
BagStack Classification for Data Imbalance Problems with Application

to Defect Detection and Labeling in Semiconductor Units

by

Bashar Muneer Haddad

A Dissertation Presented in Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy

Approved January 2019 by the
Graduate Supervisory Committee:

Lina Karam, Chair
Baoxin Li
Jingrui He

Pavan Turaga

ARIZONA STATE UNIVERSITY

May 2019



ABSTRACT

Despite the fact that machine learning supports the development of computer vision applications

by shortening the development cycle, finding a general learning algorithm that solves a wide range

of applications is still bounded by the ”no free lunch theorem”. The search for the right algorithm

to solve a specific problem is driven by the problem itself, the data availability and many other re-

quirements. Automated visual inspection (AVI) systems represent a major part of these challenging

computer vision applications. They are gaining growing interest in the manufacturing industry to de-

tect defective products and keep these from reaching customers. The process of defect detection

and classification in semiconductor units is challenging due to different acceptable variations that

the manufacturing process introduces. Other variations are also typically introduced when using

optical inspection systems due to changes in lighting conditions and misalignment of the imaged

units, which makes the defect detection process more challenging.

In this thesis, a BagStack classification framework is proposed, which makes use of stacking

and bagging concepts to handle both variance and bias errors. The classifier is designed to handle

the data imbalance and overfitting problems by adaptively transforming the multi-class classification

problem into multiple binary classification problems, applying a bagging approach to train a set of

base learners for each specific problem, adaptively specifying the number of base learners assigned

to each problem, adaptively specifying the number of samples to use from each class, applying a

novel data-imbalance aware cross-validation technique to generate the meta-data while taking into

account the data imbalance problem at the meta-data level and, finally, using a multi-response

random forest regression classifier as a meta-classifier. The BagStack classifier makes use of

multiple features to solve the defect classification problem. In order to detect defects, a locally

adaptive statistical background modeling is proposed.

The proposed BagStack classifier outperforms state-of-the-art image classification techniques

on our dataset in terms of overall classification accuracy and average per-class classification ac-

curacy. The proposed detection method achieves high performance on the considered dataset in

terms of recall and precision.
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Chapter 1

INTRODUCTION

The mutually beneficial relationship between machine learning and computer vision has signif-

icantly increased during the last two decades driven by the improvements of training algorithms,

data availability and hardware performance. Machine learning is the science of giving computers

the ability to learn without being explicitly programmed. Machine learning uses algorithms to parse,

process, learn from data, and finally make a prediction about unseen data in the real world. Com-

puter vision is the science of giving machines the capability to visually sense and recognize the

world around them. It is mainly concerned with automatic extracting, analyzing and understanding

useful information from a single image or a sequence of images. It involves the development of

theoretical and algorithmic methods to achieve automatic visual understanding.

The applications of computer vision are numerous, including face recognition, defect detection,

object recognition, autonomous vehicles, biomedical applications, text recognition, image restora-

tion, remote sensing and surveillance among others [1]. In fact, the range of computer vision appli-

cations is very large, and methods carried out can be very different, inspired from physics, biology,

statistics theory, functional analysis, and other disciplines. Different applications have different char-

acteristics, which makes a specific machine learning algorithm or a subset of algorithms only useful

to learn a specific application or specific problem. The No Free Lunch Theorem [2], implies that it is

not possible to have a universal machine learning algorithm that can learn and consistently perform

better than all other machine learning algorithms for all different tasks (problems). It is important to

notice that the no free lunch theorem considers the whole problem space, that is, all the possible

learning tasks; while in real practice, we are usually interested in a specific task (problem) or a very

limited portion of the whole space. Thus, finding a machine learning algorithm that can perform

better than all other algorithms on this task is possible and the search is valid.

Object detection and classification are among the important applications of computer vision. Ob-

ject detection is the process of detecting objects of interest in an image or video. Classification is

the task of assigning to an input image or a detected object one label from a fixed set of categories.

Image classification has a large variety of practical applications. Among these applications, Auto-

mated Visual Inspection (AVI) systems are gaining growing interest in the manufacturing industry.
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An AVI system is a mechanized one that is used to perform quality control by using cameras con-

nected to an intelligent system. Inspection is an important process to detect defective products and

keep these from reaching customers. Humans can be engaged in the inspection process but, due

to issues, such as tiredness, lack of consistency, and boredom, their performance is often unreli-

able. In some cases, such as when components to be inspected are very small and the production

rate is very high, the use of manual inspection is not possible. Therefore, AVI systems started

playing important roles in advanced manufacturing to guarantee the quality of products in a timely

manner[3].

In the last few years, computer vision and more precisely object detection and classification

have progressed immensely. This significant improvement has been achieved by the power of

data, using thousands and millions of examples, images and instances for training to fit gigantic

models. However, learning from small datasets with just few hundreds or in some cases tens of

images is still a challenge. Learning from small datasets becomes a more difficult problem when

it is augmented with other challenging problems, e.g., data imbalance, variations within the class,

and similarities between classes among others. Dealing with small datasets is not a problem if we

can define a set of features that can be used efficiently to separate between classes and if suitable

training algorithms to perform the training are also available. Selecting such a feature set and finding

such algorithms can be challenging.

In this work, a BagStack classifier is proposed for data imbalance problems, unequal number

of samples belonging to different classes, in which the proposed classifier uses the concepts of

bagging and stacking to tackle both variance and bias errors. The classifier is designed to learn

from small datasets and to effectively deal with data imbalance.

1.1 The Classification Problem

In machine learning, it is well known that applying different learning algorithms, e.g., support

vector machine [1], decision tree [4] and Naïve Bayes classifier [1], can result in performance vari-

ations. Similarly, applying the same learning algorithm to different datasets can lead to different

performance results. It is typically difficult to tell in advance which algorithm can achieve the best

performance for a specific problem. The main challenge in dealing with this dilemma is that the

true data generating distribution P0 of the problem is unknown. Designing one learning algorithm
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that can deal with different variations of true data generating distributions is a difficult task, if not im-

possible. In this section, the characteristics of computer vision problems (image classification) are

discussed from the machine and statistical learning perspectives, including some of the main char-

acteristics that affect the simplicity/complexity of the proposed machine learning solutions. Such

characteristics include the number of available samples, data imbalance, multi-class, within-class

variations and inter-class similarities, variance and bias errors.

Number of available samples: It is well known that having more samples, in general, improves

the training accuracy and reduces the generalization error. Let us define L to be the total number

of samples available for both learning and testing. L = r + v + t, where t, r and v are the numbers

of samples used for testing, training and validation, respectively. Let Pn,Tr, Pn,V and Pn,Tst be

training, validation and testing distributions, respectively.

The convergence between the true data generating distribution and these distributions depends

on the total number of samples. Having a small number of samples increases the divergence be-

tween P0 (the true data generating distribution) and these distributions. Then, the KLD(Pn,Tr, P0),

KLD(Pn,V , P0) and KLD(Pn,Tst, P0) → ∞ as L → 0, where KLD is the Kullback–Leibler diver-

gence [5]. If L is very small, the distributions are not good representatives of P0. But, how large the

KLD will be? The answer to this question is a function of the variation in the true data generating

distribution P0. In practice, we do not have access to this distribution (P0), thus we do not have

access to the true variation in the distribution P0. The simplest way to estimate this variation is by

using the available number of samples L. Here one can argue the following. First, the estimated

variation based on the given number of samples tells only if more samples are needed. It does not

tell how many samples are required to solve the problem and achieve acceptable accuracy over

the true data generating distribution (P0). Second, the given samples should be randomly sampled

from the true data distribution to give accurate estimation of the variation. Third, the distribution P0

should not be changing as a function of other variables, e.g., time.

As L → ∞, all r, v and t → ∞. If these samples are randomly sampled from the true data

generating distribution P0, the empirical distributions Pn,Tr, Pn,V , and Pn,Test → P0. This con-

vergence between empirical distributions and true data generating distribution is beneficial for both

training and testing. In addition to this convergence, having more samples gives more freedom to

increase the system complexity without worrying about data overfitting. Increasing the complexity
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Figure 1: Examples of adding more samples to the observations’ set.

of the system and the number of training samples improves the ability of the system to capture all

complex and real variations (in contrast to variations due to noise) within the data.

The assumption that adding more samples improves the training accuracy can be argued. In

fact, there is no guarantee that adding more samples will improve the generalization accuracy over

the true data generating distribution. Figure 1 shows 2 different approaches (Case 2 and Case 3)

for adding more samples to the set of observations. In Figure 1.1, Case 1 corresponds to the initial

number of samples. P0 is the true data generating distribution and P
′

0 is the estimated empirical

distribution based on the given observations. Each vertical line corresponds to one added obser-

vation. In Case 2, samples are added in a random way. This addition improves the estimation. In

Case 3, most of the samples are sampled from a small range of X. It is a biased sampling process.

This leads to a less accurate estimation.

To absorb this argument, the following considerations should be taken into account: (1) P0 is

an unknown distribution and can only be estimated closely when L → ∞ (very large number of

samples); (2) the variation within the true data generating distribution P0 is reasonable, most of

the tasks that we consider are structured tasks (not random tasks); (3) samples are added to the

dataset by randomly sampling from the distribution P0; (4) the number of training samples should be

sufficient to deal with the complexity of the task and should be directly proportional to the variation

within the true data generating distribution P0.

Data Imbalance: Data imbalance is a terminology used to describe the situation where the

classes are not represented equally. It is the case when different classes have a significantly dif-

ferent number of samples. If the data samples are generated by randomly sampling from the true

data generating distribution, then the true data generating distribution is a non-uniform distribution.

Due to data imbalance, the training algorithm gives more attention to the class(es) with the
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Figure 2: Examples of different classification problems.

majority of samples, which results in biased classifiers, i.e., classifiers that give more attention to

samples belonging to the majority classes. If the empirical training and testing distributions are

identical to the true data generating distribution, then the training process is doing the right thing by

minimizing the error on the training set. Minimizing the error on the training data results in better

accuracy on the testing data set in this case. Data imbalance is not a problem if: (1) classes are

separable, (2) the number of available samples is large enough to cover all aspects of the true data

generating distribution, in which case undersampling can be used to balance the data, and (3) the

variation within the majority class is very low, which means that most of the given samples (majority

class) are just redundant and do not add significant information content.
Data imbalance is a problem if all classes are important and even more so if the minority class is

more important (this is very common in defect, anomaly, and fraud detection). In practice, data im-
balance can be solved by either undersampling [6] or oversampling (changing the given distribution)
[7]. Another approach consists of using different costs for different classes [8].

Figure 2 depicts six different classification problems. All these problems are binary classification

problems. In Case 1, there is no data imbalance; the problem is linearly separable. In Case 2, there

is data imbalance, but it is not a problem. The variation within the majority class (class A) is small,

i.e., most of the samples are redundant samples and the two classes are linearly separable. In Case

3, there is data imbalance, but again it is not a problem, since the two classes are linearly separable.

In Case 4, there is data imbalance and the two classes are not linearly separable. Both lines 2 and 3

result in the same classification error rate (two misclassifications). Selecting line 2 guarantees that

5



all samples belonging to class A are correctly classified, while selecting line 3 guarantees that all

samples belonging to class B are correctly classified. In Case 5, there is a data imbalance problem.

It cannot be solved by over- under- sampling. The two classes are not separable. The variations

within the two classes are very significant. In Case 6, there is no data imbalance problem, but the

two classes are not linearly separable.

The data imbalance is considered as a problem based on the task at hand and the used per-

formance metric. In general, we are interested in two performance metrics: overall accuracy and

average per-class accuracy, also denoted as average accuracy for short. Let us β be a learned

function (classifier or predictor) that is obtained as a result of a training process. The overall accu-

racy (OA) is the total number of samples that are classified correctly divided by the total number of

samples (n) and it can be expressed as:

OA =

∑n
i=1 I(β(Xi) = Yi)

n
(1.1)

where I(.) is equal 1 if β(Xi) = Yi and 0 otherwise, and n is the total number of samples. The

average per-class accuracy (AA) is given by:

AA =

∑C
c=1

∑n
i=1,Yi=C I(β(Xi)=Yi)

nc

C
(1.2)

where nc is the total number of samples belonging to Class c and C is the number of classes.

Usually, data imbalance is not a problem if the main performance metric that we are interested

in is the overall accuracy. In this case, as long as the true data generating distribution, the training

distribution and the testing distribution are identical, a training process that minimizes the loss value

on the training data minimizes the generalization error as well. If the success criteria that we are

interested in is the average accuracy, data imbalance is a problem and needs to be solved before

starting the training process to avoid biased classifiers.

Multi-class classification problem: Multi-Class (MC) classification is the problem of assigning a

label y ∈ {y1, y2, y3, ..., yC} to an input data vector X̄, where C is the number of classes. The MC

classification problem cannot be solved by using ONE simple binary classifier, e.g., SVM . Having

only two classes requires only one flag to distinguish between them; this flag can be either 0 or 1,

positive or negative. The MC classification problem needs multiple flags to distinguish between

classes. Converting the MC classification problem into multiple binary classification problems can

be implemented by using either one-vs-one or one-vs-all binary classifications. These two methods

are very common in machine learning, even though they are not the only ones.
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If one-vs-one binary classifiers are used to implement the MC problem, then the total number of

required classifiers is
∑C

i=2(i−1) = (C−1)+(C−2)+ ...+1, where C is the total number of classes.

Consequently, the number of binary classifiers to be used to implement the MC problem can be

quite large ∼ C2 and the collinearity between these classifiers is very high. During testing, a sam-

ple labeled as Y is tested by a classifier that is trained to solve the problem (Label J vs. Label Q).

This classifier has not been trained on any samples of class Y . in fact, this is the first time that

this classifier is seeing samples from this category and it is completely unaware of it. The classi-

fication (regression) is completely random, given that the ClassJ and the ClassQ are completely

independent of ClassY .

If one-vs-all binarization is used to implement theMC problem, then the total number of required

classifiers is
∑C

Ci=1 1, where C is the number of classes. The binary classifier must deal with a com-

plex binary classification problem (one-vs-all), where the variation within the class (all) is very high.

This is highly expected since the class (all) is a combination of samples from different classes as

defined by the true data generating distribution. Merging different samples that belong to differ-

ent classes into one class converts a balanced problem into an imbalanced problem. Solving the

problem of imbalanced data by using oversampling or undersampling can lead to using redundant

information or information loss, respectively.

Variations and similarities: Variations within the same class and similarities between classes give

an indication about the complexity of the problem. These two properties result from the distribution

P0. Variation within the class increases the demand for having more samples of the same class in

the training process. More samples are required to cover the variation. Variation within the same

class makes the ability of the model to generalize for new samples belonging to the same class

more difficult. Similarity between classes adds more complexity to the system that is required to

solve the problem. Increasing the complexity necessitates having more training samples to avoid

overfitting. The main challenge/concern about either variation within class or similarity between

classes is that the true data generating distribution is unknown and, as a result, the level of variation

and/or similarity cannot be determined accurately. Variations and similarities can only be estimated

by using the training data (the given samples).

None-zero generalization error: The generalization error consists of three main components,

variance error, bias error and another term that is related to the randomness in the true data gener-
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ating distribution. The generalization error is given by [9]:

GeneralizationError = V ariance + (Bias)2 + irreducible error (1.3)

Achieving zero bias and zero variance depends on many factors including the complexity of

the classification problem, the quality of the data, the quality of the data representation, the num-

ber of samples, similarities between classes, variation within classes, the distribution of different

classes and the available training algorithms. The variance error can be reduced by using ensem-

ble classifiers (Bagging) [9], bias error can be solved by changing the training algorithm, the data

representation or by using ensemble classifiers [9]. If all available models (models that have been

trained by using different available training algorithms and different data representations) have non-

zero variance error and non-zero bias error, achieving high classification accuracy becomes more

challenging. The proposed BagStack classifier has been designed to minimize both variance and

bias errors when:

• All models that are generated by using different training algorithms and different data repre-

sentations have non-zero bias and non-zero variance error.

• A small dataset, and/or data imbalance, and/or variations within classes, and/or similarities

between classes exist.

1.2 Industrial Application: Defect Detection and Classification in Semiconductor Units

Automated inspection systems play an important role in manufacturing to guarantee higher qual-

ity and reduce production costs. In the semiconductor manufacturing industry, assembly and testing

processes are getting more complex, resulting in a greater tendency of defects to impact the pro-

duction process. These defects can cause field failures and can result in customer dissatisfactions

and returns, which makes it important to have reliable inspection systems to control and guarantee

the product quality [10].

Currently available defect detection and classification systems are customized and hard-wired to

the detection of particular classes of defects and cannot deal with new unknown classes of defects.

The inability to adapt to new types of defects results in additional handling and additional inspection

time depending on the number and types of defects being inspected, and in the failure of detecting
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Figure 3: Defects in the die area. (a) Foreign material on die. (b) Scratch on die. (c) Crack on die.
(d) Fingerprint on die. (e) Epoxy on die.

new or unknown defects [11]. Dealing with new unknown defects necessitates redesigning the ex-

isting automated algorithms to detect and classify the new defects, which causes long development

cycles, and delays, and which requires human effort to support constantly the development of the

system.

Detection and classification tools can provide important information about defects’ types, sizes,

locations, distributions, and repetitions. Determining the stage of production responsible for the fault

and classifying these defects are important when corrective actions need to be taken. Data mining

methods have been used successfully in the semiconductor manufacturing process; however, no

data mining method was proposed for defect detection and classification for semiconductor units in

the manufacturing industry. Some prior works applied data mining methods to assessing the quality

of semiconductor wafers and equipment but not semiconductor units [12, 13].

Defects can occur due to a variety of causes, including unintended human interaction, failures

of machines that are used in the manufacturing process, low quality materials, or any unexpected

events, such as power failure. Defects can affect one or more parts of the semiconductor unit, such

as the die, epoxy, and substrate regions of the unit. The types of defects may differ depending on

the manufacturing stage. Some of these defect types include cracks, fingerprints, epoxy on die,

and defects due to foreign material, such as hair, threads, fibers, dust, or fluids. Figure 3 depicts

some sample defects. Some challenges include the shortage of defective units, imbalanced data,

wide variation within the same defect category, and similarities between different defect categories.
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Figure 4: The characteristics of the problem.

