1,894 research outputs found

    Coupling different methods for overcoming the class imbalance problem

    Get PDF
    Many classification problems must deal with imbalanced datasets where one class \u2013 the majority class \u2013 outnumbers the other classes. Standard classification methods do not provide accurate predictions in this setting since classification is generally biased towards the majority class. The minority classes are oftentimes the ones of interest (e.g., when they are associated with pathological conditions in patients), so methods for handling imbalanced datasets are critical. Using several different datasets, this paper evaluates the performance of state-of-the-art classification methods for handling the imbalance problem in both binary and multi-class datasets. Different strategies are considered, including the one-class and dimension reduction approaches, as well as their fusions. Moreover, some ensembles of classifiers are tested, in addition to stand-alone classifiers, to assess the effectiveness of ensembles in the presence of imbalance. Finally, a novel ensemble of ensembles is designed specifically to tackle the problem of class imbalance: the proposed ensemble does not need to be tuned separately for each dataset and outperforms all the other tested approaches. To validate our classifiers we resort to the KEEL-dataset repository, whose data partitions (training/test) are publicly available and have already been used in the open literature: as a consequence, it is possible to report a fair comparison among different approaches in the literature. Our best approach (MATLAB code and datasets not easily accessible elsewhere) will be available at https://www.dei.unipd.it/node/2357

    SMOTE for Learning from Imbalanced Data: Progress and Challenges, Marking the 15-year Anniversary

    Get PDF
    The Synthetic Minority Oversampling Technique (SMOTE) preprocessing algorithm is considered \de facto" standard in the framework of learning from imbalanced data. This is due to its simplicity in the design of the procedure, as well as its robustness when applied to di erent type of problems. Since its publication in 2002, SMOTE has proven successful in a variety of applications from several di erent domains. SMOTE has also inspired several approaches to counter the issue of class imbalance, and has also signi cantly contributed to new supervised learning paradigms, including multilabel classi cation, incremental learning, semi-supervised learning, multi-instance learning, among others. It is standard benchmark for learning from imbalanced data. It is also featured in a number of di erent software packages | from open source to commercial. In this paper, marking the fteen year anniversary of SMOTE, we re ect on the SMOTE journey, discuss the current state of a airs with SMOTE, its applications, and also identify the next set of challenges to extend SMOTE for Big Data problems.This work have been partially supported by the Spanish Ministry of Science and Technology under projects TIN2014-57251-P, TIN2015-68454-R and TIN2017-89517-P; the Project 887 BigDaP-TOOLS - Ayudas Fundaci on BBVA a Equipos de Investigaci on Cient ca 2016; and the National Science Foundation (NSF) Grant IIS-1447795

    Understanding the apparent superiority of over-sampling through an analysis of local information for class-imbalanced data

    Get PDF
    Data plays a key role in the design of expert and intelligent systems and therefore, data preprocessing appears to be a critical step to produce high-quality data and build accurate machine learning models. Over the past decades, increasing attention has been paid towards the issue of class imbalance and this is now a research hotspot in a variety of fields. Although the resampling methods, either by under-sampling the majority class or by over-sampling the minority class, stand among the most powerful techniques to face this problem, their strengths and weaknesses have typically been discussed based only on the class imbalance ratio. However, several questions remain open and need further exploration. For instance, the subtle differences in performance between the over- and under-sampling algorithms are still under-comprehended, and we hypothesize that they could be better explained by analyzing the inner structure of the data sets. Consequently, this paper attempts to investigate and illustrate the effects of the resampling methods on the inner structure of a data set by exploiting local neighborhood information, identifying the sample types in both classes and analyzing their distribution in each resampled set. Experimental results indicate that the resampling methods that produce the highest proportion of safe samples and the lowest proportion of unsafe samples correspond to those with the highest overall performance. The significance of this paper lies in the fact that our findings may contribute to gain a better understanding of how these techniques perform on class-imbalanced data and why over-sampling has been reported to be usually more efficient than under-sampling. The outcomes in this study may have impact on both research and practice in the design of expert and intelligent systems since a priori knowledge about the internal structure of the imbalanced data sets could be incorporated to the learning algorithms

