. Note that for a x̄0 that satisfies (3.6), Γt(x̄0) ∈ Swt(β). An alternative

choice in Swt(β), which we use below, is:

Zt,β := W × · · · ×W︸ ︷︷ ︸
t

×Wβ (3.7)

where Wβ ⊂W with the property
∫
Wβ

fw(w) ≥ 1− β and, thus, Zt,β ∈ Swt(β). We assume

the following for the set Wβ:

A. 3.2.1. The set Wβ is a compact polytope with the origin in its interior.

Thanks to the introduction of the set Zt,β, we can proceed with the approximation of

P βt as:

P̂ βt := {x̄0 : Zt,β ⊆ Γt(x̄0)}

= {x̄0 : x̄(0) = x̄0, y(t) ∈ Y, ∀w(t) ∈Wβ,

∀w(j) ∈W, j ∈ Zt−1}

(3.8)

and consequently the approximation of Oβ∞ as:

Ôβ∞ := ∩∞t=0P̂
β
t

(3.9)

To show that P̂ βt is indeed an inner approximation of P βt , note that if x̄0 ∈ P̂ βt , then,

Zt,β ⊆ Γt(x̄0) by (3.8). This implies that Pr(wt ∈ Γt(x̄0)) ≥ Pr(wt ∈ Zt,β), which, by

construction, is larger than 1− β. Therefore, x̄0 ∈ P βt , which implies that P̂ βt ⊆ P
β
t .

The set Ôβ∞ is robustly positively invariant, as shown by the following theorem.

Theorem 3.2.1. Assume Ôβ∞ is non-empty. If x̄(t) ∈ Ôβ∞, then x̄(t+1) ∈ Ôβ∞ with respect

to system (3.1), i.e., Ôβ∞ is robustly positively invariant.

Proof. We introduce the following notation to proceed with the proof:
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1. Let x̄(k|t) and x̄(k − 1|t + 1) represent the same predicted state x̄(t + k) at time t

and t+ 1 respectively, k ≥ 2, t ∈ Z+

2. Let y(k|t) and y(k−1|t+ 1) represent the same predicted constrained output y(t+k)

at time t and t+ 1 respectively, k ≥ 1, t ∈ Z+

3. Let w(k|t) and w(k − 1|t+ 1) represent the same unrealized disturbance w(t+ k) at

time t and t+ 1 respectively, k ≥ 1, t ∈ Z+

Now, let k ≥ 1. If x̄(t) ∈ Ôβ∞, then by (3.9), x̄(t) ∈ P̂ βk for the chosen k. We prove below

that x̄(t + 1) ∈ P̂ βk−1 and, because k was arbitrary, it follows that x̄(t + 1) ∈ Ôβ∞. Before

we begin, to be consistent with the above notation, we restate the definition of P̂ βk at time

t and P̂ βk−1 at time t+ 1:

P̂ βk ={x̄0 : x̄(0|t) = x̄0, y(k|t) ∈ Y,∀w(j|t) ∈W, j ∈ Zk−1,

∀w(k|t) ∈Wβ}

P̂ βk−1 ={x̄0 : x̄(0|t+ 1) = x0, y(k − 1|t+ 1) ∈ Y,

∀w(j|t+ 1) ∈W, j ∈ Zk−2,∀w(k − 1|t+ 1) ∈Wβ}

where t in (3.8) is replaced by the prediction time (k or k − 1), and the initial time of 0 in

(3.8) is replaced by the current time (t or t+ 1). Using these notations, we have:
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x̄(t) ∈ P̂ βk ⇒ x̄(0|t) ∈ P̂ βk

⇒ C̄Ākx̄(0|t) + C̄
k−1∑
j=0

Āk−j−1B̄ww(j|t) +Dww(k|t)

∈ Y,∀w(j|t) ∈W, j ∈ Zk−1,∀w(k|t) ∈Wβ

⇒ C̄Āk−1(Āx̄(0|t) + B̄ww(0|t)) + C̄
k−1∑
j=1

Āk−j−1B̄ww(j|t)

+Dww(k|t) ∈ Y,∀w(j|t) ∈W, j ∈ Zk−1,∀w(k|t) ∈Wβ

⇒ C̄Āk−1x̄(0|t+ 1) + C̄
k−2∑
j=0

Āk−j−2B̄ww(j|t+ 1)

+Dww(k − 1|t+ 1) ∈ Y, ∀w(j|t+ 1) ∈W, j ∈ Zk−2,

∀w(k − 1|t+ 1) ∈Wβ

Therefore, x̄(t+ 1) ∈ P̂ βk−1, and, by definition of Ôβ∞, x(t+ 1) ∈ Ôβ∞.

Remark 3.2.1. The construction of P̂ βt in (3.8) indicates that the most recent unrealized

disturbance is assumed to belong to Wβ, whereas all previous disturbances belong to W (i.e.,

worst-case disturbance). Therefore, while this approximation is more conservative than the

actual SR-MAS (Oβ∞), it is less conservative than the standard approach, where the worst

case disturbance is assumed at every time, including the most recent time. These ideas are

illustrated with an example in Section VI.
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3.3 Computation of Ôβ
∞ and the Stochas-

tic Reference Governor

3.3.1 Computation of Ôβ
∞

Algorithm 1 below summarizes the computation of Ôβ∞. Note that we have redefined the

sets in (2.10) for the computation of the SR-MAS. The issue of finite determinism of Ôβ∞ is

analyzed afterwards.

Algorithm 1 Compute Ôβ
∞

Let Y0 = Y ∼ DwWβ

if Y0 = ∅ then

Ôβ∞ = ∅

Stop

else

Ôβ0 = {x̄ : C̄x̄ ∈ Y0}

t = 0

end if

while true do

Yt+1 = Yt ∼ C̄ĀtB̄wW

if Yt+1 = ∅ then

Ôβ∞ = ∅

Stop

else

Ôβt+1 = Ôβt ∩ {x̄ : C̄Āt+1x̄ ∈ Yt+1}

if Ôβt+1 = Ôβt then

Ôβ∞ = Ôβt

Stop

end if

end if

end while
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Recall that ∼ denotes the P-subtraction, which can be implemented via linear program-

ming. For more details, see [16].

Note, from Algorithm 1, that Wβ enters the calculations only through the matrix Dw.

Therefore, for systems with Dw = 0 (i.e., no feedthrough between the disturbance input

and the constrained output), the SR-MAS is exactly the same as the standard MAS, which

is not what we desire. This issue can be addressed by redefining the set Zt,β in (3.7) by

using t− 1 products instead of t. For this case, definition (3.8) becomes:

P̂ βt := {x̄0 : x̄(0) = x̄0, y(t) ∈ Y, ∀w(t− 1) ∈Wβ,

∀w(j) ∈W, j ∈ Zt−2},
(3.10)

and (3.9) remains unchanged. These changes lead to the following modifications to Algo-

rithm 1:

1. Set Y0 to Y .

2. For the first iteration of the while loop, replace W with Wβ.

The set Ôβ∞ defined using these modifications is still robustly positively invariant. This

is provable by following the same logic presented for the proof of Theorem 3.2.1.

Now consider again the general case (Dw not necessarily 0). As with standard MAS,

the set Ôβ∞ may not be finitely determined. However, an inner approximation, which is

finitely determined, can be obtained by shrinking the steady state: Ȳ := (1 − ε)Yt, for t

large enough, where Yt is now redefined by including Wβ as follows: Yt := Y ∼ DwWβ ∼

C̄B̄wW ∼ · · · ∼ C̄Āt−1B̄wW .

The following theorem provides the conditions for finite determinism of Ôβ∞.

Theorem 3.3.1. Assume Ȳ is non-empty, assumption (A.2.1.1) holds, the pair (C̄, Ā)

is observable, and 0 ∈ int(Ȳ ). Then, the set Ôβ∞ with respect to system (3.1) is finitely

determined.
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Proof. The proof follows the same logic as the proof of Theorem 2.1.1.

3.3.2 Stochastic Reference Governor

Finally, to implement a stochastic RG, we modify the standard RG formulation presented

in Section 2.1.1.1.1.2, to employ the SR-MAS instead of MAS:

maximize
κ∈[0,1]

κ

s.t. (x0, v0) ∈ Ôβ∞

v0 = v(t− 1) + κ(r(t)− v(t− 1))

x0 = x(t)

(3.11)

Using the same logic as standard RG, it can be shown that this formulation is also stable

and recursively feasible.

Remark 3.3.1. For the case where Dv = 0, stochastic RG can exclude the halfspace P̂ β0

(i.e., the halfspace corresponding to the initial time can be removed from Ôβ∞). This is

consistent with Remark 3.1.1 for standard RG. Note that, for this case, even though P̂ β0

is removed, the calculation of the sets Yt and Ȳ still include the contribution from Y0, for

example, Y1 = Y ∼ DwWβ ∼ C̄B̄wW .

3.4 Stochastic Reference Governor: Nu-

merical Simulation
In this section, we use a simple mass-spring-damper system to show the advantages of

Stochastic RG (SRG) over standard RG. The continuous-time model is given by: mÿ =
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F (t) − bẏ − ky, where b = 0.2Ns/m, k = 1N/m,m = 1 kg. We introduce the state vector

x = (x1, x2), where x1 = y and x2 = ẏ, and rewrite this model in state space (controllable

canonical) form. A state feedback law with feedforward is then designed to control this

system: F = Kxx + Kvv + Fd, where the state feedback gain, Kx, is designed so that the

closed-loop poles are placed at −0.5 ± 0.995j, the feedforward gain Kv = 1.24 is selected

to ensure unity dc-gain from v to y, v is the signal to be governed by the SRG, and Fd is

the disturbance on the control actuator. This disturbance is generated randomly from a

uniform distribution with Fd ∈ [−0.2N, 0.2N]. Finally, we assume that the position and

force are constrained by: |F | ≤ 1N, |x1| ≤ 0.7m. Note that this example considers the

case where Dw 6= 0 and Dv 6= 0.

The closed loop model is discretized using the zero-order hold technique with a sampling

time of Ts = 0.1s. For ease of illustration, it is assumed that Fd is constant during the

sampling period. Using the resulting discretized model, we compute both MAS and SR-

MAS. The confidence level for SR-MAS is taken to be 70 % (i.e., β = 0.3). The latter is

selected to illustrate clearly the difference between the two schemes. In practice, confidence

levels are normally higher, for example 95%. We perform the numerical test explained

next 100 times with different realizations of the disturbance. The numerical test consists of

simulating the response of the system starting from zero initial conditions to r(t) shown by

the black dashed line in Fig. 3.1.

The constrained position and force outputs for SRG and standard RG are depicted in

Fig. 3.2 for one run of the simulation. As can be seen, the former has a less conservative

response compared to the latter. This is possible to see from both the position and force

outputs, where the output corresponding to the SRG (red solid line) is not limited as much

as in the standard RG (blue dashed line).

The position output, for both schemes, satisfies the constraints for all times. However,

for the force output, only the standard RG scheme satisfies the constraints for all times. This
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Figure 3.1: Reference governor output for SR-MAS and MAS

is because of the conservative margin created by the worst case disturbance approach. On

the other hand, the SRG has some constraint violation within the confidence level of 30%.

This is evident from Fig. 3.3, which, for each timestep, shows the percentage of simulations

in which the output violated the constraint. The worst case probability of violation for

SRG is 24 %, which is lower than the 30 % used in design. Note that the actual violation is

below the 30% used for design because the SR-MAS, Ôβ∞, is an inner approximation of the

actual stochastic MAS.

The corresponding RG outputs, for both stochastic and standard RG, are depicted in

Fig. 3.1, where it can be seen that the SRG produces higher control signal values compared

to standard RG. This leads to a less conservative constrained output response, as is depicted

in Fig. 3.2. Thus, SRG leads to improved system performance.

Finally, Fig. 3.41 shows a cross section of the polytopes Ôβ∞ (used in SRG) and Ō∞

(used in RG). The conservative margin introduced by the worst case approach can be clearly

seen.

1Plot is generated by MPT 3.0 toolbox [83].
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Figure 3.4: SR-MAS and MAS polytopes
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Chapter 4

Recovery Reference Governor
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This chapter addresses the infeasibility problem of standard RG by proposing a simple

and real-time feasible solution that can recover the closed-loop system to a feasible op-

erating condition after a constraint violation is detected. The solution, referred to as the

Recovery RG (RRG), is based on a set-theoretic approach. Recovery is achieved by using an

estimation of the external disturbances affecting the system. These estimated disturbances

could model exogenous disturbances or plant/model mismatch. Once constraint violation

is detected, the RRG is executed in order to contract the governed input v(t) (see Fig.

1.1). When the constrained output recovers from violation, the standard RG formulation

is executed based on a new MAS, which has an updated disturbance information.