Defect classification in semiconductor units is a challenging problem. The main objective to be

achieved is to reduce underrejection and overrejection rates. The performance metric is defined

as the average accuracy. Figure 4 depicts the different classification problems and shows to which

category the target application belongs.

1.3 Contributions

The first contribution of this research is to design a classifier that can handle data imbalance

when the number of available samples is very small. The proposed BagStack classifier uses the

concepts of bagging and stacking to reduce both variance and bias errors.

In the process of pursuing these goals, several techniques are proposed to handle the data

imbalance problem. The multi-class classification problem is transformed into either one-vs-one or

10



one-vs-all multiple binary classification problems. Many base learners are assigned to solve each

problem. Bagging is used to train the subset of base learners assigned to the same problem. The

number of base learners is adaptively specified to solve each sub-problem (the binary classification)

and the number of samples to use to train each base learner. Experimental results show that

the proposed BagStack classifier can outperform existing state-of-the-art classifiers for different

tasks, especially in the case of the ones when a single training algorithm is not sufficient to achieve

good accuracy and the set of available base learners results in a non-zero bias error, i.e., when all

available training algorithms are linear, and the classes are non-linearly separable. Stacking uses

many training algorithms that have different bias errors (non-zero and independent) to transform

the problem from the input space to the meta-data space where the meta-classifier may have better

opportunity to achieve a higher accuracy.

If the training data is imbalanced and if the standard K-fold cross-validation is used to gener-

ate the meta-data, such that we re-train/re-test the base learners K times and each time K − 1

folds are used to train the base learners and the last fold is used to generate the meta-data, then

the meta-data will have the same distribution as the training data. Using imbalanced meta-data

to train the meta-classifier results in a biased meta-classifier. In this research, a simple, yet very

efficient, technique is proposed to handle the data imbalance problem at the meta-data level. A

novel imbalance-aware K − fold −M − split cross validation technique is proposed to generate

the meta-data that adapts to the imbalance characteristics of the data for imbalance data problem.

The proposed approach adaptively increases the number of folds (K) to handle the data imbalance

problem at the meta-level. Imbalance-aware cross validation is different from the well-known stan-

dard K-fold cross validation in two aspects. First, the training set is divided into C (the number of

classes) subsets, where each subset contains all samples belonging to the same class, each subset

is divided intoM splits, and the resulting folds are combined back such that: C splits (one-split from

each class is randomly selected) are used to construct the validation set, and all other C × (M − 1)

remaining splits are used to construct the training set. Second, the random process of sampling of

splits, constructing training and validation sets, and performing training and testing is repeated for

K times, which depends on the maximum imbalance ratio between classes (majority/minority). This

number (K)may exceed the number of splits (M). It is worth mentioning that the standardK−fold

cross validation is just a special case of the imbalance aware cross validation where M = K. Ex-

perimental results show that imbalance-aware cross-validation increases the average accuracy of
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many classification problems with either an increase or a slight reduction in overall accuracy. The

proposed approach has been tested on many datasets to validate its efficiency. Imbalance-aware

cross validation is a replacement for cross-validation in the context of stack-based classifiers.

Specifying the number of base learners adaptively may lead to a large number of base learn-

ers resulting in a high computational complexity. The complexity of the proposed approach can

be constrained by setting two main constraints: the coverage percentage, which represents the

number of samples (belonging to the majority class) that are used in the training process divided

by the total number of samples belonging to the majority class, and the maximum number of base

learners. These constraints may lead to requiring, for the training of each base learner, a number

of training samples that is larger than the number of samples in the minority class and that is lower

than the number of samples in the majority class. Instead of using the standard oversampling /

undersampling, a new sampling technique is proposed, Variation-Based and Adaptive-Synthetic

Minority Oversampling Technique (VA-SMOTE), to handle the issue when synthetic data from a

minority class invade the majority class too deeply (creating isolated islands) by considering the

variation within the minority class’ samples. VA-SMOTE is a variance-based, adaptive synthetic

minority technique. It is a variation of the SMOTE algorithm [14]. The main contribution is design-

ing a synthetic-based oversampling technique and adaptive-undersampling technique that can be

used to achieve data balance to deal with severe data imbalance problem and the presence of large

variations within the minority class.

A novel approach for defect detection and classification in semiconductor units is proposed. The

proposed system consists of three stages: proposal generation stage (change detection), defect

detection stage and refinement stage. In the proposal generation stage, changes on the target unit

are detected using a novel change detection approach. In the second stage, a deep neural network

is used to classify detected regions into either defective or non-defective regions. Non-defective

regions are regions exhibiting allowable changes due to factors such as lighting conditions and

subtle differences in manufacturing. The defect detection stage achieves up to 94.3% accuracy. In

practice, defects that are smaller than a specified tolerance size are ignored by manufactures. The

tolerance size depends on the defect types and is determined based on risk factors. In order to

ignore such defects, the proposed approach includes a final refinement stage wherein the detected

defects are categorized by a stacking-based ensemble classifier into different classes. Defects
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smaller than their corresponding tolerance size are ignored. The refined system achieves up to

97.88% overall detection accuracy.

To the best of our knowledge, this is the first work that uses machine learning to address the

problem of defect detection and classification at the level of semiconductor units, wherein defect de-

tection is performed in an automatic way and all regions of the unit are included. The performance

of the proposed approach is tested on images of real semiconductors units from Intel. The proposed

approach was shown to result in a high detection and classification accuracy. The proposed system

was able to achieve a 98.2% precision and a 99.44% recall values. The proposed method can han-

dle different types of acceptable variations (e.g., light variations, epoxy variations). The proposed

method can ignore these differences while still maintaining the ability to detect the actual defects.

Although the proposed change detection system is designed specifically for semiconductor units,

it can also be applied to other problems (e.g., surface defect detections) that have similar types of

nuisance variations (e.g., lighting conditions and material physical properties).

1.4 Organization

This thesis is organized as follows. Chapter 2 presents a detailed literature review for different

ensemble-based classifiers, including bagging, boosting and stacking. In the literature review, the

data imbalance problem and the rational behind bagging and stacking are also presented.

Chapter 3 presents the proposed BagStack classifier. This chapter covers themain contributions

of the BagStack classifier and explains the rational behind the design. In the last section of Chapter

3, a detailed analysis and evaluation of the proposed classifier are presented. The evaluation

consists of different experiments that cover different parameters to show the effect of changing

each one of them. The results verify the ability of the BagStack classifier to outperform many other

state-of-the-art ensemble classifiers.

Chapter 4 presents a multi-feature sparse based approach for defect classification in semicon-

ductor units. In this chapter, the initial version of the BagStack classifier is covered. In this initial

version, cross-validation are not used to generate the meta-data, most of the parameters that are

used to control the behavior of the classifier are selected manually through a heuristic search / op-

timization method. The initial version was only tested using defects on the die region. Defects are

cropped manually. In Chapter 5, the full framework for defect detection and classification is pre-
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sented. A locally adaptive statistical background modeling for change detection is proposed. The

detected changes are processed by using a DNN-based solution to classify the detected changes

into either defective or non-defective images. In the last stage, the BagStack classifier is used

to classify detected defective images into one of the defects’ classes. In Chapter 6, another ap-

plication is introduced, namely defect detection and classification on steel surfaces, to prove the

capability of the BagStack classifier. Finally, Chapter 7 summarizes the results, contributions and

future research directions.
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Chapter 2

BACKGROUND AND LITERATURE REVIEW

This chapter covers the background and literature review of ensemble classifiers, bagging, boost-

ing and stacking-based classifiers. A brief description of the most common used boosting and bag-

ging techniques is presented. A detailed description of stacking-based classifiers is presented. This

chapter covers also the data imbalance problem and the main contributions in the literature to deal

with it. In this chapter, the literature review of the following topics are covered: (1) Ensemble clas-

sifiers, bagging and boosting; (2) Stacking-based Classifier; (3) Data imbalance problem, sampling

techniques and ensemble classifiers for data imbalance problem; (4) The rational behind bagging

and stacking ensembles.

2.1 Ensemble Methods: Bagging and Boosting

In machine learning, ensemble classifiers are learning algorithms that are constructed by com-

bining weak classifiers. In ensemble learning, a classification task is learned by dividing it to smaller

subtasks. The idea of using ensembles to tackle different problems has gained significant interest

in the last two decades. Usually, training these weak classifiers is less expensive and easier than

training strong classifiers. The performance of ensemble classifiers depends on the quality and

diversity of their weak (base) learners. Diverse classifiers generate independent and uncorrelated

errors. There is a trade-off between these two properties, two accurate classifiers are less probable

to be diverse and two diverse classifiers cannot at the same time both be very accurate.

2.1.1 Bagging

Bootstrap Aggregating (Bagging) [9] is an ensemble classifier that uses bootstrap sampling to

generate subsets of the training data and train multiple weak classifiers to reduce the variance error

component in the bias-variance equation. Bootstrapping is a general sampling technique in which

the data is divided into several non-disjoint training sets by drawing randomly, with replacement

from the data. Bagging produces the final prediction by combining (averaging or majority voting)
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the predictions of its base learners (weak learners). Bagging ensemble is the right candidate to

improve classification accuracy, when available training algorithms are unstable for a given training

set. The reduction in variance error is proportional to the number of used base learners [15].

Many works in the literature, [4, 16, 17, 18, 19, 20] mathematically explain why and how bagging

works. It is well known that bagging misclassification error converges to an asymptotic value as the

number of base learners increases. Many works in the literature focused on understanding the

relation between the ensemble size and this asymptotic value as well as how to specify the optimal

number of base learners to construct bagging-based ensemble classifier.

Bagging experienced different variations [21]; these variations can be categorized into one of

the following: using different bootstrap sampling schemes, using subset of features, using different

voting schemes, adding noise to the inputs, using heterogeneous base learners instead of homo-

geneous ones and methods that use bagging in online environments. For more details, the reader

is referred to [21, 22, 23, 24, 25, 26, 27].

2.1.2 Boosting

The first Boosting procedure was proposed in 1990 by Schapire [28]. The main contribution of

this work is to show that strong classifiers can be built by combining weak classifiers. The boosting

procedure described in [28] is very simple, using only three base learners, the data set is divided

into three partitions as follows. For a given instance, if the first two classifiers agree on the class

label, this is the final decision for that instance. The set of instances on which they disagree defines

the third partition which is used to train the third classifier. Based on this description an important

difference between bagging and boosting is emerged. In bagging, different base learners are inde-

pendent, they can be trained in parallel. In boosting, the probability of a specific instance to be part

of a particular classifier’s training set depends on the performance of previous classifiers on that

instance. In fact, the probability distribution used to sample form the training set is updated such

that instances that miss-classified by previous classifiers will have higher probability to be selected

for training the current classifier. Thus, boosting tries to generate new classifiers that are able to

better classify the ‘hard’ instances for the previous ensemble members.

The most significant variant of boosting algorithm is the one proposed by Schapire and Freund,

Adaptive Boosting, known as AdaBoost [29]. The proposed algorithm improves the classification
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accuracy of algorithms by combining several (large number of) base learners, each is trained using

the same learning algorithm (same bias) but different training examples. AdaBoost uses weighted

versions of the same training data instead of randomly subsamples. The same training set is repeat-

edly used. The algorithm learns a set of classifiers that are obtained sequentially, using re-weighted

versions of the training data, with the weights depending on the accuracy of the previous classifiers.

Increasing the weights of misclassified samples allows the weak learner at each iteration to

focus on instances that were not correctly classified by previous classifiers. It is important to choose

weak learners (e.g. linear classifiers) to obtain the base classifiers, allowing them to learn without

decreasing significantly the weight of previously correctly classified instances. If the base learner is

too strong, it may achieve high accuracy, leaving only outliers and noisy instances with significant

weight to be learned in the following rounds [23]. The AdaBoost algorithm is now a well-known

and deeply studied method to build ensembles of classifiers with very good performance. One of

the main strength of using boosting is the ability of inducing diversity even for stable classifiers

by changing the focus on different samples of the training set. This main strength can become

a drawback if the data is noisy. Many works addressed the question of which is better bagging or

boosting? And what are the circumstances that any of them overcome the other? [30, 31]. Boosting

performance is explained based on margin-based discriminative learning [32, 33].

One of the main drawbacks of boosting is that it is quite susceptible to noise. Many studies

[34, 35, 36, 37] have shown that. One of these studies is the one carried by Dietterich [34]. In

his experiment, he evaluates both of bagging and boosting using some standard datasets. He

investigates the accuracy of these methods in relation to the addition of classification noise to the

training data. AdaBoost experiences a significant reduction in performance comparing to bagging

as we increase the level of the noise. As it is expected, AdaBoost will focus more on misclassified

instances, these few abnormal instances, which leads to overfitting problem.

Even though the most significant variation of boosting is the AdaBoost, many other variants

have been published in literature to address some of the main problems we mentioned above. In

general, these variations can be categorized into one of the followings. Methods that use different

sampling techniques, methods that use subsets of the features, methods that use different voting

rules, methods that can handle noisy data, methods that apply boosting based on the characteristics

of test instances and methods that apply boosting in online environments.

Real AdaBoost [38, 39], Logit Boost [40], Gentle AdaBoost [41], Modest AdaBoost [42], Float
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Boost [43], Emphasize Boost [44] and Reweight Boost [45] are some of these variations that have

significant contributions. Boosting algorithm, represented by AdaBoost and other variants, has been

successfully used in many real applications. Optical character recognition, pedestrian detection,

text categorization, speech and face detection are among the others. For more details, the reader

is referred to [21, 22, 23, 24, 25, 26, 27].

2.2 Stacking Based Classifier

Bagging and boosting ensembles are used to combine homogeneous base learners. On the

other hand, Stacking is used to generate ensembles of heterogeneous classifiers. Recently, it has

been proven that using stacking to mix different models that have different biases can outperform

other ensemble techniques. Stacking has been used in many competitions. Netflix competition is

one among the others [46, 47, 48].

Known in the literature by either stacking, meta-learning, blending classifier or mixing, stack-

ing was initially presented by Wolbert in 1992 under the name of Staked Generalization [49]. In

his paper, Wolbert described stacked generalization algorithm. He used the word black art to de-

scribe different components, aspects, parts and decisions in his work. Many questions have been

emerged. In general, research related to stacking based classifier can be divided into two major

parts. The first era 1992 to 2007 is best described by the word “experimentally”. Many researchers

worked to answer some of the “Black Art” questions carried out by Wolbert. In 2007, a paper “Super

Learner” [50] published by Mark J. van der Laan, Eric C. Polley et al proved mathematically the ra-

tional behind stacking “the relation between general cross validation and stacking”. The second era

2007 to 2017 is best described by “heuristic search”. Many researchers in this era used different

optimization and heuristic search algorithms to handle the challenge of finding the best configura-

tion of a stack-based classifier given a set of classifiers (training algorithms of different inherited

biased). In this section we will present a detailed literature review for stack based classifier. In

literature, there are many surveys [51, 52] that cover the development of stacking ensemble and its

variations. However, up to our knowledge we could not find any comprehensive survey that covers

these two eras. In this section we will present a comprehensive survey to cover the most important

advancements in stacking-based ensembles.

The stacking based classifier method is concerned with combining multiple classifiers generated
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by using different learning algorithms L1, L2, .... LN on a single data set S which consists of ex-

amples Si = (Xi, Yi), i.e., pairs of feature vector (Xi) and their classification (Yi). In the first phase

a set of base-level classifiers C1, C2, ... CN is generated, Ci = Li(S). In the second phase, a

meta-level classifier is trained that combines the outputs of the base level classifiers.

To generate a training set for learning the meta-classifier, a leave-one-out or a cross validation

procedure is applied. In leave-one-out, the training set S = (Xi, Yi)
i=m
i=1 , where m is the number of

samples, is used to generate m training-validation sets, each training set contains m − 1 samples

and each testing set contains one sample. ∀i = 1, 2, 3, ... m, ∀k = 1, 2, 3, ... N : Ci
k = Lk(S − si)

We then use the learned classifier to generate the prediction for si : ŷik = Ci
k(Xi). The meta-level

data set consists of examples of the form ((ŷi1, ŷ
i
2, ..., ŷ

i
k), Yi) for all i = 1, 2, ...,m, where the features

are the predictions of the base-level classifiers and the label is the corresponding label of the sample

at hand.

By using leave-one-out sampling technique, we need to train the base classifiers (m+ 1) times.

The first m times is to generate the meta-data and the last time is to generate the final base learners

that are used for the final testing. Using leave-one-out is expensive, especially when the number

of samples is large. On the other hand, if we define the function Dist(C1, C2) that measures the

difference between base classifiers trained by using samples (enough number) from the same data,

the difference between base learners CS
i that uses the training set Ttrain of S = m−1 samples and

the Call
i that uses the Ttrain of S samples will be very small. Thus, the quality of the meta-data will

be very high, and the meta-classifier is trained using samples very similar to the expected samples

in testing.

When having large number of samples, training using leave-one-out is expensive, usingQ−fold

cross validation is a good alternative. When Q = m, the Q − fold cross validation is equivalent to

leave-one-out. In Q− fold cross validation, instead of leaving out one example at a time, subset of

size ( 1
Q ) of the original data set are left out and the predictions of the learned base-level classifiers

obtained on these.

Stacking-based classifier is considered as ensemble classifier, where multiple base learners are

combined to build a strong classifier (a classifier with better accuracy). The other two ensemble clas-

sifiers are Bagging (Bootstrap Aggregating) and Boosting. In bagging and Boosting, the diversity

of classifiers is achieved by using different data sets to train each base learner. These techniques

use voting (either average or weighted) to find the final predictions. Two major differences between
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(Bagging, Boosting) and (Stacking): Bagging and Boosting use homogeneous base learners, base

learners that are trained by using the same training algorithm and the difference between base

learners as discussed above is in the training set used to train each classifier. Stacking uses het-

erogeneous classifiers, classifiers that use different learning algorithms (bias). The other difference

is related to the way they construct the final prediction. Bagging and Boosting use voting schemes

to find the final prediction. On the other hand, stacking uses a meta-classifier to predict the final

prediction.

In stacked generalization [49], the concept of stacking has been introduced. The author de-

scribed the whole process as a black art. Wolbert kept two questions opened: what is the best

meta-data to be used? And what is the best meta-classifier to be used?

