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ABSTRACT 
 
This research project seeks to investigate some of the different sampling techniques 

that generate and use synthetic data to oversample the minority class as a means of 

handling the imbalanced distribution between non-fraudulent (majority class) and 

fraudulent (minority class) classes in a credit-card fraud dataset. The purpose of the 

research project is to assess the effectiveness of these techniques in the context of 

fraud detection which is a highly imbalanced and cost-sensitive dataset. 

 

Machine learning tasks that require learning from datasets that are highly unbalanced 

have difficulty learning since many of the traditional learning algorithms are not 

designed to cope with large differentials between classes. For that reason, various 

different methods have been developed to help tackle this problem. Oversampling and 

undersampling are examples of techniques that help deal with the class imbalance 

problem through sampling.  

 

This paper will evaluate oversampling techniques that use synthetic data to balance the 

minority class. The idea of using synthetic data to compensate for the minority class 

was first proposed by (Chawla et al., 2002). The technique is known as Synthetic 

Minority Over-Sampling Technique (SMOTE). Following the development of the 

technique, other techniques were developed from it. This paper will evaluate the 

SMOTE technique along with other also popular SMOTE-based extensions of the 

original technique. 

  

  

Key words: SMOTE, Class-Imbalance, Sampling, Oversampling, Machine Learning, 

Classification, Credit-card Fraud 
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1. INTRODUCTION  
 

Synthetic Minority Oversampling Technique (SMOTE) is an oversampling technique 

that generates synthetic data examples of the minority class. It has been shown to be 

more effective as an oversampling technique than random oversampling due to its 

ability to resolve certain problematic aspects associated with random re-sampling. The 

technique was first introduced by Chawla (2003). Since its publication, more than 100 

new variants have been introduced. Extensions and variants of the technique have been 

developed in order to help improve the performance of the algorithm under different 

circumstances.  

 

In this research project, we review some of the extensions to the original SMOTE 

technique and evaluate how they compare to other oversampling techniques and 

whether they can be useful for credit-card fraud classification.  

 

1.1 Background  
 

In the 1990s, as data mining and machine learning technologies started to become 

more prevalent, the challenge became evident. How do we maximize the accuracy of a 

classifier when the dataset is particularly imbalanced, and the distribution of classes is 

skewed? (Sun et al., 2009; He & Garcia, 2009, López et al., 2013; Branco et al., 2016; 

Cieslak et al., 2012, Hoens & Chawla, 2013; Lemaitre et al., 2017) 

 

It became noticeable that across several different disciplines, a similar trend became 

reoccurring for standard classification models that dealt with datasets that exhibited a 

class imbalance problem (Anand, Mehrotra, Mohan, & Ranka, 1993; Bruzzone & 

Serpico, 1997; Kubat, Holte, & Matwin, 1998). In many cases, the local accuracy of 

the majority class (i.e., the specificity) was significantly higher than the local accuracy 

of the minority class. This led to the creation of an active area of research in the 

machine learning community called "learning from imbalanced data" from whence the 

term 'class imbalance' was coined.  
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The first significant milestone for the 'Class-Imbalance Problem' is marked by the first 

workshop ever held in its name. This happened during the American Association for 

Article Intelligence Conference in the early 2000s (Japkowicz & Holtz, 2000). The 

next significant milestone for this problem happened in 2003 during the ICML-KDD 

Workshop on learning from imbalanced datasets, which presented the first-ever issue 

exclusively dedicated to the topic (Chawla, Japkowicz, & Kolcz, 2004).  

 

This problem continues to be relevant since research is, in significant part, driven by 

the many challenges that arise from within the various different areas of application. 

For example, in face recognition, software engineering, social network, medical 

diagnosis, and more. (Krawczyk, 2016; Haixiang et al., 2017; Maua & Galinac Grbac, 

2017; Zhang et al., 2017; Zuo et al., 2016; Lichtenwalter et al., 2010; Krawczyk et al., 

2016; Bach et al., 2017; Cao et al., 2017a). 

 

The fact that this problem is present across various different domains has served as a 

stimulus for research to expand further into understanding what affects the accuracies 

of the minority and the majority classes. In imbalanced domains, accuracy is highly 

dependent on a trade-off between false positives and false negatives. The solution 

space for these particular issues has ranged from the development of new sampling 

approaches to the development of new learning algorithms that are specifically 

designed to deal with the imbalanced problem. In the context of sampling, techniques 

that have since been developed can be described as belonging to one of three general 

categories: undersampling, oversampling, or a hybrid combination of both.  

 

Undersampling techniques are described as able to produce a more compact training 

dataset that reduces the associated costs to the learning and processing time that 

classifiers face during the learning stage. However, undersampling also has its 

downsides. Firstly, these techniques tend to increase the variance of the classier and 

produce a distorted posterior probability (Dal Pozzolo, Caelen, & Bontempi, 2015). 

Secondly, undersampling techniques also potentiate the likelihood of discarding 

otherwise useful data for the classifier's learning. Furthermore, as the degree of 

imbalance becomes more severe, the amount of data that must be discarded to 

(appropriately) undersample the majority class also increases. This increase in the 



 
 

  3 

amount of scrapped data leads to a problem whereby the lack of data will limit the 

ability of a classifier model to make generalizations (Wasikowski & Chen, 2010). 

 

As a solution to this problem, researchers developed oversampling methods that do not 

require a reduction of the majority class. Instead, these techniques deal with the class 

imbalance problem by replicating the minority class examples. Hence the name 

'oversampling'; sampling techniques that fall under this category are known to make 

use of additional examples of the minority class by replicating instances from that 

class. Nonetheless, the application of random oversampling necessitates adjusting the 

weights of importance (often expressed as the associated costs) for the minority class. 

However, these weights can only be determined and calculated correctly if the learning 

algorithms are capable of distinguishing between class types, noise, and clusters 

competently. 

 

The identification of clusters in the minority class is particularly hard when there are 

cases of overlapping data between the minority and majority class (García, Mollineda, 

& Sánchez, 2008; Cieslak & Chawla, 2008). Another aspect that further exacerbates 

the difficulty of identifying clusters of the minority class is when there is a presence of 

small disjuncts within the space of the minority class itself (Jo & Japkowicz, 2004). 

Moreover, the lower and more specific the decision region of the minority class, the 

higher the possibility of overfitting (when classifiers learn overly particular 

idiosyncrasies underlying in the data) since multiple copies of the same instance of 

data (from the minority class) can potentially be acquired by the classifier more than 

once. This is because the selection is made at random with replacement, such that the 

instances of data that are chosen to oversampled are chosen with replacement 

(meaning that once data is selected, it is re-inserted back into the training set so that 

probabilities of selection are always the same and independent of each other)  

 

1.2 Research Project 

 
Learning and mining from imbalanced datasets gained increased interest in recent 

years. One simple but efficient way to increase the performance of machine learning in 
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imbalanced domains is to use synthetic data to increase the number of samples for the 

minority class. This technique is known as SMOTE.  

 

This research project evaluates the effect of using SMOTE oversampling 

methodologies that rely on generating synthetic data to oversample the minority class. 

Different strategies were created using seven different learning classifiers in 

combination with seven different oversampling methods (most of which are variants of 

SMOTE algorithm). 

 

The performance of these strategies will be assessed and ranked based on three 

different metrics. These metrics have been selected to measure the performance of 

strategies given that they are widely accepted as some of the more appropriate metrics 

for judging the performance of machine learning techniques in imbalanced domains. 

 

1.3 Problem Definition: Credit Card Fraud Classification  
 

Credit card fraud classification falls into one of two categories supervised 

(Bhattacharyya et al., 2011; Brause et al., 1999; Chan et al., 1999) or unsupervised 

(Bolton & Hand, 2001; Tasoulis et al., 2006). As a standard approach, supervised 

learning of credit card fraud typically involves the classification and not regression 

because the target variable is typically categorical or binary (i.e., fraud or non-fraud). 

Unlike regression, which concerns itself with predicting a continuous variable, 

classification involves the prediction of a category of a target variable.  

 

The learning process is referred to as 'supervised' because the process occurs under the 

supervision of a pre-established target or output variable (which are assumed to have 

the class groups labeled accordingly). The target (i.e., dependent) variable is 

influenced by a set of independent variables (referred to as features) that can be used to 

explain and predict the respective class of data instances through a process known as 

'classification.' Credit card fraud classification is then simply the classification of 

instances of credit card fraud in credit card data. And yet this particular classification 

task is notoriously challenging due to three main problems. First, fraud represents only 

a tiny fraction of all daily transactions (the percentage of fraudulent data is typically 

less than one percent). Secondly, the nature of fraud and its distributions overtime are 
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never static and are instead always changing due to new strategies and seasonality. 

Thirdly, it takes time to certify that a transaction is fraudulent after a transaction takes 

place. 

 

The first challenge is related to the class imbalance problem and is especially 

prominent in fraud data because the distribution of the transactions is particularly 

skewed towards the negative (non-fraudulent) class. Moreover, the distribution of 

fraud data also suffers from a problem of overlapping between class groups. Most 

learning algorithms are not suited to deal with both unbalanced and overlapping class 

distributions (Batista, Carvalho, and Monard, 2000). There is evidence that suggests 

that the class imbalance problem on its own can be solved. However, class imbalance, 

coupled with other problems caused by overlapping, small disjuncts, noise, and more, 

poses a much harder challenge for research altogether.  

 

1.4 Research Objectives and Methodologies 

 

The objective of this research is to present a detailed empirical comparison of six 

variants of the SMOTE technique for oversampling highly imbalanced data of credit-

card fraud. This research seeks to evaluate how these techniques perform and compare 

in the context of credit-card fraud classification and its respective class-imbalance 

problems. Ultimately, the main objective of the experiments provided in this research 

is to expand our understanding of these techniques and evaluate how they are or are 

not useful for resolving some of the problems presented by the highly imbalanced 

distribution of fraud to non-fraud credit-card data. 

 

This research will evaluate and compare the performance of sampling techniques in 

machine learning models based on three metrics on three different versions of the 

dataset (referred to as 'Sets') that have varying degrees of imbalance between class 

distributions (of fraud to non-fraud).  

 

The First Set ('Set 1) uses all the data from the original dataset, and the distribution of 

fraud to non-fraud data is unmodified with 492 positive (i.e., fraudulent) cases and 

284315 negatives (i.e., non-fraudulent) cases. The second Set, (' Set 2') uses all the 
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positive class cases (492) and two-thirds (189543) of the negative class cases. The 

third set ('Set 3') uses all positive class cases (492) and one-third (94772) of the 

negative class cases.  

 

For each Set, three metrics were calculated for each of the fourth-nine different 

strategies evaluated (the strategies combine seven different classifiers with seven 

different sampling techniques). Therefore, for every set 147 (7x7x3), different metrics 

were calculated. Moreover, for the three Sets created and tested, 441 (147x3), different 

metric values were calculated for evaluating the strategies. Using all 441 metric values, 

an aggregated rank and mean scores were produced. The objective of this project is to 

use these metrics to evaluate the relationship between the oversampling techniques and 

the performance obtained by the models.  

 

The methodology used in this project is a mix of qualitative and quantitative methods. 

The metrics for performance is followed by an analytical evaluation of the results as 

well as the experimental design.  Secondary research has been conducted by 

extrapolating data from an existing dataset on credit-card fraud and evaluating the 

summary of the findings. Moreover, secondary research is provided by producing a 

review of relevant literature and state-of-the-art techniques in the context of machine 

learning, credit-card fraud classification, and the 'Class-Imbalance Problem'. 

 

The research in this project follows a Constructive form. This project uses seven 

different classifiers in combination with seven different sampling techniques to create 

models (referred to as strategies) that are built and tested through a pipeline that, in the 

end, compares the performance. The sampling techniques and learning classifiers that 

were used in this experiment are all relevant to the task of credit-card fraud 

classification and suited to imbalanced domains.  

 

The quantitative data obtained from the performance of the various strategies are 

analytically assessed to determine whether alternative strategies outperform baseline 

strategies. Deductive reasoning is used to help decide and validate whether hypotheses 

should be accepted or rejected. The concluding remarks are based on the achieved 

performance of strategies in the experiments. Lastly, an analysis of whether the 

strategies are appropriate for credit-card fraud classification will be based on a general 
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evaluation of their performance across all the experiments.  Strategies will also be 

compared to strategies in the literature reviewed. 

 

1.5 Scope and Limitations 

 

The scope of this research is limited by the fact that only one dataset on credit-card 

fraud is currently publicly available. In order to enhance the research and the results, it 

would be essential to evaluate additional datasets on credit-card fraud. The size of the 

dataset itself is significantly large in comparison with 284,807 total credit-card 

transactions. The research is also limited by the lack of parameter optimization. The 

parameters that were set for the sampling techniques and learning classifiers were all 

default parameters given by that technique's respective library. Only two parameters 

were modified. 

 

The dataset is significantly larger in comparison to the imbalanced datasets from the 

UCI Machine Learning Repository. A large part of existing research on class 

imbalance and sampling techniques have been done using these datasets. Therefore, 

because this project uses a different dataset, this is a limitation to its scope. However, 

this also presents an opportunity to produce an analysis that is original and relevant to 

the context of credit-card fraud due to the large and complex nature of the dataset.  

 

This enabled the research to expand its scope (that is limited by the use of single 

dataset) and extend its investigation by also evaluating how each strategy and hence 

the sampling techniques and classifiers respond to changes in the distribution to the 

minority (fraud) class and the majority (non-fraud) class.  

 

1.6 Document Outline 
 

Chapter 2 - Review of Existing Literature  

 

This chapter provides a look into the relevant literature and state-of-the-art 

technologies that are being used in the literature relevant to SMOTE and resolving the 
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'Class-Imbalance Problem.' This chapter will also describe some of the main advances 

that have been made in the context of credit card fraud and fraud classification. 

This chapter will firstly provide a general historical view of the solutions to the 

imbalance problem with the goal of clarifying the subject and defining the key domain-

specific concepts that are necessary for understanding the subject. Secondly, this 

chapter will also provide a more in-depth review of the literature and research on 

various different types of techniques that are currently available. Lastly, this chapter 

will outline some of the unresolved areas in literature and any gaps that have been 

identified in the research done for this project. 

 

Chapter 3 - Experiment, Design and Methodology 

 

This chapter will explain the design choices for this experiment.  For this project, 

seven learning algorithms will be used to learn from the same dataset using seven 

different sampling methodologies.  This project follows a design and experimental 

methodology that follows the methodology outlined by CRISP-DM (Cross Industry 

Standard Process for Data Mining) (Shearar, 2000) for data mining related tasks which 

will be outlined in this chapter. This chapter also gives a brief explanation and 

introduction to the sampling techniques and the learning classifiers that were used to 

create the various different strategies that were used to experiment on the dataset. 

Moreover, this chapter explains the procedures that were followed during the 

experimentation and how the dataset was prepared into three different sets (‘Sets’) that 

were used for evaluating the strategies and how the strategies were evaluated during 

the learning and training processes. 

 

Chapter 4 – Experimental Results, Evaluation and Discussion 

 

This chapter will present the results obtained from the experiments. A brief analysis 

will be given after the results. The results are divided into two parts. Results Part 1 are 

results that were used to evaluate the baseline hypothesis. Part 2 of results are results 

that were designed to evaluate the secondary hypothesis and expand on the evaluation 

and discussion.  
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This chapter will also present a summary of results followed by an evaluation and 

discussion of the findings. This chapter will then also evaluate the experiment by 

providing a brief discussion of experimental strengths and weaknesses and limitations. 

 

Chapter 5 - Conclusion  

 

This chapter will present a summary of the main findings. The chapter will then 

proceed and will include some discussion of findings. A brief discussion of the 

strengths and weaknesses of the experiment will be outlined. The chapter will then 

proceed to describe some of the viable avenues for future research and 

recommendations for future work.  Lastly, the contributions and impact of this project 

will be outlined and briefly discussed. 
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2. REVIEW OF EXISTING LITERATURE  
 

2.1 Early Research 

 

In the research paper, by Weiss and Provost (2003), the authors conclude that naturally 

occurring distributions are not always optimal. For this reason, it became evident that 

it is necessary to modify the distribution of the training set based on an evaluation 

function. Therefore, re-sampling methodologies that function by either adding to the 

minority class or removing the majority class for a given dataset became the de facto 

standard for countering the class imbalance problem across several different domains. 

Over and under-sampling methodologies received significant attention in this context 

(Solberg and Solberg, 1996; Japkowicz, 2000a; Chawla et al., 2002; Weiss and 

Provost, 2003; Kubat and Matwin, 1997; Jo and Japkowicz, 2004; Batista et al., 2004; 

Phua and Alahakoon, 2004; Laurikkala, 2001; Ling and Li, 1998). A significant part of 

these studies explicitly addresses how the different variants of these techniques can 

counter the problem of imbalance and skewed class distributions. Sometimes 

conflicting, different viewpoints have since been presented on the appropriateness of 

oversampling versus undersampling (Chawla, 2003; Maloof, 2003; Drurnmond and 

Holte, 2003; Batista et al., 2004). However, one standard, long-lasting critique of this 

research remains: how does one effectively identify the potentially optimal sampling 

techniques and parameters for a given data set? 