4.1 Recovery Reference Governor (RRG)
In order to motivate the RRG, the following example is used. Consider the discrete-time

first order system:
x(t+ 1) = 0.5x(t) + v(t) + w(t)

y(t) = x(t) + v(t),
(4.1)

with the constraint y(t) ∈ [−1, 1], ∀t ∈ Z+, and disturbance w(t) ∈ [−0.01, 0.01]. Applying

the standard RG based on the theory presented in Section 2.1.1.1.1.2, the corresponding

Ō∞ for system (4.1), for t = 10 (i.e., large enough for this example) and ε = 0.0001 in the
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Figure 4.1: Constrained output, example model. Bottom plot shows a zoom in of the ordinate
axis corresponding to the constrained output (top).

computation of Ȳ , is given by:

Ō∞ =
{

(x0, v0) :



0 3

1 1

0.5 2

0 −3

−1 −1

−0.5 −2



x0

v0

 ≤



0.9799

1

0.99

0.9799

1

0.99



}
.

Assume that x(0) = 0, and r(t) = 1,∀t ≥ 0. Now, suppose the disturbance set assumed

during the design phase is not accurate and the actual disturbance affecting the system is

w(t) = 0.012 for t ≥ 0. Then, under this condition, applying the RG defined by (2.18)

will compute v(t) = 0.3266, ∀t ≥ 0, which will lead to y(t) violating the constraint in the

presence of this disturbance, without possibility of recovering. This is illustrated in Fig.

4.1.
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In order to remedy the problem exposed in the previous example, we propose a for-

mulation capable of handling unknown disturbances affecting the system. Note from the

example that the violation arises due to an inaccurate assumption regarding the set W .

Thus, we first tackle this part of the problem.

4.1.1 Disturbance Estimation

A persistent violation may occur when an unknown disturbance affects the system for a

sustained period of time. In order to recover from constraint violation, we first investigate

an effective way to estimate the disturbance. If the model is well known, a standard ap-

proach is to design an observer based on system (2.8). However, the way the disturbance

enters the system is not always available, i.e., Bw and Dw in (2.8) may be unknown, for

example when the disturbance is due to plant/model mismatch. We overcome this lack of

information by extending some of the ideas presented in [206], with the distinction that we

implement a fixed-gain Kalman filter (i.e., a Luenberger observer) to estimate the states

and disturbances.

Consider system (2.8), where Bw and Dw are unknown. Assume that w(t) represents

unmeasured signals lumping the effects of plant/model mismatch and all exogenous distur-

bances affecting the real process.

To see how w(t) can capture the effects of plant/model mismatch, suppose that the real

plant is given by the following nonlinear model:

x(t+ 1) = f(x(t), v(t), d(t)), y(t) = g(x(t), v(t), d(t)), (4.2)

where d is a vector of real disturbances. Note that (4.2) can be transformed into (2.8) by

defining Bww(t) = f(x(t), v(t), d(t)) − Ax(t) − Bvv(t), and Dww(t) = g(x(t), v(t), d(t)) −

Cx(t) − Dvv(t). Hence, without loss of generality, in our reference governor and observer
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models discussed below, we assume that w ∈ Rn+p and the disturbance model:

Bw =
[
In 0n×p

]
, Dw =

[
0p×n Ip

]
, (4.3)

so that the disturbance affects every state and every output. Note that, in general, the

constrained output y is not measured. In these situations, the observer must be designed

using an appropriate model of the measured output (i.e., C, Dv, and Dw matrices).

A. 4.1.1. For observer and RRG models, assume ŵ is constant for all time, i.e., ŵ(t+1) =

ŵ(t), ∀t ∈ Z+.

Using the above assumptions, we design a Luenberger observer to estimate the unmea-

sured disturbance ŵ.

Remark 4.1.1. A different disturbance model may be considered for the design of the

observer. For instance, in [206], a dynamic observer is presented to estimate disturbances

and uncertainties based on H∞ control theory. However, for the scope of this paper, and

since, rather than tracking performance, we are interested in constraint management, we

use the disturbance model defined in (4.3).

4.1.2 Recovery Reference Governor (RRG)

The problem of recovery from constraint violation is addressed with the RRG, whose flow

diagram is shown in Fig. 4.2. Note from (2.8) that the constrained output, y(t), depends

on the current input, v(t), which has not yet been computed at time t. Hence, the RRG will

be executed when the previous output violates the constraint (i.e., y(t− 1) /∈ Y ), as shown

in Fig. 4.2. Under this condition, the RRG computes the governed input, for the current

time step, based on an estimate of the disturbance that produced the constraint violation.
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Figure 4.2: RRG flow diagram, executed at each time step
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Remark 4.1.2. Although not explicitly shown in Fig. 4.2, it is a good practice to consider

a hysteresis band around the constraint to avoid toggling due to the activation of the RRG

because of a small violation.

The recovery scheme is basically composed by three main elements: Computation of

Oŵss, execution of the RRG, and the updating process of Ō∞. These are explained below.

4.1.2.1 Computing Oŵ
ss and executing RRG

During constraint violation, we switch from the RG based on Ō∞ to the RRG based on the

set Oŵss defined as follows:

Oŵss := {(v0, ŵ0) : H0v0 +H0wŵ0 ∈ (1− α)Ȳ }, (4.4)

where H0w = C(I−A)−1Bw+Dw, is the DC gain from the disturbance input to the output.

The positive calibration parameter α ∈ R is introduced to allow flexibility on the steady

state contraction. It is trivial to see that (4.4) only uses the steady-state properties of the

system, which means that finite determination of Oŵss is not an issue. Note that, without α

and H0wŵ0, (4.4) is the steady-state halfspace in (2.16).

Remark 4.1.3. Another approach for defining Oŵss is using the steady-state halfspace in

(2.16): Oŵss := {v0 : H0v0 ∈ Ȳ }, where Ȳ is now updated as follows. We first update the set

W to capture the worst-case estimated ŵ(t), and recompute the iteration (2.10) and, hence,

Ȳ . While this approach takes the new information about the worst-case disturbance into

account and can recover from violation at steady state, it is too computationally demanding.

Therefore, we prefer to introduce a calibration parameter α and use the formulation (4.4).

Note that the recovery speed may be affected by the parameter α. If α is too small, then

the recovery process may be slowed down. On the other hand, if this parameter is too large,

then the recovery process may be fast, but may lead to an excessively conservative response.
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Based on Oŵss, the RRG formulation is given by:

v(t) = κr(t),

where κ is computed from:

max
κ∈[0,1]

κ

s.t. (v0, ŵ0) ∈ Oŵss

v0 = κr(t),

ŵ0 = ŵ(t),

(4.5)

where ŵ(t) is the estimated disturbance at time t. Note that (4.5) is similar to the static

RG studied by Gilbert et. al. in [207], but with the distinction of the introduction of the

set Oŵss. Because of the use of Oŵss, this formulation ensures that if ŵ(t) converges to w(t),

then the computed input, v0, ensures recovery from violation at steady state. This is shown

in Section 4.2.

Note from (4.5) that in order for the equilibrium (i.e., v0 = 0, which corresponds to

the equilibrium input at which the nonlinear system is linearized) to be admissible, the

following condition must be satisfied:

H0wŵ0 ∈ (1− α)Ȳ . (4.6)

A. 4.1.2. It is assumed that the equilibrium is admissible for the implementation of the

RRG.

Future works will explore the case when this assumption is not satisfied.
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4.1.2.2 Update Ō∞

Once the constrained output recovers from violation, the standard RG formulation is used,

i.e., Equation (2.17), with the difference that Ō∞ has been updated with the estimated

disturbance. Specifically, we redefine the halfspaces in (2.16) as:

P̄i := {(x̂0, ŵ0, v0) ∈ R2n+p+1 : H0v0 +H0wŵ0 ∈ Ȳ ,

CAix̂0 +Hv(i)v0 +Hw(i)ŵ0 ∈ Yi},
(4.7)

where Hv(i) = (C(I−A)−1(I−Ai)Bv+Dv), and Hw(i) = (C(I−A)−1(I−Ai)Bw+Dw). In

definition (4.7), ŵ(t) is assumed to be known and constant for all times, which is consistent

with Assumption 4.1.1.

Remark 4.1.4. Note from (4.7) that for the implementation of the RRG, the two extra

components that need to be pre-stored in memory are H0w and Hw(i), i = 0, . . . , t∗. The

other components of (4.7) (i.e., H0, CA
i, Hv(i), Ȳ , and Yi) are known from the standard

RG.

Remark 4.1.5. If the disturbance affecting the system vanishes, then (4.7) becomes (2.16)

for the given disturbance model (i.e., Bw and Dw).

4.2 Analysis of Recovery Reference Gov-

ernor
In this section, we introduce two conditions on the disturbance that lead to constraint

violation and, hence, the RRG execution. We also present the theoretical result that shows

under what conditions the RRG recovers the output from constraint violation.
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Below, we denote the transfer function matrix from the disturbance, w, to the con-

strained output, y, by G(z).

Proposition 4.2.1. Suppose that for all i = 1, . . . , p, there exists a j, such that Gi,j(z) 6= 0

(i.e., either the ij-th element of Dw 6= 0 or the ij-th element of CAkBw 6= 0 for some k).

Then, for all t0 ≥ k, there exists a sequence {w(t)}t0t=0, with one or more w(t) /∈ W , such

that y(t0) /∈ Y .

Proof. If Dw 6= 0, then w(t) large enough will lead to constraint violation, since the con-

straint set Y is compact. If Dw = 0, then CAkBw 6= 0, which implies that the effect of the

disturbance will manifest in the output after k+ 1 delays. Thus, w(t− k− 1) large enough

will lead to constraint violation.

Proposition 4.2.1 provides a sufficient condition for the RRG to be executed. Next, we

show, for a specific case, that there is an upper bound of the sequence {w(i)}ti=0, which, if

violated, will lead to the execution of the RRG at steady-state.

Corollary 4.2.1. Assume that the DC gains from each disturbance to each of the con-

strained outputs are positive, the disturbance is held constant for all times, and suppose

r(t) /∈ V̄ . Then, there exist upper bounds w̄j, with j = 1, . . . , n+ p, such that the RRG will

be executed at steady-state if any one wj > w̄j.

Proof. We show the proof for the case when (2.8) has one output. The proof for the case

with multiple outputs follows similar logic. Let the polytopic constraint set Y be given by:

Y = {y : Sy ≤ s}, (4.8)

where S is a scaling matrix and s is the constraint imposed on the output. Next, let the
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polytope Ȳ used in (2.4) be given by:

Ȳ = {y : Sy ≤ s̃}. (4.9)

For simplicity, let the scaling matrix S = 1. Note that, since r(t) /∈ V̄ , the RG will ensure

that v(t) converges to the boundary of V̄ at steady-state, i.e., H0v0(t)→ s̃. Thus, we have

from (4.8) and because the disturbance is assumed to be held constant, that to satisfy the

constraint at steady-state:
H0v0 +H0ww ≤ s

⇒ H0ww ≤ s−H0v0.

⇒ H0ww ≤ s− s̃.

(4.10)

Let the jth element of H0w be defined by h0wj , then for each wj (jth element of w), j =

1, . . . , n+ 1, we can find each corresponding upper bound as:

w̄j = 1
h0wj

(s− s̃).

It is obvious that any jth disturbance bigger than w̄j will produce constraint violation at

steady-state, which will trigger the execution of the RRG scheme (see Fig. 4.2).

The following theorem provides the theoretical guarantees of applying the RRG to

recover from constraint violation.

Theorem 4.2.1. For system (2.8) affected by unknown disturbances, assume that there is

an asymptotically stable observer such that ŵ converges to w at steady state. Also assume

that condition (4.6) and Assumption 4.1.1 hold. Then, the RRG scheme will recover the

constrained output from violations at steady-state.

Proof. Since there is an observer to estimate ŵ, which converges to w at steady-state

and thanks to Assumption 4.1.1, one can define the output of (2.8) at steady-state as
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yss = H0v +Howŵ. With the RRG in the loop, the output becomes:

yss = H0κr(t) +Howŵ(t), (4.11)

which by definition (4.4) must satisfy yss ∈ (1− α)Ȳ , and since (1− α)Ȳ ⊂ Y , this implies

that yss ∈ Y at steady-state. Then, there will be a κ ∈ [0, 1] for (4.11) such that the

constrained output recovers from violations at steady-state.

Remark 4.2.1. Note that the existence of an asymptotically stable observer based on (2.8)

to estimate the disturbance at steady state will ensure that the constrained output recovers

from violations. Once the observer guarantees ŵ = w at steady state, the updated version

of Ō∞ based on (4.7) will capture the disturbance effects.

Remark 4.2.2. During constraint violation, the RRG implements (4.5). After recovery,

depending on the system characteristics, one may have the condition where the standard

RG with an updated Ō∞ is still infeasible, because the RRG only enforces constraints at

steady-state not transient. In such a case, we enforce κ = 0 to command the previous input;

however, this leads to constraint violation. The latter will activate the RRG execution,

which will compute a new admissible steady-state input, based on the new disturbance. The

output eventually converges to a value that satisfies the constraint. Thus, the RRG may not

ensure recursive feasibility, but it enforces constraints at steady-state.