Most of the research from 1992 to 2007 related to stacking-based classifiers tried to answer these

two questions. In 1992, Breiman suggested the stacking regression [53]. Stacking regression is a

method for forming linear combination of different predictors (classifiers) to give improved prediction

accuracy. The idea is to use cross validation data and least squares under non-negativity constraints

to determine the coefficients in the combinations. The final prediction is given by:

Yfinal = α1 ×X1 + α2 ×X2 + ...+ αk ×Xk (2.1)

where k is the number of base learners. In his paper, Breiman used two different regression tech-

niques, linear subset and ridge regression.

Skalak [54] proposed the use of instance-based learning classifiers that store a few prototypes

per class as level-0 classifiers. They also proposed to use a decision tree as a meta-classifier or

level-1 classifier. Fan [55] used conflict-based accuracy estimates to measure the accuracy of the

ensemble generated by Stacking. The authors use two tree-based classifiers and one rule-based

classifier as base-level classifiers. In contrast, for the meta-level, they use a rote table that behaves

as a decision tree without pruning in this case. This Stacking configuration is evaluated using four

datasets (including two artificial datasets). Although the authors claim that the proposed measure

is superior to all existing measures, their results do not clearly demonstrate that this estimate can

be generalized to more datasets or other meta-classifiers [52].

Ting and Witten [56, 57] addressed the two important questions that were asked by Wolbert

in 1992: the type of generalizers that is suitable to derive the higher-level model, and the kind of

attributes that should be used as its inputs. They suggested stack-base level classifiers whose

predictions are probability distributions (PDs) over the set of class values, rather than single class
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values. The meta-level attributes are thus the probabilities of each of the class values returned

by each of the base-level classifiers. The authors argue that this allows them to use not only the

predictions, but also the confidence of the base-level classifiers.

Each base level classifier predicts a PD over the possible class values, thus, the output of the

base classifier is a vector of C classes. This vector is given by:

P i(X) = (P i(C1 \X), P i(C2 \X), .... , P i(Cc \X)) (2.2)

where P i(C1\X) is the probability of being class 1 given the exampleX as predicted by the classifier

i. Thus, each meta-data example (Xi, yi) is of dimension Xi = (X1, X2, ... Xkc). The meta-level

attributes, which used and suggested by [57], are the probabilities predicted for each possible class

by each of the base-level classifiers.

The second important question, which meta-level classifier to be used? has been also answered

by [57]. They suggested using Multi-Response Linear Regression MLR. MLR is a modification

“adaptation” of linear regression for classification problem. With C classes values [C1, C2, ... Cc], C

regression problems are defined, one for each class. For each class, a linear regression equation

LRj is constructed to predict a binary variable, which has value 1 if the class value is Cj and zero

otherwise.

Given a new sample X to be classified. LRj(X) is calculated for each class and the class K

predicted with the max value LRk(X). For each one of these linear regression, the input is a vector

of size[1×KC], where K is the number of base learners and C is the number of classes. In 2002,

MLR was used by Seewald [58] with a different set of meta-data.

In [59], Bagging and Dagging, Ting and Witten investigated the method of stacked generaliza-

tion in combining models derived from different subsets of a training data sets by using a single

learning algorithm, as well as different learning algorithms. Bagging uses Bootstrap, which is a

method of sampling with replacement, while Dagging (disjoint aggregating) uses disjoint sampling

to generate different training sets to train each base learner. The main contribution of their work is

to replace voting scheme, they suggest using higher level learning algorithm to combine the outputs

(predictions) of level 1 base learners. They did not apply any cross validation when generating the

meta-data, instead they use the whole training set for each of the k-model, despite the fact that

subsets of L where used to train those models. In order to achieve high accuracy using stacking

based classifier, four areas (issues) should be taken care of: quality of base classifiers, diversity

between base classifiers, high quality meta-data and finally the quality of the meta-classifier. In their
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work, using the same data to generate the meta-data will affect the quality of the meta-data. In fact,

if the sampling percentage is high, this may lead to overfitting problem. On the other hand, using

a small portion of the data to generate the base learners in order to avoid the overfitting problem

may also lead to low quality base classifiers, since small portion of the available data is used. This

tradeoff between the quality of base learners and the quality of the meta-data can be solved by

using cross-validation.

Merz suggested SCANN [60] for combining the predictions of level-0 base learners. SCANN

uses the strategies of stacking and corresponding analysis to model the relationship between the

learning example and their classification by a collection of learned models. Corresponding analysis

is a method for geometrically modeling the relationship between the rows and cols of a matrix. A

nearest neighbor method is then applied within the resulting representation to classify unseen exam-

ples. When the errors are uncorrelated, the optimal approach is to take the majority vote. However,

when patterns exist in the errors of the learned models, a more elaborate combining scheme is

necessary. SCANN uses stacking and corresponding analysis to model the relationship between

learning examples vs. models. More specifically, the way these models classify these samples.

The new representation is captured in a space of uncorrelated dimensions. SCANN learning algo-

rithm can be broken into four parts: representation, classification, search and evaluation. Stacking

and corresponding analysis are used to create a new representation where SCANN applies KNN .

Dzeroski [61] suggested three different contributions: combining multiple models with meta-

decision tree [62], stacking with multi-response model tree and an extended set of meta-level fea-

tures [63]. In 2000, Dzeroski introduced a new method for meta-learning for combining classifiers

with stacking: meta-decision tree has been introduced. The meta-decision tree, which is used

as a meta-classifier, has base level classifiers in the leaves instead of class value predictions. It

predicts which base learners to trust for prediction instead of predicting the actual label of the exam-

ple. In [62], a full description of the meta-decision tree training algorithm is presented. Properties

(maximum probability, entropy and weight) of the probability distributions predicted by the base-

level classifiers are used as meta-level attributes instead of the probability distributions themselves.

MAXProb(X,C) is the highest-class probability (the probability of the predicted class) predicted

by the base level classifier C for example (X). Entropy(X,C) is the entropy of the class probability

distribution predicted by the classifier C for example X. Weight(S,C) is a function of the training

examples used by the classifier C to estimate the class distribution for example X, for decision
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trees, it is the weight of the examples in the leaf node used to classify the example. For rules, it

is the weight of the examples covered by the rules which has been used to classify the example.

The entropy and the maximum probability reflect the certainty of the classifier in the predicted class

value. If the returned predicted probability is highly spread, the maximum probability will be low,

and the entropy will be high, indicating that the classifier is not certain in its prediction. The weight

quantities reflect how reliable is the predicted class probability distribution. The higher the weight,

the more reliable the estimate. In [63], Dzeroski reported that stacking with MDTs clearly out per-

forms voting and stacking with decision trees as well as boosting and bagging of decisions trees.

On the other hand, the proposed method only performs slightly better than SCANN and select the

best classifier using cross validation. In [63], the authors did not report and comparison with the

best-known method for stacking at that time [57], stacking using probability distributions as meta-

data and MLR as meta-classifier. In later research [64], the author reported that MDTs perform

slightly worse than stacking with MLR. In general, SCANN, MDTs, stacking with MLR and select

the best classifier seem to perform at about the same level.

An extended set of meta-level features is suggested by Dzeroski [63] to improve the stacking

based classifier accuracy. The same method suggested by Wolbert [49] is used except that cross

validation is used to generate the meta-data. The extended set of meta-level features is constructed

as follows. First the probability distribution is generated by each classifier (base learner), then a new

vector is constructed based on the first one. The new vector results from multiplying the probability

distribution vector by the max probability of this distribution, finally the entropy of the probabilities

is calculated and used as a meta-data. Overall the new extended meta-data contains 2×m+1 for

each classifier and N × (2×m+ 1) for all classifiers. MLR is used to combine these attributes and

find the final prediction.

Dzeroski [61] suggested another extension to stacked generalization, stacking with multi-

response model trees. In this method, Dzeroski adopted a similar framework to what was proposed

by Ting and Witten [57]. Instead of using MLR, he used model tree and kept everything else the

same. Instead of using m linear regression equation LRj ,he induced m-model trees MTj .

Seewald is known for two major contributions: Grading classifiers [65] and Stacking confidence

“StackingC” [66]. Grading classifier is a meta-classification scheme. While stacking uses the pre-

diction of level-0 classifiers as meta-data (meta-level attributes), grading classifier uses graded

predictions, predictions that have been marked as correct or incorrect as meta-level classes. For
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each base classifier, a meta-classifier is trained, whose task is to predict when the base classifier

will make error. While stacking can be seen as generalization of cross validation, grading can be

seen as generalization of voting. The major differences between stacking and grading are: stacking

uses the base-level learners’ predictions as meta-data, grading uses the original data as meta-data.

Stacking uses one meta-level classifiers to combine the predictions of all classifiers, grading uses K

(where k is the number of base-level classifiers) classifiers, each one is corresponding to one of the

classifiers in level-0. Stacking uses the original examples labels to train the meta classifier, grading

uses graded labels, 1 if the prediction of the corresponding base classifier is correct and 0, if not.

Selection by cross validation simply picks the classifier corresponding to the data set with the

fewest wrong examples. Grading tries to make this decision for each example separately by focus-

ing on those base classifiers that are predicted to be correct on this example. During the testing

time, if multiple base level classifiers are predicted to be true and have different labels, either voting

or selecting the base classifiers of the highest confidence is used to find the final label. On the

other hand, if no base level classifier is predicted to be true, all base classifiers are used with using

(1-confidence) as the new confidence. Thus, prefer the classifier that are most unsure about the

predictions.

StackingC classifier [66] is a stacking-based classifier. It represents an extension to the method

suggested by Ting and Witten [57]. Motivated by the fact, as reported by [57], that stacking based

classifier performs worse on multi-class data sets. In StackingC, instead of using all probability

distributions that are generated by all base learners to train each linear regression, StackingC uses

only corresponding predictions of class i to fit the linear regression equation corresponding to class

i.

In Ting and Witten [57], given a stack-based classifier of K base learners and m classes. The

prediction of each base learner k is a probability distribution in the form of (Pk(C1 \ Xi), Pk(C2 \

Xi), ..., Pk(Cm \ Xi)). The meta-data is constructed by stacking the predictions of all these base

learners. The meta-data is used to fit each one of the linear regression equations. On the other

hand, in StackingC, only probabilities corresponding to the same class i, which are generated by

different base learners, are used to fit the corresponding linear regression equation LRi.

In general, the research during the period 1992 to 2007 can be summarized as follows. The

main idea of stacking has been introduced by Wolbert in 1992 [49]. Stack-regression has been

introduced in 1996 [53]. In 1999, Ting and Witten answered the two important questions related
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to Stack-based classifier: probabilities are the best attributes to be used as meta-data and multi-

response linear regression is the best classifier to be used as meta-classifier [56, 57]. Most of the

other works have no enough contribution, mainly, experimentally-based contributions, provide very

slightly improvement, do not address specific problems, except StackingC, which tries to solve the

problem related to using stacking-based classifier with multi-class problems.

One of the main conclusion of the research during the period 1992 to 2007, is that there are

many contradictory results and there is no consensus on which combination of classifiers (base

classifiers and meta-classifier) is the best one. New research direction related to stacking-based

classifier emerged based on the last point, given a set of classifiers (different learning algorithms),

parameters set and a training data, what is the best configuration to be used?

In [67],the authors addressed the problem of overfitting when using stacking-based classifier,

even when using linear models to combine the outputs of the base learners. This problem em-

phasizes the need for regularization to reduce the overfitting problem and increase the prediction

accuracy. They tried three different regularization methods: ridge regularization, lasso regulariza-

tion and elastic net regularization. Regularization attempts to increase (improve) the predictive

accuracy by reducing variance error at the cost of slightly increased the bias error, this is known as

the bias-variance tradeoff. Lasso regression and some settings of elastic net regression generate

sparse models, selecting many of the weights to be zero. This means that each class prediction

may be produced by a different set of base classifiers. When linear regression problem is under

determined, there are many possible solutions. This can occur when the dimensionality of the meta-

feature space K is larger than the effective rank of the input matrix m, where k is the number of

base learners and m is the number of training samples. In this case, it is possible to use a basic

solution, which has at most m- nonzero components, where m is the effective rank of the input

matrix. Ridge regression augment the linear least squares problem with a L2 − norm constraint,

PR =
∑

β2
j ≤ S. Lasso regression augments the linear least squares problem with a L1 − norm

constraint, PL =
∑
|β| ≤ t. The L1 − norm constraint makes the optimization problem nonlinear in

yi and quadratic programming is typically used to solve the problem. Unlike ridge regression, lasso

regression tends to force some model parameters to be identically zero if the constraint t is tight

enough, thus resulting in sparse solutions. Elastic net regression is a convex combination of the

ridge and lasso penalties. PEN (β, α) = (1−α)×fraction12×∥β∥2L 2+α×∥β∥L1, where 0 ≤ α ≤ 1

controls the amount of sparsity. Elastic net regression has the ability to perform groupwise selec-
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tion when there are many correlated features, unlike lasso, which instead tends to select a single

feature under the same circumstances. When there are many excellent classifiers to combine, their

outputs will be highly correlated, and the elastic net will be able to perform groupwise selection.

Stacking-based solutions have been used widely and successfully in recommendations engines.

Recommendation engines are special systems used to give recommendations for the user, e.g.

what to watch next? What to buy next? What to do next? … etc. A very important example of

designing recommendation engines is the Netflix competition [46, 47, 48], where the target is to

design a recommendation system to recommend what to watch next. The challenges of designing

recommendation engines emerge from the fact that the input of the recommendation system is

a description of the user itself. The users may have different descriptions, the quality of these

descriptions may vary from one user to another. For example, some users can be very active, e.g.

users who watch a lot of movies vs. users who watch very few number of movies. Some users

may rate the movies they see, other users they do not. Some users are interested in one type of

movies, others are interested in different types. These kind of variations makes designing a single

system to perform recommendation a challenging process. Many papers address the problem of

recommendation engines and how variation between users can affect the solution [46, 47, 48, 67].

STREAM, Stacking Recommendation Engine with Additional Meta-features [68], Feature-weighted

linear stacking (FWLS) [47] are among the others.

Many algorithms address the issue that there is no guarantee that stack-based classifiers out-

perform all base classifiers. In [69], the author proposes a new stacking algorithm to address this

issue, where the predictive scores of each possible class labels are firstly collected by the meta

learner and then all possible class labels are re-ranked according to these scores. They propose a

new stacking algorithm that builds a meta-learner to find a linear optimum combination of base clas-

sifier on the training samples during training process. The meta-learner firstly collects the predictive

sores returned by the base classifiers for each possible class label, and then re-ranks all possible

class labels according to these scores.

Menahem [70] proposed a new variant of Stacking called Troika to deal with the problem of per-

formance when using stacking with multi-class classification problem, whose main feature is that

the meta-level is composed of three layers. In [70], the authors address the problem of convert-

ing the multi-class classification problem into one-against-one or one-against-all. Converting the

problem to one-against-all is believed to be a problem, especially when we have data-imbalance
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problem. When using one-against-one binarization, many classifiers will be testing samples that

have not seen during the training process. If we have k classes, the total number of classifiers is
k×(k−1)

2 . Only (k − 1) of the base learners have been trained on samples include the class C and
k×(k−1)

2 − (K − 1) of the base learners have not seen any sample belong to class C during the

training process. This means, that for a very large number of classes, the probability that a value in

the meta-data is generated randomly (by using a blind classifier, a classifier that has been trained

on samples do not belong to the same class of the tested sample) is high. In fact, this probability

goes to one as the value k goes to infinite.

Troika [70] introduces a stack-based classifier that consists of three different layers. In the first

layer, the outputs of the base classifiers are combined using an OAO ensemble, whose members

are called specialist classifiers. The goal of each specialist is to predict the probability that an

instance belongs to one of the two classes that it distinguishes. In the second stage, the outputs of

the specialists are combined again using an OAA schema. The task of the level-2 classifiers is to

learn the behavior patterns of the specialist classifiers and to predict whether the output given by a

specialist is correct. The third layer contains a classifier and produces the ensemble final decision.

Moreover, the authors analyze three arrangements to train the base classifiers (OAO, OAA, and

all-against-all) and determine that Troika is more accurate than Stacking and StackingC in all cases.

Regarding the runtime, the authors conclude that Troika outperforms Stacking and StackingC only

when the base classifiers are trained using the OAO architecture.

Even though, in [70], the authors proclaim that using three layers of combining classifiers is

beneficial for the performance, it is not clear how these layers help the classification process. There

is no mathematical justification nor a simple justification why it works. It is not clear how they deal

with the curse of dimensionality problem. The main problem that leads to lower accuracy (due to

overfitting) when using stacking with multi-class problems. In fact, adding new layer between the

base learners and the meta-learner does not reduce the dimensionality. Regarding the problem of

one-against-all, even though the specialist classifiers deal with one-against-one problem, the next

layer of classifiers deal with a one-against-all problem. In fact, they just move the problem from one

layer to another.

One problem associated with stacked generalization is identifying which learning algorithm

should be used to obtain the meta-classifier, and which ones should be the base classifiers. Be-

tween 2010 and 2016 many articles have been published to address this problem, most of them
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are categorized under the category of optimizing stacking configuration based on meta-heuristic

search techniques. Genetic Algorithm GA, Ant-Colony optimization algorithm ACO, Bee-Colony

based optimization algorithm BCO, Data Envelopment analysis and PSO algorithms have been

used in optimizing the configuration of the stack classifier.

Ledezma et al [71] proposed an approach that poses this problem as an optimization task. They

use optimization technique based on heuristic search to solve it. In particular, they apply genetic

algorithms to automatically obtain the ideal combination of learning methods for the stacking system.

Their approach, called GA-Stacking, not only determines which meta-level and which (and how

many) base classifiers must be present but also their learning parameters. Moreover, GA-Stacking

provides flexibility and extensibility compared to previous Stacking variants because it can easily

incorporate new learning algorithms and is not restricted by ‘a priori’ assumptions. In general, one

strength of these heuristic search-based approaches is the ability to adapt the Stacking configuration

to the domain biases and characteristics so that the Stacking configurations determined by GA-

Stacking are domain dependent.

GA-Stacking has two major drawbacks: first, GA-stacking requires longer training time, several

iterations of training/evaluation is required to find the optimal configuration. Second, using genetic

algorithms to search for good Stacking configurations can lead to overfitting problem. The main rea-

son for having the overfitting problem when using GA algorithm is that the fitness value is obtained

using the same instances employed to generate the ensemble of classifier by means of Stacking.