 

Moreover, an accompanying question is: how can the techniques for imbalance 

generalize across cost-sensitive scenarios? The challenge in establishing an 

appropriate trade-off between false positives and true positives can be of paramount 

importance. For example, particularly for classification tasks on cancer or fraud, the 

severity of the costs associated with type one and type two errors is particularly 

uneven. That is, the costs of misclassifying the negative class as positive (as cancer or 

fraud) are hugely disproportional to the inverse relation. 

 

Previous research (Ling & Li, 1998; Japkowicz, 2000) has discussed over-sampling 

with replacement and has noted that it does not significantly improve minority class 

recognition. This investigation helped Chawla realise that at the root of the problem 



 
 

  11 

was the fact that the minority class was being overfitted from oversampling. Chawla's 

solution was to synthetically generate new instances of the minority class so that new 

(and not repeated) information is fed to the learning algorithm.   

 

In Chawla, Bowyer, Hall, and Kegelmeyer (2002), the authors proposed an alternative 

that could potentially avoid the problem of overfitting that simple random 

oversampling technique. Instead of "weighting" existing data points, the main rationale 

behind the technique was to create new data points for the minority instances. The 

technique was called Synthetic Minority Oversampling Technique, and the term 

SMOTE (Chawla et al., 2002) became popularised. The basis of the SMOTE technique 

was to interpolate between neighboring instances of the minority to create new 

instances of that class. The number of instances, therefore, increases as new minority 

class examples are added to the 'neighbourhood' of the class. In essence, this allows the 

classifier model to train on more unique data, thereby decreasing the probability of 

overfitting and increasing its ability for generalization. 

 

The technique quickly became popular and a frontrunner for the preprocessing 

techniques used in class imbalance research. Since its introduction in 2002, many 

extensions to the original technique have been developed with the objective of 

improving its suitability and performance depending on a specific context. The 

abundance of extensions and alternatives to the original SMOTE technique is a 

testament to how successful and impactful the original technique has been. The 

technique is arguably one of the most influential algorithms for preprocessing and 

sampling in machine learning and data mining (García, Luengo & Herrera, 2016). 

 

2.2 Synthetic Minority Oversampling Technique (SMOTE) 

 

The SMOTE algorithm relies on using an oversampling approach to rebalance the 

original training dataset. Instead of using simple replication on the minority class, the 

main idea of the technique is to introduce new data that is made up of synthetic 

examples of the minority class. These synthetic instances are created by interpolation 

between instances of the minority class that are located within a defined neighborhood 

space. This space is referred to as a "feature space" rather than "data space" (Chawla et 

al., 2002). The under-represented class is over-sampled by introducing synthetic 
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examples along the line segment that joins any or all of the k minority class nearest 

neighbors. Depending on the amount of over-sampling that is required for the dataset, 

the number of k neighbors is randomly chosen (Chawla, 2005). 

 

The procedure works as follows. Firstly, the total amount (an integer value) of 

oversampling N is established. This amount can be either set-up to obtain an 

approximate one to one class distribution or is discovered via a wrapper process 

(Chawla et al., 2008). Next, an iterative process composed of various steps is carried 

out. The first step is to select at random a minority class example from the training set. 

Then, its K nearest neighbors (5 by default) are obtained. Lastly, the N number of 

the K instances is randomly chosen for creating new instances by interpolation. In 

order to calculate the value of N, the difference between the feature vector (sample) 

and each selected nearest neighbor is computed. The difference is then multiplied by a 

number chosen at random between 0 and 1. Then the product of this multiplication is 

added to the previous feature vector. This causes the selection of a random point along 

the “line segment” that connects the minority class examples between the features. If 

the features are nominal, one of two values are randomly selected. The formal 

algorithm is outlined below. Given two minority class examples, such  𝑥", 𝑥$ ∈ 𝑅' 

new samples are generated by: 

 

         𝑥()* = 𝑥" + 𝑟 ∙ |𝑥$ − 𝑥"|, where  𝑟 ∈ [0,1]       (1) 

 

Such that ‘r’ denotes	 a random number ranging between zero and one. Hence, ‘r’ is 

also sometimes referred to as a random probability that dictates the proximity of the 

(newly) generated synthetic minority data instance to the original minority class 

instance on the interpolated line segment that joins the two points.    

 

2.3  Extensions to the original SMOTE algorithm 
 

The SMOTE technique has served as the underlying foundation for all other 

oversampling methods that use synthetic or artificial data. Therefore, in the context of 

class imbalance classification, any preprocessing methodology that uses synthetic 
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examples by interpolation or some other process is, to some extent, derived from the 

original SMOTE algorithm by Chawla (2002). 

 

Many extensions and variants to the original algorithm have since been developed. In 

the paper "SMOTE for Learning from Imbalanced Data: Progress and Challenges, 

Marking the 15-year Anniversary" by Garcia, Herrera, Chawla and Nitesh (2018), the 

authors compose a comprehensive list of categories to which extensions of the 

technique can be categorised. The most important categories are the following: 

 

1. Selection Procedure: Extensions to the SMOTE technique that focus on the 

initial selection focus on determining the best candidates for oversampling 

before the synthesizing of new instances begins. Extensions that fall under this 

category will combine SMOTE with strategies that are meant to either reduce 

the amount of overlap or the amount of noise that is generated by the 

technique in the new dataset that contains synthetic examples. Many SMOTE 

extensions that focus on initial selection rely on either choosing not to 

generate synthetic data depending on the amount of minority class examples in 

the neighbourhood (Bunkhumpornpat, Sinapiromsaran, & Lursinsap, 2009) or 

how closely minority class examples are to the boundary class (Han et al., 

2005). Nakamura (2013) presents another variant which relies on using a 

Learning Vector Quantisation (LVQ) (an algorithm that is similar to k-Nearest 

Neighbours but is optimised) to optimise the selection process. Other SMOTE 

variants will change the initial selection procedure based on borderline class 

data (Nguyen et al., 2009; Cervantes et al., 2017), for instance, by using a 

support vector machine (SVM) algorithm to help decide where borderline 

class examples are, to then generate synthetic data. 

 

2. Type of Interpolation: Extensions of the algorithm that fall under this category 

include additional mechanisms to modify the way synthetic examples are to be 

interpolated. These interpolation mechanisms will ultimately define the way 

that new instances are synthesized. The interpolation mechanism can 

be range-restricted (Han et al., 2005; Bunkhumpornpat et al., 2009; 

Maciejewski & Stefanowski, 2011), whereby both the nearest neighbors for 

the minority class and the majority class are accounted. Alternatively, 
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weighting can be used to create synthetic instances that are closer to a 

specified instance than the nearest neighbor (Hukerikar, Tumma, Nikam, & 

Attar, 2011).  

 

3. Integration with under-sampling: Extensions that fall under this category will 

rely on using undersampling to remove examples from the majority class. The 

under-sampling is done either randomly or by using an informed technique. 

The process of undersampling can occur either before or during (as an internal 

process) the SMOTE technique's application. 

 

4. Dimensionality Modifications: Extensions to the SMOTE algorithm that fall 

under this category incorporate some mechanisms for either reducing or 

augmenting the dimensionality of the data. The adjustments to the 

dimensionality of the data takes place either before or during the generation of 

synthetic/artificial examples. Most commonly, the process of changing the 

dimensionality of the data occurs before the SMOTE technique is applied. In 

the context of reduction, the dimensionality can be reduced by using, for 

example, Principal Components Analysis (PCA) (Abdi & Hashemi, 2016). 

Bagging (Wang, Yun, li Huang, & ao Liu, 2013a) and various other nonlinear 

dimensionality reduction techniques (Bellinger, Drummond, & Japkowicz, 

2016) can also be used.  

 

5. Adaptive Generation: Extensions of the SMOTE that use adaptive generation 

for synthesizing new data, rely on using a weighted distribution depending on 

the degree of difficulty in learning each minority class example. In the paper 

(He, Bai, Garcia, & Li, 2008), the first adaptive SMOTE-based technique 

'ADASYN' was introduced to help produce more synthetic data for minority 

class instances that proved harder to learn. This inspired other similar 

techniques to also incorporate mechanisms that help control the amount of 

synthetic data that is generated (Alejo, García, & Pacheco-Sánchez, 2015; 

Rivera, 2017).  

 

6. Filtering of noise: These variants of the SMOTE algorithm were developed 

help reduce the number of synthetic data that exhibit overlap or noise within 
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the dataset. Two of the most renown techniques include SMOTE-Tomek and 

SMOTE+ENN (Batista et al., 2004). 

 

2.4 The Class Imbalance Problem for Credit card Fraud 

 

In the context of credit fraud classification, the nature of the data is particularly 

unbalanced, and most learning algorithms are not traditionally designed to cope with 

the degree of skewness that the class distributions exhibit. The degree of skewness is 

such that standard classification algorithms that seek to maximise over-all accuracy 

will often sacrifice learning instances of the minority class (lowering its recall score) to 

increase its local accuracy of the majority class and increase its specificity score. 

Nonetheless, the imbalance in the ratio between the minority and the majority class is 

not the only problem. Other prominent challenges for researchers include the amount 

of overlapping that often occurs between the classes (Holte, et al., 1989; Batista et al., 

2005, García et al., 2007; García et al., 2008) and the presence of noise or noisy 

instances within the datasets (Anyfantis et al. 2007; Hulse & Khoshgoftaar, 2009). 

Furthermore, another existing challenge for this task is the existence of small sub-

clusters (known as small disjuncts) within the minority class formation (Japkowicz & 

Stephen, 2002; Stefanowski, 2013). These are all factors that ultimately diminish the 

performance of classifiers. Different methodologies for handling some of these issues 

above have been developed. 

 

2.5 Data-Level Solutions 
 

At the data level, one way to resolve the issue is by using sampling to alter the size of 

training sets and rebalance the ratio and distribution of classes. The rebalancing of 

class distributions is often viewed as fundamental since research agrees that, in 

general, most standard classification models will almost always produce better results 

when trained on balanced datasets (Weiss & Provost, 2001; Laurikkala, 2001; 

Estabrooks et al., 2004). Contrary to this view, some classifiers have shown that there 

is no change in performance when learning from training sets that have been 

rebalanced through sampling (Japkowicz & Stephen, 2002; Batista et al., 2004). This 

means that some classifiers are just as capable of learning from imbalanced data and 
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that rebalancing may not always be necessary. Fundamentally, however, the effect of 

resampling on performance can either be positive or null (as it has never been shown to 

be detrimental to performance). For now, the only way to know this is by running tests 

and evaluating a posteriori. 

 

The next question then is: what type of resampling is the most effective for fraud 

data? Literature suggests that a superior methodology does not exist because the most 

optimal method will vary depending on the dataset and the classifier algorithm 

(Japkowicz & Stephen, 2002; Dal Pazzolo et al., 2013). Moreover, because fraud is an 

inherently evolving activity, this means that methodologies that worked well in the 

past can become obsolete. For all these reasons, the optimum sampling strategy for 

fraud classification is particularly hard to define as it depends on the distribution and 

nature of the data. In the research by Dal Pazzolo, the author proposes using a racing 

strategy so that various methodologies are tested in order to find the most optimal or 

superior method. Dal Pazzolo experimented on the following techniques: 

undersampling, oversampling, SMOTE, CNN, ENN, NCL, OSS, and Tomek Link. 

These techniques were tested using a ten-fold CV with the following different 

classification algorithms: SVM, Neural Networks (NNET), RF, LB, and Decision 

Trees. For every combination of a classification algorithm and a sampling technique, 

the average G-mean of the CV was taken and used to calculate the average accuracy 

over all the datasets. For the credit card dataset, the highest F-measure is achieved 

using RF with SMOTEnsemble.  

 

In the research by (Chawla 2008), the author shows that there is no clear advantage in 

oversampling over undersampling or vice-versa. Instead, Chawla (2008) is a proponent 

of the view that the most effective rebalancing strategy is dependant on the nature and 

distribution of the dataset. In his research, Chawla's best performing model (that used 

SMOTE and undersampling as a rebalancing strategy) outperformed all other cost-

based classifiers (that control the weight attributed to each class based on their 

estimated misclassification cost) of cost-sensitive classes for various real-life cases 

(Chawla, 2008).  
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2.6 Algorithm-Level Solutions 
 

Algorithms can be modified or extended to serve unbalanced tasks better. At the 

algorithmic level, the algorithms that are used for resolving class imbalance will 

typically fall into one of two categories of methods: cost-sensitive learning or class-

imbalance learning. For the latter category, the objective is to minimize costs by 

optimizing the trade-off between majority and minority classes based on 

misclassification costs. That is, by improving the accuracy of the class with the highest 

misclassification costs. For the former category, the objective is to improve the local 

accuracy of the minority class by modifying the original classifier algorithm to 

enhance its capacity to learn from the minority class. 

 

For DT algorithms, the use of information gain (IG) as the splitting rule criterion has 

shown to return rules that are biassed towards the majority class (Quinlan, 1993). 

Therefore, traditional DT algorithms can be modified to better suit class-imbalance. 

For example, instead of us IG, the Hellinger Distance (HD) is more appropriate as the 

splitting rule criteria since HD is not sensitive to the skewness of classes. Standard 

C.45 DTs exhibit improved performance on imbalanced datasets when using HD 

Chawla & Cieslak, 2008) or the Class Confidence Proportion (CCP) as the splitting 

rule criteria (Liu et al., 2010). For the SVM algorithm, an F-measure optimization has 

been suggested as a way to improve the performance of the classifier on imbalanced 

datasets (Callut & Dupont, 2005). The SPARCCC algorithm (Verhein & Chawla, 

2007) is another example of a learning algorithm designed explicitly for imbalanced 

learning. 

 

These are all examples of tuning at the algorithmic level to help deal with the class 

imbalance problem. Some researchers propose that this type of solution should be 

considered more suitable for class-imbalance since it deals with the problem directly 

without biasing the classifier towards one class (Weiss, 2013). Many of the class-

imbalanced learning methods use strategies that are common to ensemble learning 

methods. Bagging (Breiman, 1996) and Boosting (Freund, Schapire et al., 1996) are 

two standard techniques to aggregate classifiers for ensemble learning. The main idea 

behind classifier aggregation is that classifiers can be combined iteratively, permitting 
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the ensemble model to combine different learning algorithms that are better suited for 

the minority and majority class distributions. EasyEnsemble and UnderBagging are 

examples of this.  

 

In the research by Dal Pazzolo, the author showed that for the credit-card fraud dataset, 

a RandomForest (as the base learner) in combination with SMOTEnsemble was found 

to be the statistically superior strategy (Dal Pazzolo et al., 2013). SMOTEnsemble is a 

combination of the EasyEnsemble algorithm (Liu, Wu, and Zhou, 2008) and SMOTE 

that has shown to be particularly robust in imbalanced domains and for the 

classification of fraud. 

 

2.7 SMOTEnsemble 

 

SMOTEnsemble is an example of an ensemble learning method that combines 

SMOTE with the EasyEnsemble algorithm (Liu, Wu, and Zhou, 2009). EasyEnsemble 

samples several subsets of the majority class and trains a learner using each of them; a 

single output is then created by combining the outputs from these learners. The 

EasyEnsemble algorithm is an ensemble method that is designed to use the majority 

class examples, which are ignored by under-sampling. 

 

Both EasyEnsemble and Balanced Random Forest use balanced bootstrap samples. In 

the research paper by the original authors of the algorithm, the authors remark that the 

algorithm is specifically designed to deal with the class-imbalance problem directly 

and when the class imbalance is "harmful" (i.e., severe enough to degrade the 

performance of classifiers) the algorithm outperformed all other methods (Liu, Wu, 

and Zhou, 2009).  

 

A significant limitation of the EasyEnsemble method is the lack of comprehensibility 

that comes from combining the output from multiple classifiers, as ensemble methods 

are somewhat black-box methods. Moreover, the authors remark that class-imbalance 

learning methods like the EasyEnsemble can sometimes lead to a decrease in 

performance when the class-imbalance is not "harmful". However, there is no way to 

determine when the degree of imbalance is "harmful". Therefore, we cannot know 

without testing whether the EasyEnsemble method will be helpful or not. The authors 
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describe that a potential indicator for a "harmful" imbalance is that when using 

AdaBoost and Bagging on DT will either decrease or have no effect on the 

performance. When the imbalance is not "harmful" AdaBoost and Bagging on DT will 

often significantly improve the performance of decision trees.  