4.3 Turbocharged Engine Simulation
In this section, we illustrate the application of the RRG to a turbocharged gasoline engine

model, depicted in Fig. 4.3. In a turbocharged engine, the throttle controls the airflow into

the engine, which directly controls the engine torque. The turbine extracts energy from
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Figure 4.3: Schematic of a turbocharged gasoline engine [2]

exhaust gasses and drives the compressor, which increases pressure at the throttle inlet,

allowing more airflow to enter the engine.

The dynamic equations for the turbocharged gasoline engine are as given in [208]. The

turbocharged gasoline engine model includes an air-path controller, which is set to control

the desired engine air mass flow rate, which is the reference r being governed. To this end,

a gain scheduled PI controller to control the wastegate flow, and a feedforward controller

to regulate throttle position are implemented. The closed-loop system is linearized at an

operating point.

The model has Bw and Dw defined based on (4.3). The state vector

x =
[
Pi, Pb, Pe, Ntc, Wwg, xc1 , xc2

]>
,

represents the intake pressure, boost pressure, exhaust pressure, turbo speed, wastegate
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flow, and two controller states. The constrained output is the turbo speed, which for the

purpose of this paper we choose to be a delta value above the linearization point, this is:

δNtc ≤ 2, 000RPM. (4.12)

Note that constraint (4.12) does not represent a compact constraint set as assumed earlier

in this paper. However, for the purpose of this application, not considering a compact

constraint set does not affect the implementation of the RG or the RRG. For this reason

we use the constraint presented in (4.12). The system has one constrained output, i.e.,

p = 1. This implies that the unknown disturbance w affecting the system belongs to R8.

We assume the real disturbance affects the turbo speed and wastegate flow states, and an

estimation noise affects the constrained output. The disturbance affecting the two states

is defined as ws ∈ [−0.05, 0.05] and the disturbance affecting the constrained output is

wy ∈ [−1.5, 1.5]. The final disturbance vector is given by:

w = [0, 0, 0, ws, ws, 0, 0, wy]>.

With all the elements in place, we discretize the closed loop system with a sample time of

0.015s. The model has the structure of (2.8), where A,Bv, C, and Dv are provided in the

Appendix of [45]. This linear model was obtained from linearizing a nonlinear model of the

turbocharged for an operating condition corresponding to a desired air mass of 19 lb/min.

Note that Bw and Dw are as in (4.3). The fixed gain Kalman Filter designed for this system

is tuned by more heavily weighting those disturbance states that correspond to turbo speed,

wastegate flow, and the output.

The parameter α was defined for these simulations to be 0.1. The selection of this

parameter is based on how much margin, with respect to the constraint, is desired to have

at steady-state, in this case a 10% margin was added after constraint violation. Also, as
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previously explained, this is introduced to the RRG formulation in order to allow some

flexibility in the computation of (4.4).

Next, we compute Ō∞, and perform the following numerical experiment: First, starting

the system from zero initial conditions, we request a fixed reference (delta of the desired

air mass value above the equilibrium), and during normal operation, fixed unknown distur-

bances affect the system through the channels that correspond to turbo speed, wastegate

flow, and constrained output as explained above. We assume ws = 0.12 and wy = 3.6

starting from t = 4.5s. Both values are outside of W .

Fig. 4.4 shows the fixed desired air mass reference that is requested from the engine

in blue. The dash-dot black signal corresponds to the governed input computed by the

standard RG. The solid red line is the governed input computed by the RRG.

Fig. 4.5 shows the turbo speed output from the engine. The dotted cyan response

corresponds to the unconstrained output (i.e., no constraint management scheme in the

loop), which as expected violates the constraint. The dash-dot black response corresponds

to the standard RG response, which satisfies the constraint until the unknown disturbances

affect the system at 4.5s, and it keeps violating while the disturbances are present. The

solid red line corresponds to the RRG response, which recovers as the estimated disturbance

is detected and fed back to the RRG.

A second test is performed, with the distinction that now the reference varies. Similar to

the first experiment, in this second test the disturbances affect the system at time t = 4.5s

and are held constant. The results of the second experiment are in Fig. 4.6 and Fig. 4.7.

The former shows a variable reference that is requested from the engine and how the RG and

the RRG restrict the full reference in order to avoid constraint violation. Since unknown

disturbances affect the system, the RG holds the reference constant based on an inaccurate

MAS. Even as r(t) becomes admissible at t = 11.25s, the RG still maintains v(t) at a

constant value because the optimization problem (2.17) is infeasible. On the other hand,
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Figure 4.4: RRG vs. RG for fixed reference input. Bottom plot corresponds to a zoom in of
the ordinate of the desired air mass delta input (top).
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Figure 4.5: Turbo speed output for RRG vs. RG with fixed reference input. Bottom plot
corresponds to a zoom in of the ordinate of the turbo speed delta output (top) above the
equilibrium point.

the RRG restricts the reference, updates the MAS and considers information provided by

the observer to transform the unknown disturbance into a known disturbance. With the
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Figure 4.6: RRG vs. RG for variable reference input. Bottom plot corresponds to a zoom
in of the ordinate of the desired air mass delta input (top) above the equilibrium point.
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Figure 4.7: Turbo speed output for RRG vs. RG for variable reference input. Bottom plot
corresponds to a zoom in of the ordinate of the turbo speed delta output (top) above the
equilibrium point.

RRG in the loop, the system is able to recover from constraint violations, and, since Ō∞

is updated based on the estimated disturbance, violations due to a similar disturbance are
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prevented from happening in the future.

Remark 4.3.1. The design of the disturbance model (i.e., Bw and Dw) affects the DC gain

from disturbance input to the output, which will be reflected on the performance of the RRG

in the loop.

Note that the time constant of the observer is important for a smooth recovery response.

A bad observer design may lead to toggling among different RRG modes, which is undesir-

able. However, increasing the estimation speed of the fixed gain Kalman Filter can produce

a higher noise sensitivity, which may be undesirable.
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Chapter 5

Reference Governor for Nonlin-

ear Systems
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This chapter presents a novel scheme for constraint management of nonlinear systems.

The Transient Robust RG (TR-RG) addresses the difficulties that were discussed in Chapter

1, Section 1.2.3. This scheme, whose block diagram is presented in Fig. 5.1, leverages a ref-

erence governor, as well as the steady-state characterization of the nonlinear system, which

is often available in practice, for instance in the automotive industry, where engine maps

are developed on dynamometers. More specifically, Fig. 5.1 shows a closed-loop nonlinear

system with a constrained output ynon(t), which is constrained as follows: ynon(t) ∈ Y, ∀t,

where Y is a specified set. To compute v(t) that enforces these constraints, the TR-RG

leverages a linearized prediction model of the nonlinear system (similar to [3, 35, 42–45]).

However, two mechanisms are proposed to effectively account for the mismatch between

the linear model and the nonlinear system outputs: the first one mitigates plant/model

mismatch at steady-state by incorporating the forward (ζ) and inverse (ζ−1) steady-state

characterization of the nonlinear system in the loop (illustrated by blue curves in Fig. 5.1);

and the second one is an RG that is implemented using a novel Robust Output Admissible

Set (ROAS). The latter is obtained by using a data-driven approach to explicitly capture

the transient mismatch between the responses of the nonlinear system and the linearized

model. Note that if no modification of the governed input v(t) is required, then r(t) = v(t),

which is possible thanks to the introduction of ζ and ζ−1.

The TR-RG guarantees closed-loop system stability, as well as constraint satisfaction

at steady-state without introducing any conservative margins. However, to enforce con-

straints during transients, TR-RG introduces a dynamic transient margin thanks to the

ROAS. Note that the introduction of this margin is similar in philosophy to Lyapunov-based

approaches [47, 49], where the choice of the Lyapunov function may lead to a conservative

response. However, since TR-RG does not rely on a Lyapunov function, it may lead to a less

conservative response as compared to Lyapunov-based methods, at the expense of theoret-

ical guarantees of constraint satisfaction during transients. Finally, other approaches that
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Figure 5.1: TR-RG block diagram. The TR-RG scheme refers to the use of the RG with
an ROAS, together with the forward and inverse steady-state mappings (i.e., the green and
yellow blocks).

exploit Lyapunov-based methods plus learning algorithms [51], as well as machine learning

techniques that aim to learn the MAS [126] based on data, have been studied for constraints

management of nonlinear systems. The work presented in this chapter is similar in spirit

to [51, 126], since an admissible set is constructed using data. However, TR-RG offers the-

oretical guarantees at steady-state, maintains the simplicity of standard RG update law,

and relies on ROASs that preservers properties of polytopic MASs.

Two remarks on TR-RG are in order. First, due to the data-driven nature of TR-RG, it

can be applied to constraint management of black-box uncertain system (i.e., systems with

inaccurate or even no analytical models) with the only requirement of having input-output

measurements/estimations available. This offers an alternative to existing solutions that

rely on data but require a parameterized structure to define admissible linear models to build

a Robust Positively Invariant (RPI) set [92]. Also, TR-RG is different from formulations

that study systems with parametric uncertainties based on RPI sets (e.g., [80,209] for linear
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systems and [69,210] for nonlinear systems) in that TR-RG only introduces margins during

transients but not at steady-state.

Second, the decomposition of the TR-RG design process into two parts (namely, steady-

state and transient) is similar, in spirit, to traditional robust control methods [211], wherein

low frequency components of the system’s frequency response are assumed to be accurately

known, while the high frequency components are uncertain. In these methods, similar to

TR-RG, controllers are designed to be robust against these uncertainties.

5.1 Problem Formulation and Motivat-

ing Example

5.1.1 Problem Formulation

Consider Fig. 5.1, where the nonlinear plant is defined by:

ẋnon = f(xnon, v)

ynon = h(xnon, v)
(5.1)

where ynon ∈ Rp is the constrained output, xnon ∈ Rn is the nonlinear system state vector,

and v ∈ R is the governed input of the nonlinear system. Over the output we impose the

constraint ynon ∈ Y , where Y has the structure: Y = Y1 × Y2 × . . . × Yp, each Yi = {yi ∈

R : yi ∈ [si, s̄i]} and si < 0 and s̄i > 0 are scalars. Note that this implies that 0 ∈ int(Yi),

which is consistent with the assumptions over the set Y established in Section 2.1.1.1.1.

The following assumptions are imposed on (5.1).

A. 5.1.1. It is assumed that the equilibrium of (5.1) is globally asymptotically stable for
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every constant input v. In addition, the system is BIBO stable from v to ynon.

A. 5.1.2. It is assumed that ynon can be accurately measured or estimated in real-time.

Furthermore, the steady-state mapping from v to ynon is assumed to be available. This

mapping is denoted by the function ζi : R 7−→ R, i = 1, . . . , p. Also, it is assumed that each

ζi is continuous, satisfies ζi(0) = 0, and is invertible.

Note that assumption (A.5.1.2) covers a wide range of applications of nonlinear systems

that have the steady-state mapping available. For example, it is common practice in the

automotive industry to map combustion engines at different operating conditions. Note

that if the steady-state map is not known accurately, or if the map varies slowly with time,

our method can still be applied, as discussed in Sections 5.2.2 and 5.3.2.

The goal of this paper is to design an RG-based scheme for system (5.1), which can

compute an input v as close as possible to a given reference r at each time, such that the

constraints on the output are enforced for all times.

5.1.2 Constraint Management of Turbocharged

Engines

The main application considered in this work is a turbocharged gasoline engine, which is

a highly nonlinear system that satisfies the assumptions already established. In a gasoline

turbocharged engine, the primary airpath actuators are the throttle and the wastegate,

shown in the schematic diagram of Fig. 4.3. To deliver a desired engine airflow and, hence,

torque, the throttle is actuated to control the airflow into the engine and the wastegate

is actuated to control the pressure at the throttle inlet, known as the boost pressure. To

ensure hardware durability, it is important to design constraint management strategies that
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enforce constraints on the turbocharger speed and throttle inlet gas temperature [36]. Con-

ventional hardware-protection strategies impose static limits on the desired boost pressure

or desired engine airflow/torque that are determined based on the steady-state relationships

between pressure, temperature and turbocharger speed. Although effective at enforcing the

constraints, this static approach does not take into account system dynamics. Therefore,

large robustness margins must often be included in the static limits to avoid constraint

violation during transients. These offsets reduce maximum achievable boost pressure and

therefore engine torque, potentially impacting performance.