GA-Ensemble was proposed by Ordonez et al [72] to address the first problem: how to improve

the efficiency without losing accuracy? GA-Ensemble tries to determine, in a reasonable time, which

classifiers and which method to combine them is the best option for a specific domain. To solve this

issue, in this work the genetic algorithm makes use of a pool of trained classifiers; that is, all the

algorithms needed by the genetic algorithm are trained a priori to avoid training them in successive

generations of the genetic algorithm. GA-Ensemble applies a genetic algorithm in searching the

configurations according to different datasets without a priori assumptions. At the beginning, a set of

candidate base-level classifiers is trained to generate a pool of base-level classifiers thus to improve

the efficiency without losing accuracy. The candidate set must be encoded in a chromosome, which

represents a potential configuration. Binary encoding is used to accompany the canonical GA,

where a 0 in the genemeans that the classifier of this gene will not be used in the configuration and a

1means the classifier will be used. The last gene in a chromosome represents two different stacking
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combining schemes: multi-response model tree or majority voting. This GA search process will

iterate for several generations. For each generation, the classification accuracies on validation sets

are used as the fitness values to evaluate the chromosomes. Some elite chromosomes will be kept

for the next generation and some poor ones will be eliminated. Mutation and crossover operations

will be applied to some chromosomes to generate new chromosomes. After all generations are

finished, the best chromosome will be chosen as the final configuration.

Ledezma et al [73] proposed a new approach to apply GA. To avoid overfitting, they divide the

training data into two sets, training set and validation set. The training set used in the training and

the validation set used in obtaining the fitness value. In [74], the authors use concepts from both

ensemble learning and distributed data mining to create a modified and improved version of the

standard stacking ensemble learning technique by using a genetic algorithm (GA) for creating the

meta-classifier. The authors study different ways of distributing the data and use the stacking en-

semble learning to used different learning algorithms on each sub-set and create a meta-classifier

using a genetic algorithm. Recently, an advanced genetic approach for stacking classifier has been

proposed [75]. The authors propose Advanced GA-Ensemble (AGA-E) which selects the configu-

ration by several independent GA processes on subspaces and uses a tabu strategy to deal with

the unnecessary reproduction.

Using Data Envelopment Analysis DEA to construct ensemble classifiers was proposed by [76].

Zhu proposed the DEA-Stacking approach which applies data envelopment analysis (DEA) to find

optimal stacking [77]. DEA is a linear programming methodology to measure the efficiency of mul-

tiple decision-making units (DMUs) when the production process presents a structure of multiple

inputs and outputs. DEA-Stacking considers the classifiers as the DMUs in DEA. In this approach,

the inputs and outputs of a DMU are extracted from the confusion matrix of the model. At the first

stage, the classifiers are trained and evaluated. The DEA models take the number of false positive

and false negative as the inputs and the number of true positive and true negative as the outputs

of the DMUs to find out the efficient one(s) to be the base classifier(s). Several classifiers with an

efficiency of 1 will be selected as the base classifiers in stacking. At the second stage, the meta-

classifier is also selected by the DEA models. The stacking with each learning algorithm in the set

combining the selected base classifier(s) is treated as the DMUs to find the most efficient as the

final configuration.

Following a similar approach to the work of using GA and posing the stacking configuration as an
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optimization problem, Chen et al [78] use ant colony optimization (ACO) domain dependent stacking

configurations. They use the meta-heuristic ACO to determine the level-0 Stacking classifiers with

a predefined level-1 classifier as well as the entire Stacking system configuration (level-0 and level-

1). Ant colony optimization have been used in data mining for optimization in several other works

[79, 80, 81, 82]. ACO is a meta-heuristic algorithm which is inspired by the foraging behavior in real

ant colonies.

It is worth mention the difference between GA-based stacking and ACO-based stacking tech-

niques. Though ACO-Stacking and GA-Ensemble are all hybrids of meta-heuristics with stacking

ensembles, there are some differences between them. In ACO searching process, different ants

can communicate with each other by using pheromone to pass and share information, while during

the GA searching process, communication is not allowed. In fact, chromosomes cannot communi-

cate with each other. The only way to share information is by using crossover. The crossover points

and themutation points are selected randomly, so some well-performed stacking may generate poor

offspring.

The searching process in GA-Ensemble is therefore more stochastic than that in ACO-Stacking.

To escape from sticking in local minima, the weak ants in ACO-Stacking will not be eliminated but

simply stop searching in this iteration. In GA-Ensemble, the last n cull chromosomes will be elim-

inated, and the top m elite chromosomes will be kept for the next generation. The mutation and

crossover operations on the elite chromosomes are used to escape from local minima. However,

there are no strategies to stop the same weak stacking from being generated again in the following

generations, which will be expensive because these weak stacking must be evaluated again. ACO-

Stacking is more flexible than GA-Ensemble in meta-classifiers selection. GA-Ensemble can only

select either a multiple-response model tree or a majority voting scheme as the meta-classifiers,

while ACO-Stacking can select the meta-classifiers from a set of learning algorithms. If the number

of base-level classifier candidates in ACO-Stacking is the same as the number of genes represent-

ing classifier candidates in GA-Ensemble, the search space of ACO-Stacking is larger than that of

GA-Ensemble. Furthermore, if the best meta-classifier for a certain dataset is neither the majority

voting scheme nor a model tree, GA-Ensemble is unable to find it.

Particle swarm optimization is a heuristic global optimization method, it is based on swarm intel-

ligence. The algorithm is widely used and rapidly developed for its easy implementation. In [83, 84],

PSO is used to select and combine different classifiers to build ensembles.
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Recently, Shunmugapriya and Kanmani [85] proposed the use of another meta-heuristic search

algorithm to determine which and how many base classifiers to use and what meta-classifier to use

based on the domain. Therefore, they have proposed to use an artificial bee colony (ABC) method.

The ABC-Stacking has been proposed and implemented in two levels: ABC-Stacking1 (Base-Level

Stacking) and ABC-Stacking2 (Meta-Level Stacking). In base-level stacking, the employed and

onlooker bees search for the optimal configuration of base classifiers and the meta-classifier is a

fixed learning algorithm. In meta-level stacking, while forming the base classifier configuration, the

bees simultaneously keep exploring for the best meta-classifier through the pool of classifiers, each

time the stacking of selected classifiers is done. The authors compared their results with the studies

of Ledezma et al [71, 73] and Chen and Wong [78, 79, 80, 81, 82] and they conclude that the results

of the Stacking configurations determined by ABC are comparable to those obtained in the previous

study.

Learning from data streams is important, especially when we expect concept drift. Concept drift

is the process of changing the true data generating distribution with time. Concept drift can happen

as changing in the number of classes, changing in the types of classes, variation within the same

class, similarities between different classes, changes in the types and numbers of features, and

adding/removing classes. Concept drift is a very practical issue. Designing a learning algorithm

that deals with the concept drift (concept drift detection) and changes the models adaptively to

capture these drifts is an important issue. Fast adaptive stacking [86] discusses the idea of using

stack base classier with data streams. The paper addresses the problem of detecting concept drift

in the context of stacking based classifier, identifying bad base learners, training alternative and

replacing old base learners, and re-training the meta-classifier. [87] is another published work that

propose a pruned Stacking ELMs (PS-ELMs) algorithm for time series prediction (TSP).

Learning from data streams, learning from data streams with concept drift and learning from

imbalanced data sets are rarely addressed in stacking-based classifier. Very few works have been

published to deal with these practical issues [87].

2.3 The Data Imbalance Problem

A data set is an imbalanced one if the classification categories are not equally represented. Fur-

thermore, the class with the lowest number of instances is usually the class of interest from the point
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of view of the learning task. The class imbalance problem has been reported as one of the major

causes to severely deteriorate the classification performance of many standards and well-known

training algorithms. Recently, data imbalance problem has emerged as one of the main challenges

in data mining community. It has attracted significant attention from researchers of different fields

due to the fact that data imbalance problem is every common in real-world classification problems.

Many techniques have been suggested to address the problem of imbalance data. These tech-

niques can be categorized into three basic categories, which depends on how they deal with the

class imbalance. Algorithm level approaches modify learning algorithms to consider the data imbal-

ance problem [88, 89, 90]. Data level approaches modify (re-balance) the data distribution by using

over/under sampling to decrease the effect of the skewed class distribution in the learning process

[91, 92, 7]. Cost-sensitive techniques combine algorithm and data level approaches to incorporate

different misclassification costs for each class in the learning process [93, 94, 95]. These conven-

tional class imbalance handling methods might suffer from the loss of potentially useful information,

unexpected mistakes or increasing the likely hood of overfitting because they may alter the original

data distribution.

Existing literature focuses mainly on binary imbalanced classification problem while multi-class

imbalanced learning is barely addressed. Most of the binary imbalanced learning solutions are

related to bagging and boosting ensemble strategies and up to our knowledge there is no solutions

related to stacking ensemble.

2.3.1 Sampling Techniques

Data level approaches modify the data distribution by either undersampling or oversampling.

Under-/Over- sampling can be performed randomly by either dropping or duplicating some of the

samples in the majority/minority classes respectively. Dropping samples from the majority class

may lead to loosing information due to the fact that dropped samples are not used in training. Un-

dersampling is efficient if the database is large and the variation within the classes is very limited.

The benefits achieved by duplicating the samples depends on the used base learners. For example,

if the used base learner is decision tree, increasing the number of samples by simply duplicating

them can lead to overfitting, especially if the original number of samples is very small. As an alter-

native to random undersampling (RUS) and random oversampling (ROS), synthetic oversampling
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is suggested by [14]. Synthetic Minority oversampling technique SMOTE [14] is an oversampling

method. The main idea of SMOTE is to create new minority class samples by interpolating several

minority class instances that lie together. For each sample one or more (depends on the sampling

ratio) of the k nearest neighbors (kNN) is (are) selected. The original sample and its neighbor

are used to create new sample. The new instance is generated by random interpolation of both

instances. NS = OS + a× distance(OS,KNNS). NS is the new sample, OS is the original sam-

ple, KNNs is one of the neighbors that specified by the kNN and a is a random number between

zero and one. Using synthetic oversampling causes the decision boundaries for the minority class

to be spread further into the majority class space and thus prevents the overfitting problem. The

success of SMOTE algorithm motivated for further research. Modified versions of synthetic minority

oversampling technique were suggested in literature, Border-Line SMOTE [96], Adaptive SMOTE

[97], Safe SMOTE [98], and Modified SMOTE [99] are among the others.

SMOTE has a well-known drawback. In some cases, SMOTE may suffer the occurrence of

over-generalization problem. Synthesized data samples of SMOTE algorithm may spread on both

majority and minority classes and thus affecting the classification performance. These problems

have been addressed in literature by improving the quality of synthesized samples and avoiding

spreading the data on the majority class regions. ADASYN [97] adaptively generates data samples

based on their distributions and usingKNN . Themain difference between ADASYN and SMOTE is

that ADASYN uses the distribution to decide about the number of synthetic samples to be generated

for each minority sample by adaptively changing the weights of the different minority samples to

compensate for the skewed distributions while SMOTE generates the same number of samples for

each minority sample. Adaptive Neighbor Synthetic, (ANS) [100] dynamically changes the number

of neighbors to be considered for each one of the minority samples. This main difference makes

(ANS) parameter free. Borderline-SMOTE [96] generates synthetic samples along the borderline

of minority and majority classes. Safe Level SMOTE [98] is define as the number of a positive

instances in K nearest neighbors. If the safe level of an instance is close to 0, then the sample is

considered as noise. Only samples with sufficient safe level are used to synthesize more samples.

Each synthetic instance is generated in safe position by considering the safe level ratio of instances.

DBSMOTE, Density Based SMOTE [101], uses DBSCAN clustering algorithm to form clusters within

the minority class. Samples are synthesized along the shortest paths from each instance to a

pseudo-centroid of a minority class cluster.
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Other synthetic sampling techniques apply both of synthetic oversampling for minority samples

and undersampling for the majority class. SMOTE-Tomek links [102] removes samples that form

Tomek links from both minority and majority class. Tomek links can be defined as follows: given

two instances ia and ib, d(ia, ib) is the distance between the two samples. If there is no instance il,

such that d(ia, il) ≤ d(ia, ib) or d(ib, il) ≤ d(ia, ib), the pair (ia, ib) is called a Tomek link. It implies

that either these two examples are noise or are borderline samples. Tomek links have been used

in undersampling.

2.3.2 Ensemble Classifiers for Data Imbalance Problem

Ensemble classifiers are designed to achieve high classification accuracy on balanced datasets,

Ensemble algorithms that are applied directly to imbalanced datasets do not solve the problem

implicitly exist in these datasets. Ensemble methods are augmented with sampling techniques to

address the data imbalance problem. Different methods were developed based on bagging and

boosting algorithms. UnderBagging [103], SMOTE-Bagging [104], Border-Line SMOTE-Bagging

[105] and RBBag [106], SMOTE-Boost [107], Border-Line SMOTE-Boost [108], Rus-Boost [109]

and Adaptive Rus-Boost [110] are among the others. These algorithms are considered as algorithm

level approaches, in the sense that they change the ensemble algorithm but not the base learner.

In addition to change the ensemble algorithm, these ensembles include a data level approaches to

pre-process the data before learning each classifier.

OverBagging [6] and UnderBagging [103] are two variants of the bagging ensemble classifier to

handle the data imbalance problem. Instead of using bootstrap sampling where samples are ran-

domly sampled from the training dataset, imbalance-aware sampling scheme are used. In OverBag-

ging, an oversampling process of the minority class is carried out to account for the data imbalance

problem before training each of the base learner. In UnderBagging, undersampling is used instead

of oversampling. RBBagging, Roughly Balanced Bagging [106], constructs base learners using

a roughly balanced training sets instead of fully balanced datasets. The idea is by using roughly

balanced datasets, the constructed base learners will be more divers. Synthetic oversampling is

used also with bagging to handle data imbalance problems. SMOTEBagging [104] uses SMOTE

algorithm to apply synthetic oversampling. SMOTEBagging [104] differs from the use of random

oversampling not only because of the different pre-processing mechanism, but also because of the

34



way of creating each bag. SMOTEBagging uses different sampling rates for different base learners

(iterations), and for each iteration the same number of samples are sampled from both minority and

majority classes.

Depending on the base learning type, Adaboost can be really sensitive to imbalanced datasets,

misunderstanding samples from minority classes as noisy or hard samples. AdaCost [8] provides a

cost sensitive alternative to AdaBoost. The main idea behind AdaCost is to use different weighting

scheme. AdaCost differentiates between examples of the minority and majority classes. AdaCost

can put emphasis on minority class examples based on user-specified parameter. RareBoost [111]

addressed the issue of having rare classes “Data imbalance”, instead of considering the difference

between minority and majority samples in the weighting process, RareBoost updates the weights

according to how well an iteration generated hypothesis distinguishes between false positives and

true positives as well as false negatives and true negatives. Like AdaCost, RareBoost suggests

using a different scheme for weighting samples and give more attention to minority classes. Some

other boosting based techniques uses synthetic oversampling. SMOTEBoost [107] combines data

sampling with boosting. The data sampling aspect of SMOTEBoost uses the synthetic minority

oversampling technique (SMOTE). AdaC1, C2 and C3 [112] are three cost-sensitive boosting al-

gorithms were developed by introducing cost items into the learning framework of AdaBoost. For

each proposed boosting algorithm, its weight update parameter is deduced taking the cost items

into consideration.

Cost-sensitive represents another class of class-imbalance learning methods. Cost-sensitive

based methods intentionally increase the weights of examples with higher misclassification cost in

the boosting process. While some algorithms start the training process with setting higher weights

for minority instances, other raise high cost examples’ weights in every iteration of the boosting

process, for example, AsymBoost [113], AdaCost [8], CSB [114], DataBoost [115], and AdaUBoost

[116], are among the others.

Easy-Ensemble [117] combines both of bagging and boosting to deal with the data imbalance

problem, since most of the previous approach may suffer from information loss, that some of the

majority samples may not be used during the training process. Easy-Ensemble, apply bootstrap

sampling to use all minority samples and similar number of samples from the majority class, re-

peatedly generating multiple classifier (base learners) by using all minority samples and subsets

of the majority class. These base learners are combined using AdaBoost algorithm. Many other
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algorithms use the same strategy. MultiBoosting [118] combines boosting with bagging/wagging

[119] by using boosted ensembles as base learners. Stochastic Gradient Boosting [120], Cocktail

Ensemble [121] and BalanceCascade [122] are among the others.

Designing ensembles that can take the advantage of reducing variance and bias error and

achieving high accuracy when dealing with data imbalance problems is still a hot research topic.

Many papers are published every year to address this challenge. EUSBoost [123], RB-Boost [124],

Boundary-Boost [125], BPSO-Adaboost-KNN [126] and Adaptive EUSBoost [127] are among the

others.

2.4 Rational Behind Stacking

Stacking based classifier represents one of the areas of meta-learning. Meta-learning studies

how to combine/ choose the right bias dynamically, as opposed to base learning where the bias is

fixed. In typical inductive learning scenarios, applying base learner (e.g. decision tree, SVM, neural

network, NB … etc.) over some data produces a hypothesis that depends on the bias (fixed bias)

embedded in the learner. Meta learning includes different areas: building a meta learning of base

learners, selecting inductive bias dynamically, building meta-rules to match the task properties with

algorithm performance, inductive transfer and learning to learn. In this chapter we consider only the

first area of meta-learning: Building a meta-learner of base learners.

Building a meta-learner of base learners is known in the literature under the name of stacking

based classifier. It is considered as one of the most common ensemble classifiers in addition to

boosting [28, 29, 30, 31] and bagging [16, 17, 18]. Stacking (Stacked generalization) was initially

proposed by Wolbert in 1992 [49]. In his paper, he introduced the idea of stacking multiple classi-

fiers together and use the outputs of these classifiers to train / test another classifier. Our study is

centered on the classification problem exclusively. The problem is to learn how to assign the correct

class (label) to each of a set of different objects.