 

2.8 Cost-Sensitive Learning  
 

Cost-sensitive learning can be used to avoid some of the potential problems that arise 

from using different sampling techniques, but it is limited by the fact that it requires 

the specific cost information to be known a priori. This information may sometimes be 

impossible to obtain. One potential solution to this is to take a cost-sensitive algorithm 

and to test it with different cost ratios in order to improve performance by finding the 

optimal trade-off between rare and regular classes. In comparison to using different 

sampling techniques, an advantage to this solution is that it allows all the data to be 

used. This means that there is no information loss and that the learning speed of 

algorithms is not reduced since no instances of duplicate data are re-inserted back into 

the training set (Drummond & Holte, 2000). When cost the information is known, the 

recommendation is to use cost-sensitive learning instead of sampling as these methods 

have been shown to outperform over-sampling and under-sampling (Japkowicz, 

Myeers, and Gluck, 1995). Conversely, it may be argued that sampling techniques 

have a higher universal value since their application is manifold and irrespective of 

costs. Sampling techniques do not require a context that includes considerations 

concerning profit-maximizing or loss-minimizing. Sampling methodologies can be 

used to reduce the class imbalance problems irrespective of the context or domain and 

do not require any extrinsic information to be known a priori. This greater flexibility is 

undoubtedly an advantage of sampling methodologies over cost-sensitive learning and 

should be an incentive to pursue advances in the field further.  

 

Cost-Sensitive learning relies on tuning learning algorithms internally to help 

counteract the effects of class imbalance by adjusting the weights to classes. There 

have been many variants of the Adaboost algorithm (Freund & Schapire, 1996) that 

have been proposed as cost-sensitive learning algorithms (Ting, 2000). A common 

strategy of these learning algorithms is to increase the weights of class instances with 

higher misclassification costs during the Boosting process. The SMOTEBoost 
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algorithm (Chawla et al., 2003) is an algorithm that uses boosting and SMOTE that is 

specifically designed for class-imbalance learning. It is similar to the AsymBoost 

algorithm, which is an algorithm that uses asymmetric boosting by minimizing the 

cost-sensitive loss function in the statistical interpretation of boosting.  

 

What distinguishes AsymBoost from SMOTEBoost is the way that the algorithm 

adjusts the distribution of classes. While the former updates different weights of 

instances of the majority and minority class during each boosting iteration, the latter 

will first equally update the weights of instances of the majority and minority class and 

then use SMOTE to produce new synthetic instances of the minority class. 

 

2.9 Open Issues and Existing Gaps in Class-Imbalance Research 

 

2.9.1 Small Disjuncts, Noise and Insufficient Data 

 

The problem of small disjuncts occurs when a dataset contains small clusters or groups 

of instances (independent of their class) that happen to be represented within small 

clusters in the feature space of data instances (Orriols-Puig et al., 2009; Weiss & 

Provost, 2003). When the degree of class-imbalance is high, this problem becomes 

more likely as the instances of the underrepresented class are usually located in small 

sub-sections of the datasets. Alternatively, when small disjuncts containing both the 

minority class and the majority class instances are found in the dataset, this increases 

the complexity of the problem and decreases the performance of the learning classifier. 

This problem is referred to as the "Subclus" problem and is, in part, created from the 

traditional procedural search for maximum generalization by standard learning 

classifiers (Napierala, Stefanowski, and Wilk, 2010). Moreover, sampling techniques 

like SMOTE that generate artificial samples can sometimes produce noisy examples, 

which hinders the ability of a classifier to identify the boundaries of a problem.  

 

2.9.2 Noise and Small Disjuncts 

 

Instances that overlap within disjuncts of the other classes are often interpreted as 

class-noise (i.e., noise specific to that particular class) by most learning classifiers 

because they are viewed as instances that are present within 'neighborhood' areas of the 
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opposite class (Kubat & Matwin, 1997; Jo & Japkowicz, 2004).  Moreover, in the 

research by Seiffert, Khoshgoftaar, Hulse & Folleco (2011) the authors show that 

standard classification algorithms are particularly sensitive to noise in imbalanced 

domains and as the degree of imbalance increases its effect on decreasing performance 

also increases. As a solution, the E-NN algorithm has been suggested as it has shown 

to be more robust in the presence of noise (Seiffert, Khoshgoftaar, Hulse, and Folleco, 

2011). Moreover, because standard classifier algorithms are particularly sensitive to 

noise, this means that there is a higher chance of overfitting on training data when 

noise is present. The impact that this has on the classification accuracy of the positive 

(minority) class is much stronger than its effect on the accuracy of the negative 

(majority) class.  

 

Therefore, in order to help prevent overfitting, additional techniques have been 

implemented to help alleviate the problem of noise and overfitting. For example, 

pruning of traditional C.45 Decision Trees has been shown to be somewhat effective at 

counteracting the effect of noise on classifier accuracy because of its ability to handle 

the existence of 'small disjuncts' in the dataset (Weiss, 2010). However, pruning comes 

at a cost since by increasing the generalization of the model, the likelihood of missing 

meaningful minority class examples increases. Given the already low number of 

minority class examples, a misclassification would mean a significant decline in 

performance. Therefore, other solutions to the problem have instead been advised. 

 

2.9.3 Small Disjuncts and Insufficient Data 

 

The problem of disjuncts is particularly detrimental for learning algorithms whose 

learning methodologies are based on a divide-and-conquer strategy (for example, with 

decision trees) (Weiss, 2004; Rokach, 2016). This occurs because as the problem is 

broken down into different sub-groups or components, each component is solved 

iteratively until all component-solutions are combined into one. This increase in the 

number of iterations can lead to data fragmentation (Friedman et al., 1996). Data 

fragmentation, in turn, leads to the degradation of classifier performance since it 

increases both the memory requirements and the computational processing time for the 

task. When there is insufficient data, these problems are further exacerbated. This is 

because as the number of data points decreases, the possibility of small disjuncts 
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increases as learning classifiers will struggle to generate good generalizations when 

there is insufficient data to represent the boundaries of the problem (Jo & Japkowicz, 

2004; Wasikowski & Chen, 2010).  

 

The SMOTE technique implicitly contains a mechanism to help counteract the small 

disjuncts problems since the default technique relies on using a K-NN algorithm to 

define boundaries for separating classes and inter-class examples (Fernández, Garcia, 

Herrera, and Chawla, 2015). However, the authors also explain that its ability to 

successfully counteract small disjuncts problems is highly dependant on the number of 

elements that are contained within the small disjuncts and the selected value of K value 

for the K-NN algorithm that is used during oversampling. Moreover, the authors also 

conclude that if the small disjunct contains examples from both the minority and the 

majority class (i.e., if there is overlapping), then the SMOTE technique is incapable of 

rectifying the problems that are caused by the within-class imbalance.  

  

GAP IN LITERATURE: There is no research on the specific threshold level or 

amount for the number of overlapping elements (that are contained within the small 

disjunct) for which K-NN begins to be inefficient for resolving the problem. 

 

As a solution, the authors suggest SMOTE extensions that use a cluster-based 

interpolation that focuses on local densities because of two reasons. Firstly, cluster-

based extensions allow the SMOTE algorithm to focus more on areas that lack 

representation and thus require additional data whereby synthetic instances are to be 

generated. Secondly, cluster-based extensions of SMOTE are better at reducing 

problems of overgeneralization for the minority class by synthesizing new instances 

more sparsely further away from the centroid of the minority class cluster (Fernández, 

Chawla, et al., 2018). An alternative solution to the problem is to account for the 

pairwise differences among data points (Pekalska & Duin, 2005). This is because, in 

the traditional feature space, different instances may have the same representation, 

whereas, in the dissimilarity space, only identical instances (that have the same class 

label) can have a dissimilarity distance equal to zero. Therefore, the possibility of class 

overlap is not possible in the dissimilarity space.  

 



 
 

  23 

GAP IN LITERATURE: Furthermore, overall research shows that the analysis of 

clusters is an independent area of research in the class imbalance community that is 

still very much undeveloped. The analysis of clusters is a topic that still requires much 

more empirical experimentation and support since it currently relies on making 

assumptions that overly simplify systems that have a poor grounding in respect to its 

real-world application. This shortcoming is especially problematic when the task 

involves complex real-world data with varying intrinsic characteristics (overlapping, 

small disjuncts, noise, and more). 

 

Furthermore, critical research by Kubat and Matwin (1997) has helped develop the 

distinction between noise, borderline, and safe examples. The latter refers to examples 

that are situated in the relatively homogenous areas of their own class label. Whereas 

the former is referred to as noise because it describes examples of a condition that 

occurs within safe areas of the opposite class. Meanwhile, borderline examples are 

examples that are situated in an area surrounding class boundaries, where examples of 

the minority and majority classes most overlap. The authors provide empirical 

evidence from a number of different experiments that show that borderline examples 

are particularly detrimental to the performance of a classifier. 

 

The Borderline-SMOTE algorithm was developed in order to help resolve some of the 

problems caused by borderline data. This algorithm was first introduced by Han, Wen-

Yuan, Bing-Huan (2005) as an extension of the SMOTE algorithm that focuses on 

generating synthetic data for minority class instances that are exclusively near the 

borderline. While Han, Wen-Yuan, Bing-Huan (2005) demonstrate that the borderline 

variant of SMOTE can increase the classification accuracy of the minority class, it is 

not clear how the overall performance of the models compare. 

 

2.9.4 Dataset Shift Problem 

 

The dataset shift problem refers to the problem that arises when the training and test 

data have different distributions. This problem is universal and is also present even in 

classification tasks that do not face class-imbalances since dataset shifts can happen 

with sample selection bias. Most real-world complex problems will inherently contain 

some minor degree of dataset shift.  Most general classifiers are capable of handling 



 
 

  24 

mild dataset shifts without incurring a loss of performance. In highly imbalanced 

distributions, the minority class is particularly sensitive to classification errors, due to 

the limited number of minority class examples in the data. In cases of extreme 

imbalance, a single misclassification will produce a significant decline in the 

performance of the classifier. 

 

GAP IN LITERATURE: In the context of class imbalance, most state-of-the-art 

research relies on using stratified cross-validation techniques since these techniques 

are useful for maintaining the distribution of classes in the test and train splits. This 

reliance is a natural source of dataset shift that is still unresolved. A more appropriate 

validation technique that avoids the dataset shift problem is yet to be developed.  

 

2.9.5 Studies on the Effectiveness of Methods and Performance Metrics for 

Evaluating Binary Classification Tasks 

 

When it comes to performance, the main questions on assessments that fall under the 

imbalanced class domain are:  

 

1. What are the data characteristics that degrade the performance of classifiers in 

imbalanced tasks? 

2. Is it possible to provide for approaches that, in general, are capable of 

providing the best improvements in performance? 

3. Is the performance of the learning algorithms affected by different degrees of 

imbalance?  

4. How do varying degrees of imbalance to the distribution of classes affect the 

performance of classifiers?  

 

One of the first studies to ever address some of these questions can be found in 

Japkowicz and Stephen (2002), wherein the authors compare five different sampling 

strategies. The strategies involved using random undersampling and oversampling, 

focused random undersampling and focues oversampling (where the focus of the 

sampling was on parts of the input space that were either far or close to the decision 

boundary) and lastly modifying the misclassification costs associated with the classes. 

Although the study is an essential contribution to the class-imbalance research, a 
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significant limitation is that the comparisons on performance have been assessed using 

the rate of error of the classifiers.  

 

This measure has been shown to be unsuitable for class-imbalance domains. The main 

conclusion from the research by Japkowicz and Stephen (2002) is that when using DT, 

the impact of 'harm' caused by the imbalance increases as the degree of data 

separability decreases. Secondly, the increase in the training set size reduces the 

impact of 'harm' caused by the imbalance. Thirdly, the degree of imbalance is only a 

problem when disjuncts are present in the data. Fourthly, undersampling has been 

found to generally underperform in comparison to oversampling. Lastly, Japkowicz 

and Stephen (2002) also conclude that the modification of costs that are associated 

with the misclassification of different classes is a strategy that tends to outperform 

random or focused oversampling.  

 

A different experimental approach was used in the research by (Batista et al. 2012; 

Prati et al. 2014) whereby the researchers used real datasets and for each dataset 

several training set distributions were generated using the same number of examples 

and varying degrees of imbalance. The effect of a change to the degrees of imbalance 

to the class distributions on a dataset was assessed by measuring the loss in 

performance (using the metric AUC) of an imbalanced distribution in comparison to 

perfectly balanced class distribution.  

 

     𝐿𝑜𝑠𝑠 = 𝐿 = 9:;
9

       (2) 

 

Where B represents the performance obtained on a perfectly balanced class 

distribution, and I represent the performance obtained on an imperfect (imbalanced) 

distribution.  

 

Random oversampling, SMOTE, borderline-SMOTE, and ADASYN were some of the 

strategies tested. One of the main contributions from this research is that for highly 

imbalanced distributions (10/90, 5/95, 1/99) there is a general failure to improve 

performance for all the strategies tested. Moreover, Metacost proved to be the least 

favorable strategy for improving performance. Lastly, two extensions of the SMOTE 
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algorithm (ADASYN and Borderline-SMOTE) did not prove to be significantly better 

than the standard algorithm itself.  

 

Another vital contribution to the effectiveness of class-imbalance methods can be 

found in the research by López et al., (2013). In this study, the authors compare three 

different types of learning classifiers SVM, DT, and K-NN on sixty-six different 

datasets using the AUC metric. The study focused on using SMOTE and extensions of 

the SMOTE algorithm that fall into different categories. The first category involves 

extensions of the algorithm that include a pre-processing strategy (e.g., SMOTE+ENN, 

Borderline-SMOTE, safe-level-SMOTE, ADASYN…). The second category involves 

algorithm-level strategies that are either based on cost-sensitive learning or are 

ensemble-based strategies (e.g., the EasyEnsemble, RUSBoost, and SmoteBagging).  

 

From the strategies that include a pre-processing method, SMOTE and SMOTE+ENN 

obtained the best results. Borderline-SMOTE and ADASYN also showed excellent 

performance on average. From the ensemble strategies, SmoteBagging showed the best 

results, followed by RUSBoost and EasyEnsemble. However, one notable limitation of 

these studies is that it assumes that a perfectly balanced distribution (between majority 

and minority class) is more favorable for performance. However, this has been shown 

not to be the case (Weiss and Provost 200); Khoshgoftaar et al., 2007). Albeit a lot 

more minor, another limitation of these studies is that they rely on using only one 

metric (AUC) to measure loss in performance. 

 

In fact, there seems to be a lack of agreement on what is the best way to measure fraud 

detection performance. Many of the measures rely on costs to formulate measures of 

performance that are either transaction-dependent (Elkan, 2001; Bahsen et al., 2013; 

Bahsen et al., 2015) or class-dependent (Bolton & Hand, 2002; Hand et al., 2008). 

Alternatively, some literature avoids using cost-based measures by making an implicit 

assumption that predictive accuracy is more important for measuring performance 

(Bhattacharya et al., 2011; Dal Pozzolo et al., 2014). Moreover, it is often the case that 

cost matrices may not be producible either due to lack of information or 

confidentiality. For this reason, it would be important to formulate a measure of 

performance that is more objective. 
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The metric for determining the degree of class imbalance is given by the imbalance 

ratio, whereby: 

The Imbalance Ratio (IR):    𝐼𝑅 = =>
=?

      (3) 

Where N+ denotes to the number of positive class cases in the dataset and N- denotes 

the number of negative class cases in the dataset. 

 

GAP IN LITERATURE: However, an existing gap in the literature is that there is no 

metric for determining when the IR ratio represents a severity that is deemed 'harmful.' 

The IR may signal that class distributions are imbalanced, but this imbalance may not 

be what is referred to as 'harmful' (Liu, Wu, and Zhou, 2009).  

 

So, there is no metric for gauging whether an imbalance is 'harmful' a priori. However, 

there are ways to determine whether an imbalance in ‘harmful’ after the fact. For 

example, it can be checked using class-imbalance learning methods (such as the 

EasyEnsemble). If the class-imbalance learning method has no effect (or has a decline) 

on the performance of the strategy, then the imbalance is not considered to be harmful. 

Unfortunately, there is no way to know this without testing, which ultimately comes at 

the cost of computational resources and time. As described in (Liu, Wu, and Zhou, 

2009), some classification tasks suffer from a class-imbalance problem, but the 

severity of the imbalance is not significant enough to warrant the use of class-

imbalance methods that are specifically designed to deal with the imbalance problem. 

For tasks that do not suffer from the class-imbalance problem, boosting and bagging 

techniques on DT can often significantly improve performance; but for tasks that do in 

fact suffer from class-imbalance, then AdaBoost and Bagging will have either no effect 

or deteriorate the performance of DT (Liu, Wu, and Zhou, 2009).  This is one existing 

way the authors test for the presence of a ‘harmful’ imbalance. The empirical results of 

the research by Liu, Wu, and Zhou (2009) suggest that for tasks in which ordinary 

learning methods are able to achieve a high AUC score (for example, above 0.95), then 

the class-imbalance learning methods are not helpful. However, when class-imbalance 

learning methods improve performance, then BalanceCascade and, in particular, 

EasyEnsemble are both able to achieve a higher AUC, F-measure, and G-mean than 

almost all other class-imbalance learning methods.  
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The appropriateness (or lack of) to performance metrics for assessing imbalanced 

classification problems is a widely studied area of the Class Imbalance Problem. 