We now present an example of standard RG (formulation explained in Section 2.1.1.1.1)

applied to a nonlinear turbocharged gasoline engine system to motivate the need for the

theory developed in this paper. This system is represented by a mean value turbocharged

engine model described in [208, 212], together with an air-path controller, which is set to

control the engine air mass flow rate to follow a desired value (which is the reference to

govern). The closed-loop system is linearized at an operating point, and based on this

linearization the RG is implemented. The constraint is imposed on the turbo speed, with a

conveniently low constraint value of 140 kRPM. The simulation results for a step input in

the desired air mass are presented in Fig. 5.2, where the top subplot shows the desired air

mass reference (dashed line in red) and the governed reference (dashed-dotted line in black),

and in the bottom the constraint (brown dashed line), the turbo speed response without an

RG (dotted line in red), and the turbo speed response with standard RG (dashed-dotted

line in black). As expected, because of the plant/model mismatch, the constraint imposed

on the nonlinear plant cannot be satisfied by implementing a standard RG. An alternative

solution is to implement multiple standard RGs based on linearized models obtained at

different operating points. However, due to the mismatch between the nonlinear plant and

the linear models, the maximal admissible sets within these RGs would not be positively

invariant, which means that constraint satisfaction would still not be guaranteed. The
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proposed scheme overcomes these issues by explicitly handling the plant/model mismatch,

as explained next.

5.2 Transient Robust RG (TR-RG)
As explained in the Introduction and Section 5.1, the goal of TR-RG is to enforce the

constraints ynon(t) ∈ Y for the nonlinear system (5.1). This is achieved by breaking up the

design in two stages: steady-state and transient, which we describe next. For the sake of

clarity, we assume that p = 1 (i.e., one output) in this section. We will relax this assumption

in Section 5.3.

To enforce the constraints at steady-state, we leverage assumption A.5.1.2 and introduce

the steady-state mapping, as shown in Fig. 5.1, where the blue curves illustrate the forward

mapping (ζ) and its inverse (ζ−1). In Section 5.2.1, we show that this structure enforces

the constraints at steady-state.

To enforce the constraints during transients, we use a linear approximation of the non-

linear system from yv(t) to ynon(t), which can be obtained from linearization or system

identification of the nonlinear system around an operating point. Let the linear model be

described by:
x(t+ 1) = Ax(t) +Byv(t)

y(t) = Cx(t) +Dyv(t),
(5.2)

where the DC gain (i.e., H0 := C(I −A)−1B+D) is equal to 1, thanks to the introduction

of ζ. Note that to avoid introducing new symbols, we have used, with a slight abuse of

notation, the same A,B,C,D notation as in Section 2.1.1.1.1. For the rest of this discussion,

we assume that system (5.2) satisfies Assumption A.2.1.1. Based on (5.2), we compute a

Robust Output Admissible Set (ROAS), which we denote by Or∞. As will be explained in

Section 5.2.3, ROAS is a subset of the standard Maximal Output Admissible set (MAS), but
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shrunk using a data-driven approach to take transient plant/model mismatch into account.

The RG, shown in Fig. 5.1, follows the standard formulation in (2.17) and (2.18), except

that the RG uses the ROAS instead of the MAS to enforce the constraints on the nonlinear

system. Specifically, the RG update law in our TR-RG framework is given by:

yv(t) = yv(t− 1) + κ(yr(t)− yv(t− 1)), (5.3)

where κ is optimized using:

maximize
κ∈[0,1]

κ

s.t. (x(t), yv(t)) ∈ Or∞

yv(t) = yv(t− 1) + κ(yr(t)− yv(t− 1))

(5.4)

To summarize the scheme (Fig. 5.1), we have that at time t, given a reference r(t), the signal

yr(t) is calculated through the steady-state map ζ. Next, the RG computes yv(t) based on

yr(t), yv(t−1), and x̂(t), where x̂(t) is an estimate of x(t) obtained using an observer based

on (5.2). If no violation is predicted, then yv(t) = yr(t), otherwise a constraint-admissible

input yv(t) is computed. Finally, the input of the nonlinear plant (5.1), v(t), is computed

by the inverse mapping ζ−1.

Remark 5.2.1. In the offline stage of the TR-RG design process, the signal ynon(t) must

be available for measurement or estimation. This is because ynon(t) is needed to construct

the steady-state map and to tune the ROAS. On the other hand, during the real-time im-

plementation of TR-RG, this is no longer required. Indeed, if ynon is still available for

measurement or estimation, the observer can be designed with ynon as the output injection

term. However, if ynon is not available, then an open loop observer can be used (driven

purely by yv). Furthermore, note that the observer will have an estimation error that con-
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verges to zero at steady-state thanks the to introduction of the steady-state map in the loop

(i.e., outputs of (5.1) and (5.2) match at steady-state).

5.2.1 Steady-State Constraint Enforcement

The result of introducing the steady-state mapping with RG for the case when p = 1 is

summarized in the following theorem.

Theorem 5.2.1. Assume that reference r(t) is held constant. By applying the scheme pre-

sented in Fig. 5.1, the constraints on (5.1) are enforced at steady-state, i.e., limt→∞ ynon(t) ∈

Y.

Proof. For this proof, we refer to the MAS of (5.2) as Ō∞, which follows the same structure

as in (2.16). We will use the subscript ‘ss’ to denote steady-state value of the signal. Since

r(t) is constant, the input to the RG, yr(t), is also constant. From (5.3) and (5.4), the RG

computes an input yv(t) which converges at steady state, that is, yvss := limt→∞ yv(t) exists

and is finite (Theorem 4.1 of [59]). Now, recall that the ROAS satisfies Or∞ ⊂ Ō∞ and that

Ō∞ contains the shrunk steady-state constraint, H0yvss ∈ (1− ε)Y . Because we know that

H0 = 1, we have that yvss ∈ (1 − ε)Y , which in turn implies that yvss ∈ Y . Next, by

assumption A.5.1.2, we can compute the input to the nonlinear plant as v(t) = ζ−1(yv(t)),

which converges to vss = ζ−1(yvss). Hence by assumption A.5.1.1, the output of system

(5.1), ynon(t), converges to ynonss = ζ(vss) = (ζ ◦ ζ−1)(yvss) = yvss , which finally implies

that ynonss ∈ Y , as desired.

Next, we study the ROAS and analyze TR-RG’s ability to enforce the constraints during

transients.
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5.2.2 Transient Constraint Enforcement

As mentioned previously, system (5.2) is obtained by linearizing (5.1) around an operating

point. Hence, for operating conditions far from the linearization point, there may be a

significant plant model mismatch, and therefore the predictions of the constrained output

based on the linearized model may not be accurate. However, since the linear model and the

nonlinear system are matched at steady-state (thanks to the steady-state map ζ), we know

that the mismatch only manifests during transients. For this reason, we propose a novel

scheme (i.e., data-driven construction of ROAS) that combines linear system predictions

with a dynamic margin to capture the transient mismatch. Using the ROAS, the TR-RG

can enforce the constraints both at steady-state and during transients.

This idea is formally presented as follows. Recall that we want to impose s ≤ ynon(t) ≤ s̄

for all t ∈ Z+. To do so, we introduce the functions G(·) and Ḡ(·) such that the following

inequalities hold:

y(t)−G(x(t), yv(t)) ≤ ynon(t) ≤ y(t) + Ḡ(x(t), yv(t)) (5.5)

where y(t) is the output of (5.2) and ynon(t) is the output of (5.1). The functions G and

Ḡ are positive and have additional properties that will be defined later, together with some

examples. These functions are intended to capture the difference between the outputs of

the linear model and the nonlinear system. Now, to enforce s ≤ ynon(t) ≤ s̄, we enforce the

following constraints using the TR-RG:

s ≤y(t)−G(x(t), yv(t)),

y(t) + Ḡ(x(t), yv(t)) ≤ s̄
(5.6)
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From (5.5) and (5.6), it follows that:

s ≤y(t)−G(x(t), yv(t)) ≤ ynon(t),

ynon(t) ≤ y(t) + Ḡ(x(t), yv(t)) ≤ s̄
(5.7)

which implies that s ≤ ynon(t) ≤ s̄ as desired. Based on (5.7), we define the ROAS as

follows, where similar to Assumption A.2.1.2, we have assumed that, for the construction

of ROAS, yv(t) = yv0 is held constant:

Or∞ :=


(x0, yv0) ∈ Rn+1 : y(t) + Ḡ(x(t), yv0) ≤ s̄

− y(t) + G(x(t), yv0) ≤ −s,∀t ∈ Z+

 (5.8)

where x(t) = Atx0+(I−A)−1(I−At)Byv and y(t) = Cx(t)+Dyv(t), are the predicted state

and output of (5.2). Note that definition (5.8) represents the set of all initial conditions

such that the predictions of the linear model (5.2) plus a dynamic margin, and hence the

nonlinear system output, are within the constraints for all times. The properties of this

ROAS are analyzed in Section 5.2.3 and the numerical properties and computational aspects

of it are discussed in Section 5.4.

We now elaborate on the properties and tuning of the functions G and Ḡ. We endow

these functions with the following structure:

Ḡ(x, yv) = γ1g(x, yv) + γ2

G(x, yv) = γ3g(x, yv) + γ4

(5.9)

where γj , j = 1, . . . , 4 are positive scalars to be tuned, and the function g(x, yv) satisfies

the following properties: positive (g(·) > 0), convex, and g(x, yv) = 0 if and only if x is the

equilibrium corresponding to yv, i.e., x = (I − A)−1Byv. We will explain in Section 5.2.3
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why these conditions are required. Some specific choices are as follows:

g(x, yv) = ||x− xss||P (5.10a)

g(x, yv) = ||x− xss||2P (5.10b)

g(x, yv) = ||∆x||P (5.10c)

where xss := (I − A)−1Byv is the steady-state value of x for the constant input yv, and

∆x := (A − I)x + Byv represents the difference in the state at two successive timesteps.

The matrix P is a positive definite matrix whose diagonal elements are computed based

on the expected range of the states (more on this in Section 5.4). Functions (5.10a) and

(5.10b) are similar with the difference that, in terms of implementation, (5.10b) offers a

higher numerical robustness as compared to (5.10a), due to the absence of the square root.

On the other hand, (5.10b) may introduce issues with order of magnitude (i.e., calculating

large values due to squaring the vector elements). The function (5.10c) offers an alternative

that uses the difference between states in consecutive timesteps rather than the difference

with respect to the steady-state as in (5.10a) and (5.10b). This implies that under sudden

input variations, (5.10c) may be more conservative, which might lead to computing bigger

values for the parameters γ1 to γ4 (see below for the tuning process). Note that in all cases,

γ2 and γ4 generally represent the level of uncertainty/mismatch at steady-state (if any),

while γ1 and γ3 represent the level of uncertainty during transients.

Once the function g(·) is defined, we proceed to tune the parameters γj in (5.8) based

on data collected from the nonlinear system. To do so, we excite both the linear model

and the nonlinear system with the same sequence of inputs (yv) and gather their outputs

(y and ynon). These data are used to solve offline an optimization problem to compute the

parameters γi. The complete process is outlined as follows:

1. Define a sequence of inputs, for example steps and/or ramps, to capture the nonlinear
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system and linear model responses in the region of interest. The definition of the

inputs may depend on the nature of the application and the range of frequencies

that we want to analyze (see Remark 5.2.2 for clarification, and Section 5.5 for an

illustration).

2. Apply the pre-defined input sequence to (5.1) and (5.2) to capture the systems’ re-

sponse in the operating region of interest.

3. Collect all the data points corresponding to: ynon, y, x, and yv (see (5.1) and (5.2)).

For the tuning process, yv is directly controlled.

4. For all data points, solve the following optimization problem:

minimize
γj

4∑
j=1

ρjγj

s.t. ynon(k) ≤ y(k) + γ1 g(x(k), yv(k)) + γ2,

y(k)− γ3 g(x(k), yv(k))− γ4 ≤ ynon(k)

γ2 < s̄,−γ4 > s,

γj ≥ 0, j = 1, . . . , 4

(5.11)

where ρj > 0 are weighting factors. Specifically, ρ1 and ρ3 penalize γ1 and γ3 respectively,

and ρ2 and ρ4 penalize γ2 and γ4. As a rule of thumb, since the steady-state mapping of

the system is assumed to be accurately known, ρ2 and ρ4 should be selected to be large to

ensure that γ2 and γ4 are small.

Remark 5.2.2. Notice that once the TR-RG is introduced in the loop (see Fig. 5.1), the

input trajectories of the nonlinear system are not the same as the inputs that were used

during the data collection process. More specifically, the signals computed by the TR-RG

may be slower than the ones applied during data collection. For these reasons, the tuning
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process must consider fast inputs that sufficiently excite the nonlinear system and capture

its behavior in the operating region of interest.

Remark 5.2.3. Since the systems (5.1) and (5.2) satisfy A.5.1.1 and A.2.1.1 respectively,

the signals ynon(t) and y(t) are bounded, which implies that the above optimization problem

always has a solution. It is, however, possible that, at the optimal solution, γi are large. If

this is the case, the ROAS will be small, leading to a conservative transient response. To

remedy this, one can use a different function g(·).