A learning algorithm is first trained on a set of pre-classified (labeled) examples Ttrain =

(Xi, Yi)
m

i=1. Each example Xi is characterized by features and is represented as a vector in an

n-dimensional feature space, Xi = (X1, X2, X3, ..., Xn). EachXk can take on a different number of

values. Xi is labeled with class Yi according to unknown target function, F (Xi) = Yi. In classifica-

tion, each Yi takes one value over a set of fixed categorical values. Ttrain consists i.i.d examples
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obtained according to a fixed but unknown joint probability distribution ϕ in the space of possible

feature vector X. The goal of the learning algorithm L is to produce a hypothesis h that best ap-

proximates F . Given a training set Ttrain, the learning algorithm L will search over a hypothesis

space HL until it finds a hypothesis h, h ∈ HL that approximates the function F . The number of

hypothesis ∈ hypothesis space HL is |HL|.

|HL| depends on the biased embedded in the learning algorithm L. If the biased is strong, then

the number of hypothesis is small. If the bias used with learning algorithm LA is stronger than

the bias used with learning algorithm LB then (|HLA| < |HLB |). In this case, the bias embedded

by LA conveys more extra information than bias in LB . For example, if the learning algorithm LA

is used to estimate the function F by finding the parameters a and c in the hypothesis function

hA = ax0 + c.The bias is that the function F is linear. If the learning algorithm LB used to estimate

the function F by finding the parameters a,b and c in the hypothesis function hB = ax0 + bx1 + c.

The bias of LA is stronger than the bias of LB and the |HLA| < |HLB |. In fact, for this specific case,

HLA ∈ HLB .

A task can be defined by a set of training examples Ttrain, where each example is labeled with

Yi ∈ Y1, Y2, Y3, ..., Yc, where c is the total number of classes. Four parameters are used to define

a task: F , the function used to assign labels to examples. Our ultimate goal is to come up with a

hypothesis h that can approximate the function F . ϕ, the distribution used to generate examples. m,

the number of training samples. p(Ti) is the probability of generating the training set Ti according

to ϕ.

The space of all tasks contains many random regions. For this reason, we will assume RL

compromises a subset of structured tasks Sstruct ⊂ S, where each one of these tasks is a non-

random task. A random task can be defined as a task that contains m examples, where each

example is defined as (Xi = (X1, X2, X3, ..., Xn), Yi ∈ Y1, Y2, ..., Yc)
m
i=1 and is generated by using

random functions. A random function to generate the numbers (X1, X2, X3, ..., Xn), m sequences

have been generated, and a random function is used to generate the labels (Y1, Y2, ..., Yc). It is very

difficult to have a learning algorithm L that is defined over the hypothesis sub-space HL, where a

hypothesis h can be found to approximate F if it is random. One dimension along which we can

differentiate between structured and random tasks lies in the expected amount of data compression

that can be obtained over the training set. Structured tasks usually denote regular patterns over the

training sets that commonly lead to the discovery of concise representations. Random tasks on the
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Figure 5: Example of structured tasks and the region of all tasks that can be solved by using two
different learning algorithms.

Figure 6: Examples of three different regions and multiple tasks.

other hand are characterized by many irregularities. In general, the assumption always is that the

task T is not a random one. Now the question is: can we find a hypothesis h that best approximates

the function F?

Figure 6 shows the space of all tasks S. In this space, we define the region RLA, where all tasks

SA ⊂ RLA can be solved by using the learning algorithm LA The structured task tA is one of the

tasks that can be solved by the learning algorithm LA. In the other hand, the region RLB , can be

defined in a similar way. tB is one of the tasks that can be solved by LB . The biased used in LB

is stronger than the biased used in LA. The expected number of hypothesis that can be learned by

the learning algorithm LA is higher than the number of hypothesis that can be learned by using the

learning algorithm LB .
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Figure 7: Task transformation by using different learning algorithms. The task tD cannot be solved
by any of the learning algorithms in the original domain (the input domain), while the transformed

version (t∗D) can be solved by using the learning algorithm LB .

Figure 6 shows examples of three different regions that are represented by three different learn-

ing algorithms LA, LB , and LC . The following notes are made: Tasks tA, tB and tC can only be

solved by using the learning algorithms LA, LB and LC respectively. Task tBC can be solved by

either learning algorithm LB or LC . Task tD cannot be solved by any of the available learning al-

gorithms. In practice, given the task tD and the set of learning algorithms LA, LB and LC . Finding

the most suitable learning algorithm to use with the task tD can be one of the meta-learning objec-

tives. By mapping tasks and learning algorithms, the bias embedded in a learning algorithm can

be changed. Changing the bias embedded in the learning algorithm LA, such that we either shift

or enlarge the region RLA to cover the task tD, is one of the meta-learning objectives. In staking

based classifier, given a limited number of learning algorithms. These algorithms come with fixed

biases. Dealing with the task tD is done by transformation, by transforming the problem from the

input domain (space) to another domain (space) where one of the available learning algorithms can

be used to solve the task t∗D. 7 shows the process of transforming the tasks from the input space S

to the output space S
′ .

In the original space S, none of the available algorithms was able to solve the task tD. Using

the available learning algorithms, we can transform the task tD into another domain (Space), where

the learning algorithm LB can be used to solve it (the rational behind stacking). The last example

is a description of an area of meta-learning called meat-learning of base learners. Stacked Gen-

eralization is considered a form of meta-learning, because the transformation of the training set

conveys information about the predictions of the base learners. In stacked generalization, both
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Figure 8: Bias and variance errors. Training different models using the same learning algorithm,
but different training set. The red dot is the target. The black +s are the corresponding predictions

of these models.

base learners and meta-learner have a fixed form of bias. The dominant task region (e.g. RLA) for

the meta-learner may be different from the base learner but ultimately fixed.

2.5 Rational Behind Bagging

Explaining rational behind learning algorithms should be directly related to its generalization

error. The simplest way to understand generalization error is to understand its main components.

Prediction errors are decomposed into two main sub-components, Bias and Variance errors. Figure

8 depicts bias and variance errors. A classifier (regressor) is trained using different training sets,

each time an example Xi is tested and the output is reported. In Figure 8, the red • is the target

output. The black +s are the predictions of different models when training is performed by using

different training sets. There is a tradeoff between a model’s ability to minimize bias and variance

errors.

Error due to bias: The error due to bias is taken as the difference between the expected (or

average predictions) of our models and the correct value which we are trying to predict. Error due

to variance: The error due to variance is taken as the variability of a model prediction for a given data

point. The variance is how much the prediction of a given point vary between different realizations

of the model when it is trained using different data sets. Variance error does not depend on the

ground truth.

Given the sample Xi, the data set D and the learning algorithm L. A model M is generated by

applying the learning algorithm L on the data set D, Mj = L(Dj). The prediction Yij = Mj(Xi), is
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the prediction of the model Mj . Yi is the ground truth label (the expected label) of the sample Xi

over the true data generating distribution. Yi is the average prediction of the model using different

training sets. Due to the randomness in the underlying data sets, generated models will have a

range of predictions. Bias measures how far off “in general” the model’s predictions are from the

correct value. Bias and variance errors are given by:

Yi =
1

N

N∑
j=1

Modelj(Xi) (2.3)

BiasError = Yi − Yi (2.4)

V arianceError =
1

N

N∑
j=1

[Modelj(Xi)− Yi]
2 (2.5)

Theoretically, given a model with enough number of parameters, such that the number of struc-

tured tasks that can be learned by using this model is unlimited, and infinite number of data samples,

both bias and variance errors can be reduced. Practically, since available number of data samples

is limited, there is a tradeoff between bias and variance. In general, reducing bias is more important

than reducing variance for a given model. Even if the variance error of a model is not zero, variance

error can be reduced by using averaging (the rational behind bagging). Asymptotic consistency

guarantees that bias error converges to zero as the number of data samples converges to infinite

and asymptotic efficiency guarantees that the resulted model is no worse than any other model

you could use when infinite data samples are available. Overfitting and underfitting are two major

problems related to variance and bias errors, respectively.
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Chapter 3

BAGSTACK CLASSIFIER FOR DATA IMBALANCE PROBLEMS

Ensemble learning algorithms construct a set of base learners (weak learners). These base

learners are constructed by either changing the set of training samples that is used to train each

one of them (e.g. Bagging, Boosting) or changing the training algorithm (e.g., Stacking). In Chapter

2, differences between these ensemble methods are explained. This chapter presents the proposed

classifier “BagStack Classifier for Data Imbalance Problem”. The selection problem (selection and

mixing perspectives) is defined in Section 3.1. In Section 3.2, the BagStack classifier is covered.

Section 3.3 presents the main contributions to deal with the data imbalance problem. Section 3.4

presents experimental results to justify and prove the performance of the BagStack classifier. Finally,

Section 3.5 concludes the chapter.

3.1 The Selection Problem

Based on the No-Free lunch theorem, no single machine learning algorithm can outperform all

others in all different tasks.Thus, selecting the right algorithm for a specific task is important. The

selection problem is the problem of selecting a function (estimator, predictor) among a class of

candidate functions of a common parameter of interest.

3.1.1 Definitions

Let S = S1, S2, ..., Sn be a set of observations (data samples) of S ∼ P0, P0 is known to be the

true data generating distribution. Each one of these samples are defined by the values Si = (Xi, Yi),

where Xi is a feature vector and Yi is the label assigned to the data sample. Xi ∈ χ and Yi ∈ φ.

The points S1, S2, S3, ..Sn define an empirical distribution Pn. Let β0(.) = β(.\P0) be a function of P0

of interest. β can be an estimator or predictor. If Pn is an empirical distribution such that Pn ∈ P0,

then define the parameter set B as: β(.\Pn) : P ∈ P0. Pn is the empirical distribution based on n

samples that are sampled from the distribution P0. For different set of samples, different βs can be

defined, such that all these βs ∈ B. Let L() be a loss function, where L() is a function of the sample
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set S and the function β. Then the loss function is defined as L(S, β). An example of a loss function

can be L(S, β) = (Y − β(X))2. Given n samples, it is very common practice to use ρ% for testing

and (1− ρ)% for training. Thus, the function β can be written as β = β(.\P(1−ρ)n). where (1− ρ)n

is the total number of samples used for training and P(1−ρ)n is the empirical distribution used for

training. Let us define the loss function L(S, β) in R, β0 is selected by minimizing the loss function

over the true data generating distribution:

β0 = argminβ∈B

∫
L(., β) dP0(.) (3.1)

β0 = argminβ∈B E0 L(., β) (3.2)

where β0 is the function that minimizes the loss function over the true data generating distribution

P0.

Learning algorithm is used to generate the function β. Based on the given learning algorithm, a

set of parameters are defined; these parameters control the behavior of the function set βa, where

βa = βn : Ta(Pn), Pn ∈ P0, Ta is a given training algorithm and Pn is an empirical distribution.

Let Pn be the empirical distribution of S1, S2, S3, ..., Sn and let β̂kβkβk = βk(.\Pn) ∈ B,K =

1, 2, 3, ...,K(n) be a collection of functions (predictors, estimators). One can use different learn-

ing algorithms to generate this set of functions. One can think about these functions as estimators

of the function β0. The risk (performance) of a function β ∈ B, wherein the risk indicates the quality

of the function β, is given by:

R̃(β\P0) =

∫
L(o, β) dP0(o)P0(o)P0(o) (3.3)

Based on the risk definition, we know that β0 is the minimum value of all risks defined over the set

β ∈ B:

β0 = argminβ∈B

∫
L(o, β) dP0(o)P0(o)P0(o) (3.4)

β0 = argminβ∈B R̃(β\P0P0P0) (3.5)

where the risk value R̃ is defined over the true data generating distribution. The function β is gener-

ated based on Pn; it is an empirical distribution. Pn is defined over the data samples S1, S2, ..., Sn

and KLD(Pn, P0) goes to zero as n goes to infinite.
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The risks of a specific function β̂k over the true data generating distribution and an empirical

data distribution are given by:

R̃RRnk =

∫
L(o, β̂ββk(.\Pn)) dP0P0P0(o) (3.6)

R̂RRnk =

∫
L(o, β̂ββk(.\Pn)) dPnPnPn(o) (3.7)

where R̃RRnk is the risk of the function β̂ββk(.\Pn), which is trained using the empirical data distribution

Pn, over the true data generating distribution P0. R̂RRnk is the risk of the function β̂ββk(.\Pn) over the

empirical data distribution Pn.

3.1.2 Selection Problem

The performance (risk) of a particular learner depends on how effective its searching strategy

is in approximating the optimal predictor defined by the true data generating distribution. Thus, the

relative performance of various learners depends on the true data generating distribution. In prac-

tice, it is generally impossible to know a priori which learner will perform best for a given prediction

problem and data set. In order to define the selection problem, one should define a distance be-

tween a function β̂kβkβk and the optimal function β0 defined over the true data generating distribution

P0. The distance function is given by:

d(β̂k, β0) =

∫
L(o, β̂k(.\Pn))− L(o, β0) dP0(o) (3.8)

where β̂k a function trained using the empirical distribution Pn. β0 is the optimal predictor and P0 is

the true data generating distribution.

Given a set of β functions B, the optimal selector is defined as follows:

β̃pn = argmink=1,2,3,...,k(n)dn(β̂k, β0) (3.9)

β̃pn = argmink=1,2,3,...,k(n)

∫
L(o, β̂k(.\pn)β̂k(.\pn)β̂k(.\pn))− L(o,β0β0β0) dP0P0P0 (3.10)

Since the term L(o,β0β0β0) is constant, the minimization problem becomes:

β̃pn = argmink=1,2,3,...,k(n)

∫
L(o, β̂k(.\pn)β̂k(.\pn)β̂k(.\pn)) dP0P0P0 (3.11)

β̃pn = argmink=1,2,3,...,k(n)R̃nk (3.12)
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where β̃pn is the optimal selector, which chooses for each data set S1, S2, ..., Sn, (Pn) the optimal

function with the smallest distance from the optimal β0, or equivalently, with minimal conditional risk

R̃nk.

The optimal benchmark selector always selects the best learner function from a set of functions

B. Each one of these learners is trained using the empirical distribution Pn. In the case of the

optimal selector, evaluating and selecting the best learner is based on the true data generating

distribution P0. In practice, we do not have access to the true data generating distribution. It is

unknown distribution, what we have instead is the empirical distribution.

The data adaptive selector selects the function β̂pn based on the empirical distribution Pn:

β̂pn = argmink=1,2,3,...,k(n)

∫
L(o, β̂k(.\Pn)) dPn (3.13)

β̂pn = argmink=1,2,3,...,k(n) R̂nk (3.14)

The data adaptive selector is asymptotically equivalent with the optimal benchmark selector:

dn(β̂pn, β0)

dn(β̃pn, β0)
→ 1 in probability as n → ∞ (3.15)

3.1.3 Mixing Problem

In the last subsection, we defined the selection problem. In some cases, combining learners us-

ing various methods results in better performance over a single candidate learner. While selecting

a function from a set of functions based on risk estimation is quit direct process, mixing learners

necessitates finding and understanding relationships between different available functions, weak-

nesses, strengths and how they can compensate for each other. Since we have only access to the

empirical distribution Pn, finding the right way to mix different learners is a challenging process.

There is a probability that mixing learners based on empirical distributions may lead to overfitting

problem; β is perfectly fitting the empirical distribution Pn but is badly fitting the data generating distri-

bution P0 (Overfitting Problem). Many researchers suggested different methods to avoid overfitting,

e.g., cross-validation.

We prefer to discuss themixing problemwithin the context of cross-validation based optimization.

In the next subsection, we will cover the main types of cross-validation methods, and later we will

discuss in more details the cross-validation based mixing problem.
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In this thesis, we are interested more in this latter category. Later we will focus more on the

selection problem in the context of mixing learners instead of selecting the best one. Mixing learners

can be very adaptive and flexible to absorb the selection problem under the more general mixing

problem.

3.1.4 Generalized Cross-validation

cross-validation is used in model selection. Define a random vector Cn ∈ { 0, 1 }n for splitting

the learning set into validation and training, where:

Cn,i =

 0, if the ith observation is in the training set

1, if the ith observation is in the validation set
(3.16)

The different types of cross-validation include: V-fold cross-validation, leave one out cross-

validation LOOCV, Monte-Carlo cross-validation… etc. For example with V-fold cross-validation,

we have V-Possible outcomes of Cn, each having equal probability.

Monte Carlo Cross-Validation: In Monte-Carlo cross-validation, the learning set is randomly and

repeatedly divided into two sets. A training set of n0 = n(1 − p) observations and a validation set

of n1 = np observations. A common choice of p is 10%.

V-Fold Cross-Validation: In V-fold cross-validation, the learning set S1, S2, ..., Sn is randomly

divided into V-fold (sets) that are mutually exclusive and exhaustive. V-sets, Lv, v = 1, 2, 3, ..., V

of as nearly equal size. Each estimator is built on a training set of size L − Lv and tested on Lv.

Lvi ∩ Lvj = ϕ for each i ̸= j and ∪vi=1Lvi = L = {S1, S2, S3, ..., Sn}. Cn in V-fold cross-validation

places mass 1
V on each of the v-binary vectors. Cv

n, v = 1, 2, 3, .., V is defined as follows. Let

nv =
⌊
n
V

⌋
, then for each v = 1, 2, 3, ..., V −1, CV

ni = 1 for i = 1+(v−1)nv, ... , V nv and 0 otherwise.

For v = V,CV
ni = 1 for i = 1 + (v − 1)nv, ..., n and 0 otherwise.

Leave One Out Cross-Validation: In Leave One Out Cross-Validation, one of the observations

is used for validation and the rest for training. For n-observations, this is equivalent to n-fold cross

validation with p = 1
n . Two important notes about the LOOCV: (1) the number of samples used for

validation is not a function of n,
∑n

i=1 Ci = 1, n → ∞,
∑n

i=1 Ci = p × n = 1
n × n = 1. (2) It is very

clear that there is a bias-variance tradeoff in the selection of p. Large ps (more validation and less

training) produces estimators with larger bias and smaller variance. In the opposite side LOOCV,

with small p = 1, leads to low bias and high variance.
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Bootstrap Cross-Validation: Given a set of learning samples of size n, randomly sample from

the data set with replacement. Each time you sample the probability that the observation Si is not

selected 1− 1
n , where n is the total number of samples. If you sample n-times, then the probability

that the sample will not be selected is (1− 1
n )

n = e−1 = 0.368. This means that even if we sample

n times, then ∼ third of samples are left out.