Nevertheless, there are many issues in this aspect that remain inconclusive. For 

example, the appropriateness of statistical tests or error estimation procedures is an 

essential area for the problem that is still largely unresolved due to a lack of research. 

These are significant issues that still require much more research and present an 

essential challenge to the Class Imbalance Problem (Japkowicz, 2013).  

 

It is a well-known fact that traditional performance metrics in imbalanced domains can 

lead to sub-optimal classification models (He and Garcia 2009; Weiss, 2004; Kubat 

and Matwin 1997). Traditional performance metrics produce misleading results due to 

the fact that these measures are insensitive to skewness and imbalanced distributions 

(Ranawana and Palade 2006; Daskalaki et al. 2006). Therefore, the use of appropriate 

evaluation metrics is a critical aspect of classification tasks in imbalanced domains. An 

appropriate measure or metric should be used to both assess the performance of 

classifiers as well as help guide their learning processes during the learning phase. 

 

For binary classification tasks with a negative and positive class, the results obtained 

by a classifier can be explained by a confusion matrix (see Table 1 below). For both 

the negative and the positive class, the confusion matrix provides: 

 

1. True Positives (TP): The value for the number of positive class instances that were 

correctly classified; 

 

2. True Negative (TN): The value for the number of negative class instances that were 

correctly classified; 

 

3. False Positive (FP): The value for the number of positive class instances that were 

incorrectly classified; 

 

4. False Negative (FN): The value for the number of negative class instances that 

were incorrectly classified. 
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TABLE 1: CONFUSION MATRIX FOR A BINARY CLASS PROBLEM 

 

Accuracy (see Equation 4 below in page 30) and its complement to the error rate are 

the most frequently used metrics for assessing the performance of classifiers in 

classification domains that do not suffer from the class imbalance problem.  

 

   𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = (FGHF=)
(FGHJ=HF=HJG)

        (4) 

 

However, accuracy suffers from a preferential bias towards the majority class and is 

unsuitable for assessing imbalanced problems. For example, if only 1% of the total 

instances in the dataset belong to the minority class, high accuracy of 99% can be 

achieved by simply predicting all the majority class instances and none of the minority 

class instances. Consequently, when the objective is to predict rare class instances, this 

measure is not very useful.   

 

We can derive other metrics from the confusion matrix that are more suitable for 

imbalanced problems. For example: 

 

5. Recall or Sensitivity-True Positive Rate (TPR): 𝑇𝑃MNO) =
FG

FGHJ=
  

Table 1: Confusion Matrix for a binary class problem 

Actual  Prediction Prediction Total 

N=sample Size Predicted Positive 

(𝑌 = +) 
Predicted Negative  

(𝑌 = −) 
 

Actual Positive 

(𝑌 = +) 
𝑇𝑃 = ∑

"RS

=
𝐼(𝑦" = +)𝐼(𝑦

= +) 

𝐹𝑁

= 𝑁VWX"O"Y) − 𝑇𝑃 
𝑁𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 = ∑

𝑖=1

𝑁
𝐼(𝑦𝑖

= +) 

Actual Negative  

(𝑌 = −) 
𝐹𝑃

= 𝑁()_NO"Y) − 𝑇𝑁 
𝑇𝑁 = ∑

"RS

=
𝐼(𝑦" = −)𝐼(𝑦

= −) 
𝑁𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 = ∑

𝑖=1

𝑁
𝐼(𝑦𝑖

= −) 

Total 
∑
𝑖=1

𝑁
𝐼(𝑦𝑖 = +) ∑

𝑖=1

𝑁
𝐼(𝑦 = −) 

 

𝑁 
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6. Specificity-True Negative Rate (TNR): 𝑇𝑁MNO) =
F=

F=HJG
 

 

7. False Positive Rate (FPR): 𝐹𝑃MNO) =
JG

F=HJG
 

 

8. False Negative Rate (FPR): 𝐹𝑁MNO) =
J=

FGHJ=
 

 

9. Precision-Positive Predictive Value (PPV): 𝑃𝑃YNbc) =
FG

FGHJG
 

 

10.  Negative Predictive Value (NPV): 𝑁𝑃YNbc) =
F=

F=HJ=
 

 

Instead, for evaluating classifiers in imbalanced domains, other classification metrics 

have been introduced, such as F measure (Rijsbergen, 1979), the geometric mean 

(Kubat et al., 1998), and the Receiver Operating Characteristic (ROC) curve (Egan, 

1975).  F1-Score:  This metric is defined as the harmonic mean of precision and recall. 

 

        𝐹S = 2 ∙ GM)e"X"W(∙f)eNbb
GM)e"X"W(Hf)eNbb

              (5) 

 

 Where Precision and Recall are defined as follows:  

 

      𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = FG
FGHJG

               and    𝑅𝑒𝑐𝑎𝑙𝑙 = FG
FGHJ=

   (6) 

 

The geometric mean (G-mean): This metric was developed specifically for imbalanced 

domains. It calculates the accuracies of both classes by seeking to maximize their 

respective accuracies while maintaining a good balance between the two classes. 

However, equal weight importance is attributed to both classes under this formulation. 

There is another formulation of the G-mean that attributes higher importance to the 

positive class. In this alternative formulation, specificity is replaced by precision. 

 

𝐺i)N( = j FG
(FGHJ=)

∙ F=
(F=HJG)

= k𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 ∙ 𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦          (7) 
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The area under the operating receiver curve (AUROC) or the AUC in short is a metric 

that has become quite predominant for class Imbalance problems (Fawcett, 2003). For 

example, Dal Pozzolo, suggests an AUC estimate based on the Mann-Whitney 

(Wilcoxon) statistics (Dal Pozzolo, 2014).  

                           

    𝐴𝑈𝐶 = SHFGopqr:JGopqr
s

      (8) 

 

The AUC-score characterizes the area under the curve of sensitivities of the classifier 

that is plotted against the corresponding false-positive rate at various different 

probability thresholds.   
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2.9.6 Additional Gaps 

 

Listed in Table 2 below are some additional gaps that have been identified in the 

literature reviewed in this project of particularly important (i.e., highly cited) research. 

 

Table 2: Additional Gaps Identified 

Study Author(s) and Date Relevant Findings Gaps in the 
literature  

Learning When 
Training Data are 
Costly: The Effect of 
Class Distribution on 
TreeInduction. Jour
nal of Artificial 
Intelligence 
Research,19:315-354. 

Provost, F., & Weiss, 
G.M. (2003). 

Valuable analysis on the 
relationship between 
training data class 
distribution and classifier 
performance (accuracy 
and AUC). 
 
If accuracy is performance 
metric: then best class 
distribution tends to 
approximate the naturally 
occurring class 
distribution 
 
If AUC is performance 
metric: then the best class 
distribution tends to be 
near the balanced class 
distribution. 

1) Only use C4.5 
as base 
learners; 

 
2) Possible error 

arising from 
the problem of 
multiple 
comparisons 
(Jensen & 
Cohen, 2000) 
since the best 
distribution is 
evaluated 
between 13 
different 
distributions. 

 
3) There is an 

issue of 
statistical 
significance 
arising from (2) 
because 
classifiers are 
generated for 
13 training 
distributions.  

 
4) "…in 50 out of 

52 cases the 
optimal range 
are contiguous, 
assuaging 
concerns that 
our conclusion 
are due to 
problems of 
multiple 
comparisons"   
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Survey of fraud 
detection 
techniques. IEEE 
International 
Conference on 
Networking, Sensing 
and Control (2):749-
754 

Yufeng Kou, Chang-
Tien Lu, 
S.Sirwongwattana and 
Yo-Ping Huang.(2004). 

The paper presents a 
survey of current 
techniques used in credit 
card fraud detection.  
 

1) It could be 
beneficial to 
incorporate 
spatial 
information into 
detection 
systems (so that 
local of 
transaction to 
billing addresses 
may be 
considered) 

 
2) For meta-

learning 
classifiers (i.e., 
ensemble 
learning) It 
would be 
meaningful to 
define effective 
selection metrics 
for deciding the 
best base 
classifiers. 

 
3) For simplicity 

reasons, all the 
base learners for 
credit card fraud 
detection use the 
same desired 
distribution. It 
would be 
interesting to 
implement and 
evaluate the 
credit card fraud 
detection system 
by using very 
large databases 
with skewed 
class 
distributions and 
non-uniform cost 
per errors."   

 
4) Due to security 

concerns, very 
few approaches 
for credit card 
fraud detection 
are publicly 
available. Neural 
network is a 
popular 
approach, but it 
is difficult to 
implement due 
to lack of data 
availability. 
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Table 2: Additional Gaps Identified 

Study Author(s) and Date Relevant Findings Gaps in the 
literature  

A Multiple 
Resampling Method 
for Learning from 
Imbalanced Data 
Sets. Computational 
Intelligence, 20: 18-
36 

Estabrooks, A., Jo, T. 
and Japkowicz, N. 
(2004) 

In comparison to 
Adaboost and standard 
C4.5 a combination of 
different re-sampling 
based (C4.5) learners is 
more effective for 
imbalanced text 
classification  

1) Only C4.5 
learners are 
tested 

 
2) There is no 

way to know 
which classifier 
is most 
valuable to the 
final classifier 
group. 

 
3) The context is 

of naive over 
and under 
sampling 
scheme: it 
requires more 
testing on 
different and 
more complex 
domains 

A Study of the 
Behavior of Several 
Methods for 
Balancing machine 
Learning Training 
Data. SIGKDD 
Explorations, (6): 20-
29. 

Batista, Gustavo & 
Prati, Ronaldo & 
Monard, Maria-
Carolina. (2004) 

An analysis of the 
behaviour of several over 
and under-sampling 
methods for the class 
imbalance problem, show 
that: 
 
1) SMOTE + Tomek and 

SMOTE + ENN 
showed good results, 
especially when the 
dataset had very few 
positive (minority) 
examples. 

 
2) For dataset with larger 

amounts of positive 
(minority) examples, 
random over-sampling 
method (which is 
computationally less 
demanding) produced 
meaningful results 

1) Only C4.5 base 
learners are 
tested using the 
AUC measure; 
no ROC curve 
analysis is 
made 

 
2) The datasets 

that were tested 
are fairly small: 
The 2 largest 
evaluated 
datasets 
contained only 
20000 
examples; the 2 
smallest 
contained 90 
and 194 
examples. 

 
3) Allocating half 

the training 
examples to the 
minority class 
does not 
provide better 
results 
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Table 2: Additional Gaps Identified 

Study Author(s) and Date Relevant Findings Gaps in the 
literature  

Automatically 
countering 
imbalance and its 
empirical 
relationship to cost. 
Data Mining and 
Knowledge Discovery, 
17(2): 225–252 

Chawla, N.V., Cieslak, 
D.A., Hall, L.O. et al. 
(2008) 

Wrapper-based paradigm 
approach for finding the 
optimal percentages for 
undersampling and 
SMOTE results in 
effective generalisation 
performance 
(outperforming many 
cost-sensitive learners in 
realistic cost scenarios). 

1) Only C4.5 base 
learners and 
Ripper (rule-
based learner) 
are tested  

 
2) Wrapper 

method based 
on greedy 
search 
algorithm that 
may not be 
optimal for 
large 
(enterprise) 
level data or for 
dynamic 
learning. 
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Table 2: Additional Gaps Identified 

Study Author(s) and Date Relevant Findings Gaps in the 
literature  

A Review on 
Ensembles for the 
Class Imbalance 
Problem: Bagging-, 
Boosting-, and 
Hybrid-Based 
Approaches. IEEE 
Transactions on 
Systems Man and 
Cybernetics Part C 
(Applications and 
Reviews), 42(4): 463 - 
484 

Galar, Mikel & 
Fernández, Alberto & 
Barrenechea, Edurne & 
Sola, Humberto & 
Herrera, Francisco. 
(2012). 

Provides a good holistic 
view and analysis of 
algorithms for solving 
class imbalance. Results 
show that: 
 
1) SMOTEBagging, 

RUSBoost, and 
UnderBagging show 
most robust 
behaviour. The 
algorithm 
SMOTEBagging 
ranks best between the 
three. But RUSBoost 
excels if 
computational 
complexity (and 
comprehensibility) is 
considered. 

 
2) The trade-off between 

performance and 
complexity of 
ensemble learning 
algorithms is positive 
as results significantly 
improve with higher 
complexity. 

 
3) Empirical evidence of 

the positive synergy 
between sampling 
techniques and 
Bagging ensemble 
learning algorithms.  

1) Only uses AUC 
as performance 
measure for 
evaluating 
different 
models. 

 
2) No detailed 

ROC curve 
analysis is 
made  

 
3) The highest 

imbalance ratio 
(IR) is IR= 
128.87 (For 
which the best 
bagging 
algorithm was 
UB4 that keeps 
all minority 
cast instances) 
the rest are all 
under 40. 
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Table 2: Additional Gaps Identified 

Study Author(s) and Date Relevant Findings Gaps in the 
literature  

Learning from 
Imbalanced 
Data. IEEE 
Transactions 
on Knowledge and 
Data Engineering, 
vol. 21, no.9, pp. 
1263-1284, Sept. 
2009.doi:10.1109/TK
DE.2008.239 

H. He and E. A. Garcia 
(2009) 

Created a review of 
imbalanced data research 
and formulated an 
assessment of possible 
opportunities and 
challenges. 

The authors of this 
paper identify some 
of the fundamental 
problems that 
require further 
investigation 
and that must be 
addressed: 
 
1. “What kind of 
assumptions will 
make imbalanced 
learning 
algorithms work 
better compared to 
learning from the 
original 
distributions?” 
 
2. “To what degree 
should one balance 
the original data 
set? “ 
 
3. “How do 
imbalanced 
data distributions 
affect the 
computational 
complexity of 
learning 
algorithms?” 
4. “What is the 
general 
error bound given 
an imbalanced data 
distribution?” 
 
5. “Is there a 
general theoretical 
methodology that 
can alleviate the 
impediment of 
learning from 
imbalanced data 
sets for specific 
algorithms and 
application 
domains?”  

TABLE 2: ADDITIONAL GAPS  IDENTIFIED IN IMPORTANT LITERATURE 
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3. DESIGN & METHODOLOGY 
 

3.1 Introduction 
 

This chapter will explain the design choices for this experiment.  For this project, 

different learning algorithms will be used to learn from the same dataset using different 

sampling methodologies.  This project follows a design and experimental methodology 

that follows the methodology outlined by CRISP-DM (Cross Industry Standard 

Process for Data Mining) (Shearar, 2000) for data mining related tasks.  

 

This chapter starts by describing the experimental framework and providing a high-

level view of the design. The hypotheses that will be tested are then described in 

greater detail in the next section. Further, the software, libraries and tools that were 

used in the experiment are defined. The chapter will then describe the dataset used in 

the experiments and any preparations that were subsequently done. The chapter will 

then explain the metrics that were chosen to be used for evaluating performance, 

followed by a brief description of the classifiers and the oversampling techniques 

tested in the experiments.  

 

Lastly, the final sections in this chapter outline the settings and parameters of the 

techniques that were used followed by a brief description of the pipeline method that 

was created for the experimental testing of the strategies. 
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3.2 Experimental Framework 

FIGURE 1: HIGH LEVEL DESCRIPTION OF EXPERIMENTS 

 

 

A high-level description of the experimental framework is shown in Figure 1 above. 

The objective of the framework is to produce the results for each oversampling method 

in combination with each classifier for all three different sets of the data. The 

combination of the sampling method plus the classifier is referred to as a strategy. The 

results of each strategy are calculated for each of the three metrics F-1, ROC, and G-

mean. The results of each strategy are obtained by using a tenfold stratified cross-

validation, resulting in 147 strategy scores for each of the three sets (total of 441).  

 

During cross-validation the Set is split into ten partitions, nine of which are used to 

train the model while the last remaining (hold-out) partition is used to test the model. 

A ranking score is applied to each metric to compare the performance of the 

oversampling methods and the classifiers. The ranking score for the best performing 

method is the max rank obtained (1 is the highest number obtained). 
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3.3 Hypotheses 

 

3.3.1 Baseline Hypothesis 

 

Null: A classification model that is trained using a learning algorithm that employs 

SMOTE or SMOTE-based over-sampling techniques will have a statistically 

significantly higher F-measure score, Receiver operating characteristics (ROC) score 

and G-mean score in comparison to the same learning classifier that uses random-over-

sampling or no sampling technique, ceteris paribus.  