With the ROAS defined and tuned above, the TR-RG can enforce the constraints during

both steady-state and transients, as long as the nonlinear system operates in the operating

region in which data was collected. The TR-RG has two additional, important characteris-

tics. First, the formulation is recursively feasible, i.e., there exists a feasible solution to (5.4)

at every timestep. This follows from the fact that Or∞ is positively invariant (Proposition

5.2.1 in Section 5.2.3), which implies that if (x(t), yv(t)) ∈ Or∞ then (x(t+ 1), yv(t)) ∈ Or∞.

This, together with (5.3) and (5.4), imply that κ = 0 (i.e., yv(t + 1) = yv(t)) is always

a feasible solution to the optimization problem. Second, TR-RG preserve stability of the

closed-loop system. This can be shown by noticing from (5.3) that for a constant r(t) and,

hence, yr(t), yv(t) forms a monotonic sequence over a compact set, which implies that yv(t)

must converge to a constant.

A deeper analysis of the properties of the ROAS is presented in the following section.

5.2.3 Analysis of the Robust Output Admissible

Set (ROAS)

As mentioned previously, the construction of ROAS relies on the assumption that yv(t) is

held constant, that is yv(t+ 1) = yv(t),∀t ∈ Z+. To ease the discussion that follows, we
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simplify the notation by augmenting system (5.2) with the above constant input dynamics:

x̄(t+ 1) = Āx̄(t)

y(t) = C̄x̄(t)
(5.12)

where x̄ =

 x
yv

, Ā =

A B

0 1

, and C̄ =
[
C D

]
. Based on (5.12) and (5.8) we have that

Or∞ is:

Or∞ :=


x̄ ∈ Rn+1 : C̄Ātx̄+ γ1g(Ātx̄) + γ2 ≤ s̄

− C̄Ātx̄+ γ3g(Ātx̄) + γ4 ≤ −s,∀t ∈ Z+

 (5.13)

Next, we study the conditions under which Or∞ satisfies the following properties (similar

to O∞): 0 ∈ int(Or∞), compactness, convexity, positive invariance, and finite determinism.

We show that for Or∞ to satisfy these characteristics, g(·) must satisfy the properties that

were previously mentioned, namely: convexity, positiveness, and being zero at all equilibria.

These properties of Or∞ are important to ensure an effective implementation of TR-RG.

Note that convexity also implies continuity.

Theorem 5.2.2. Assume that g(0) = 0 and γi in (5.9) are tuned using (5.11). Then,

0 ∈ int(Or∞).

Proof. Recall from (5.9) and the definition of the set Y that 0 < γ2 < s̄ and s < −γ4 < 0.

Define the positive parameter r = min(s̄−γ2, |s+γ4|), from which we have that Br(0) ⊂ Y .

This allows us to define the set Ω, which satisfies, Ω ⊂ Or∞ and is given by:

Ω :=

x̄ :
C̄Ātx̄+ γ1g(Ātx̄) ≤ r

−C̄Ātx̄+ γ3g(Ātx̄) ≤ r
, ∀t ∈ Z+

 (5.14)

Finally, from the condition g(0) = 0 and (5.14), we have that there is a β > 0 such that
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Bβ(0) ⊂ Ω ⊂ Or∞, which implies that 0 ∈ int(Or∞).

Note from the result of Theorem 5.2.2 that Or∞ is non-empty.

Theorem 5.2.3. Assume that the pair (C̄, Ā) is observable and the assumptions in Theorem

5.2.2 hold, then Or∞ is compact.

Proof. To show that Or∞ is compact, we show that it is closed and bounded. The former

can be proved directly from definition (5.13) and Theorem 5.2.2, because Or∞ is non-empty

and is the intersection of closed sets, hence Or∞ is closed. To show that Or∞ is bounded, we

can use existing results from [12]. Consider the linear system (5.12), with the MAS given

by:

Os∞ := {x̄ ∈ Rn+1 : C̄Ātx̄(t) ∈ Y, ∀t ∈ Z+} (5.15)

Since the pair (C̄, Ā) is observable, we know that Os∞ is compact (Theorem 2.1 [12]). We

need the following claim to complete the proof.

Claim: Since g(·) is positive, Or∞ ⊆ Os∞.

To show this, select an arbitrary x̄ in Or∞. Being in Or∞ implies that for all t ≥ 0:

C̄Ātx̄+ γ1g(Ātx̄) + γ2 ≤ s̄⇒ C̄Ātx̄ ≤ s̄− γ1g(Ātx̄)− γ2

−C̄Ātx̄+ γ3g(Ātx̄) + γ4 ≤ −s⇒ s + γ3g(Ātx̄) + γ4 ≤ C̄Ātx̄

Then we have:

s ≤ s + γ3g(Ātx̄) + γ4 ≤ C̄Ātx̄ ≤ s̄− γ1g(Ātx̄)− γ2 ≤ s̄ (5.16)

This means that x̄ ∈ Os∞ as well, which implies that Or∞ ⊆ Os∞. Thanks to this result we

have that since Os∞ is bounded, Or∞ is bounded as well, and hence compact.

Remark 5.2.4. Note that, for values of γj , j = 1, . . . , 4, different from zero, Or∞ is an

output admissible set for (5.12), but it is not maximal. This is expected, since our goal is to
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impose constraints on the nonlinear system by considering predictions of the linear system

plus a dynamic margin.

Theorem 5.2.4. Assume that the function g is convex, then Or∞ is convex.

Proof. Consider two arbitrary x̄1 and x̄2 that belong to Or∞. By (5.13), x̄1 and x̄2 satisfy

for all t ∈ Z+:

C̄Ātx̄i + γ1g(Ātx̄i) + γ2 ≤ s̄ (5.17a)

− C̄Ātx̄i + γ3g(Ātx̄i) + γ4 ≤ −s (5.17b)

where i = 1, 2. To prove convexity of Or∞, it suffices to show that x̄3 := λx̄1 + (1 − λ)x̄2

also belongs to Or∞, i.e., (5.17a) and (5.17b) hold for x̄3 (i.e., i = 3). Below, we only derive

the result for (5.17a), as the derivation for (5.17b) is similar. We start with the left hand

side of (5.17a) with i = 3:

C̄Āt(λx̄1 + (1− λ)x̄2) + γ1g
(
Āt(λx̄1 + (1− λ)x̄2)

)
+ γ2

≤ λ
(
C̄Ātx̄1 + γ1g(Ātx̄1) + γ2

)
+

(1− λ)
(
C̄Ātx̄2 + γ1g(Ātx̄2) + γ2

)
≤ λs̄+ (1− λ)s̄ = s̄

(5.18)

where the first step above follows from the convexity of g(·):

g(Āt(λx̄1 + (1− λ)x̄2)) ≤ λg(Ātx̄1) + (1− λ)g(Ātx̄2)

This completes the proof.

We now discuss the positive invariance of Or∞ with respect to the dynamics of linear
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system (5.12). The positive invariance condition states:

x̄ ∈ Or∞ ⇒ Āx̄ ∈ Or∞ (5.19)

Note that we cannot formulate the positive invariance condition with respect to the original

nonlinear system (5.1). This is because the ROAS is constructed using the linear system

(5.12), whose states are not the same as the states of (5.1). Nevertheless, since the output of

(5.1) is bounded by that of (5.12) plus a margin, the TR-RG can ensure that the constraints

will be satisfied.

Proposition 5.2.1. Or∞ is positively invariant.

The proof follows simply from the definition of Or∞. It is therefore omitted for brevity.

We now evaluate the conditions for which Or∞ is finitely determined. To do so, we

introduce the sets Ort as:

Ort :=


x̄ ∈ Rn+1 : C̄Āix̄+ γ1g(Āix̄) + γ2 ≤ s̄

− C̄Āix̄+ γ3g(Āix̄) + γ4 ≤ −s, i = 0, . . . , t

 (5.20)

From (5.20), the following condition holds ∀t1, t2 ∈ Z+, t2 > t1:

Or∞ ⊂ Ort2 ⊂ O
r
t1 (5.21)

Condition (5.21) is used to prove finite determinism of the ROAS. We are now ready to

formally define finite determinism, similar to [12]: the set Or∞ is finitely determined if there

exists a t∗ such that Or∞ = Ort∗ .

Theorem 5.2.5. Or∞ is finitely determined iff there exists a t such that, Ort = Ort+1.
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Proof. Sufficiency: Suppose Or∞ is finitely determined. Then, by definition, there exists a

t∗ such that Or∞ = Ort∗ . Combining this with (5.21) with t1 = t∗ and t2 = t∗ + 1, we obtain

Ort∗ = Or∞ ⊂ Ort∗+1 ⊂ Ort∗ , which implies that Ort∗+1 = Ort∗ .

Necessity: Suppose Ort = Ort+1. We must show that there is a t∗ ∈ Z+, such that

Or∞ = Ort∗ . To do so, we first claim that Ort+1 = Ort+2. To prove this claim, select an

arbitrary x̄ ∈ Ort+1. By definition of Ort+1 we have:

C̄Āix̄+ γ1g(Āix̄) + γ2 ≤ s̄

−C̄Āix̄+ γ3g(Āix̄) + γ4 ≤ −s, i = 0, . . . , t+ 1

To proceed, we express Āix̄ as Āi−1(Āx) and perform a change of variable l = i − 1 to

obtain:
C̄Āl(Āx̄) + γ1g(Āl(Āx̄)) + γ2 ≤ s̄

−C̄Āl(Āx̄) + γ3g(Āl(Āx̄)) + γ4 ≤ −s, l = −1, . . . , t

This means that Āx̄ ∈ Ort . This and the fact that Ort = Ort+1 leads to Āx̄ ∈ Ort+1, which

implies:
C̄Āi(Āx̄) + γ1g(Āi(Āx̄)) + γ2 ≤ s̄

−C̄Āi(Āx̄) + γ3g(Āi(Āx̄)) + γ4 ≤ −s, i = 0, . . . , t+ 1

⇒C̄Ālx̄+ γ1g(Ālx̄) + γ2 ≤ s̄

−C̄Ālx̄+ γ3g(Ālx̄) + γ4 ≤ −s, l = 1, . . . , t+ 2

where we have performed the change of variable l = i+ 1. Since we know that x̄ ∈ Ort+1, we

know that the last two inequalities hold for l = 0 as well. We thus conclude that x̄ ∈ Ort+2.

Since x̄ was arbitrarily chosen in Ort+1, we conclude that Ort+1 ⊂ Ort+2. This, together

with (5.21) finally imply that Ort+1 = Ort+2. We can apply the same logic to show that

Ort+2 = Ort+3 and so on, and by induction we have that Or∞ = Ort .
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In practice, it is not possible to know a priori if Or∞ is finitely determined. In fact,

Or∞ may not be. We now show that, similar to the results from standard MAS theory [12],

we can obtain a finitely-determined inner approximation of Or∞ by introducing a tightened

version of the steady-state constraint in the definition of Or∞. To explain, we modify (5.8)

and (5.9) to:

Ōr∞ :=



(x0, yv0) : yss + γ2 ≤ (1− ε)s̄,

− yss + γ4 ≤ −(1− ε)s,

y(t) + γ1g(x(t), yv0) + γ2 ≤ s̄,

− y(t) + γ3g(x(t), yv0) + γ4 ≤ −s,∀t ∈ Z+


(5.22)

where 0 < ε � 1, yss = H0yv0 , H0 = C(I − A)−1B + D is the DC gain of (5.2), and x(t)

and y(t) are the state and output of system (5.2) starting from the initial condition x0 and

constant input yv0 , namely x(t) = Atx0 + (I −At)(I −A)−1Byv0 and y(t) = Cx(t) +Dyv0 .

Note that the first two inequalities in (5.22) are the tightened steady-state constraints,

where we have used the fact that g(·) = 0 at steady-state. Note also that we have used

the (x, yv) coordinates instead of the augmented x̄ coordinates to define Ōr∞, which will

simplify the discussion below. We now prove that Ōr∞ is finitely determined.

Theorem 5.2.6. Assume that the function g(·) = 0 at the equilibrium and is continuous,

then Ōr∞ in (5.22) is finitely determined.

Proof. Select an arbitrary point (x0, yv0) ∈ Ōr∞. We know that this point satisfies the

following conditions:
H0yv0 + γ2 ≤ (1− ε)s̄

−H0yv0 + γ4 ≤ −(1− ε)s
(5.23)

where H0 is the DC gain of (5.2). Let us denote the left hand sides of the third and fourth
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inequalities in (5.22) by l1(t, x0, yv0) and l2(t, x0, yv0), respectively:

l1(t, x0, yv0) = y(t) + γ1g(x(t), yv0) + γ2

l2(t, x0, yv0) = −y(t) + γ3g(x(t), yv0) + γ4

By stability of (5.2) and continuity of l1 and l2, we have that l1(t, x0, yv0)→ l1(∞, x0, yv0)

and l2(t, x0, yv0) → l2(∞, x0, yv0). Furthermore, by (5.23), l1(∞, x0, yv0) ≤ (1 − ε)s̄ and

l2(∞, x0, yv0) ≤ −(1− ε)s. Therefore, by convergence of l1 and l2, we have that there exists

k∗ > 0 such that ∀k > k∗, l1(k, x0, yv0) ≤ s̄ and l2(k, x0, yv0) ≤ −s. This implies that all

inequalities after k∗ are already covered by (5.23) and are redundant. Therefore (5.22) is

finitely determined.