In Bootstrap Cross-Validation, the definition of the random vector Cn should be modified, in this

case the random value (probability) should capture the case when the same value selected multiple

times. A simple definition Cn = 0, 1, 2, ..., n where the value indicates how many times the sample

has been selected. Thus, if N samples are selected (sampled) then: P =
∑N

i=1
I(Cni=0)

N , where P

is the validation percentage. The expected value of P is (1− 1
n )

N and if N = n→ P = 0.368.

Cross-validation represents important tool to deal with the selection problem. In practice, using

available samples in an efficient way is very important. This efficiency becomes evenmore important

when the total number of samples available for learning (n) is very limited. In the next subsection

we will re-define the selection problem (selection and mixing) based on cross-validation.

3.1.5 V-fold Cross-validation Based Selector

cross-validation based selector represents an extension to the general selection problem. In-

stead of using the same empirical distribution for training and testing, Equations 3.13 and 3.14,

which increases the risk of overfitting the training data, the learning set is divided into training and

validation. Training the functions is done using the training set and evaluating the functions (esti-

mating the risk) is done using the validation set. Let us define the two empirical distributions: Pn,Cn
Pn,CnPn,Cn

0

is the training empirical distribution and Pn,Cn
Pn,CnPn,Cn

1 is the validation empirical distribution. The selection

problem is defined as selecting the function that minimizes the expected risk over all different data

splits (V-fold):

K̂ = argminkEcn

∫
L(o, βk(.\P 0

n,Cn
)) dP 1

n,Cn
(3.17)

Search within a set of K estimators to find the one that minimizes the expected risk over all

distributions Cn. The function βk(.\P 0
n,Cn

) is trained by using the training empirical distribution.

Risk estimation is done over the validation empirical distribution. Since we are working with discreet
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samples (observations), then:

K̂ = argminkEcn(
1

np
)

n∑
i=1

I(Cn,i = 1) L(Si,βkβkβk(.\P 0
n,Cn

P 0
n,Cn

P 0
n,Cn

)) (3.18)

where np is the number of samples in the validation set. Given V-distributions, V-fold cross-

validation, then:

K̂ = argmink(
1

V
)

V∑
v=1

[(
1

np
)

n∑
i=1

[I(Cn,i,v) L(Si,βkβkβk(.\P 0
n,Cn,v

P 0
n,Cn,vP 0
n,Cn,v))]] (3.19)

One of the basic questions in machine learning is how to know if cross-validation based selector

is asymptotically equivalent to the benchmark selector (the optimal selector). In other words,

how to validate this selector?

Let us define two cross-validation based conditional risk values:

R̂n(1−p)(k) = Ecn

∫
L(o, βk(.\P 0

n,cn
P 0
n,cnP 0
n,cn)) dP

1
n,cn

dP 1
n,cndP 1
n,cn(o) (3.20)

R̃n(1−p)(k) = Ecn

∫
L(o, βk(.\P 0

n,cn
P 0
n,cnP 0
n,cn)) dP0dP0dP0 (3.21)

where P 0
n,cn is the empirical training distribution and P 1

n,cn is the empirical validation distribution.

Based on these two risk definitions, we can define the data adaptive cross-validation based

selector K̂ and the cross-validation based benchmark selector K̃ to be:

K̂ = argmink R̂n(1−p)(k) (3.22)

K̃ = argmink R̃n(1−p)(k) (3.23)

The optimal risk Ropt is the minimum risk value can be achieved by using β0:

Ropt = E0 [L(o, β0)] (3.24)

To prove that the cross-validation based data adaptive selectorcross-validation based data adaptive selectorcross-validation based data adaptive selector is asymptotically equivalent to

cross-validation benchmark selectorcross-validation benchmark selectorcross-validation benchmark selector we need to show that:

d(β̂K̂ , β0)

d(β̃K̃ , β0)
=

R̃n(1−p)(K̂)−Ropt

R̃n(1−p)(K̃)−Ropt

→ 1 as n → ∞ (3.25)

This theorem has been proven by Van der Laan and Dudiot in their paper of title “Unified Cross-

Validation Methodology for Selection among Estimators and a General Cross-Validated Adaptive

Epsilon-Net Estimator” [128]. The real cost of using cross validation is re-training and re-validating

multiple functions (that use different learning algorithms or different representations of the same

data) V times.
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Each time we train using (V − 1) ×
⌊
n
V

⌋
samples and test using

⌊
n
V

⌋
samples. Recently, other

methods have attracted more attention due to the excess of data in some applications (e.g., some of

the computer vision applications) and the high cost of training and testing models (e.g., DNN based

models). Instead of dividing the data into V-folds, the data is divided into training, validation and

testing. The training data used in training, the validation data used in hyper parameters selection

and evaluating the progress while performing the training process. The testing set is used only to

test the final model. A very common division is to have 20% testing, 20% validation and 60% training.

This method is powerful when the number of available observations is large enough to assume

P0 = Ptraining = Pvalidation = Ptesting Unfortunately, in many applications, available number of

observations may not be large enough to sacrifice a validation set.

3.1.6 V-fold Cross-validation Based Mixer

The performance of a particular learner depends on how effective its searching algorithm (strat-

egy) is in approximating the optimal predictor defined by the true data generating distribution. In

practice, the relative performance of various learners depends on the true data generating distri-

bution. In practice, it is generally impossible to know a priori which learner will perform best for a

given prediction problem and data set. To solve this problem, some researchers have proposed

combining learners in various methods and have exhibited better performance over a single candi-

date learner. When mixing multiple learners, since the system becomes more complex with more

parameters and higher flexibility, the risk of overfitting becomes higher. In 2003, van der Laan

suggested a solution to this problem, the super learner [50, 128, 129]. In the context of prediction,

this super learner is itself a prediction algorithm, which applies a set of candidate learners to the

observed data and chooses the optimal learner based on cross-validation based risk estimation.

The cross-validation selector selects the learner with the best performance on the validation sets.

In V-fold cross-validation, the learning set is divided into V folds, mutually exclusive and exhaustive

sets of as nearly equal size as possible. Each set and its complement play the role of training

and validation. Given V-splits of the learning sample into a training and corresponding validation

sample, for each of the V-splits, the estimator is applied to the training and its risk is estimated with

the corresponding validation set. For each learner, the V-risks over the V-validation sets are applied
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resulting in the so called cross-validation risks. The learner with the minimal cross-validated risk is

selected.

It is helpful to consider each learner as an algorithm applied to empirical distributions. Thus, if

we index a particular learner with an index K then: βk = β̂k(Pn) is a mapping Pn → β̂k(Pn) is the

mapping from empirical distribution Pn to functions of the covariates. Consider a collection of K(n)

learners, β̂k, k = 1, 2, 3, ..., k(n) in parameter space B. The super learner is a new learner defined

as: β̂(Pn) = β̂K̂(n)(Pn) where K̂(n) denotes the cross-validation selection described above, which

simply selects the learner which perform best in terms of cross-validation risk:

K̂(Pn) = argmink Ecn

n∑
i,Cn(i)=1

(Yi − β̂k(P
0
n,Cn

)(Xi))
2 (3.26)

K̂(Pn) = argmink
1

V

V∑
v=1

n∑
Cn(i)=1

(Yi − β̂k(P
0
n,Cn

)Xi)
2 (3.27)

As defined by Van der Laan [130], the oracle selector is the estimator, amongK(n) learners consid-

ered, which minimizes risk under the true data generating distribution P0. In other words, the oracle

selector is the best possible estimator given the set of candidate learners considered. It depends

on the true data generating distribution P0 and thus it is unknown.

Loss Functions: In mathematical optimization and machine learning, a loss function or cost

function is a function that maps an event or values of one or more variables into a real number

intuitively representing some cost associated with the event. An optimization problem seeks to

reduce / minimize a loss function. An objective function is either a loss function or its negative

(something called a reward function), in this case it is to be maximized. In statistics, typically a loss

function is used for parameter estimation, and the event is some function of the difference between

estimated and true data values for an instance of data. Given a sample Si = (Xi, Yi), where Xi

is a data vector X1, X2, ..., Xd and Yi ∈ R. Then, based on a set of observations S1, S2, ..., Sn a

learner (estimator) is generated β where β = E[Y \X]. The loss function L(Si, β) is the loss function

defined over the observations and the learner. One of the common loss functions is the squared

error loss function, where L(Si, β) = [Yi − β(Xi)]
2.

In general, a training, regression or optimization process is a searching process to find the

parameter set of β, such that β ∈ B, where we minimize the expected loss over the true data

generating distribution, then:

o = argminβ Eo[]L(Si, β)] (3.28)

50



This includes changing the parameter set β and minimizing the expected loss:

L = argminβ

∞∑
i=1

L(Si, β) (3.29)

L = argminβ

∫
L(Si, β) dP0 (3.30)

We are given only a set of samples S1, S2, ..., Sn, thus:

L = argminβ
1

n

n∑
i=1

L(Si, β) (3.31)

Minimizing the loss function is an optimization problem in which we search for the best set

of parameters that can reduce the average loss over the training data samples. The final loss

value can be a function of: (1) the number of parameters we are trying to optimize; the number of

parameters indicates the complexity of the learner β; (2) The number of training samples; with a

smaller number of training samples, it is easier to find a function β that fits all training data. Using

the wrong complexity level that does not fit with the available number of training samples can result

in overfitting problem. Usually, dealing with overfitting problem is done by adding more terms to the

loss function, these terms can control: (1) the number of parameters used in the model β; (2) the

values of these parameters. Thus, the loss function can be written as:

L(S, β) = [Y − β(X)]2 + αF (β) (3.32)

where α is the Lagrange multiplier, F (β) a function indicates the complexity of the model or how

much the parameters follow a predefined (desired) characteristics.

Naturally, any model is highly optimized for the data it was trained on. The expected error the

model exhibits on new data will always be higher than that it exhibits on the training data.

Prediction Error = Training Error + Training Optimism Error (3.33)

Here, the training optimism is basically a measure of how much worse our model does on new

data compared to the training data. The more optimistic we are, the better our training error will

be compared to what the true error is and the worse our training error will as an approximation of

the true error. The optimism is a function of the model complexity, as complexity increase so does

optimism:

True Prediction Error = Training Error + F (Model Complexity) (3.34)
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Loss-Based General Mixer: Let β̂j , j = 1, 2, 3, ..., J be a collection of J candidate learners, which

represent mapping from the empirical distribution Pn into the parameter space B consisting of func-

tions of X. The proposed classifier is a loss-based mixer that uses cross-validation (two levels of

cross-validation, V-fold and bootstrap cross-validation). Let v ∈ 1, 2, 3, ..., V index a sample split

into validation sample V (v) ∈ 1, 2, 3, 4, ..., n and training sample T (v) ∈ 1, 2, 3, 4, ..., n where T (v) is

the complement of V (v).

V (v) ∪ T (v) = 1, 2, 3, ..., n (3.35)

∪Vv=1 V (v) = 1, 2, 3, ..., n (3.36)

∩Vv=1 V (v) = ϕ, V (vi) ∩ V (vj) = ϕ for any i ̸= j (3.37)

For any validation set V (v) and its complement T (v), let the learner:

βnjv = β̂j(PnT (v)) (3.38)

where n is the total number of samples, j is the index of the learner, v is the split index and PnT (v)

is the empirical distribution of the training data set T (v).

If we manipulate the training data T (v) to extract another training set T ′
(v) by either synthesizing

samples, oversampling, undersampling, splitting/combining classes (categories), then, P ′

nT (v) is the

empirical distribution of the new training set and β
′

njv = β̂j(P
′

nT ′ (v)
). For now, to keep things simple,

let us consider only the probability distribution PnT (v).

For an observation i, let V (i) denotes the validation sample it belongs to, then for i = 1, 2, 3, ..., n,

we construct a new data set of n-observations as follows: (Yi, Zi), where Z = (βnjv(i)(Xi), j =

1, 2, 3, 4, ..., J). Z is the vector consisting of the J predicted values according to the J estimators

trained on the training sample PnT (v(i)), i = 1, 2, 3, ..., n. Another input is themixer learning algorithm

(known also in literature as the meta-learner), that takes as inputs the constructed vector Zi and

predicts the output Yi.

M = M̂(Pn,y,z) (3.39)

where Pn,y,z is the empirical distribution of the observations set M = m1,m2, ...,mn. mi = (Zi, Yi)

is the meta-data sample, Zi is the stacked vector and Yi is the assigned label to the input Xi.

If we consider the loss function L(mi,M) = [M(Zi)− Yi]
2 to be the squared error loss function,

then the minimum cross-validated risk predictor:

K̂ = argmink
1

V

V∑
v=1

1

np

n∑
i=1,V (v)

[Yi −Mk(Zi = βj(PnT (v)) : j = 1, 2, 3, ..., J)]2 (3.40)
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Figure 9: Cross-validation based mixer. V -splits and J learners are used. For each split, we use
(V − 1) blocks of the data to train each learner and the remaining block is used for testing
(validation). The predicted outputs are concatenated to construct the vector Z. V blocks are
generated, one for each validation block. The 2−D matrix n× j, where n is the number of

samples and j is the number of learners, is used to train another learner M , the meta-learner.

where V is the number of splits (V -fold cross validation), p is the percentage of samples in the

validation set, n is the total number of samples, thus np is the number of samples in the validation

set. Since np and V are constants, the minimization equation can be written as:

K̂ = argmink

V∑
v=1

n∑
i=1,V (v)

[Yi −Mk(Zi = βj(PnT (v)) : j = 1, 2, 3, ..., J)]2 (3.41)

Mk̂(Zi) is the optimal general mixer, which has been selected / generated by minimizing the

loss function L((Zi, Yi),M). In practice, after training the general mixer, the whole data is used to

re-train all base learners. The mixer itself is a learning algorithm and it can be either a parametric

predictor or a data adaptive minimum cross-validation general mixer. For the parametric predictor,

one can define the minimization of the cross-validated risk criteria to be:

Mk = argminω Rcv(ω) (3.42)

where Rcv(ω) =
∑n

i=1[Yi −M(Zi\ω)]2.

For example, M(Z\ω) can be the linear regressor:

M(Z\ω) = ωZ (3.43)

= W1Z1 + W2Z2 + W3Z3 + ...+ WJZJ (3.44)
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Setting all the weights Wj to zero except one converts mixing problem to selection problem. In

fact, selection problem is a special case of the more general mixing problem. In one of the very

advanced mixing techniques, the weights themselves consists of two parts, one is related to the

mixing problem and how to mix different learners (mainly the one explained above) and the second

part is a function of the inputX. One can think about this as an adaptive mixing technique that uses

different mixing functions depending on the given input.

Given a set of learners βi, i = 1, 2, 3, ..., J , these base learners are trained using: Different

empirical distributions, Pn1, Pn2, ..., Pnk, where Pni ∈ Pn and Pni ∈ P0, different training algorithms

TA1, TA2, ..., TAQ and a combination of changing distributions and training algorithms such that:

ζi |i=1:j= (Pn1, TA1), ..., (Pn1, TAQ), ... , (Pnk, TA1), ..., (Pnk, TAQ) (3.45)

where J = k ×Q. Each ζi defines a combination of Pk and a learning algorithm TAq.

A general mixer is another learner that uses the outputs of all learners (base learners) to predict

/ estimate the final output. In the general mixer (homogeneous), all learners in the general mixer

solve the same exact problem. We can define another two different types of general mixers: hetero-

geneous general mixer and adaptive heterogeneous general mixer. Heterogeneous general mixer

consists of different learners that solve different problems. These learners can also use different

distributions and different training algorithms. To define a mixer as heterogeneous mixer, at least

two different problems should be defined within its base learners, βi, i = 1, 2, ..., J , this means that

we may still have multiple base learners working on the same problem. In the second type, adap-

tive heterogeneous general mixer, the adaptation comes in the context of how many learners are

assigned to work with a specific problem.

One more variation can be added to base learners, different representations can be used for the

same example. For example, in computer vision, different types of features can be extracted and

used to represent each sample.

3.2 BagStack Classifier

In this section, we cover the proposed BagStack classifier. BagStack classifier is a stack-based

classifier which is designed to deal with the data imbalance problem under the assumption of having

multi-class classification problem and small number of samples. The objective is to achieve the
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rational behind stacking when dealing with data imbalance problem and small number of samples.

We discussed in the beginning of this chapter the cases when stacking is beneficial to be used. The

rational behind stacking is to use different learning algorithms of different biases to transform the

input sample from the input domain (where none of the available classifiers is capable of solving

the problem) into another domain (the meta-data domain) where better performance is achievable

by using the available leaning algorithms.

The quality of this transformation is a key factor that affects the quality of the whole classifier.

Biased base learners, overfitting, underfitting, information loss and using redundant information are

among some of the challenges that we will deal with. BagStack classifier uses two levels of cross-

validation, Bootstrap and V-fold cross-validation. The spirit of BagStack classifier is to improve the

quality of base learners, the quality of the meta-data and the quality of the meta-classifier.

3.2.1 Data Partitioning

Given a set of observations S = S1, S2, ..., SN of N samples, we will define three levels of parti-

tioning. Level 1: Partitioning the N-observations into learning and testing sets. Level 2: Partitioning

the learning set into V folds, where (V − 1) folds are used for training and the last fold is used for

validation. Level 3: Randomly, sample from the training set depending on the problem at hand to

train each base learner.

In general V-fold cross validation, we define a vector Cn = 0, 1, that can take a value of 0 or 1.

When Cn = 0 the sample is used for training and when Cn = 1 the sample is used for validation.

In Bootstrap cross validation, we define a vector Cn = 0, 1, 2, 3, ..., H, where Cn is how many times

a sample is selected. H is the number of times we sample from the set.Thus, H is the maximum

number of times a sample can be selected. It is very important to understand that even when we

sample N times from a set of N samples, the probability that a sample is not selected is (1 − 1
N ),

if we sample N times then, the probability that a sample is not selected is (1 − 1
N )N = e−1 = 0.36.

This means that 36% of the set will not be selected.

Imbalance-aware bootstrap sampling (oversampling, undersampling) gives attention to labels

(classes) when performing the sampling. In oversampling, we sample a number of samples from

class C more than the original available samples. It is a bootstrap sampling from class C with

percentage > 100%. In undersampling, we sample a number of samples from class C less than
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Figure 10: A diagram shows V-fold cross-validation, Bootstrap sampling and the way of combining
both of them.

the original available samples. It is a bootstrap sampling from class C with percentage < 100%.