 

Alternate: A classification model that is trained using a learning algorithm that 

employs SMOTE or SMOTE-based over-sampling techniques will not have a 

statistically significantly higher F-measure score, Receiver operating characteristics 

(ROC) score and G-mean score in comparison to the same learning classifier that uses 

random-over-sampling or no sampling technique, ceteris paribus. 

 

Method of Evaluation: This hypothesis will be tested and evaluated by the 

Experimental Results Part I. It will be evaluated by calculating the difference in 

performance between strategies that use no sampling and random oversampling in 

comparison to strategies that use another sampling technique. 

. 

3.3.2 Secondary Hypothesis 

 

Null:  A strategy that uses a combination of SMOTE (for over sampling) and some 

additional extension for undersampling or data cleaning will not achieve a higher F-1 

score in comparison to a strategy that uses only one type of sampling (either SMOTE 

or Random oversampling). 

 

Alternate: A strategy that uses a combination of SMOTE (for over sampling) and some 

additional extension for undersampling or data cleaning will achieve a higher F-1 score 

in comparison to a strategy that uses only one type of sampling (either SMOTE or 

Random oversampling).  
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Method of Evaluation: This hypothesis will be tested and evaluated by the results 

described in Part II of Experimental Results of Chapter 4. It will be evaluated by 

calculating an aggregated rank (that combines the rank of a strategy based on its rank 

form all three performance metrics) to place the strategies. The mean performance of 

the strategies will also be evaluated.  

 

3.4 Software 
 

The experiments were carried out using Python scripts. The project is heavily reliant 

on the following libraries: Pandas, NumPy, Scikit-Learn (Pedregosa et al., 2012) and 

Imbalanced-learn (Lemaitre et al., 2016). 

 

While Scitkit-Learn library is a library that is well-known for machine learning and 

data analytics, the latter is machine learning library that is specifically designed for 

dealing with imbalanced datasets. NumPy and Pandas are all also very popular 

libraries that are commonly used for machine learning and data analysis.  The version 

of Scikit-Learn that is used is version 0.22.1 and the version of Imbalanced-Learn that 

is used is version 0.4.3. 

 

For data visualisations, this project relied on using Ggplot2, Seaborn and Matplotlib. 

For statistical testing and analysis this experiment used SPSS Statistics software.  

 

3.5 Metrics for Performance   
 

Three different metrics will be used to compare the various different strategies. These 

metrics are the following: 

 

 

      𝐹S = 2 ∙ GM)e"X"W(∙f)eNbb
GM)e"X"W(Hf)eNbb

                       (9)

  

 

     𝐴𝑈𝐶 = SHFGopqr:JGopqr
s

                      (10) 
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         𝐺 −𝑀𝑒𝑎𝑛 = j FG
(FGHJ=)

∙ F=
(F=HJG)

                     (11) 

 

These metrics have been chosen because they have been widely accepted and deemed 

as the more appropriate metrics for measuring performance under imbalanced 

conditions.  

 

Moreover, a rank was produced for each metric. Therefore, three different ranks (based 

on each metric) were calculated for every strategy. Each of these ranks placed 

strategies relative to the maximum score obtained for that metric. Using all three 

metric ranks, an aggregated rank was calculated. The aggregated rank of each strategy 

was calculated by adding the individual rank per strategy for each metric. 

 

    𝐴𝑅 = 𝐹MN(u + 𝐴𝑈𝐶MN(u + 𝐺MN(u                     (12) 

 

In order to provide a better understanding of the differences in performance between 

the strategies, the aggregated rank was used instead of a mean aggregated rank (by 

diving the AR by the number of metrics, that is, three). This was done because it is 

easier to visualize discrepancies that are somewhat minor or negligible and hence 

difficult to divulge when using a mean aggregated rank. 

   

3.6 Dataset 

 

The credit card fraud dataset contains a set of transactions occurring from 01/02/2012 

to 20/05/2013. There are 284,807 total transactions out which 492 are positive (i.e., 

fraudulent) and 284315 are negative (i.e., non-fraudulent). The dataset is considered to 

be extremely unbalanced since the percentage of fraudulent transactions is less than 

one percent (0.172%) while non-fraudulent transactions represent an overwhelming 

majority of approximately 99.83%. The dataset includes 30 features out of which 28 

have been transformed (and anonymised) through PCA. In order to implement PCA, it 

is necessary to scale features before. Therefore, it is reasonable to assume that all the 

features were previously scaled by the original authors of the dataset.  
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3.7 Data Preparation 

 

All instances of the dataset have been used since there were no missing values for any 

of the class instances. The only features that had not been transformed are the features 

'Time' and 'Amount'. Consequently, the features 'Time' and 'Amount' were also scaled 

in order to maintain a uniform scale. The features were scaled using robust scaling 

from the Scikit-Learn library. In order to maintain the heterogenous nature of the data, 

no outliers were removed, and all the data points were preserved.  

In order to learn more about the relationship between the oversampling strategies and 

performance, the 49 different strategies were also tested in with two different sets (of 

the same dataset) with different skewness of class distributions. This was done to 

simulate the effect of including undersampling with the oversampling strategies that 

will be tested in this experiment.  The first set will not use any undersampling of the 

majority class, the second set will apply undersampling by a factor two-thirds of the 

majority class, and lastly, the third set will undersample by a factor of one-thirds of the 

majority class. 

 

Set 1: Set 1 contains all the data from the original dataset. The initial distribution and 

ratio between fraud to non-fraud is maintained so that there is a total of 492 positive 

(fraud) cases and 284315 negative (non-fraud) cases. The original ratio is not modified 

(0.17: 99.83) so that this case constitutes an example of unchanged distribution. 

 

Set 2: Set 2 comprises of a generated split of 492 positive (fraud) cases to two-thirds 

of the negative (non-fraud) cases. This Set uses all 492 instances of all fraud cases and 

189543 of non-fraud instances that are chosen at random. This set has chosen to under-

sample the majority class by two-thirds to evaluate the effect of combining 

oversampling with undersampling (a factor of two-thirds) to alleviate class imbalance. 

 

Set 3:  Set 3 also comprises of a generated split of 492 to one-third of the negative 

(non-fraud) cases. This Set uses all 492 instances of all fraud cases and 94772 of non-

fraud instances that are chosen at random. This set under-samples the majority class by 

one-third to evaluate the effect of combining oversampling with undersampling (by a 

factor of one-third) to alleviate the class imbalance. 
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3.8 Classifiers and Learning Algorithms 

 

The classifiers that are tested in the experiments are the following: 

 

1) EasyEnsemble Classifier: This popular ensemble technique was first proposed 

by Liu, Wu, and Zhou (2008). It is an ensemble technique that relies on under-

sampling a subset of the majority class to create a more balanced dataset. The 

classifier is then trained on the under-sampled test set repeatedly until test 

predictions are aggregated. This learning classifier was obtained from the library 

Imbalanced Learn. This classifier is specifically designed to deal with imbalanced 

data.  

 

2) Random Forest Classifier: This ensemble technique was first introduced in 

"Random Forests" by Breiman (2001).  It combines a number of unpruned 

classification or regression trees into an ensemble, hence its name. Training data 

is bootstrapped, and random feature selection is used during the tree induction 

process. This ensemble method was obtained from the library Scikit-Learn. 

Contrary to the original publication, instead of letting each classifier tree vote for 

a single class, this version of the Random Forest combined classifiers by 

averaging its probabilistic predictions.  

 

3) Logistic Regression: This is model that was originally designed as a general 

statistical model (used for regression rather than classification) that was originally 

developed and popularised by Joseph Berkson (1944) whereby "logit" term for the 

respective function was coined. This model was obtained from the Scikit-Learn 

library. In this version of the model, the probabilities of an outcome for a signed 

trail are modelled using a logistic function. Moreover, regularisation is applied to 

data by default.   

 

4) Balanced Random Forest Classifier: This ensemble technique was proposed by 

Chen, Chao, Liaw and Breiman in "Using random forest to learn imbalanced data" 

(2004). This technique is similar to the Random Forest technique, but each tree 

instead is provided a balanced (the majority class is under-sampled) bootstrap 

sample of the data.  Originally, the Random Forest model was built to help 
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minimise the overall error rate of the traditional single decision tree (such as 

CART or C4.5). For that reason, it tends to suffer in imbalanced domains, since it 

will often focus favour maximizing the prediction accuracy of the majority class 

at the expense of accurately predicting minority class. Consequently, to help 

alleviate this problem the Balanced Random Forest (BRF) was introduced. This 

model was obtained from the library Imbalanced-Learn.  

 

5) BalancedBagging Classifier: This is an ensemble classifier that relies on using 

bagging methods to build several estimators on differently randomly selected 

subsets of the data. This is a bagging classifier with additional balancing that was 

introduced to counteract the original Bagging Classifier method’s favouritism 

towards the majority class. This classifier was obtained from the Imbalaned-Learn 

library. This technique is similar to the BaggingClassifier technique from the 

Scikit-Learn implementation but instead included an additional step that helps 

balance the training data by randomly under-sampling the majority class during 

training.  This technique is specifically designed for dealing with imbalanced 

datasets.  

 

6) RUSBoost Classifier: This algorithm was introduced by Seiffert, Khoshgoftaar, 

Hulse and Napolitano in "RUSBoost: A Hybrid Approach to Alleviating Class 

Imbalance" (2010). The algorithm is meant to provide a simpler and faster 

alternative to the SMOTEBoost algorithm (that is based on the AdaBoost 

algorithm) by combining boosting and under-sampling (in contrast to the use of 

SMOTE sampling by the SMOTEBoost algorithm) to deal with imbalanced 

datasets. This classifier was obtained from the Imbalanced-Learn library. 

 

7) Decision Tree Classifier: The version of tree used in this experiment is CART 

(Classification and Regression Trees). It is very similar to the C4.5 tree but it 

different in that it does not compute rule sets. CART constructs binary trees that 

use data features and thresholds that maximise the information gain at each node. 

Decision Trees are built using a heuristic method referred to as recursive 

partitioning, hence the algorithm relies on a divide-and-conquer approach since it 

splits data into subsets which are then repeatedly splits the data into smaller 
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subsets continuously until the algorithm decides that each subset is sufficiently 

homogenous or until it reaches a certain stopping criterion.   

 

3.9 Oversampling Techniques and Algorithms 

 
The oversampling techniques that are tested in this experiment are the following: 

 

1) Random Oversampling: This sampling technique is referred to as the 'naive' 

form of over-sampling, since it generates new data samples from the minority 

class by randomly selecting instances of the minority class with replacement and 

adding them to a new training set. Two things are worth noting. Firstly, instances 

are randomly chosen from the original training set and not the newly generated 

training set. If the latter were true, this would mean that instances of the minority 

class would be randomly selected from the (new) generated training set, thus this 

would bias the randomness of the selection procedure. Secondly, the random 

oversampling is always done with replacement (meaning that we replace the data 

that we select back into the original training set) and that the probability of being 

selected is always independent previous selections. If we were to select without 

replacement, then this would mean that we could run out of members of the 

minority class before reaching the desired level of re-balancing to the distribution 

of each class.  This technique was obtained from the Imbalanced-learn library.  

 

2) SMOTE:  This technique is the one used by as it was originally introduced in the 

work “SMOTE: synthetic minority over-sampling technique,” by Chawla, 

Bowyer, Hall and Kegelmeyer (2002). The technique that is used in the 

experiment was obtained from the Imbalanced-learn library. 

 

3) Borderline SMOTE: This extension to the original SMOTE technique was 

introduced in the work “Borderline-SMOTE: a new over-sampling method in 

imbalanced data sets learning,” by Han, Wen-Yuan, Bing-Huan (2005).  The 

difference between SMOTE and this extension is that only borderline samples are 

used to generate new synthetic instances to the minority class. The technique that 

is used in the experiment was obtained from the Imbalanced-learn library. 
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4) SVM-SMOTE: This extension to the original SMOTE technique was introduced 

in the work “Borderline over-sampling for imbalanced data classification,” by 

Nguyen, Cooper and Kamei (2009). This technique uses an SVM algorithm to 

detect samples of the minority class that by generating new synthetic data around 

the borderline between the two data classes (Nguyen et. al, 2009).  The technique 

that is used in the experiment was obtained from the Imbalanced-learn library. 

 

5) SMOTE-ENN: This algorithm is an extension to the original SMOTE that was 

introduced in“ A study of the behavior of several methods for balancing machine 

learning training data,” by Batista, Pratti and Monard (2004). It is a variant of 

SMOTE that uses edited nearest-neighbours as a data cleaning method that is used 

after applying the SMOTE over-sampling to provide a cleaner data space. In this 

sense, it is also a combination of over and under-sampling for it removes any 

instances of data deemed to be redundant according to the edited nearest-

neighbours algorithm. The technique that is used in the experiment was obtained 

from the Imbalanced-learn library. 

 

6) SMOTE-Tomek: This algorithm is an extension to the original SMOTE That was 

introduced in "Balancing Training Data for Automated Annotation of Keywords: 

a Case Study," by Batista, Bazzan and Monard (2003). Similarly to the SMOTE-

ENN technique, this technique is also a variant of SMOTE that utilises an 

additional technique for data cleaning, in this case that technique is Tomek’s Link. 

SMOTE is applied first to the dataset, creating new synthetic observations. 

Subsequently, Tomek’s link undersampling is applied to the new dataset (that 

contains the synthetic observations) to remove any pairs of examples that form a 

Tomek’s link. Tomek’s link is a link between two data points that are defined by a 

combination of two things: Firstly, they must be nearest neighbours; secondly, 

they must have different class labels (Tomek, 1976). Examples that are Tomek’s 

link are more likely to be either noise or points that are close to the optimal 

decision boundary (Kubat & Matwin, 1997). 

 

7) No sampling: As a control group, there will be a sampling strategy that involves 

using no additional sampling technique in conjunction with a classifier. 
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3.10 Settings and Parameters 
 

Only two parameters have been modified to differ from the default parameters of used 

by the Python libraries. The first parameter that has been modified from the default 

base estimator (AdaBoost) is that of the base estimator for the EasyEnsemble 

Classifier. The base estimator was set to use a Random Forest Classifier as suggested 

by Dal Pazzolo (2015). The second parameter that has been modified from default is 

for the sampling technique SVM-SMOTE. For this sampling technique, the support 

vector machine estimator was set use a sigmoid kernel. The default base estimator is 

Gaussian (RBF).  However, due to the large size of the dataset, this change was done 

to help accelerate the long processing time that this sampling technique.  

  

This experiment uses the default settings of all classifiers and sampling techniques in 

order to allow for greater reproducibility. For reproducibility, the experiment can be 

re-created by using a pipeline method7 and setting the random state variable 

(random_state) to 42.  

 

3.11 Pipeline 

 
This experiment follows a pipeline that was constructed specifically for implementing 

this experiment. The pipeline was built by first taking the dataset and applying a ten-

fold stratified cross-validation split on the data. It is important to note that sampling 

methods are applied during the stratified ten-fold validation process (i.e., during the 

stratified split loop). This way we avoid the possibility of leaking data into our testing 

set and hence overfitting the models. 

 

The pipeline uses a value of 'K' cross-folds equal to ten. This means that the data is 

split into ten even batches whereby nine out of the ten batches are used for the training 

set and only one batch is used for testing and validating the model performance (i.e., 

verifying the model’s predictions to determine its overall performance). 

 

 
7  Pipeline is available online (https://github.com/puzzle91/Model-Pipeline-Machine-Learning)  
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It is critical that the validation/test set not be influenced or manipulated to preserve 

authenticity of the original data (so as to ensure our measures of prediction are 

validated). Therefore, when creating random or synthetic data-points to over-sample 

the minority class, these data-points must be created "during" the cross-validation 

process and not before. To understand why, suppose that the SMOTE algorithm takes 

the minority class ("Fraud") and creates synthetic data instances of the class before the 

cross-validation phase takes place. In this case, then the validation/test set will be 

biased since we would have included new synthetic data points before cross-validation 

and hence before creating a validation dataset. This is referred to as a “data leakage” 

problem. For this reason, sampling must be done during cross-validation and never 

before. 

 

A stratified K-fold split was used instead of regular cross-validation split because the 

former retains the initial distribution of classes from the dataset for every fold. This 

means that the uneven distribution of classes is maintained for every batch of the split, 

whereas during cross-validation the distribution is random and sometimes rebalanced 

to an even ratio. When dealing with imbalanced datasets, stratified k-fold can be used 

instead of traditional cross k-fold validation because it is important to preserve the 

heterogeneous distribution of the original dataset in order to better understand the 

behaviour of the strategies we apply to deal with the class imbalance. 
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4. EXPERIMENTAL RESULTS, EVALUATION & DISCUSSION 
 

4.1 Experimental Results: Part 1 (Evaluating the baseline Hypothesis)  
 

The objective of Part I of experimental results is to be able to evaluate and make a 

decision on whether to reject or accept the baseline hypothesis. 