From this point forward, we will use Ōr∞ in our analyses.

5.3 Extensions of TR-RG
In this section, we study two practical extensions of the TR-RG formulation presented in

Section 5.2. First is the extension to multi-output nonlinear systems, and second is the

extension to systems whose steady-state map depends on a slowly-varying parameter.

5.3.1 TR-RG for Multiple Outputs

Consider again system (5.1), but now consider the more general case of p > 1, i.e., multiple

constrained outputs. We assume that the steady-state mappings ζi (from the input v to

the output ynoni) are accurately available and satisfy Assumption A.5.1.2. To handle this

case, we modify the TR-RG block diagram from the one in Fig. 5.1 to the one in Fig. 5.3.

The basic idea is to apply the design methodology in Section 5.2 to each output separately,
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Figure 5.3: TR-RG for multiple outputs

which leads to the computation of p different inputs vi(t), i = 1, . . . , p, in Fig. 5.3 (note

that the subscript i here does not refer to the i-th element of v). The vi(t)’s are then

fused together to compute a v(t) that satisfies the constraints on the nonlinear system for

all times. Each RG in this formulation is implemented using a ROAS that is computed

using a linearized model of the nonlinear system. Similar to Section 5.2, each linear model

reflects the combined dynamics of the nonlinear plant together with the inverse mapping

(ζ−1
i ); therefore, they each have DC gain equal to 1. For clarity of presentation, we use the

same A and B notation as before, but these do not necessarily represent the same matrices.

These linear systems are described by:

xi(t+ 1) = Axi(t) +Byvi(t)

yi(t) = Cixi(t) +Diyvi(t),
(5.24)

where we have assumed the linear models have the same A and B matrices (i.e., the

same internal dynamics), but different output matrices. The ROAS’s, denoted by Ōr∞, are
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computed offline based on (5.24) using the data-driven approach described in Section 5.2.

In real-time, the RGs are implemented by solving the following optimization problem at

every timestep:
maximize
κi∈[0,1]

κi

s.t. (xi(t), yvi(t)) ∈ Ōr∞

yvi(t) = yvi(t− 1) + κi(yri(t)− yvi(t− 1))

(5.25)

Notice that because we treat each output separately, the TR-RG scheme now requires p

different observers, each designed based on the i-th linear model. The observers satisfy the

observations mentioned in Remark 5.2.1. Finally, the fusion operation (“Compute v" block

in Fig. 5.3) computes v(t) as follows:

v = argmin
θ∈{v1,...,vp}

|θ| (5.26)

Note that (5.26) selects among the vi’s the one that is closest to zero. The following theorem

investigates the constraint management properties of this scheme at steady-state.

Theorem 5.3.1. Assume that A.5.1.2 holds and the reference r(t) is held constant. By

implementing TR-RG as presented in Fig. 5.3 the constraints of the nonlinear system (5.1)

are enforced at steady-state.

Proof. We first introduce the following set of steady-state admissible inputs:

Υ := ∩pi=1Vi (5.27)

where Vi = {v : ζi(v) ∈ (1 − ε)Yi}. By assumption A.5.1.2 we have that each set Vi is

convex and compact with 0 ∈ int(Vi), hence the set Υ is also convex and compact with

0 ∈ int(Υ). Now, by a similar arguments as in Theorem 5.2.1, we know that each yvi(t)

converges to a constant value yvssi , which satisfies yvssi ∈ (1− ε)Yi. From Fig. 5.3, we know
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that vi(t) = ζ−1
i (yvi(t)), which converges to vssi = ζ−1

i (yvssi). Since these inputs are fused

by operation (5.26), we get a vssi ∈ Υ, which finally implies that ynoni ∈ Yi, i = 1, . . . , p at

steady-state.

The TR-RG for p > 1 uses p different ROAS that are computed based on data collected

from the nonlinear plant and (5.24) around an operating region of interest. Tuning each

ROAS using this data within an optimization framework similar to (5.11), we can ensure

that the constraints are enforced during transients as long as the system operates in the

same region of interest.

Remark 5.3.1. As mentioned previously, (5.24) assumes that the internal dynamics (i.e.,

the A and B matrices) of all p linear systems are the same. However, this assumption is not

necessary. For example, it may be advantageous to use different dynamics for each linear

system by linearizing the nonlinear system around each constraint. This will ensure that

the linear models reflect the dynamics of the nonlinear plant more accurately in the vicinity

of the constraints, thereby leading to less conservative ROAS’s. Since the treatment of this

case is similar, we will not explore it further for the sake of brevity.

5.3.2 TR-RG for Systems with Fast and Slow

Dynamics

To conclude our analysis, this section extends TR-RG to nonlinear systems whose steady-

state mappings depend on parameters that vary slowly with time. As a practical example,

consider the turbocharged gasoline engine presented in Section 5.1. Typically, the dynamics

of the airpath control system (e.g., turbo speed, manifold pressures, and actuator dynamics)

are much faster than the dynamics of the engine speed, which is slow due to the large

engine inertia. Due to this separation of timescales, engine speed can be modeled as a
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quasi-constant parameter (or a disturbance) to the airpath control system. In particular,

the steady-state mapping (from the input to the constrained outputs) can be modeled to

be a function of the (slowly-varying) engine speed.

Recall that the TR-RG presented in Section 5.2 uses a fixed steady-state characterization

in the formulation (i.e., ζ and ζ−1 in Fig. 5.1 and ζi and ζ−1
i in Fig. 5.3 are fixed). Therefore,

implementing the TR-RG on a system whose steady-state mapping varies slowly with time

will require large values of γ1 to γ4 to ensure that (5.5) and (5.9) are satisfied, which in turn

leads to a conservative ROAS and loss of performance, even at steady-state. To remedy

this, our solution is to make the steady-state mapping ζ and its inverse ζ−1 functions of the

slowly-varying parameter (both during the tuning process and real-time implementation).

To ensure that the TR-RG can be implemented despite this change, the following additional

assumption is required.

A. 5.3.1. We assume that for each ynoni, the steady-state mapping, denoted as ζi(v, z), is

available, where each ζi is continuous, satisfies ζi(0, 0) = 0, and for a fixed value of z, each

ζi is invertible.

Typically, a system with a separation of slow and fast timescales is modeled by:

λẋnon = fx(xnon, z, v)

ż = fz(xnon, z, v)

ynon = h(xnon, z, v)

(5.28)

where ż represents the slow dynamics (engine speed in our example), ẋnon the fast dynamics

(airpath dynamics in our example), and 0 < λ� 1. A singular perturbation argument can

be made to show that for sufficiently small λ, the output ynon can be approximated by

ynon ≈ ζ(v, z). Thus, the introduction of ζ−1 in Figs. 5.1 and 5.3 can accurately invert the

steady-state characterization of the plant if λ is sufficiently small.
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Note that the effects of plant/model mismatch can still be captured by γ1 to γ4 during

the tuning process (Eq. (5.11)). As before, γ2 and γ4 capture the steady-state (or quasi-

steady-state) modeling errors and γ1 and γ3 capture the transient errors. The constraints

can therefore be satisfied using this technique if γj are tuned using data that were collected

by operating the system in a domain of interest that includes varying values of z.

In the discussion that follows we address the implementation issues of TR-RG, and im-

plement the proposed scheme on a nonlinear turbocharged model and on a vehicle equipped

with a turbocharged gasoline engine.

5.4 Implementation of TR-RG and Com-

putational Considerations
As discussed so far, in order to build Ōr∞ defined in (5.22), we need a suitable function

g(·) and data to properly tune γi’s and build a dynamic margin in Ōr∞. In practice, this

dynamic margin must be large enough to enforce the constraints, but not excessive, since

performance may deteriorate (i.e., the response might slow down when constraint violation

is predicted). Notice from (5.11) that the parameters γ1 to γ4 are computed such that each

nonlinear constrained output is bounded above and below for all times. This, however, may

be too restrictive and lead, in some cases, to conservative results. Hence, to alleviate this

issue in practical implementations, we propose a slightly modified tuning process based on

a relaxed version of (5.7). The general idea is that for each constrained output, we consider

the data points that satisfy ynoni ∈ Bφi(s̄i) or ynoni ∈ Bβi(si), where φi > 0 and βi > 0

are desired thresholds. Based on these data points we tune the parameters γ1 to γ4 such

that (5.7) is satisfied. The rationale behind this is that, if ynoni is far from the constraints,

then plant/model mismatch is not likely to cause any constraint violation. The complete
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algorithm to tune the parameters in (5.22) is provided below for the sake of completeness:

Algorithm 2 General RG Tuning Process
1: Define a sequence of inputs which may be composed by steps and/or ramps.

These may depend on the nature of the application and the operating region of
interest (see Remark 5.2.2).

2: Define for each upper and lower constraint value (i.e., s̄i and si) the margins
φi > 0 and βi > 0 respectively.

3: Apply the pre-defined input sequence to the nonlinear plant and to (5.24) and
record their outputs.

4: For all data points that satisfy ynoni(k) > s̄i − φi or ynoni(k) < si + βi, run the
optimization problem (5.11).

Remark 5.4.1. Remark 5.2.3 applies to Algorithm 2 as well.

Let us consider the same turbocharged model presented at the beginning of Section 5.1,

but now implementing TR-RG. For this model, the state vector of the linear model is:

x =
[
Pi, Pb, Pe, Ntc, Wwg, xc1 , xc2

]>
,

which represents the intake pressure, boost pressure, exhaust pressure, turbo speed, waste-

gate flow, and two controller states respectively. For this example p = 1 and the constraint

is imposed on the turbo speed of 140 kRPM. We assume the following form for the function

g in (5.22): g(x, yv) = ||x− xss||2P = ||x− (I −A)−1Byv||2P , where the P -norm is defined

as: ‖x‖P := xTPx. For this example, the matrix P is tuned based on data to normalize

the entries of x and avoid excessively large values: P = diag( 1
ri

), where ri is the total

range of the values for the i-th state, xi. Note that this function satisfies all the conditions

studied in Section 5.2.3, that is, convex (and hence continuous), positive, and it is zero at

the equilibrium.

Using this choice of g(·), we compute the ROAS as explained in Section 5.2. In this

case since we have a constraint on the turbo speed, which is positive, we present how Ōr∞ is
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computed. At each time step the rows of Ōr∞ as a function of the initial conditions (x0, v)

are given by:

t = 0;CAx0 + (CB +D)v + γ1(Ax0 + (B − Γ)yv)>P (Ax0 + (B − Γ)yv) + γ2 ≤ s̄

t = 1;CA2x0 + (CAB + CB +D)yv + γ1(A2x0 + (AB +B − Γ)yv)>

P (A2x0 + (AB +B − Γ)yv) + γ2 ≤ s̄
...

Any t;Hxx0 +Hvyv + γ1(Hx2x0 + (Hv2 − Γ)yv)>P ((Hx2x0 + (Hv2 − Γ)yv)) + γ2 ≤ s̄
(5.29)

where Hx = CAt, Hv = (C(I −A)−1(I −At)B +D), Hx2 = At, Hv2 = (I −A)−1(I −At)B,

and Γ = (I−A)−1B. Since the liner system satisfies A.2.1.1, and x(t)→ xss at steady-state,

we have that the halfspace that corresponds to the steady-state is given by:

(CΓ +D)yv ≤ s̄ (5.30)

By (5.29) and (5.30) we can build the ROAS to implement TR-RG in the turbocharged

engine. A geometric comparison between the MAS (using the corresponding linear model)

and the ROAS (highlighted in red) is presented in Fig. 5.4. Since the ROAS is high-

dimensional, the figure shows a cross-section of Ōr∞ with all states other than x4 equal to

0. This plot illustrates that the ROAS is a robustified version of the MAS to capture the

mismatch between the linear model and the nonlinear plant.