Oversampling and undersampling are used to deal with the data imbalance problem. Figure 10

shows the mechanism of sampling data to perform training. In this diagram, we show how one can

use both of cross-validation and bootstrap sampling to generate a sub training set to train a base

learner.

3.2.2 Information Loss/Redundancy and Overfitting/Underfitting Problems

For now, let us focus mainly on the Bootstrap sampling and consider the two cases oversampling

and undersampling. Consider a classification problem of only two classes, binary classification

problem, where the number of samples of class B (minority) is less than the number of samples of

class A (majority). Dealing with data imbalance problem can be done by using either oversampling

class B or undersampling class A.
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Figure 11: Data imbalance problem. (a) Line 1 represents a candidate solution for the problem. (b)
Line 2 represents an alternative solution for the classification problem after solving the data

imbalance problem by oversampling class B.

Oversampling minority classes: Sampling |A| samples from the majority class A and the same

number of samples from the minority class B, where |A| is the number of samples belonging to

the majority class A. This leads to redundant information, multiple copies of the minority samples

belonging to the same original sample. This changes the behavior of the learning algorithm; the

learning algorithm now is focusing more on the minority samples when minimizing the loss function.

The risk of duplicating samples is increasing the tendency to have overfitting problem. Despite the

fact that many of the new samples are just copies of the original data, the learning algorithm consid-

ers each sample as completely independent and unique sample. Because of duplicating samples,

some of the features may mistakenly become more important than the others. These features may

not be important. Asking the learning algorithm to focus on these samples will eventually lead to

overfitting problem. The learning algorithm will learn specifically the few number of samples avail-

able in the original minority set. To explain how oversampling can affect the accuracy let us consider

the following example.

Figure 11 depicts a classification problem of two classes, Class A is the majority class and

Class B is the minority class. Training a linear model to classify these two classes, such that we

maximize the overall accuracy, results into the line 1 hyper plane. Figure 11 (a) depicts this solution.

Performing oversampling on class B, such that the total number of samples belonging to class
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B becomes equal to |A|, then training a linear model to classify these two classes, such that we

maximize the overall performance, results into the line 2 hyper plane. Figure 11 (b) depicts this

solution. The difference between these two solutions is that the overall accuracy of case 1 (Figure

11(a)) is 96% and the average accuracy is 85%, while the overall accuracy after dealing with the data

imbalance problem is 90% and the average accuracy is 90%, Figure 11(b). The learning algorithm

gives more attention to the minority class which leads to correctly classifying all samples belonging

to the minority class in the training set. In practice, the prediction accuracy on the testing data is

more important. The sample S of class B looks like a noisy sample, it is not clear if this sample is

a good representation of the class B or not. The distribution of the Samples ∈ Class A is almost

a uniform distribution, while the distribution of the Samples ∈ Class B is nonuniform with higher

probability to be within the region RA than the region RB.

Adding more samples to this training set can easily make the classifier unstable and thus chang-

ing its prediction. In fact, adding more samples and retrain may lead to a different base learner. If

the sample S is a noisy sample while all other close samples belong to class A are real samples,

the probability that a new sample in this region belongs to class A is higher than the probability that

the new sample belongs to class B. This leads to a lower accuracy during the prediction. One of the

issues of using oversampling is the phenomenon of giving more attention to wrong features. In fact,

duplicating the same sample multiple times may give the illusion that some of the features (features

that can be used to separate these samples from the other samples) are more important.

Undersampling majority class: Undersampling is the process of selecting a set of samples from

the majority class. In practice, |B| samples are sampled from the majority class, where |B| is the

number of samples belonging to the minority class. Undersampling is more common than oversam-

pling, it is used mainly with ensemble techniques (e.g., Bagging and Boosting). Despite the fact that

the undersampling technique is powerful, there are some limitations connected to it. To understand

these limitations, let us define the ratio of class A (majority) to class B (minority) as ρ:

ρ =
|B|
|A|

=
number of samples in the minority set

number of samples in the majority set
, then 0 ≤ ρ ≤ 1 (3.46)

The case, when ρ = 0, is not one of the cases that we cover. It is called the one class learning

problem. In this problem, you learn only one class and you predict either (Yes), the sample belongs

to this class, or (No), the sample does not belong to this class. The case when ρ = 1
|A| is another

interesting problem called learning from one sample. When ρ = 1 there is no data imbalance

problem. The range that we are interested in is 0 < ρ < 1. This range is wide and having ρ equals
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to 0.99 is not the same as ρ equals to 0.01. ρ significantly affects the number of base learners to be

used when constructing an ensemble classifier.

Even though data imbalance problem is mainly defined by the ratio ρ, in practice, there are

other factors that play major roles in deciding if there is a data imbalance PROBLEM or not. Data

imbalance is mainly related to the ratio, but if there is a problem or not is also related to: |A|, |B|,

the absolute number of samples, the variation within the majority class, the cost of missing the

prediction of the minority class and having separable classes or not given a training algorithm.

Having severe data imbalance problem necessitates increasing the number of base learners.

Training with small number of base learners may lead to information loss. Some of the majority

samples may not be used.Training with large number of base learners may lead to have redundancy.

Some of the minority samples may be used multiple times. If the variation within the class is very

high and the samples are covering a large region of the data space, undersampling may lead to

unstable version of the base learners. Later, we will explain how the ratio ρ,the absolute number

of samples |A| and |B|, the variation within classes and separability) affect the number of base

learners.

Synthetic oversampling: In oversampling technique, the idea is to increase the number of

samples of the minority class. The drawback of simply duplicating samples is increasing the ten-

dency toward overfitting. In synthetic oversampling, we increase the number in the minority class

by creating (synthesizing) new samples. The main idea is to use available samples to create new

samples. SMOTE (Synthetic Minority Oversampling Technique) is one of the most common used

techniques. In SMOTE algorithm, for each sample in the minority class: find the KNN samples,

randomly select one of the KNN samples SKNN , randomly choose a number between zero and

one, and finally, synthesize the new sample such that: Ssynth = Soriginal + a× d(SKNN , Soriginal),

where d() is the distance between the original sample and the SKNN sample. Since the synthetic

oversampling technique generates new samples that are not exact copies of the original samples,

it reduces the tendency of oversampling toward overfitting.

3.2.3 BagStack Classifier: Mathematical Justification

In the section, we will explain the rational behind the BagStack classifier. We will cover the major

concepts behind bagging and stacking and how combining both can be very useful.
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The rational behind bagging can be understood by looking mainly at the two major errors in

classification. The generalization error Ge is presented as a function of bias and variance errors.

The generalization error Ge measures disparity between the predictor/estimator β and the true data

generating process f . For a provided sample Y of f at q, where Y is a random sample of Pf (.\q),

the generalization error can be defined as the square difference between β(q) and the Y :

Ge = (β(q)− Y )2 (3.47)

If we train multiple versions of β for different training sets, the expected value β(q) will be:

β∗(q) = E[β(q)\f,m] (3.48)

β∗(q) =
∑
d

(P (d\f,m)× βd(q)) (3.49)

where β∗(q) is the expected prediction, f is the true data generating distribution, m is the total

number of samples used in the training and βd(q) is the realization of β(q) when we use the d

training set of m samples to train the predictor β(). P (d\f,m) is the probability of generating the d

training set. The expected generalization error given f , m and q is given by:

E[Ge\f,m, q] = Ed[(βd(q)− Y )2] (3.50)

= Ed[(βd(q)− Ed[βd(q)] + Ed[βd(q)] + Ed[βd(q)]− Y )2] (3.51)

= Ed[(βd(q)− Ed[βd(q)])
2] + Ed[(Ed[βd(q)]− Y )2] + irreducible error (3.52)

= V ariance + (Bias)2 + irreducible error (3.53)

If our training algorithm responds with the same hypothesis βd(q), the variance will be zero,

since the hypothesis is not changing while changing the training set. The bias will be constant and

equals the bias results from any of the given hypothesis. If the training algorithm is unstable, then,

the expected error of that algorithm that always guesses Ed[βd(q)] regardless of d is significantly

less than that of the training algorithm βd(q). The difficulty in exploiting this effect to aid real world

generalization is the fact that we cannot evaluate the expected value Ed[βd(q)]. Because we have

only one training set and not a set of training sets we cannot evaluate this expected value. In the

original paper of Bagging [9], the authors argued that one can produce a mimic of Ed[βd(q)]. By

using the available training set and Bootstrap we can generate several training sets by sampling

from the training set. Repeating this process (sampling and training) to a degree that the mimic of

60



Figure 12: Predictions of the same input sample q using different realizations of 4 different
learning algorithms.

Ed[βd(q)] approximates the true Ed[βd(q)], then guessing with Ed[βd(q)] rather than βd(q) will result

in lower expected generalization error.

The above explanation is just a mathematical justification of why we believe that bagging can

reduce the generalization error. In fact, this is not a proof. There is no mathematical proof that

bagging will always reduce the generalization error. (Even boosting has no mathematical proof it

will always reduce generalization error). Bagging is very significant when we have unstable learning

algorithms. In this case, taking the average of a slightly better than random guessing classifiers can

reduce the variance error.

Deciding, if bagging is helpful or not, depends mainly on the generalization error and the main

components that construct this error (bias and variance). Bagging is very helpful if the bias error

is zero and the variance error is not. In this case, using bagging can reduce the variance error and

thus the overall generalization error. In the case when variance error equals to zero, bagging is not

helpful. There will be no gain of using it. One of the interesting cases is when both variance and

bias errors are not zeros. In the last case, bagging is useful if there is a way to shift the bias of the

overall classifier toward the right target.

To explain the rational behind stacking, let us assume that we have multiple learning algorithms

L1, L2, ... , L4, these learning algorithms have different biases. Figure 12 depicts the predictions of

each one of these learning algorithm, when using different training sets to train each one of them,

on the sample q.
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Given a training set TR, using any training algorithm to generate a classifier (1 classifier) will

not be helpful and will lead to a large generalization error. L1 and L3 have both bias and variance

errors, L2 and L4 have only bias error. Using bagging with these learning algorithms can reduce

the variance error (if it is not equal to zero), but none of these algorithms will be able to generate

a classifier (strong ensemble classifier) with minimum (close to zero) generalization error. None of

the bagging ensembles, which has been generated using any of these training algorithms, can lead

to zero bias error.

cross-validation is the most common used method for selecting classifiers. It can be used to

select the classifier with the minimum bias and variance error. If cross validation can be used to

select a classifier, why do we need stacking? In the last example (Figure 12) since none of the

classifiers has a non-zero bias error, cross-validation based selector will not be helpful and at the

best it will select the classifier with the minimum none-zero bias error.

The only option we have is to understand the outcomes of these learning algorithms. One can

come up with a conclusion based on these outcomes. In this case, even wrong predictions may

contain useful information that can be used to make the final prediction. This is the answer for

why stacking-based classifier is important. Stacking-based classifier uses the outcomes of different

learning algorithms to represent the question q in another domain, where one of the available learn-

ing algorithms can solve the problem. Figure 13 depicts three different techniques of combining

the outcomes of different learning algorithms. Figure 13 (a) shows the case when using K training

algorithms, Figure 13 (b) shows the case when we use bagging explicitly to generate different re-

alizations of the same learning algorithm and Figure 13 (c) depicts the case when using bagging

implicitly to generate different realizations and combine the outcomes of these base learners using

another learning algorithm (meta-classifier).

In fact, the set of learning functions that can be represented (learned) by using bagging to gen-

erate different ensembles followed by cross-validation to select the best ensemble classifier is com-

pletely contained in the set of functions that can be represented using the classifier depicted in

Figure 13 (b). The set of functions that can be represented using the classifier depicted in Figure

13 (b) is completely contained in the BagStack classifier, Figure 13 (c). Stack-classifier consists of

two levels of learning. L0, is the first level, it consists of a set of base learners. L1, is the second
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Figure 13: (a) General Stacking based classifier, (b) stacking based classifier using ensemble
bagging classifiers using different learning algorithms (explicitly apply bagging followed by

stacking) and (c) BagStack Classifier.

level, it consists of the meta-classifier which takes as input the outcomes of the first layer. Data

generated by the first layer is called the meta-data.

3.2.4 Cross-validation Based Stack and BagStack Classifiers

In a cross-validation based classifier, the learning data is divided into V-splits. One split is used

for validation and the (V-1) splits are used for training.

Algorithm 1 is the training algorithm of stack-based classifier using cross-validation. We have

no assumptions about the problems as well as the learning algorithm that is used with each base

learner: Different algorithms: SVM, DT, … etc., different problems: one-vs-one, one-vs-all, Multi-

Class, … etc., different data representations: different features. The objective function of the
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Algorithm 1 Cross-Validation Based Stack-Classifier.
1: Step 1: Generate the Meta-Data.
2: Initialization: BL = ϕ, M = ϕ.
3: for each split v do
4: Use (V-1) splits, all splits ∈ V except v, to construct the training set TR.
5: Use the last split v to construct the validation set TV .
6: for each base learner nbl do
7: Use the training set TR to train the base learner BLnbl.
8: Add this base learner to the base learning set:BLnbl → BL.
9: end for
10: for each sample in the validation set v do
11: Test the current sample to construct the vector Z by concatenating the predictions of all

base learners in the base learning set BL.
12: Add the vector Z to the meta data set M .
13: end for
14: Reset the base learners set BL← ϕ.
15: end for
16: Step 2: Use the meta-data M to train the meta-classifier ML.
17: Step 3: Use all the data in the learning data set to re-train each one of the base learners.

meta-classifier (Mi = (zi, yi)) is to reduce the risk (average risk) across different splits. The

Loss function = minEv[Loss(mi,ML)], wheremi is a samplemeta-data. Then themeta-learning

algorithm:

ML = argminMLEv[Loss(mi,ML)] (3.54)

= argminML

N∑
i=1

(yi −ML(mi))
2 (3.55)

where N is the number of samples belonging to the learning set. Improving the quality of the meta-

data is important to improve the training of the meta-classifier. The first layer of base learners is

a transformation process that transform the sample from input domain (Xi, Yi) to the meta-data

domain (Zi, Yi).

How to guarantee the quality of this transformation? The first step to improve the meta-data is to

improve the quality of the base learners. Since we have no pre-assumptions about the performance

of the given training algorithms on the training data, we need to improve the performance of these

base learners. Reducing variance error is done by generating multiple base learners using the same

training algorithm and solving the same problem. In bagging, the average of the outcomes is used

to represent the final outcome. In BagStack, the meta-classifier learns how to use the outcomes the

best way to maximize the overall accuracy. In cross-validation based BagStack classifier (Algorithm

2), the data used to generate the meta-data have not been seen by the base classifiers during the

current iteration of training. This improves the quality of the meta-data.

64



Algorithm 2 Cross-Validation Based BagStack-Classifier.
1: Step 1: Generate the Meta-Data.
2: Initialization: BL = ϕ, M = ϕ.
3: for each split v do
4: Use (V-1) splits, all splits ∈ V except v, to construct the training set TR.
5: Use the last split v to construct the validation set TV .
6: for each training algorithm L do
7: for each base learner nbl do
8: Randomly sample from the training set TR using Bootstrap sampling.
9: Train the current base learner BLnbl.
10: Add this base learner to the base learning set: BLnbl → BL.
11: end for
12: end for
13: for each sample in the validation set do
14: Test the current sample to construct the vector Z by concatenating the predictions of all

base learners in the base learning set BL.
15: Add vector Z to the meta-data set M .
16: end for
17: Reset the base learners set BL← ϕ.
18: end for
19: Step 2: Use the learning data, retrain the BL.
20: for each training algorithm L do
21: for each base learner nbl need to be trained by the current training algorithm do
22: Randomly sample from the training set (TR∪TV = V −Splits) using Bootstrap sampling.
23: Train the current base learner BLnbl.
24: Add this base learner to the base learning set: BLnbl → BL.
25: end for
26: end for
27: Step 3: Using the meta-data, train the meta-classifier.

In fact, Algorithm 2 does not answer the following important questions: how many base learners

to be used to solve the same problem using the same training algorithm? Do we need to use

the same number for different problems / different training algorithms? What is the percentage

of samples to be sampled from the training data when training a base learner? Is it the same

percentage for all problems? In this algorithm, we do not consider also the types of problems that

need to be solved by different base learners. We assume that all base learners solve the same

problem but using different training algorithms.

The meta-data is a very important aspect of stacking-based classifiers. The meta-data can be

either labels, probabilities or confidence values. While labels indicate the classes without giving

any information about certainty, probabilities and confidence values give more information. These

two values provide more information about how much the base learner is sure about its prediction.

This is used by the meta-classifier to make the final decision.
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Algorithm 3 MC-Classification Using one-vs-all Binary Classifiers.
1: for each class c do
2: Train a binary classifier to solve the problem Class C vs. all other classes.
3: end for

Algorithm 4 MC-Classification Using one-vs-one Binary Classifiers.
1: for each class c1 do
2: for each class c2, s.t c1 ̸= c2 do
3: Train a binary classifier to solve the problem Class c1 vs. c2.
4: Add this base learner to the base learner set BL.
5: end for
6: end for

3.2.5 Cross-validation Based Multi-class Classifier and Heterogeneous General Mixer

Multi-class classification is the problem of classifying three or more classes (dealing with two

classes is a binary classification problem). Multi-class classification problem is an interesting prob-

lem since most of available training algorithms are designed mainly to deal with binary classification

problems.

In this section, we will study two different techniques that are used to convert the multi-class

classification into several binary classification problems. These binary classification problems can

be different in the context of types of problems and types of training algorithms. Some of the prob-

lems can be easy and separable, others can be more difficult and need extra ordinary effort to be

solved.

In the one-vs-all category, theMC-classification problem is transformed tomulti- one-vs-all binary

problems. In it is simplest format, the number of binary classification problems is directly related to

the total number classes.

To perform prediction, given a question X. Test the question using all base learners and pick

the class c of the classifier that predicts c with the highest probability. If no classifier predicts c,

pick the class c of the classifier that predicts (all) with the smallest probability. Even though this

prediction technique (transformation of a multi-class problem to binary problems) looks good and

makes sense, there are two main problems related to it. (1) It is not clear how this algorithm deals

with the bias error and variance error within the binary classifiers. What if one of the classifiers is

biased toward the class c, meaning the binary classifier of c vs. all always predicts c. This may

happen if the number of samples belong to class c is very large. This will affect the whole prediction

66



technique leading to a classifier that is biased toward predicting the class c. (2) The information

used to generate the final prediction is only related to the classifier of max or min probability. All

other outcomes are ignored. An alternative technique is to consider the output of all these classifiers

as meta-data that can be combined to construct a feature vector. Instead of using max or min a

classifier is trained to generate the final prediction. Since we are using the same training algorithm,

the main objective of the meta-classifier is to understand the dependency (correlation) between

different predictions (different problems) to predict the final label.