   

Baseline Hypothesis: A classification model that is trained using a learning algorithm 

that employs SMOTE or SMOTE-based over-sampling techniques will not have a 

statistically significantly higher F-measure score, Receiver operating characteristics 

(ROC) score and G-mean score in comparison to the same learning classifier that uses 

random-over-sampling or no sampling technique, ceteris paribus. 

 

In order to test this hypothesis, the experiment should provide evidence that can be 

used to either support or reject the baseline hypothesis. Therefore, for each of the three 

Sets of data every strategy (composed of a classifier and a sampling technique) was 

tested and the  F-1, ROC and G-mean scores were compared to, firstly, the same 

baseline model using no additional sampling technique) and, secondly, the same 

baseline model using random oversampling.  Seven different classifiers were tested in 

conjunction with seven different sampling strategies and with three different metrics 

for performance, this gives a total of 147 (7x7x3) metric results that were calculated 

from the experiments. There are 42 (7x2x3) different metric values for the two 

baseline strategies and 105 (7x5x3) different metric values for each of the alternative 

strategies. There are two baseline versions of each strategy. Therefore, there are two 

comparisons based on 6 different measures of difference in scores. The difference is 

calculated simply by subtracting the baseline’s strategy score from the alternate 

strategy’s score. 

 

𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 = 𝐷𝑖𝑓𝑓i)OM"e = 𝑆𝑐𝑜𝑟𝑒NbO)M(NO) − 𝑆𝑐𝑜𝑟𝑒xNX)b"()      (13) 
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If the difference is found to be positive, then this would indicate that the alternate 

strategy achieved superior performance in comparison to the baseline strategy. If the 

difference is negative, then this indicates that the alternate strategy is inferior. 

 The count of superior strategies to inferior strategies was compared and used for 

deciding whether to accept or to reject the baseline hypothesis by majority voting. 

Therefore, if at least 53 out of the 105 metric scores are superior to the baseline scores 

achieved then this would indicate that there is evidence to support rejecting the null 

hypothesis and accepting the alternate hypothesis. 

 

4.2 Experimental Results (Part 1) 

 
4.2.1 Results 1: Comparison with No sampling (Set 1) 

TABLE 3: SET 1 - COMPARISON WITH NO SAMPLING 

 

Number of strategies that show no percentage change in difference = 0  

In terms of percentage difference from the total (105) this is:  0% 

 

Majority Rule: There is sufficient evidence to support rejecting the null hypothesis 

and accepting the alternate hypothesis.  

 

We can reject the null hypothesis since the number of alternative strategies that are 

superior strategies (63) is greater than the number of inferior strategies and 60% of 

Table 3: Set 1 - Comparison with no sampling 

Metric Number of Superior 

Strategies 

Number of Inferior 

Strategies 

F-1 27 8 

ROC  18 17 

G-Mean 18 17 

Total (N=105)  63 42 

% of all Total (105) 60% 40% 
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alternate sampling strategies have superior performance in comparison to no sampling 

strategy in terms of F-1, ROC and G-mean scores. 

 

4.2.2 Results 2: Comparison with Random Oversampling (Set 1) 

 

 

TABLE 4: SET 1 - COMPARISON WITH RANDOM OVERSAMPLING 

 

Number of strategies that show no percentage change in difference = 4 

In terms of percentage difference from the total (105) this is:  3.81% 

 

Majority Rule: There is sufficient evidence to support rejecting the null hypothesis 

and accepting the alternate hypothesis. 

 

 We can reject the null hypothesis since the number of alternative strategies that are 

superior strategies (64) is greater than the number of inferior strategies and 60.95% of 

alternative sampling strategies have superior performance in comparison to random 

oversampling strategy in terms of F-1, ROC and G-mean scores. 

 

 

 

 

 

 

 

Table 4: Set 1 - Comparison with Random Oversampling 

Metric Number of Superior 

Strategies 

Number of Inferior 

Strategies 

F-1 10 24 

ROC  27 6 

G-Mean 27 7 

Total (N=101)  64 37 

% of all Total (105) 60.95% 35.24% 
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4.2.3 Results 3: Comparison with No Sampling (Set 2) 

TABLE 5: SET 2 - COMPARISON WITH NO SAMPLING 

 

Number of strategies that show no percentage change in difference = 2 

In terms of percentage difference from total (105) this is: 1.90% 

 

Majority Rule: There is sufficient evidence to support rejecting the null hypothesis 

and accepting the alternate hypothesis.  

 

We can reject the null hypothesis since the number of alternative strategies that are 

superior strategies (64) is greater than the number of inferior strategies and 60.95% of 

alternative sampling strategies have superior performance in comparison to random 

oversampling strategy in terms of F-1, ROC and G-mean scores. 

 

 

 

 

 

 

 

 

 

 

Table 5: Set 2 - Comparison with no sampling 

Metric Number of Superior 

Strategies 

Number of Inferior 

Strategies 

F-1 25 10 

ROC  22 12 

G-Mean 17 17 

Total different (N=145)  64 39 

% of all Total (105) 60.95% 37.14% 
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4.2.4 Results 4: Comparison with Random Oversampling (Set 2) 

 

TABLE 6: SET 2 - COMPARISON WITH RANDOM OVERSAMPLING 

 

Number of strategies that show no percentage change in difference = 3 

In terms of percentage difference from total (105) this is: 2.86% 

 

Majority Rule:  There is insufficient evidence to reject the null hypothesis. 

 

We fail to reject the null hypothesis since 51.43% of alternative strategies are inferior 

to random oversampling. Therefore, following the majority rule argument, we fail to 

reject the null hypothesis since the number of strategies with superior performance in 

comparison to Random Oversampling is only 45.71% in terms of F-1, ROC and G-

mean scores. 

 

 

 

 

 

 

 

 

 

Table 6: Set 2 - Comparison with Random Oversampling 

Metric Number of Superior 

Strategies 

Number of Inferior 

Strategies 

F-1 12 23 

ROC  18 15 

G-Mean 18 16 

Total (N=145)  48 54 

% of all Total (105) 45.71% 51.43% 

TABLE 7: SET 3 - COMPARISON WITH NO SAMPLING 
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 4.2.5 Results 5: Comparison with No Sampling (Set 3) 

 

Table 7: Set 3 - Comparison with no sampling 

Metric Number of Superior 

Strategies 

Number of Inferior 

Strategies 

F-1 25 10 

ROC  18 17 

G-Mean 18 17 

Total (N=105)  61 44 

% of all Total (105) 58.10% 41.90% 

TABLE 8: SET 3 - COMPARISON WITH NO SAMPLING 

 

Number of strategies that show no percentage change in difference = 0 

In terms of percentage difference from total (105) this is: 0% 

 

Majority Rule: We accept that there is sufficient evidence to support rejecting the null 

hypothesis. 

 We can reject the null hypothesis since the number of strategies that are superior (61) 

is greater than the number of alternative strategies that are inferior as 58.10% of 

sampling strategies are superior to no sampling in terms of the metrics F-1, ROC and 

G-mean and 41.90% are inferior. 
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4.2.6 Results 6: Comparison with Random Oversampling (Set 3) 

 

 

TABLE 8: SET 3 - COMPARISON WITH RANDOM OVERSAMPLING 

 

Number of strategies that show no percentage change in difference = 0 

In terms of percentage difference from total (105) this is: 0% 

 

Majority Rule: We accept that there is sufficient evidence to support rejecting the null 

hypothesis. 

We can reject the null hypothesis since the number of superior strategies (57) is greater 

than half of the total amount of alternative strategies as 54.29% of alternative sampling 

strategies are superior to a Random Oversampling strategy in terms of F-1, ROC and 

G-mean scores and only 45.71% are inferior. 

 

4.3 Evaluation of Baseline Hypothesis (Part I) 

 
Total superior strategies=357 

Total inferior strategies =264 

Total metrics evaluated =630 

 

The percentage of strategies superior to strategies that use Random oversampling and 

No sampling is 56.67% (357/630). The percentage of strategies that are inferior to 

strategies that use Random oversampling and No sampling is 41.90%.  Following the 

majority rule, this suggests that there is sufficient evidence to support rejecting the null 

Table 8: Set 3 - Comparison with Random Oversampling 

Metric Number of Superior 

Strategies 

Number of Inferior 

Strategies 

F-1 15 20 

ROC  21 14 

G-Mean 21 14 

Total (N=105)  57 48 

% of all Total (105) 54.29% 45.71% 
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hypothesis in favour of the alternate hypothesis since 56.67% of the alternative 

strategies tested in this experiment were able to obtain a superior performance (in 

terms of F-1, ROC and G-mean) relative to the baseline strategies that used no 

sampling and random oversampling as the sampling techniques.  

 

Since 357 of all metrics tested were superior to that of the baseline strategies and at 

least over 50% were superior and only 41.90% were inferior then we can confirm that 

there is evidence to reject the baseline hypothesis and accept the null hypothesis.  

Furthermore, from the six individual tests evaluated in Part 1 of this experiment, the 

only one baseline strategy produced performance scores that were superior to that of 

the alternate strategies. This can be seen by the results achieved by Random 

Oversampling in Set 2.  

 

In this set, out of the105 different strategies tested, three strategies had no significant 

change (no increase or decrease) in performance and only 51.43% of strategies were 

inferior to Random Oversampling. This indicates that although Random oversampling 

achieved scores that were superior to more than half of the scores achieved by the 

alternative techniques, for this set of results, the difference is not particularly 

substantial. The fact that only 1.43% of scores are superior and that 2.86% of scores 

showed no significant change in performance may be indicative that, when found to be 

superior, Random Oversampling is only superior by a small margin and in certain 

cases this difference can be negligible. 

 

4.4 Evaluation of Secondary Hypothesis (Part 2) 

 
An aggregated rank was computed for each strategy by combining the rank of the 

strategy in terms of its F-1, its ROC and its G-mean performance.  This aggregated 

rank was then used to compare the different strategies based on how well they 

performed across all three metrics. All three metrics are weighed with the same 

importance and individual ranks per metric are ranked relative to the maximum value 

obtained. This means that multiple strategies can therefore be placed in the same rank 

assuming they have scores that are evenly weighed.    
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The results in Part 2 of will be presented in the following order: 

 

Results 1 (Set 1-Results 1): The results are the first collection of results from Set 1 

(Set 1-Results 1) which describe the mean performance per sampling technique for Set 

1. The sampling techniques will be ranked based on their mean aggregated rank score. 

A brief analysis of Results 1 will then be given at the end. 

 

Results 2 (Set 1-Results 2): These are the second collection of results from Set 1 (Set 

1-Results 2) which describe the mean performance per classifier for Set 1. The 

sampling techniques will be ranked based on their mean aggregated rank score. A brief 

analysis of Results 2 will then be given at the end. 

 

Results 3 (Set 2-Results 1): The results are the first collection of results from Set 2 

which describe the mean performance per sampling technique for Set 2. The sampling 

techniques will be ranked based on their mean aggregated rank score. A brief analysis 

of Results 3 will then be given at the end. 

 

Results 4 (Set 2-Results 2): The results are the second collection of results from Set 2 

which describe the mean performance per classifier for Set 2. The classifiers will be 

ranked based on their mean aggregated rank score. A brief analysis of Results 4 will 

then be given at the end. 

 

Results 5 (Set 3-Results 1): The results are the first collection of results from Set 

3which describe the mean performance per sampling technique for Set 3. The sampling 

techniques will be ranked based on their mean aggregated rank score. A brief analysis 

of Results 5 will then be given at the end. 

 

Results 6 (Set 3-Results 2): The results are the second collection of results from Set 3 

which describe the mean performance per classifier for Set 1. The classifiers will be 

ranked based on their mean aggregated rank score. A brief analysis of Results 61 will 

then be given at the end. 
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4.5 Experimental Results (Part 2) 

 

4.5.1 Results 1: Sampling Technique Performance (Set 1) 

 

Experiments on Set 1 were conducted without making any posterior modifications to 

the dataset size. The distribution is then 492 fraud to 284,315 non-fraud cases. 

Therefore, the imbalance ratio is given by: Imbalance Ratio: (N+/N-) = 492/284315 = 

0.17%This value constitutes a severe imbalance ratio. Using stratified K-fold with 10 

splits the training dataset size is 256327 and the testing set is 28480. 

 

 

TABLE 9: SET 1 - TRAINING AND PROCESSING TIME PER SAMPLING STRATEGY 

 

 

Results for Set 1 are shown in the next page (page 60) in Table 10.  
 
 
 
 
 

Table 9: Set 1 - Training and Processing time per sampling strategy 

Sampling technique Approximate training and Processing time 

per sampling technique  

No sampling  1.5 mins 

SMOTE  28 mis 

Random Over Sampling 13 mins 

Borderline SMOTE 34 mins 

SVM-SMOTE 31 mins 

SMOTE-ENN 122 mins 

SMOTE-Tomek 86 mins  
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TABLE 10: MEAN PERFORMANCE PER SAMPLING TECHNIQUES (RELATIVE RANK IN 

PARENTHESIS) 

 

4.5.2 Analysis Results 1: Sampling Technique Performance (Set 1) 

 

The results are in line with the predicted hypothesis that strategies that use either no 

sampling or use random oversampling as sampling techniques exhibit lower 

performance scores in comparison to the other strategies that were tested.  SMOTE and 

SMOTE-Tomek exhibit the same mean results. This may indicate that the number of 

nearest neighbours used by SMOTE and the number of Tomek's links used by 

SMOTE-Tomek is the same. So, none of the nearest neighbours of minority class 

examples satisfy the Tomek’s Link condition whereby links are created for instances 

of data that are both nearest neighbours and also members of the opposite classes. 

 

Although the aggregated rank of random oversampling and no sampling are quite 

similar, the mean F-1 score of random oversampling is significantly higher than that of 

Table 10: Set 1 - Mean Performance per Sampling techniques (relative rank in parenthesis) 

Sampling 

Technique 

Mean 

Aggregated 

Rank 

F1 

 

ROC AUC G mean 

SMOTEENN 

 

1 

(92.571429) 

0.620686 

(20.142857) 

0.9423 

(36.285714) 

0.940729 

(36.142857) 

SVMSMOTE 2 

(85.571429) 

0.725329 

(28.714286) 

0.928929 

(28.428571) 

0.926271 

(28.428571) 

SMOTE 3 

(83.428571) 

0.650971 

(26.714286) 

0.930814 

(28.285714) 

0.928371 

(28.285714) 

SMOTETomek 3 

(83.428571) 

0.650971 

(26.714286) 

0.930814 

(28.428571) 

0.928371 

(28.285714) 

BorderlineSMO

TE 

4 

(66.142857) 

0.725971 

(30.857143) 

0.915886 

(17.714286) 

0.912014 

(17.571429) 

No sampling 5 

(62.285714) 

0.415071 

(12.571429) 

0.9041 

(24.571429) 

0.897043 

(25.142857) 

Random 

OverSampling 

6 

(61.428571) 

0.7315 

(31.00) 

0.913729 

(15.142857) 

0.909657 

(15.285714) 
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no sampling.  Nonetheless, random oversampling came last in terms of aggregated 

rank. This may indicate that certain classifiers are made worse (relative to when using 

no sampling) by the inclusion of random oversampling to its pipeline when learning 

from the full dataset and that this effect is predominantly detrimental to the ROC and 

G-mean scores of the strategies. 

 

4.5.3 Experimental Results 2: Classifier Performance (Set 1) 

 

Table 11: Set 1 - Mean Performance per Classifier (relative rank in parenthesis) 

Classifier Mean Aggregated 

Rank 

F1 ROC AUC G mean 

Easy Ensemble 

Classifier  

1 

(102.428571) 

0.752271 

(36.428571) 

0.933671 

(33.142857) 

0.931314 

(32.857143) 

Balanced Random 

ForestClassifier 

2 

(95.857143) 

0.747457 

(35.714286) 

0.9313 

(29.857143) 

0.9288 

(30.285714) 

Balanced Bagging 

Classifier 

3 

(82.142857) 

0.695114 

(24.714286) 

0.929814 

(28.714286) 

0.927271 

(28.714286) 

Logistic 

Regresssion 

4 

(78.428571) 

0.221 

(7.00) 

0.924329 

(35.571429) 

0.919614 

(35.857143) 

Random Forest 

Classifier 

5 

(77.00) 

0.847057 

(37.00) 

0.915329 

(20.142857) 

0.911157 

(19.857143) 

RUS Boost 

Classifier 

6 

(53.571429) 

0.6032 

(17.00) 

0.920257 

(18.285714) 

0.916786 

(18.285714) 

Decision Tree 

Classifier  

7 

(45.428571) 

0.6544 

(18.857143) 

0.911871 

(13.285714) 

0.907514 

(13.285714) 

TABLE 11: SET 1 - MEAN PERFORMANCE PER CLASSIFIER (RELATIVE RANK IN 

PARENTHESIS) 

 

4.5.4 Analysis of Experimental Results 2: Classifier Performance (Set 1) 

 

The results agree with previous research that encourage the use of the EasyEnsemble 

Classifier due to its general robust behaviour and ability to perform well in highly 

imbalanced domains. The results also show that on the full dataset the simpler 
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classifiers (such as, Logistic Regression, Random Forest Classifier and Decision Tree 

Classifier) all seem to suffer more in terms of performance in comparison to the 

ensemble methods that carry some form of re-balancing through either undersampling 

or bagging and boosting. This is in line with research that suggests that using a 

combination of undersampling and oversampling can be superior to using only one or 

the other. The Decision Tree classifier is also the worse classifier method, this is also 

in line with research that suggests that classifiers that rely on divide-and-conquer 

algorithms will typically exhibit low performance in highly imbalanced domains. 