    An Examination of the Smote and Other Smote-based Techniques That Use Synthetic Data to Oversample the Minority Class in the Context of Credit-Card Fraud Classification

    Get PDF
    This research project seeks to investigate some of the different sampling techniques that generate and use synthetic data to oversample the minority class as a means of handling the imbalanced distribution between non-fraudulent (majority class) and fraudulent (minority class) classes in a credit-card fraud dataset. The purpose of the research project is to assess the effectiveness of these techniques in the context of fraud detection which is a highly imbalanced and cost-sensitive dataset. Machine learning tasks that require learning from datasets that are highly unbalanced have difficulty learning since many of the traditional learning algorithms are not designed to cope with large differentials between classes. For that reason, various different methods have been developed to help tackle this problem. Oversampling and undersampling are examples of techniques that help deal with the class imbalance problem through sampling. This paper will evaluate oversampling techniques that use synthetic data to balance the minority class. The idea of using synthetic data to compensate for the minority class was first proposed by (Chawla et al., 2002). The technique is known as Synthetic Minority Over-Sampling Technique (SMOTE). Following the development of the technique, other techniques were developed from it. This paper will evaluate the SMOTE technique along with other also popular SMOTE-based extensions of the original technique

    a priori synthetic sampling for increasing classification sensitivity in imbalanced data sets

    Get PDF
    Building accurate classifiers for predicting group membership is made difficult when data is skewed or imbalanced which is typical of real world data sets. The classifier has the tendency to be biased towards the over represented group as a result. This imbalance is considered a class imbalance problem which will induce bias into the classifier particularly when the imbalance is high. Class imbalance data usually suffers from data intrinsic properties beyond that of imbalance alone. The problem is intensified with larger levels of imbalance most commonly found in observational studies. Extreme cases of class imbalance are commonly found in many domains including fraud detection, mammography of cancer and post term births. These rare events are usually the most costly or have the highest level of risk associated with them and are therefore of most interest. To combat class imbalance the machine learning community has relied upon embedded, data preprocessing and ensemble learning approaches. Exploratory research has linked several factors that perpetuate the issue of misclassification in class imbalanced data. However, there remains a lack of understanding between the relationship of the learner and imbalanced data among the competing approaches. The current landscape of data preprocessing approaches have appeal due to the ability to divide the problem space in two which allows for simpler models. However, most of these approaches have little theoretical bases although in some cases there is empirical evidence supporting the improvement. The main goals of this research is to introduce newly proposed a priori based re-sampling methods that improve concept learning within class imbalanced data. The results in this work highlight the robustness of these techniques performance within publicly available data sets from different domains containing various levels of imbalance. In this research the theoretical and empirical reasons are explored and discussed

    a literature review

    Get PDF
    Fonseca, J., & Bacao, F. (2023). Tabular and latent space synthetic data generation: a literature review. Journal of Big Data, 10, 1-37. [115]. https://doi.org/10.1186/s40537-023-00792-7 --- This research was supported by two research grants of the Portuguese Foundation for Science and Technology (“Fundação para a Ciência e a Tecnologia”), references SFRH/BD/151473/2021 and DSAIPA/DS/0116/2019, and by project UIDB/04152/2020 - Centro de Investigação em Gestão de Informação (MagIC).The generation of synthetic data can be used for anonymization, regularization, oversampling, semi-supervised learning, self-supervised learning, and several other tasks. Such broad potential motivated the development of new algorithms, specialized in data generation for specific data formats and Machine Learning (ML) tasks. However, one of the most common data formats used in industrial applications, tabular data, is generally overlooked; Literature analyses are scarce, state-of-the-art methods are spread across domains or ML tasks and there is little to no distinction among the main types of mechanism underlying synthetic data generation algorithms. In this paper, we analyze tabular and latent space synthetic data generation algorithms. Specifically, we propose a unified taxonomy as an extension and generalization of previous taxonomies, review 70 generation algorithms across six ML problems, distinguish the main generation mechanisms identified into six categories, describe each type of generation mechanism, discuss metrics to evaluate the quality of synthetic data and provide recommendations for future research. We expect this study to assist researchers and practitioners identify relevant gaps in the literature and design better and more informed practices with synthetic data.publishersversionpublishe