The parameters in the ROAS are obtained after running Algorithm 2. For a pre-defined

input sequence, φ = 1 kRPM, β = 0 kRPM, ρ1 = 1, and ρ2 = 1× 106, we get: γ1 = 9379.76

and γ2 = 0. To illustrate the result of the tuning process see Fig. 5.5. This figure shows

how the nonlinear system output (ynon) is bounded by the linear model output plus the

dynamic margin (y + Ḡ).
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Figure 5.4: Cross section comparison between the MAS (Ō∞) and ROAS (Ōr∞, highlighted
in red).
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Finally, in terms of real-time solution of the optimization problem in (5.4), notice that

for this selection of g(·), each row of (5.22) has a linear and quadratic terms as a function

of yv(t), and to find a solution for (5.4) we just need to solve in a simple FOR loop as

many quadratic equations as rows of Ōr∞, and select the κ that satisfies all the inequalities

in (5.22). This is similar to the algorithm presented in [52]. To elaborate, note that the

matrices in (5.29) and (5.30) can all be pre-computed offline and stored in memory, thus

avoiding real-time matrix multiplications and additions. Now, it can be seen that each row

of the above inequalities can be placed into the form:

ay2
v + byv + c ≤ 0 (5.31)

where a, b, and c are appropriate scalars that are composed of the initial condition, x0, the

system matrices, and constraint value. By substituting (5.3) into (5.31) and dropping the

time arguments for notational simplicity, we get:

a1κ
2 + a2κ+ a3 ≤ 0 (5.32)

where a1 = a(yr − yv)2, a2 = 2ayv(yr − yv) + b(yr − yv), and a3 = ay2
v + byv + c. To discuss

the computation details of (5.32) are summarized in the Algorithm 3.
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Algorithm 3 Compute κ
Let κ = 1, j∗ = number of rows of Ōr∞, i = 1, 0 < α� 1× 10−3

while i ≤ j∗ do

if a3 > α then . a3 must be strictly negative for recursive feasibility

κ = 0

else if |a1| < α and a2 > 0 then . If first order inequality and sign of a2 is good

κ = min(κ,−a3/a2)

else if |a1| ≥ α and a2
2 − 4a1a3 ≥ 0 then . if second order inequality and real roots exist

r1 =
−a2+

√
a2

2−4a1a3

2a1

r2 =
−a2−

√
a2

2−4a1a3

2a1

if a1 ≥ α and max(r1, r2) ≥ −α then . The parameter α is used to account for numerical tolerance

κ = min(κ,max(r1, r2))

else if a1 ≤ −α and min(r1, r2) ≥ −α then

κ = min(κ,min(r1, r2))

end if

end if

i→ i+ 1

end while

κ = max(κ, 0)

We simulate the nonlinear model of the engine for a single step in the desired air mass,

W ∗. Fig. 5.6 shows the response, both for the standard RG and the TR-RG. As can be

seen, unlike standard RG, TR-RG enforces the constraint for all time. Finally, Fig. 5.7

shows that for this maneuver, the nonlinear system output is bounded by the linear plant

plus the dynamic margin, and that they converge to the same value at steady-state, as

expected.

5.5 Experimental Results
In this section we present the experimental implementation of the TR-RG using the same

function g(·) defined in Section 5.4. The scheme is implemented in a Ford Explorer equipped
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Figure 5.5: Tuning data. Comparison between the nonlinear system output (ynon) vs. linear
system output plus dynamic margin (y+Ḡ). The red line in the plot is the unity map, which
shows that the bounds in (5.5) have been enforced.
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and linear systems respectively.
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with a 2.3L Eco-Boost Turbocharged Gasoline engine. Similar to the example in Section 5.4,

the constraint is imposed on the turbo speed (Ntc) and the governed input is the desired air

mass entering the engine (W ∗). Since the actual turbo speed limit is typically not reachable

at sea-level, we lower the constraint artificially for proof of concept. As discussed in Section

5.3.2, engine speed is a slow-varying parameter that affects the steady-state mapping of this

system. We thus use the existing dynamometer data to find the steady-state map (ζ) from

the governed input to the constrained output at different engine speed conditions. To tune

the ROAS, we excite the vehicle with step inputs applied to the accelerator pedal, which

translate into torque requests, and finally desired air mass requests. The desired air mass

requests are also used as the input of a linear model of the engine that is linearized near

the constraint. The collected data is used to calibrate γi using Algorithm 2.

To evaluate the scheme, we use two different maneuvers. In the first maneuver, we apply

a single step to the accelerator pedal and then release it, in order to emulate a condition of

an abrupt change in the engine torque request. The engine speed variation is presented in

Fig. 5.8, and the turbo speed response and desired air mass request are presented in Fig.

5.9, where the dotted blue signal is the base condition with no turbo speed constraint (No

RG in the loop), and the magenta solid line is the TR-RG results. The constraint on the

turbo speed is enforced at all times for this maneuver. Note that we have concealed the

axes labels and the value of the constraint due to the confidential nature of the data.

The second maneuver consists of variable pedal steps starting from both zero and non-

zero initial turbo speeds. The variation of the engine speed is presented in Fig. 5.10 and

the results are presented in Fig. 5.11. As can be seen, the scheme enforces the constraints

for all times.
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136



time

N
e
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137



time

W
*

Base

TR-RG

time

N
tc

Const

Base

TR-RG
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Chapter 6

Implementations
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This chapter presents a set of simulations with TR-RG for different applications. The

idea is to study the extension of TR-RG to Single-Input Multiple Outputs (SIMO) systems

and explore the effects not satisfying assumption A.5.1.2. By doing this, we can have a

better understanding of the robustness and versatility of TR-RG.

6.1 Rollover Prevention: TR-RG
In automotive applications, rollover happens when a vehicle’s roll angle increases abnor-

mally, which is normally the result of an abrupt steering wheel change or lost of control. To

address this problem, we consider that given the vehicle dynamics, a driver in the loop, and

a set of rollover avoidance constraints, we can implement TR-RG in order to find a control

law for the steering angle, such that the constraints are always enforced.

6.1.1 Vehicle model

The nonlinear vehicle dynamics model is developed based on [3, 213]. The model includes

a nonlinear model for the tire forces and the suspension. The vehicle forces diagram is

presented in Fig. 6.1. Before getting into the model details, the notation description is

listed below:

• vx: longitudinal vehicle speed component.

• vy: lateral vehicle speed component.

• φ: vehicle roll angle.

• r: yaw angular speed.

• p: roll angular speed.
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• Fx,i: longitudinal tire force, with i = FL,FR,RL,RR (i.e., Front left, Front rear,

Rear left, and Rear right).

• Fz,i: lateral tire force.

• Fz,i: normal tire force.

• NT : total yaw moment.

• α: tire slip angle.

• λ: tire slip ratio.

• vi: linear velocities at wheel hubs.

• δf : steering angle at the front wheels.

• δsw: steering wheel angle.

The equations of motion are given by:

v̇x = Fx,T −msMhsMp cos(φ)
m

+ vyr,

v̇y = Fy,T +msMhsM (ṗ cos(φ)− p2sin(φ))
m

− vxr,

ṙ = NT

Izz
,

ṗ = msMghsM −Ks

Ie
φ− Ds

Ie
p+ msMhsM

mIe
Fy,T ,

(6.1)
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Figure 6.1: Vehicle forces diagram. (a) Rear view. (b) Top view. Image from [3]

where,

Fx,T =Fx,FL + Fx,FR − (Fy,FL + Fy,FR)δf + Fx,RL + Fx,RR,

Fy,T =(Fx,FL + Fx,FR)δf + Fy,FL + Fy,FR + Fy,RL + Fy,RR,

NT =(Fx,FL + Fx,FR)lfδf + (Fy,FL + Fy,FR)lf − (Fy,RL + Fy,RR)lr+
T

2 [Fx,FR − Fx,FL − (Fy,FR − Fy,FL)δf + Fx,RR − Fx,RL],

Ie =Ixx −
m2
SMh

2
sM

m

(6.2)

where the corresponding lateral and longitudinal forces are given by the Magic Tire equation

[3], this is:
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Fx,i
Fy,i

 = FpP (sc, C,E)ŝ,

P (sc, C,E) = sin
(
Ctan−1

[
sc
C

(1− E) + Etan−1(sc
C

)
])

,

sc = Cα||s||
Fp

, Cα = c1mg

(
1− e−

c2Fz
mg

)
, c1 = BCD

4
(
1− e− c2

4
) ,

Fp = Fz1.0527D

1 +
(

1.5Fz
mg

)3 , s =

 λ

tan(α)

 , ŝ = s
||s|| .

(6.3)

The main source of nonlinearities in this model comes from (6.3). The slip ratio (λ),

slip angle, and normal force are discussed next. The slip ratio is defined as:

λi = rwωi
vi
− 1, (6.4)

where wi is the wheel angular speed and the linear velocities at wheel hubs are given by:

vFL =
(
vx −

T

2 r
)
cos(δf ) + (vy + lfr)sin(δf ),

vFR =
(
vx + T

2 r
)
cos(δf ) + (vy + lfr)sin(δf ),

vRL = vx −
T

2 r, vRR = vx + T

2 r.

(6.5)

The steering angle at the front wheels is given by, δf = K ∗ δsw. The slip angle for each tire

is given by:

αFL = δf − tan−1
(
vy + lfr

vx − T
2 r

)
, αFR = δf − tan−1

(
vy + lfr

vx + T
2 r

)

αRL = −tan−1
(
vy − lrr
vx − T

2 r

)
, αRR = −tan−1

(
vy − lrr
vx + T

2 r

) (6.6)
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Table 6.1: Vehicle parameters. Data from [3]

Parameter Description Value Unit
msM Rolling mass 1700 kg
m Total vehicle mass 2000 kg
hsM Distance from sprung mass CG to the roll axis 0.8580 m
lr Distance from rear axle to vehicle CG 1.750 m
lf Distance from front axle to vehicle CG 1.750 m
T Lateral distance between wheels 1.26 m
Ixx Sprung mass roll moment of inertia about the roll axis 1280 kg/m2

Izz Vehicle yaw moment of inertia about the z axis 2800 kg/m2

Ks Total suspension roll stiffness 95707 N · m
Ds Total suspension roll damping 7471 N · m · s/rad
g gravity acceleration 9,8 m/s2

rw wheel ratio 0.3 m
K Steering wheel/steering front wheels angle ratio 0.2 -

Finally the wheel normal load are given by:

Fz,FL = mglr
2L −KRSF ·mg

msMhsM
mT

sin(φ),

Fz,FR = mglr
2L +KRSF ·mg

msMhsM
mT

sin(φ),

Fz,RL = mglf
2L − (1−KRSF ) ·mgmsMhsM

mT
sin(φ),

Fz,RR = mglf
2L + (1−KRSF ) ·mgmsMhsM

mT
sin(φ),

(6.7)

where KRSF = Ks/(msM · g · L), is the front proportion of total roll constant. For

this model the vehicle speed is assumed to be constant, and hence the acceleration is not

considered in (6.7). The parameters for the model are presented in Table 6.1.

For this nonlinear system the constrained output is the lateral Load Transfer Ratio

(LTR), which is defined as:

LTR = − 2
mgT

(Dsp+Ksφ) (6.8)
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Fig. 6.2 presents the response of the nonlinear system to an abrupt steering wheel

change, this shows how the LTR goes above 100% and below −100%, meaning that the

vehicle rolls over.

Figure 6.2: Step responses of the nonlinear system

Next, we implement TR-RG for this model.

6.1.2 Rollover Avoidance with TR-RG

The constraint imposed on the LTR is defined by the compact set Y = [−100%, 100%], and

the governed reference is the steering wheel command (δsw). The first step to implement

TR-RG is to evaluate the steady-state characterization of the nonlinear plant, which is

presented in Fig. 6.3.

145



-200 -150 -100 -50 0 50 100 150 200

Steering com. [deg]

-150

-100

-50

0

50

100

150

L
T

R
 [

%
]

Figure 6.3: Steady-state map of nonlinear plant for initial speed of 120 km/h

As can be seen from Fig. 6.3, the nonlinear plant steady-state map is not invertible,

hence the forward and inverse mapping cannot be implemented. Nevertheless, note that at

the initial vehicle speed of 120 km/h, there are just a few violations at steady-state, so even

without the steady-state map in the loop, the mismatch between the linear and nonlinear

system can be taken into account by the tuning process. Specifically γ2 and γ4.

Next, the nonlinear plant must be linearized around an operating point. Note from

Figure 6.3 that if the plant is linearized around the upper constraint (i.e., 100%), there will

be a significant mismatch when the system operates around the lower constraint. For this

reason, two linear models are considered, one from linearizing at δsw = 10◦ (i.e., close to

the upper constraint) and at δsw = −10◦ (i.e., close to the lower). With this, TR-RG for

multiple outputs (Section 5.3.1) is implemented. The state vector for these linear model is:

x =
[
vx vy r p φ

]
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In order to compare TR-RG with standard RG, the latter is implemented based on

linear model obtained around δsw = 0. The function g(·) is selected to be the squared

norm, i.e., ||x − xss||2P . From the tuning process we obtain the following parameters for

γj , j = 1, . . . , 4. These are:

γ1 = 7.2168,

γ2 = 73.6039,

γ3 = 6.9583,

γ4 = 73.7008.