 

Although the logistic regression classifier came forth in terms of general performance 

based on its aggregated rank, this model also shows the highest degree of difference 

between its F-1 score/rank and its ROC and G-mean scores.  This may be due to the 

fact that the logistic function will often tend to seek maximising the overall accuracy 

of the its predictions by favouring the majority class. This favouritism towards the 

majority class could be more predominant for the logistic regression classifier in 

comparison to the other classifiers. The low mean precision (0.188686) relative to the 

recall (0.865914) achieved by this classifier is much more disproportionate in 

comparison to other classifiers evaluated.   

 

4.5.5 Experimental Results 3: Sampling Technique Performance (Set 2) 

 

The distribution used in Set 2 is 492 fraud (all cases) to 189543 (i.e., two-thirds) non-

fraud cases. The imbalance ratio is therefore: Imbalance Ratio: (N+/N-) = 

(492/164089) ·100 = 0.2998% 

 

This value constitutes a severe imbalance ratio. Using stratified K-fold with 10 splits 

the training dataset size is 171032 and the testing set is 19003. 
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Table 12: Set 2 - Training and Processing time per sampling technique 

Sampling technique Approximate training and Processing time  

No sampling  52 secs 

SMOTE  17 mins 

Random Over Sampling 7 mins 30 seconds  

Borderline SMOTE 17 mins 20 seconds 

SVM-SMOTE 19 mins 25 seconds 

SMOTE-ENN 83 mins 33 seconds  

SMOTE-Tomek 61 mins 49 seconds 

TABLE 12: SET 2 - TRAINING AND PROCESSING TIME PER SAMPLING TECHNIQUE 

 

Table 13:  Set 2 - Mean Sampling technique Performance 

Sampling 

Technique 

Mean Aggregated 

Rank 

F1 ROC AUC G mean 

SMOTE 1 

(86.714286) 

0.615743 0.875443 0.866971 

SMOTETomek 1 

(86.714286) 

0.615743 0.875443 0.866971 

SVMSMOTE 2 

(85.285714) 

0.675814 0.872014 0.862814 

Random 

OverSampling 

3 

(76.857143) 

0.672886 0.867100 0.857071 

BorderlineSMOT

E 

4 

(76.571429) 

0.640900 0.857314 0.845114 

SMOTEENN 

 

5 

(73.428571) 

0.590043 0.872371 0.863400 

No sampling 7 

(61.571429) 

0.402757 0.827371 0.797586 

TABLE 13: SET 2 - MEAN SAMPLING TECHNIQUE PERFORMANCE 
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4.5.6 Analysis of Experimental Results 3: Sampling Technique Performance 

(Set 2) 

 

Although the results between Random Oversampling, BorderlineSMOTE and 

SMOTE-ENN are comparably close in terms of mean aggregated rank, Random 

Oversampling ranks higher than both BorderlineSMOTE and SMOTE-ENN. This may 

suggest that when applied to a dataset that is re-balanced by undersampling the 

majority class, random oversampling can be a robust sampling strategy. 

In comparison to results obtained from Set 1, SMOTE-ENN exhibits a significant 

decline to its overall performance. This may indicate that its performance declines as 

the degree of imbalance decreases. SMOTE, SMOTE-Tomek and SVM-SMOTE have 

similar mean aggregated ranks. SMOTE and SMOTE-Tomek exhibit the same mean 

results. This again may indicate that the number of nearest neighbours used by 

SMOTE and the number of Tomek's links used by SMOTE-Tomek is the same. 

 

4.5.7 Experimental Results 5: Classifier Performance (Set 2) 

 

Table 14: Set 2 - Mean Classifier Performance 

Classifier Mean aggregated 

Rank 

F1 ROC AUC G mean 

Balanced Random 

ForestClassifier 

1 

(108.857143) 

0.691471 0.877429 0.869114 

Easy Ensemble 

Classifier  

2 

(106.285714) 

0.687557 0.874043 0.865457 

Random Forest 

Classifier 

3 

(97.428571) 

0.787857 0.867157 0.856929 

Logistic Regression 4 

(87.714286) 

0.260314 0.883971 0.877429 

Balanced Bagging 

Classifier 

5 

(69.428571) 

0.635886 0.865600 0.855286 

Decision Tree 

Classifier  

6 

(41.00) 

0.609514 0.854829 0.842429 

RUS Boost 

Classifier 

7 

(36.428571) 

0.541286 0.824029 0.793286 

TABLE 14: SET 2 - MEAN CLASSIFIER PERFORMANCE 
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4.5.8 Analysis of Experimental Results 5: Classifier Performance (Set 2) 

 

The EasyEnsemble Classifier and the Balanced RandomForestClassifier are again top 

performing classifiers. This agrees with existing literature that these classifiers are 

particularly robust for this kind of task and will maintain a good performance despite 

the reduction in the amount of data to the majority class and the change to the class 

distributions.  

 

RUSBoost Classifier is significantly worse than all other classifiers. For this particular 

set it the worse classifier in the group. These results contradict the findings by López 

(2013) where RUSBoost outperformed EasyEnsemble.  

 

4.5.9 Experimental Results 6: Sampling Technique Performance (Set 3) 

 

Experiments on Set 3 were conducted by altering the majority class size from dataset. 

The distribution used is 492 fraud to 94772 (= 1/3 * 284315) non-fraud cases. The 

imbalance ratio is therefore: Imbalance Ratio: (N+/N-) = (492/94772) *100 = 0.5191% 

 

This value constitutes a severe imbalance ratio. Using stratified K-fold with 10 splits 

the training dataset size is 85738 and the testing set is 9226. 

 

Table 15: Set 3 - Training/Processing Time per sampling technique 

Sampling technique 

 

Approximate training and Processing time  

No sampling  24 seconds 

SMOTE  6 mins 58 seconds  

Random Over Sampling 3 mins 10 seconds  

Borderline SMOTE 8 mins 54 seconds 

SVM-SMOTE 8 mins 2 seconds  

SMOTE-ENN 32 mins 45 seconds  

SMOTE-Tomek 23 mins 18 seconds 

TABLE 15: SET 3 - TRAINING/PROCESSING TIME PER SAMPLING TECHNIQUE 
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TABLE 16: SET 3 - MEAN SAMPLING TECHNIQUE PERFORMANCE 

 

4.5.9 Analysis of Experimental Results 6: Sampling Performance (Set 3) 

 

SMOTE and SMOTE-Tomek are again the highest performing sampling techniques 

for Set 3 again (after being the highest performing for Set 2).  

SVM-SMOTE maintained a consistent rank relative to the previous set (Set 2). The 

same is true for the SMOTE-ENN technique, we can see from the minimal change in 

the aggregated rank (which is approximately the same) between Set 2 and Set 1.  The 

sampling techniques that were most impacted by the decrease in the amount of 

negative class instances (non-fraud data) are BorderlineSMOTE and Random 

Oversampling. While Random Oversampling’s mean aggregated rank dropped from 

76.85 to 68.14 (approximately); BorderlineSMOTE’s mean aggregated rank score 

dropped from 76.57 to 69.56 (approximately). 

 

Table 16: Set 3 - Mean Sampling Technique Performance 

Sampling 

Technique 

Mean Aggregated 

Rank 

F1 ROC AUC G mean 

SMOTE 1 

(87.142857) 

0.718129 

(27.142857) 

0.924800 

(30.00) 

0.921743 

(30.00) 

SMOTETomek 1 

(87.142857) 

0.718129 

(27.142857) 

0.924800 

(30.00) 

0.921743 

(30.00) 

SVMSMOTE 2 

(85.857143) 

0.789843 

(29.857143) 

0.918314 

(27.857143) 

0.914857 

(28.142857) 

SMOTEENN 

 

3 

(78.142857) 

0.725014 

(24.571429) 

0.921757 

(26.857143) 

0.918486 

(26.714286) 

BorderlineSMOTE 4 

(69.571429) 

0.774214 

(26.857143) 

0.909457 

(21.285714) 

0.904943 

(21.428571) 

RandomOverSamp

ler 

5 

(68.142857) 

0.787714 

(27.285714) 

0.909586 

(20.428571) 

0.904871 

(20.428571) 

No sampling 6 

(58.571429) 

0.568986 

(14.571429) 

0.911814 

(22.00) 

 

0.907343 

(22.00) 
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4.5.10 Experimental Results 7: Classifier Performance (Set 3) 

 

TABLE 17: SET 3 - MEAN CLASSIFIER PERFORMANCE 

 

 

4.5.11 Analysis of Experimental Results 7: Classifier Performance (Set 3) 

 

The classifiers maintained the same mean aggregated rank score that they had obtained 

Set 2. This could indicate that the change in the amount of non-fraud data does not 

have a strong influence on the average performance of these classifiers. Moreover, this 

could signal that the changes in performance between the different experimental Sets is 

predominantly the due to changes in the performance of the sampling techniques. This 

is a possibility since the performance of strategies (classifiers plus sampling 

techniques) and sampling techniques very from Set 1 to Set 3, while on average the 

classifiers maintain the same approximate level of performance.  

Table 17: Set 3 - Mean Classifier Performance 

Classifier Mean Aggregated 

Rank 

F1 ROC AUC G mean 

Easy Ensemble 

Classifier  

1  

(105.857143) 

0.821757 

(36.857143) 

0.928429 

(34.428571) 

0.925614 

(34.571429) 

Balanced Random 

ForestClassifier 

2 

(105.142857) 

0.822671 

(36.857143) 

0.928471 

(34.00) 

0.925657 

(34.285714) 

Random Forest 

Classifier 

3 

(85.428571) 

0.893700 

(37.571429) 

0.911071 

(24.142857) 

0.906543 

(23.714286) 

Logistic 

Regresssion 

4 

(84.285714) 

0.385343 

(8.857143) 

0.935771 

(37.714286) 

0.933757 

(37.714286) 

Balanced Bagging 

Classifier 

5 

(65.00) 

0.748243 

(21.285714) 

0.913486 

(21.714286) 

0.909414 

(22.00) 

Decision Tree 

Classifier  

6 

(51.571429) 

0.717471 

(19.857143) 

0.905329 

(15.857143) 

0.900571 

(15.857143) 

RUS Boost 

Classifier 

7 

(37.285714) 

0.692843 

(16.142857) 

0.897971 

(10.571429) 

0.892429 

(10.571429) 
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Therefore, it is possible that such changes in performance are also due to the effect of 

changing the distribution of classes and the ratio between the majority class (non-

fraud) relative to the minority class (fraud) and how certain sampling techniques are 

affected by these changes. More research is required to ascertain this possibility. 

 

4.6 Evaluation of Performance based on Results across all Sets 

 

4.6.1 Top Performers based on F-1 score 

 

The results for the top performers based on F-1 score on shown in page 69 (see Table 

18 on the next page). 

  

Figure 2: Boxplot for F-1 scores for all strategies across all three Sets 
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Table 18: Top Performers for F-1 across all sets 

Rank Top 

Strategy/Stra

tegies 

Dataset  F-1 rank: F-1 

score 

ROC rank: 

ROC score 

G-mean 

rank: G-

mean score 

1  

(147/147) 

Group A 8, 9 

 

Set 3 147/147 

 0.9247 

125/147 

0.9387 

125/147 

0.9367 

2 

 (143/147) 

RandomForest

Classifier  + 

SVMSMOTE 

Set 3  143/147 

0.9231 

113/147 

0.9286 

113/147 

0.9258 

3 

(142/147) 

BalancedRand

omForestClass

ifier  + 

SMOTE-ENN 

Set 3  142/147 

0.9149 

125/147 

0.9387 

125/147 

0.9367 

4  

(141/147) 

BalancedRand

omForestClass

ifier + SVM-

SMOTE 

Set 3  141/147 

0.9130 

112/147 

0.9285 

113/147 

0.9285 

5 

(140/147) 

EasyEnsemble

Classifier + 

BorderlineSM

OTE 

Set 3 140/147 

0.9111 

104/147 

0.9184 

104/147 

0.9147 

TABLE 18: TOP PERFORMERS F-1 ACROSS ALL SETS 

 

 

 

 

 

 

 

 
8 Group A: 1) EasyEnsembleClassifier + SMOTE; 2) EasyEnsembleClassifier + SMOTE-Tomek; 3) 

BalancedRandomForest + SMOTE; and 4) BalancedRandomForest + SMOTE-Tomek.  These Four 

different strategies ranked first in terms of F-1.  
9 These strategies obtained the same F-1. They are all strategies used on Set 3. If strategies are grouped 

in tables this means that they obtained the same F-1, ROC and/or G-mean scores and are all from the 

same ‘Set’.  
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4.6.2 Top Performers based on ROC score 

 

 

 

 

 

 

 

 

 

 

 

 

 

The results for the top performers based on ROC score on shown in page 71 (see Table 

19 on the next page). 

  

Figure 3: Boxplot for ROC scores for all strategies across all three Sets 
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Table 19: Top Performers ROC across all sets 

Rank Top 

Strategy/St

rategies 

Dataset  F-1 rank: 

F-1 score 

ROC rank: 

ROC score 

G-mean 

rank: G-

mean score 

Combined 

rank 

1  

(147/147) 

LogisticRe

gression + 

RandomO

verSampli

ng 

 

Set 3 28/147 

0.3297 

147/147 

0.9597 

147/147 

0.9595 

322/413 

2 

(146/147) 

 Group A10 Set 3  26/147 

0.3151 

146/147 

0.9286 

146/147 

0.9258 

318/413 

3 

(144/147) 

LogisticRe

gression + 

SVM-

SMOTE 

Set 1 17/147 

0.2004 

144/147 

0.9592 

144/147 

0.9523 

305/413 

4  

(143/147) 

BalancedB

aggingClas

sifier + No 

sampling 

Set 1 8/147 

0.1364 

143/147 

0.9492 

143/147 

0.9487 

294/413 

5 

(142/147) 

Group B11 Set 1 140/147 

0.8889 

142/147 

0.9489 

138/147 

0.9475 

413/413 

TABLE 19: TOP PERFORMERS ROC ACROSS ALL SETS 

 

 

 

 

 

 

 

 

 
10 Group A: 1) LogisticRegression+SMOTE; and 2) LogisticRegression + SMOTE-Tomek. 
11 Group B:  1) EasyEnsembleClassifier + SMOTE-Tomek; and 2) EasyEnsembleClassifier + SMOTE 
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4.6.3 Top Performers based on G-Mean Score 

 

 

 

The results for the top performers based on G-mean score on shown in page 73 (see 

Table 20 on the next page). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: Boxplot for G-mean Scores for all strategies across all three 
Sets 
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Table 20: Top Performers G-mean across all sets 

Rank 

Top 

Strategy/St

rategies 

Dataset  
F-1 rank: 

F-1 score 

ROC 

rank: 

ROC score 

G-mean 

rank: G-

mean score 

Combined 

rank 

1  

(147/147) 

LogisticRegr

ession + 

RandomOve

rSampling 

Set 3 
28/147 

 0.3297 

147/147 

0.9597 

147/147 

0.9595 
322/413 

2 

(146/147) 
Group A12 Set 3  

26/147 

0.3151 

146/147 

0.9286 

146/147 

0.9258 
318/413 

3 

(144/147) 

LogisticRe

gression + 

SVM-

SMOTE 

Set 1 
17/147 

0.2004 

144/147 

0.9592 

144/147 

0.9523 
305/413 

4  

(143/147) 

BalancedB

aggingClas

sifier + No 

sampling 

Set 1 
8/147 

0.1364 

143/147 

0.9492 

143/147 

0.9487 
294/413 

5 

(142/147) 

BalancedR

andomFor

estClassifie

r 

+ No 

sampling 

Set 3 
23/147 

0.3061 

138/147 

0.9492 

142/147 

0.9481 
303/413 

TABLE 20: TOP PERFORMERS G-MEAN ACROSS ALL SETS 

 

4.6.4 Top Performing Strategies per aggregated rank  

 

Results for the top performing strategies is shown on page 74 (in Table 21 below).  
 