    The Role of Synthetic Data in Improving Supervised Learning Methods: The Case of Land Use/Land Cover Classification

    Get PDF
    A thesis submitted in partial fulfillment of the requirements for the degree of Doctor in Information ManagementIn remote sensing, Land Use/Land Cover (LULC) maps constitute important assets for various applications, promoting environmental sustainability and good resource management. Although, their production continues to be a challenging task. There are various factors that contribute towards the difficulty of generating accurate, timely updated LULC maps, both via automatic or photo-interpreted LULC mapping. Data preprocessing, being a crucial step for any Machine Learning task, is particularly important in the remote sensing domain due to the overwhelming amount of raw, unlabeled data continuously gathered from multiple remote sensing missions. However a significant part of the state-of-the-art focuses on scenarios with full access to labeled training data with relatively balanced class distributions. This thesis focuses on the challenges found in automatic LULC classification tasks, specifically in data preprocessing tasks. We focus on the development of novel Active Learning (AL) and imbalanced learning techniques, to improve ML performance in situations with limited training data and/or the existence of rare classes. We also show that much of the contributions presented are not only successful in remote sensing problems, but also in various other multidisciplinary classification problems. The work presented in this thesis used open access datasets to test the contributions made in imbalanced learning and AL. All the data pulling, preprocessing and experiments are made available at https://github.com/joaopfonseca/publications. The algorithmic implementations are made available in the Python package ml-research at https://github.com/joaopfonseca/ml-research

    BagStack Classification for Data Imbalance Problems with Application to Defect Detection and Labeling in Semiconductor Units

    Get PDF
    abstract: Despite the fact that machine learning supports the development of computer vision applications by shortening the development cycle, finding a general learning algorithm that solves a wide range of applications is still bounded by the ”no free lunch theorem”. The search for the right algorithm to solve a specific problem is driven by the problem itself, the data availability and many other requirements. Automated visual inspection (AVI) systems represent a major part of these challenging computer vision applications. They are gaining growing interest in the manufacturing industry to detect defective products and keep these from reaching customers. The process of defect detection and classification in semiconductor units is challenging due to different acceptable variations that the manufacturing process introduces. Other variations are also typically introduced when using optical inspection systems due to changes in lighting conditions and misalignment of the imaged units, which makes the defect detection process more challenging. In this thesis, a BagStack classification framework is proposed, which makes use of stacking and bagging concepts to handle both variance and bias errors. The classifier is designed to handle the data imbalance and overfitting problems by adaptively transforming the multi-class classification problem into multiple binary classification problems, applying a bagging approach to train a set of base learners for each specific problem, adaptively specifying the number of base learners assigned to each problem, adaptively specifying the number of samples to use from each class, applying a novel data-imbalance aware cross-validation technique to generate the meta-data while taking into account the data imbalance problem at the meta-data level and, finally, using a multi-response random forest regression classifier as a meta-classifier. The BagStack classifier makes use of multiple features to solve the defect classification problem. In order to detect defects, a locally adaptive statistical background modeling is proposed. The proposed BagStack classifier outperforms state-of-the-art image classification techniques on our dataset in terms of overall classification accuracy and average per-class classification accuracy. The proposed detection method achieves high performance on the considered dataset in terms of recall and precision.Dissertation/ThesisDoctoral Dissertation Computer Engineering 201
    corecore