A comparison of the ROAS and MAS is presented in Figure 6.4, which shows a projection

onto the input (δsw) and four state (x4 = p). This shows how the ROAS shrinks the

solution space in order to account for the plant model mismatch and hence enforces the

constraints. Also, note from the tuning process, that γ2 and γ4 are larger than γ1 and

γ3. The reason is the violations at steady-state that were observed in Fig. 6.3. Through

the optimization process the ROAS is robustified, and hence the TR-RG can enforce the

constraints at steady-state even in the absence of the steady-state characterization of the

nonlinear system.

The results of implementing TR-RG based on multiple outputs and standard RG for

the nonlinear vehicle with an initial vehicle speed of 120km/h are presented in Figure 6.5

and Figure 6.6.
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Figure 6.4: ROAS vs. MAS for rollover avoidance. The x4 corresponds to roll angular
speed, p.
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Figure 6.5: TR-RG for rollover avoidance, step responses. Initial vehicle speed 120km/h.
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Figure 6.6: TR-RG for rollover avoidance, ramp responses. Initial vehicle speed 120km/h.

In order to test the robustness of TR-RG. The vehicle initial speed condition is changed

to 140km/h, the results for this condition are presented in Figure 6.7 and Figure 6.8.

0 1 2 3 4 5 6 7 8 9 10

time [s]

-50

0

50

S
te

e
ri
n

g
 c

o
m

m
a

n
d

 [
°
] Reference

RG

TR-RG

0 1 2 3 4 5 6 7 8 9 10

time [s]

-100

-50

0

50

100

L
T

R
 [

%
]

Constraint 1

Constraint 2

No-RG

RG

TR-RG

Figure 6.7: TR-RG for rollover avoidance, step responses. Initial vehicle speed 140km/h.
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Figure 6.8: TR-RG for rollover avoidance, ramp responses. Initial vehicle speed 140km/h.

The results show how TR-RG avoid drastic steering wheel changes in order to avoid

rollover at high vehicle speed.

6.2 Inverted Pendulum: TR-RG
The idea with the inverted pendulum is to stabilize the pendulum in the upright position.

However, it is well known that this is not an easy task. In this section, we analyzed how

TR-RG is implemented to enforce constraints in this type of applications.

6.2.1 DC-motor and Inverted Pendulum Nonlin-

ear Model

An schematic of the inverted pendulum model is shown in Fig. 6.9, which shows the

pendulum position, α, and rotatory arm position, θ. Their first and second derivatives
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represent the speed and acceleration respectively.

Figure 6.9: Rotatory inverted pendulum model [4]

The nonlinear dynamic equations are given by:

(
mpL

2
r + 1

4mpL
2
p −

1
4mpL

2
pcos(α)2 + Jr

)
θ̈ −

(1
2mpLpLrcos(α)

)
α̈

+
(1

2mpLpsin(α)cos(α)
)
θ̇α̇+

(1
2mpLpLrsin(α)

)
α̇2 = Kt

Rm
V,

− 1
2mpLpLrcos(α)θ̈ +

(
Jp + 1

4mpL
2
p

)
α̈− 1

4mpLpcos(α)sin(α)θ̇2

− 1
2mpLpgsin(α) = 0.

(6.9)

The parameters of this nonlinear model are listed in Table 6.2. The nonlinear model (6.9)

is linearized on the upright position, and two-loop controller are designed for the inverted
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Table 6.2: Inverted pendulum parameters

Parameter Description Value Unit
Rm Terminal resistance 8.4 Ω
Kt Torque constant 0.042 Nm/A
Lr Total arm length 0.085 m
Jr Arm moment of inertia 5.7198× 10−5 kg ·m2

mp Mass of pendulum 0.024 kg
Lp Total pendulum length 0.129 m
Jp Arm moment of inertia 3.3282× 10−5 kg ·m2

pendulum. The first loop is closed around the pendulum angle, α, with a lead compensator

and is intended to stabilize the pole in the RHP. The second loop is closed around the arm

angle, θ, with a PV (Proportional-Velocity) controller. The control command is the voltage

that is injected to the DC motor, which is defined as:

V = V1 + V2

where

V1 = C1(Rα − α), C1(s) = 182.62(s+ 10.584)
s+ 50

is the lead compensator and the PV controller is:

V2 = −2(Rθ − θ) + −75s
s+ 50

where Rθ is the desired arm position, and Rα is the desired pendulum position. The latter

is set to zero (Rα = 0), since this is the desired pendulum position (i.e., upright). Using

Simulink/Matlab to obtain the closed-loop linear model, the state vector x ∈ R6 is:

x =
[
θ θ̇ α α̇ xc

]
,
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where xc represents the control states, which is composed by the lead and PV controllers.

The constraint is imposed on the speed of the rotatory arm, θ̇, with a constraint value of[
60,−60

]
. The closed loop system is excited with steps and the results are presented in

Fig. 6.10.
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Figure 6.10: Nonlinear inverted pendulum response

Next, the TR-RG is implemented to enforce the constraints on the nonlinear model.

6.2.2 Nonlinear Inverted Pendulum with TR-RG

To implement TR-RG, first, we analyzed the steady-state characterization of the plant from

the governed reference, Rθ, to the constrained output θ̇. By simple inspection is possible to

note that the steady-state map is not invertible, the reason is that for all input commands

Rθ, the arm speed θ̇ converges to zero at steady-state. Therefore, the TR-RG is implemented

with no steady-state maps in the loop.
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The function g(·) is selected to be the squared norm, i.e., ||x − xss||2P , the matrix P is

tuned based on the states of the linear model as explained in Section 5.4. The next step is

to tune the parameters of the TR-RG, to do so, the linear model and nonlinear system are

excited by the same inputs, the results are:

γ1 = 0.6463,

γ2 = 0,

γ3 = 0.6463,

γ4 = 0.

These results are consistent with the previous observation, i.e., the steady-state value

for the arm speed is zero for all references. A comparison with standard RG and the results

of TR-RG are presented in Fig. 6.11.
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Figure 6.11: Nonlinear inverted pendulum response with RG and TR-RG

As expected the standard RG is not able to enforce the constraint for all times, whereas

TR-RG maintains the arm speed constraint satisfied by slowing the reference when needed.
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Chapter 7

Conclusions and Future Works
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In this dissertation, new RG schemes were presented for different types of systems,

namely: linear, stochastic, and nonlinear systems. The schemes presented in this work

were supported by a systematical analysis of their main properties and implementation

characteristics. Hence, the development of this work made both theoretical and practical

contributions to the control community. This chapter presents the final observations and

remarks about the contributions of this work.

7.1 Review of Constraint Management

Schemes
Chapter 2 provides a more technical overview of the different constraint management tech-

niques for linear and nonlinear systems, with a focus around reference governors. This

chapter showed main technical characteristics, advantages and disadvantages of different

schemes based on RG approaches, MPC, Lyapunov-based, and machine learning. This

helps to provide a more complete idea of the different schemes and areas of opportunities

for constraint management.

7.2 Stochastic Reference Governor
A chance constraint approach to maximal output admissible sets (MAS) and reference

governors (RG) was studied in Chapter 3. An analysis of MAS was presented, and showed

that the removal of the first halfspace leads to constraint violation for one timestep, followed

by recovery for all future times. The idea presented in [24] was extended to Lyapunov stable

systems with output constrains, in order to build a stochastic robustly invariant MAS (SR-

MAS). Important properties such as positive invariance and finite determinism of SR-MAS
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were then presented. Added to this, an algorithm to compute the SR-MAS in finite time

was provided. Minor modifications to this algorithm were shown, for systems without

disturbance feedthrough. Finally, a numerical validation, with a mass-spring-damper model,

was used to compare standard and stochastic RG. The latter showed a less conservative

response, which was possible thanks to the expansion of the admissible set introduced by

the SR-MAS.

In Stochastic RG, the structure of the set set Zt,β and the properties ofWβ are important

to ensure properties such as positive invariance and recursive feasibility. These must be

satisfied for the optimal performance of Stochastic RG.

7.3 Recovery Reference Governor
A new method for a Reference Governor (RG), referred to as the Recovery RG (RRG), was

presented in Chapter 4. This method uses a set-theoretic approach to find a feasible gov-

erned input upon constraint violation. The violation is assumed to be caused by unknown

and unmodeled external disturbances. The RRG scheme preserves desirable characteristics

of the RG and introduces additional logic to switch between standard operation and recov-

ery operation. Recursive feasibility of the proposed solution was discussed, and guarantees

of recovering from constraint violation were presented. This paper considers the case when

a disturbance model is not available and extra considerations need to be introduced in order

to treat plant/model mismatch due to parametric uncertainties. A numerical simulation

with a turbocharged gasoline engine illustrated the benefits of applying the RRG and how

disturbance estimation plays an important role in the RRG scheme.

This scheme highly depends on an accurate estimation of the disturbance to recover

from violations, this estimation is mainly based on assumption A.4.1.1. Thus, a limitation

of RRG is when assumption A.4.1.1 is not satisfied, for instance, in a case when a system
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is affected by a disturbance with a significant amplitude of variation.

7.4 Transient Robust-Reference Gover-

nor
A novel scheme, referred to as Transient Robust Reference Governor (TR-RG), to impose

pointwise-in-time constraints on nonlinear systems was presented in Chapter 5. The idea

is to employ a Reference Governor (RG) that uses predictions obtained from a linearized

model of the nonlinear plant, but incorporate mechanisms to handle the mismatch between

the linear model and the nonlinear plant at steady-state and during transients. The for-

mer is achieved by using the steady-state characterization of the nonlinear system inside

the TR-RG. For the latter, the idea of a Robust Output Admissible Set (ROAS) was in-

troduced, which is obtained using a data-driven approach. The theoretical properties and

the computational aspects of the ROAS were studied and algorithms for its tuning were

presented.

Two extensions of TR-RG were presented to make the scheme applicable to a broader

class of systems. The first was extension to multi-output systems and the second was exten-

sion to systems whose steady-state characterization depends on a slowly-varying parameter.

Experimental results on a turbocharged engine were presented in order to validate the per-

formance of TR-RG. It was shown that TR-RG can enforce the constraints in realistic

settings.

This scheme has two main limitations, one is that the scheme can enforce the constraints

for all time only if the system operates in the region of interest (i.e., operating conditions

that were used to collect the data for tuning). Two, if assumption A.5.1.2 is satisfied,

then constraint enforcement at steady-state is guaranteed. However, even if initially the
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steady-state map is correct, as the systems operates over a period of time their steady-state

mapping will vary due to physical deterioration of the internal components. Therefore,

steady-state enforcement may not be guaranteed. The latter may be resolved by recreating

some predictable changes in the systems and characterizing their steady-state maps. Hence,

a set membership condition can be defined to identify the corresponding steady-state map

and enforce constraints at steady-state.

7.5 Other Practical Implementations of

TR-RG
In Chapter 6 two practical applications for TR-RG were presented. The first was related

to rollover stability, and the second was an inverted pendulum application. The main

idea was to validate the extensions of TR-RG presented in Chapter 5 Section 5.3.1 for

multiple outputs applications, and to test the robustness of TR-RG when the steady-state

characterization is not invertible, i.e., Assumption A.5.1.2 does not hold. These two aspects

were successfully tested with these applications and constraint enforcements were achieved.

Added to this, different initial conditions cases were studied for the rollover avoidance

application with successful results as reported in Chapter 6 Section 6.1.2.

7.6 Future Work
For each one of the novel RG schemes proposed in this dissertation, we list the future works

below:

• Stochastic RG: Future work will explore the extension of SR-MAS for systems with

Gaussian disturbance models, which definitely amplify the applicability of the stochas-
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tic RG to a broader type of systems. Investigation of RG schemes for systems with

additive Gaussian or Uniform disturbances and multiplicative disturbances due to

plant/model mismatch. For this case, some approaches like [64] studied the deter-

ministic case, where the worst case disturbance realization is considered at each time

step, and hence more conservative results may be obtained. Therefore, for constraint

management of stochastic systems, there is still a room for innovation and improve-

ment that can be filled by extending stochastic RG.

• Recovery RG: Future work will explore a relaxation of the assumptions used in this

work. That is, relaxing assumption A.4.1.1, and study the case when a varying dis-

turbance affects the system. In alignment with this relaxation, it is necessary to

re-evaluate assumption A.4.1.2 since allowing a disturbance big enough such that

the equilibrium is not admissible may produce undesirable abrupt jumps in the gov-

erned signal. All these composed a challenging problem that definitely motivates

the extension of RRG to a broader type of applications. Also, in terms of practical

implementation, it is desired to study the extension of RRG to nonlinear plants.

• TR-RG: Future work will explore the extension of this work to systems with structured

uncertainties and additive unknown disturbances to reduce the transient margin of

the ROAS. Richer structures will be considered for the function g(·) to reduce the

transient margin of the ROAS and improve the tuning process. Also, it is our interest

to study systems with polytopic constraints. Finally, we will study the extension of

TR-RG to systems with multiple inputs.
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