 

 

 

 

 

 
12 Group A: 1) LogisticRegression+SMOTE; and 2) LogisticRegression + SMOTE-Tomek. 
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TABLE 21: TOP PERFORMERS BASED ON AGGREGATED RANK ACROSS ALL SETS 

 

 
13 Group A: 1) EasyEnsembleClassifier + SMOTE-Tomek; 2) EasyEnsembleClassifier+SMOTE 
14 Group B: 1) BalancedRandomForestClassifiers + SMOTE-Tomek; 2) EasyEnsembleClassifier + 

SMOTE-Tomek; 3) BalancedRandomForest + SMOTE; and 4) EasyEnsembleClassifier + SMOTE 
15 Group C: 1) BalancedRandomForestClassifier + SMOTE; and 2) 

BalancedRandomForestClassifier+SMOTE-Tomek 

 

Table 21: Top Performers based on aggregated rank across all sets 

Combined 

Rank 

Strategy Dataset F1 ROC G-mean 

1 

(413/413) 

Group A13 Set 1 

 

133/147 

0.8889 

142/147 

0.9489 

138/147  

0.9475 

2 

(397/413) 

Group B14 Set 3 147/147 

0.9247 

125/147 

0.9387 

125/147 

0.9367 

3 

(392/413) 

BalancedRand

omForestClassi

fier+SMOTE-

ENN 

Set 3 142/147 

0.9149 

125/147 

0.9387 

125/147 

0.9367 

4 

(389/413) 

RandomForest

Classifier 

+SMOTE-

ENN 

Set 1 113/147 

0.8462 

140/147 

0.9488 

136/147 

0.9474 

5 

(379/413) 

EasyEnsemble

Classifier+ 

SMOTE-ENN 

Set 3 139/147 

0.9053 

120/147 

0.9386 

120/147 

0.9366 

6 

(377/413) 

EasyEnsemble

Classifier+ 

SMOTE-ENN 

Set 1  102/147 

0.8224 

139/147 

0.9487 

136/147 

0.9474 

7 

(369/413) 

RandomForest

Classifier+SV

M-SMOTE 

Set 3  143/147 

0.9231 

113/147 

0.9286 

113/147 

0.9258 

8 

(366/413) 

BalancedRand

omForestClassi

fer+SVM-

SMOTE 

 

Set 3 141/147 

0.913 

112/147 

0.9285 

113/147 

0.9258 

9 

(360/413) 

Group C 15 Set 1 120/147 

0.86 

120/147 

0.9386 

120/147 

0.9366 

10 

(348/413) 

EasyEnsemble

Classifier + 

BorderlineSM

OTE 

Set 3 140/147 

0.9111 

104/147 

0.9184 

120/147 

0.9147 
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4.6.5 Top Performing Sampling Techniques per aggregated rank 
 

TABLE 22: TOP MEAN SAMPLING TECHNIQUES RANKED BY AGGREGATED RANK 

ACROSS ALL SETS 

 

 

 

 

 

 

 

 

 

 

 

Table 22: Top Mean Sampling Technique ranked by mean aggregated rank across all sets 

Sampling 

Technique 

Aggregated Rank F1 ROC AUC G mean 

SVM-SMOTE 1 

(244.142857) 

0.730329 

(86.571429) 

0.906419 

(78.904762) 

0.901314 

(78.666667) 

SMOTE 2 

(237.714286) 

0.661614 

(73.857143) 

0.910352 

(81.714286) 

0.905695 

(82.142857) 

SMOTE-Tomek 2 

(237.714286) 

0.661614 

(73.857143) 

0.910352 

(81.714286) 

0.905695 

(82.142857) 

SMOTE-ENN 

 

3 

(233.904762) 

0.645248 

(67.428571) 

0.912143 

(83.380952) 

0.907538 

(83.095238) 

Borderline-

SMOTE 

4 

(219.571429) 

0.713695 

(85.476190) 

0.894219 

(67.095238) 

0.887357 

(67.00) 

Random-

OverSampling 

5 

(217.523810) 

0.730700 

(89.00) 

0.896805 

(64.476190) 

0.890533 

(64.047619) 

No sampling 6 

(179.714286) 

0.462271 

(44.619048) 

0.881095 

(66.904762) 

0.867324 

(68.190476) 
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4.6.6 Top Performing Classifiers per aggregated rank 

 

Table 23: Top mean Classifier ranked by aggregated rank across all sets 

Sampling 

Technique 

Aggregated 

Rank 

F1 ROC AUC G mean 

EasyEnsembleCl

assifier 

1 

(278.285714) 

0.753862 

(100.095238) 

0.912048 

(89.047619) 

0.907462 

(89.142857) 

BalancedRando

mForestClassifie

r 

2 

(275.714286) 

0.753867 

(98.714286) 

0.9124 

(88.333333) 

0.907857 

(88.666667) 

RandomForestCl

assifier 

3 

(251.666667) 

0.842871 

(111.571429 

0.897852 

(70.333333) 

0.891543 

(69.761905) 

BalancedBaggin

gClassifier 

 

4 

(221.571429) 

0.693081 

(74.047619) 

0.902967 

(73.809524) 

0.897324 

(73.714286) 

Logistic 

Regression 

5 

(213.238095) 

0.288886 

(23.666667) 

0.91469 

(93.809524) 

0.910267 

(95.761905) 

DecisionTreeCla

ssifier 

6 

(168.142857) 

0.660462 

(59.714286) 

0.890676 

(54.285714) 

0.883505 

(54.142857) 

RUSBoostClassi

fier 

7 

(161.666667) 

0.612443 

(53.00) 

0.880752 

(54.571429 

0.8675 

(54.095238) 

TABLE 23: TOP MEAN CLASSIFIER RANKED BY AGGREGATED RANK ACROSS ALL 

SETS 

 

4.7 Summary of Experimental Results, Discussion and Evaluation. 

 
1. Across all three sets of data (with the three different distribution of fraud to non-

fraud), most strategies obtained results that were superior to that of its baseline 

counterpart (same classifier with no sampling or random oversampling). The only 

experiment where the alternative strategies did not outperform the baseline 

strategy counterpart was in comparison to random oversampling in Set 2. It would 
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be interesting to investigate further why naive oversampling was able to 

outperform some of the other sampling techniques for this Set and not in others. 

 

2. From Experimental Results Part 2, we can see that the mean aggregated rank of 

SVM-SMOTE achieved the highest score. This could suggest that this sampling 

technique is more robust than the other sampling techniques evaluated in this 

experiment. In second place came both SMOTE and SMOTE-Tomek while 

SMOTE-ENN came third. These findings are in line with previous research 

obtained (Dal Pazzolo et al., 2013; Dal Pazzolo, 2015). 

 

3. The results show that the highest performing technique (SVM-SMOTE) is a 

variant of the algorithm that generates synthetic data around the borderline that 

surrounds the two classes. Since SVM-SMOTE outperformed the other sampling 

techniques, this may suggest that, for this particular dataset, an oversampling 

technique that has a different initial selection procedure and can account for the 

borderline cases of class groups may improve the performance of a strategy. 

Future research could develop on this possibility. 

 

4. Furthermore, for the classifiers, the RUSBoost Classifier was significantly worse 

than all other classifiers. This was the case for every Set except Set 1, where it 

achieved the penultimate rank (Decision Tree came last) in terms of mean 

performance. Overall, it was the worse classifier in the group. These results 

contradict the findings in López (2013), where RUSBoost was robust and 

outperformed EasyEnsemble.This may indicate that naive undersampling on data 

(that has already undergone under-sampling) in combination with boosting (a 

technique that seeks to reduce bias) may not be a good strategy for this particular 

dataset. More research is needed to ascertain this by, for example, testing how the 

RUSBoost Classifier's performance compares relative to its SMOTE counterpart, 

the SMOTEBoost algorithm 

 

5. The EasyEnsemble classifier was the best performing classifier in the group. 

BalancedRandomForest Classifier and the RandomForest Classifier also proved to 

be robust classifiers. These results are in line with the results obtained in previous 

research (Liu, wu, and Zhou, 2009; López 2013; and Dal Pazzolo et al., 2013). 
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6. The three sampling techniques that are ranked best across all three metrics are 

SVM-SMOTE, SMOTE, and SMOTE-Tomek, in that particular order. This may 

signal that for this specific dataset, SMOTE variants that are able to modify the 

initial selection to space for which synthetic examples are generated may be the 

superior strategy. Future research could investigate whether SMOTE variants that 

modify the initial selection procedure are, in fact, consistently superior to variants 

that include some data cleaning process (e.g., SMOTE-ENN, and SMOTE-

Tomek). 

 

7. The highest-ranked strategies include strategies that involve 

BalancedRandomForest Classifier and EasyEnsemble Classifier and some version 

of the SMOTE technique. This indicates that as far as classifiers are concerned, 

these classifiers are most robust and that when coupled with SMOTE, they are able 

to achieve a significantly higher performance in comparison to the other strategies. 

Similarly, SMOTE-ENN also showed to be a robust strategy when paired with 

these classifiers. 

 

8. Across all three sets, none of the top ten best performing strategies were found 

from testing using Set 2. This may signal that the performance of certain 

techniques is influenced by class distributions. Therefore, it is possible that 

performance can be optimised if a more appropriate class distribution (from 

undersampling the majority class) is identified. More research could be done to 

find the optimum distribution for the maximising the performance of the sampling 

techniques. 

 

9. Assuming both SMOTE and SMOTE-Tomek were implemented correctly from 

the Imbalanced-Learn library, then it is possible that this is due to the algorithm's 

inability to identify any Tomek's link in the data. Perhaps it is for this reason that 

the results of the two sampling techniques are exactly the same. Notwithstanding, 

this is a limitation of the experiment, and it would be essential to understand the 

source of this error. This could be a valuable avenue for future research to 

investigate. 
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4.8 Evaluation of Experimental Design  

 
4.8.1 Experimental Strengths 

 

1. Ease of Replication: The experiment was designed through a pipeline method 

that allows this experiment to be replicated and for results to be reproduced. 

Most settings used for techniques are default settings (except for two settings). 

The experiment also does not remove any outliers in order to help facilitate the 

replicating the experiment. Some research was done on including a method to 

detect and remove outliers using an Isolation Forest algorithm. However, since 

no significant improvement in performance was observed (on the contrary, 

performance declined), the use of Isolation Forest as a data cleaning method 

was not included in this experiment.  

 

2. The use of three metrics allows for a more extensive analysis: The fact that 

this experiment uses three metrics for assessing performance allows the 

experiment to gain more insight into what influences performance. This also 

means that the aggregated rank metric (that combines ranks from all three 

metrics) is able to provide a more well-rounded evaluation of performance. 

 

3. The sampling techniques and classifiers used are well-known and easy to 

implement and use: The sampling techniques and the classifiers that were 

evaluated in this experiment are popular techniques that can be easily obtained 

and implemented from the popular Python library (Imbalanced-Learn).  

 

4. The experiment includes an additional evaluation of classifier performance: 

By also including data on the performance of classifiers (as well as the 

performance of sampling technique), more information on the relationship(s) 

between classifiers, sampling techniques, and data is produced. This allows for 

more insight into what is more or less critical for influencing the performance 

of the strategies for this dataset. 
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4.8.2 Experimental Weaknesses/Limitations: 

 

1. Lack of hyper-parameters and optimization: Due to time constraints, the 

optimal hyper-parameters for each strategy has not yet been found. This could 

be an area for future research. 

 

2. Possible bias in the Aggregated rank: An aggregated rank score was composed 

for each strategy by combining the F-1, ROC, and G-mean ranks of each 

strategy. Ranks are based on a score that is relative to the maximum score 

obtained for that metric. This means that ranks can be influenced by the 

presence of outliers like abnormally high or low scores. This may be a source 

of bias to the ranking measure. A mechanism should be included in the 

measure to reduce or prevent this bias.  

 

3. No optimal distribution: The experiment could be enhanced by extending 

research that identifies the optimal distribution between the majority and the 

minority classes and for the strategies evaluated. 

 

4. Pre-transformed data: Because the data is already transformed by PCA, we are 

not able to know what the features originally were before the transformation 

was applied. Moreover, we must assume that the data has been standardized 

and normalized (since this is an essential step to performing PCA). However, 

since we do not know how the procedure was done, we must assume it was 

performed correctly. 

 

5. No additional repeats during Cross-Validation: The experiment could be 

enhanced by including additional repeats during the stratified cross-validation 

process. This would give the experiments greater certainty regarding the 

validity of the results obtained.  

 

6. Lack of control during the oversampling process: This experiment chose to 

use mostly all the default parameters of classifiers and sampling techniques. 

This comes with a drawback as it means that there is no control over the 
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sampling process and the proportion/amount of synthetic data that is generated 

is unknown. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

  82 

5. CONCLUSION  
 

5.1 Summary of Findings 

 

The first investigation was conducted to assess the baseline hypothesis that tests 

whether the strategies that use SMOTE or one the variants tested in this experiment 

will achieve higher performance in comparison to techniques that use random 

oversampling or no sampling. This research found that: The first and second sets of 

experimental results indicate that SMOTE and extensions to the SMOTE technique 

are, on average, more effective as strategies in terms of the three performance metrics 

in comparison to strategies that use random oversampling or no sampling. Therefore, 

there is sufficient evidence to reject the baseline null hypothesis. 

 

A second investigation was conducted and in order to evaluate the secondary 

hypothesis that the SMOTE-variants that include a mechanism for data cleaning 

(SMOTE-Tomek and SMOTE-ENN) would achieve a better performance relative to 

the other sampling techniques tested in this experiment. This research found that: The 

results indicate that SVM-SMOTE, SMOTE, SMOTE-Tomek, and SMOTE-ENN are 

all robust oversampling techniques that can be used for this dataset. The best classifiers 

were found to be the EasyEnsemble Classifier and the BalancedRandomForest 

Classifier, in particular. The RandomForest Classifier also showed good results. 

Strategies that include these classifiers or sampling techniques are therefore advised 

for this particular dataset.  

 

Since both SMOTE and SMOTE-Tomek exhibit the exact same results, this could 

mean that SMOTE-ENN was the only data cleaning variant of the algorithm that 

worked (as intended) in this experiment. Whether this is due to an error or intrinsic 

data characteristics is an avenue for future research. As a result, this experiment was 

only able to, ultimately, produce one set of results for data-cleaning variants of the 

technique. Therefore, its ability to evaluate whether these techniques are on average 

superior for this specific dataset is limited. Moreover, since the average performance 

(across all three sets) of SMOTE-SVM and the original SMOTE technique was higher 

than that of the SMOTE-ENN, this also suggests that for this specific dataset, SMOTE 
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variants that include data cleaning methods are albeit robust not the best sampling 

techniques. 

 

5.2 Future Work and Recommendations 

 

1. Future research could be done to identify the optimum parameters that help 

reduce the training time while maintaining similar performance. 

 

2. Additional research should be included to understand better why SMOTE and 

SMOTE-Tomek achieved the same result.   

 

3. Future research should also develop on understanding why the SVM-SMOTE 

technique was superior to other strategies. 

 

4. Given a large number of SMOTE and SMOTE extensions, it would be essential 

to create a more systematic framework to help aid research (by providing some 

guidance) on what techniques are more appropriate depending on the dataset 

and underlying characteristics of the data. A current limitation of studies on 

oversampling is that strategies are formulated only a posteriori, after 

experimentation. Future research should look into developing methodologies 

that can be used before experimentation, for example, during exploratory data 

analysis (EDA), and that can be used to help guide researchers on what 

algorithms are most appropriate.   

 
 

5.3 Contributions and Impact 

 
This research project has presented a comprehensive empirical investigation to the 

performance of several oversampling techniques that are based on the SMOTE 

algorithm in the task of credit-card fraud classification. Seven different classifiers, 

together with seven different sampling techniques (amongst which most are explicitly 

designed to help deal with imbalances), were assessed and compared using the credit-

card fraud dataset. The experiment considered 49 different strategies for the credit-card 
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dataset by evaluating the performance of all the different combinations of classifiers 

and sampling techniques. Furthermore, all strategies were also examined under 

different conditions of varying degrees of skewness to the class-distribution of the data 

resulting in 441 different metrics for performance. These metrics were compared, and 

the more robust strategies were identified.  

 

The information produced by this research adds to the vast body of work in the fields 

of Machine Learning, Class-Imbalance, and credit-card fraud. The conclusions 

obtained by this research reiterate the importance of techniques (such as SMOTE) that 

are specifically designed to help deal with highly imbalanced data. Particularly in the 

context of credit card fraud, where the data is very complex and highly imbalanced in 

nature, these techniques can be used to significantly improve the performance of 

classifiers in accurately distinguishing fraudulent and non-fraudulent transactions.  

 

Fundamentally, the objective of research on fraud should be to help researchers not 

only identify fraudulent behavior but also to anticipate and predict it. Consequently, a 

significant progression for research on fraud would be to develop a framework that 

helps identify strategies that are most consistently robust so that these strategies can be 

implemented into fraud-detection-systems that operate in real-time with non-static 

streams of data. With this in mind, we hope that this research project will be used to 

bring insights and knowledge that can bring us closer towards this goal, ultimately, in 

the fight against fraud.   
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