In this context, the transformation of MC classification problem into a C binary classification

problems, the stacking used mainly to transform the problem from one domain into another different

domain where making a decision about the final prediction is easier and more accurate. You can

think about this as breaking a difficult problem into a set of smaller and simpler problems.

One of the major limitations of converting the problem (MC-problem) to a one-vs-all classifica-

tion problem is the data imbalance problem. In fact, one-vs-all classification problem is inherently

imbalance, usually the number of samples belonging to the (all class) is more than the one class.

Moreover, if the MC problem has already a data imbalance problem, transforming the problem to

a one-vs-all will make the problem more imbalance.

In one-vs-one, the multi-class classification problem is transformed into a set of one vs. one

classification problems. In each one of these problems, we try to distinguish between two different

classes. Testing can be done by considering each one of these base learners. For example, we

can find the sum/average of probabilities of the class c over all classifiers that contains class c as

one of its classes. The class with the max probability is selected. If two classes return the same

max probability, randomly, pick one of them. Again, if one of the classes is dominant and thus bias

error exist, all classifiers that are trained using data from this class and any other classes will be

biased which leads to overall biased predictions. An alternative, one may consider processing the

outcomes of these base learners using another meta-classifier.

The one-vs-one has the advantage of being able to focus on a very simple problem. Less

data imbalance and more information can be used through the transformation process (since no

undersampling is required). For each class, C − 1 base learners are created, thus the total number

of base learners will be NBL =
∑C

c=1 (C-c). During the testing process, each sample will be tested

by NBL − C + 1 base learners that have not seen this type of sample during the training process

(when testing classAwith a base learner that is trained on classB vs. D). The outputs of these base
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Figure 14: Using MLR as a meta-classifier with one-vs-all base learners.

learners are considered as random guessings. The collinearity level is higher in this transformation

than the one vs. all based transformation. There is no way to deal with bias and variance errors.

Meta-classifier is looking at completely different problems. The meta-classifier will only study the

relation between the outcomes to come up with final prediction.

Using ensemble-based multi-response DT regression EB-MDTR as a meta-classifier for the

heterogeneous general mixer: For all previous analysis, we consider a single meta-classifier that

takes as input the outcomes of the base learners. In heterogeneous general mixer, different types of

problems are defined at the base learner level. Categorizing these different problems and defining

multiple specialized meta-classifier is useful to help each one of these meta-classifiers to focus on

a very specific problem, usually in the form of: does the sample belong to class c or not?

In [56, 57, 58, 59], the authors suggested using the MLR, wherein a linear regression problem

is defined per class. The inputs (feature input) of each one can be different. The outcomes of the

base learners can be grouped into different features. In one vs. all implementation, the outcomes

of base learners are combined to construct a single feature. Figure 15 depicts the process of using

the MLR with one vs. all implementation.

Even though all these models M1 −Mk use the same feature input, they use different labels

during the training for the same feature input. If the sample Si, which is used to generate the

vector Zi, is labeled as class cj , the vector Zi is labeled as 1 when training the model Mj and

0 when training all other models. We are expecting that each model M1 − Mk will take care of

understanding the relation between the outcomes of different base learners and reducing the bias.

It is very important to notice that the probabilities P0, P1, ..., Pk are generated by using different base
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learners and different problems. It is not the same as bagging, where all outcomes are generated

by base learners which solve the same problem.

In this thesis, we propose the ensemble-based multi-response DT regression as a metaclassifier.

Instead of using linear regression, we use DT regression. Instead of fitting one regression function

for each class we fit an ensemble of DT regression for each class. We randomly sample from the

training data (meta-data) and fit each one of these DT regression functions. In the prediction phase,

the output of eachmodel corresponding to a specific class is defined as the average of all predictions

(bagging). The final prediction of the BagStack classifier is defined as the class corresponds to the

ensemble model of the maximum prediction.

Instead of using bagging of decision tree regression functions, we can use random forest re-

gression. Random forest uses another level of randomness that improves the ability of the model

to resist overfitting. In bagging, we randomly select samples from the training set with replacement

to construct a new subset, usually we select (60% − 80%) of the training data to train each model

in the ensemble. In random forest, we randomly select samples from the training set to construct

a new subset that is used to train each model (DT) in the ensemble. Random forest uses another

level of randomness. At each node in the tree, instead of using all the features to select one to split

the data at this node, random forest selects randomly a subset of the features at each node and

only this subset is used in the evaluation to select one to split the data.

Increasing the number of base learners increases the dimension of the meta-data. In the case

when we have high imbalance ratios between classes, high numbers of base learners are used to

achieve a specific coverage percentage, the higher the number of base learners used to solve a

specific problem, the higher the probability that two features are highly corelated. In theory, if Cor

is a measure of the corelation between features in the meta-data, at some point if Cor is greater

than a threshold, random forest converges to bagging of decision tree. To increase the resistance

of the random forest against overfitting, we introduce a new level of randomness. the new level is

the depth of the tree. For the first tree in the ensemble we use optimization techniques to find the

optimal depth (D), for all subsequent trees we set the max depth parameterD′ to beD′ = D−D×λ,

where lambda is a small positive random number (e.g., 0 - 0.15).
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Figure 15: Using MLR as a meta-classifier with one-vs-one base learners.

3.3 BagStack Classifier for Data Imbalance Problem

Given a set of learning samples S = S1, S2, S3, ..., SN , where each Si = (Xi, Yi), Xi is the input

feature and Yi is the label. Yi ∈ 1, 2, 3, ..., C, C is the number classes. BagStack classifier uses

the concept of bootstrap sampling and V-fold cross validation to deal with both of variance and bias

errors. While bagging is used to reduce variance error, stacking is used to perform general selection

and reduce the bias error.

In our final implementation, we use bootstrap and V-fold cross-validation together at two different

levels. The MC classification problem is transformed into a one vs. one classification problem. The

number of base learners are assigned to each problem (one-vs-one) is specified adaptively as a

function of the ratio ρ of the minority class to the majority class, 0 ≤ ρ ≤ 1, the absolute number of

samples of each class and the variation within classes. The main idea behind making the number

of base learners per problem adaptive is assign different numbers of base learners to different

problems.

In this section, we will explain in detail the BagStack classifier, splitting the data and sampling,

defining the base learners, generating the meta-data and different meta-features, the different meta-

classifiers and how we will perform the final prediction.

Data imbalance problem represents one of the major problems in machine learning. Data imbal-
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ance is important for the following reasons: (1) It is a property of many of the practical problems, in

many cases, the minority class is more important. (2) Data imbalance results into biased classifiers.

BagStack classifier deals with the data imbalance problem at different levels using different

techniques: Adaptive number of base learners, avoiding overfitting, underfitting and information

loss, and variance-based adaptive synthetic minority technique (VA-SMOTE). Algorithm 5 repre-

sents the process of training a BagStack classifier using Cross-Validation and one-vs-one binary

classifiers.

3.3.1 Adaptive Number of Base Learners

Given a set of base learnersBLset = BL1, BL2, , ..., BLNBL, where (NBL) is the total number

of base learners to be used. Given a set of learning algorithms L = L1, L2, ..., LLA, where LA is the

total number of learning algorithms. For a given C-classification problem, where C is the number of

classes, NBLpLA is the number of base learners per learning algorithm, where NBLpLA = NBL
LA ,

the total number of base learners divided by the total number of learning algorithms. For C classes,

we define E problems (one vs. one problem), where E =
∑C

i=1(C − i). Let us define the problem

Probe(AB) as the one-vs-one classification problem Class A vs. Class B.

|A| is the number of samples belonging to class A and available for training (usually the training

set during generating the meta-data and learning set during generating the final base learners). In

the same context, |B| is the number of samples belonging to classB. The higher the data imbalance

ratio for a specific problem, the more base learners assigned to solve it. This is motivated by the

concept of using bagging and undersampling to solve the data imbalance problem. In fact, bagging

can be used with undersampling where the number of samples that are sampled from class A (the

minority) and class B (the majority) is equal the number of samples |A|. To avoid information loss

and to guarantee that all (most) of the samples in B are used we need to train higher number of

base learners as we have higher data imbalance ratio. Figure 16 depicts the process of using

undersampling to train class A vs. class B.
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Algorithm 5 Cross-Validation Based BagStack Classifier Using one-vs-one Binary Classifiers.
1: Two levels of sampling, V-fold cross-validation and Bootstrap sampling.
2: Transforming the MC Classification into one-vs-one binary classifiers.
3: TR: Training set, TV : Validation set, TL: Learning set, NBL: The number of base learners, LA:
Learning algorithms, V : V-folds, C : The total number of classes.

4: Initialize BLSET = ϕ, M = ϕ, MLSET = ϕ.
5: Step 1: Generate Meta-data.
6: for each split v in the V -splits do
7: Use the (V − 1) splits to construct the training data set TR.
8: Use the split v to construct the validation set TV .
9: Define the number of base learners per learning algorithm LA:NBLpLA = NBL

LA , where
LA is the total number of training algorithms.

10: For C classes, define the set of one-vs-one problems.
11: for each problem e do
12: Find the number of base learners NBLLAe to be used to solve the problem e, where:

NBLpLA =
∑ c×(C−1)

2
e=1 NBLLAe

13: end for
14: BLSET = ϕ
15: for each learning algorithm LA do
16: for each defined problem e : class A vs. class B do
17: for each BL : 1 to NBLLAe do
18: Sample from class A and class B, TR.
19: Using the learning algorithm LA, train the base learner BL, BLSET ← BL.
20: end for
21: end for
22: end for
23: By using the validation set TV , test each base learner.
24: for each sample in the TV set do
25: for each base learner in the BLSET do
26: Test the sample.
27: Construct the feature vector Zi.
28: end for
29: Add the meta-sample (Zi, Yi) to the meta-data set MLSET .
30: end for
31: end for
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32: Step 2: Generate the final base learners.
33: BLSET = ϕ
34: for each learning algorithm LA do
35: for each defined problem e: class A vs. class B do
36: for each base learner BL : 1 to NBLLAe do
37: Sample from class A, class B, TL.
38: Using the learning algorithm LA, train the base learner BL.
39: BLSET ← BL
40: end for
41: end for
42: end for
43: Step 3: Generate the Meta-Classifier/Estimator
44: for each class c in the class set 1, 2, 3, ..., C do
45: MCSET = ϕ
46: for each sample in the set MLSET (Zi, Yi) do
47: Define the vector K[].
48: Counter=1
49: for each base learner, j = 1 : nbl do
50: Z[j] has been generated based on the problem Class A vs. Class B, 0 ≤ Z[j] ≤ 1.
51: If A = c, K[counter] = Z[j], counter = counter + 1
52: If B = c, K[counter] = 1− Z[j], counter = counter + 1
53: end for
54: Add the sample (Ki, Yi →MCSET ).
55: end for
56: By using the sample in MCSET , fit a linear regression model MLC.
57: MLC →MLSET .
58: end for

Algorithm 6 Finding Number of Base Learners.
1: ρ[]← empty.
2: for each problem Probe(AB) ∈ Set E do
3: Find the ratio ρ(Probe(A,B)) = min(|A|,|B|)

max(|A|,|B|)
4: end for
5: for each problem Probe(A,B) ∈ Ste E do
6: Normalize the ratio as: ρ(Probe(A,B)) =

( 1
ρ(Probee(A,B))

)∑E
i=1(

1
ρ[i]

)

7: NBLLAe(Probe(A,B)) = ρ(Probe(A,B)) × NBLpLA
8: end for

In fact, the ratio of the number of samples belonging to majority class to the number of samples

belonging to minority class is not the only factor that we can use to evaluate the data imbalance

problem. Three more different parameters should also be considered: The absolute number of

samples. Mainly, the absolute number of samples of the minority class, the variation within the

majority class, the used training algorithm.

The data imbalance problems (A= 10 vs. B=100) and (B= 100 vs. D=1000) have the same data
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Figure 16: Using undersampling to train a data imbalance problem Class A vs. Class B.

imbalance ratio. Using undersampling and one base learner will not be sufficient for the first problem,

the information loss in the majority class will be significant. In the second problem, using one base

learner is enough to capture most of the information in the two classes. Using data imbalance ratio

to specify the number of base learners to be assigned for each one of these problems may not be

sufficient. Instead of using the same number of base learners for the two problems, it will be better

to give more base learners to the first problem.

Variation within the class represents another factor that should be considered when assigning

base learners to different problems. If the variation within the class D is higher than the variation

within classes A and B, using more base learners to represent this class can improve the perfor-

mance. Algorithm 7 shows the way of calculating the number of base learners assigned to each

problem when we consider the imbalance ratio, the number of samples in the minority class and

the variation between the majority class.

The last factor is the used training algorithm. Instead of using the same NBLpLA of base

learners for each training algorithm, different numbers for different training algorithms can be used.

Known learning algorithms to be unstable are assigned more base learners than stable learning

algorithms. Measuring the stability of an algorithm is done through repeatedly training / testing the

learning algorithm to measure the variance error corresponding to this training algorithm. Assigning

more base learners is beneficial to reduce the variance error.
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3.3.2 Avoiding Overfitting, Underfitting and Information Loss

Bagging uses bootstrap sampling to select a subset of samples from the training set to train each

base learner. Each time P% of the training set is used to perform training. In general bootstrap

sampling, P% of the training data is sampled without giving any attention to different classes. If the

original data is imbalanced, then randomly sampling results in a new training data set will also be

imbalanced.

Algorithm 7 Finding Number of Base Learners.
1: for each Probe(AB) ∈ Set E do
2: Find the ratio: ρ(Probee(A,B)) = min(|A|,|B|)

max(|A|,|B|)
3: end for
4: for each problem Probe(AB) ∈ Set E do
5: Normalize the ratio as: ρ(Probe(A,B)) =

( 1
ρ(Probe(A,B))

)∑|E|
i=1(

1
ρ[i]

)

6: end for
7: for each problem Probe(AB) ∈ Set E do δ(Probe(A,B)) = min(|A|,|B|)∑|E|

Probe
min(|A|,|B|)

8: end for
9: for each problem Probee(AB) ∈ Set E do λ(Probe(A,B)) = V ariation(Maj(A,B))∑|E|

probe
V ariation(Maj(A,B))

10: end for
11: Variation() is a function used to find the variation within a class. The total number of base

learners assigned to each problem is given by the following formulas:
12: ACC(Probe(A,B)) = α1× ρ(Probe(A,B))+α2× δ(Probe(A, b))+α3×λ(Probe(A,B)), where

α1 + α2 + α3 = 1
13: NBLLAe(Probe(A,B)) = ACC(Probe(A,B))∑|E|

Probe
ACC(Probe)

× NBLpLA

When we use bootstrap sampling, each time we sample, the probability that a data point (in-

stance) is selected is 1
N , the probability that a data point is not selected is 1− 1

N , sampling N times

from the training sample results in probability of (1 − 1
N )N = e(−1) = 0.36 that a sample is not

selected. In other words, if we select N samples from a training set of size N with replacement,

36% of the samples will not be selected. In bagging, since we perform bootstrap sampling multiple

times (depending on the number of base learners), the probability that a sample is not selected is

getting smaller. For example, for two base learners, if we sample N samples to train each base

learner, the probability that a sample is not selected (1 − 1
N )2×N = 0.362 = 0.129% thus 12.9%

of the training data samples will not be selected.

How is this related to BagStack classifier? In BagStack classifier we use undersampling to deal

with the data imbalance problem. For a given problem Class A vs. Class B, if |A| < |B|, How to

75



ensure that at least F% of the majority class samples are selected and used in the training process?

How many base learners we need to assign for this problem to guarantee this percentage?

The probability that a sample belongs to the majority class is not selected (Sample Not Selected

SNotS) when performing random undersampling:

PSNotS = (1− 1

|Majority|
)|Minority| (3.56)

where |Minority| is the number of samples belonging to the minority class and |Majority| is the

number of samples belonging to the majority class.

To guarantee that the percentage (coverage percentage of the majority class) is higher than F%:

(1− 1

|Majority|
)|Minority| ≤ 1− F% (3.57)

To find the total number of base learners to train:

(1− 1

|Majority|
)|Minority|×NBL ≤ 1− F% (3.58)

|Minority| ×NBL× log(1− 1

|Majority|
) = log(1− F%) (3.59)

NBL =
log(1− F%)

|Minority| × log(1− 1
|Majority| )

(3.60)

For example, given the number of samples in theminority class is 100 and the number of samples

in the majority class is 230, to guarantee a usage percentage of F% = 90%, the total number of

base learners needs to be used is:

NBL =
log(1− F%)

|Minority| × log(1− 1
|Majority| )

(3.61)

NBL =
log(1− 90%)

100× log(1− 1
230 )

=
−1

100×−0.0018
(3.62)

NBL = 5.28 = 6 Base Learners (3.63)

To guarantee that at least 90% of the majority class samples are selected, 6 base learners should

be used. The whole problem of specifying the number of base learners for each problem (class A

vs. class B) can be re-designed to deal with the assumption (restriction) that at least (F%, the

coverage percentage) of the majority class of each problem should be used.
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Algorithm 8 Finding the total number of base learners NBL.
1: NBL = 0, the total number of base learners.
2: F%, the minimum coverage percentage of the majority class.
3: for each problem Probe(AB) ∈ Set E do
4: MAJc is the majority class.
5: MINc is the minority class.
6: The number of base learners assigned to the problem Probe(AB).
7: NBLLAe(Probe(A,B)) = log(1−F )

|MINc|×log(1− 1
|MAJc|

)
.

8: NBL = NBL+NBLLAe(Probe(A,B))
9: end for

While considering the usage percentage of the majority class in our calculations is an interesting

idea, things can dramatically go out of control. Let us consider a severe data imbalance problem

where the data imbalance ratio is 1:7, this is a real example from our real defect database that we

are working with (Class D5 = 70 samples: Class D9 = 10 samples). For this data imbalance ratio,

to guarantee that the majority coverage percentage is 90%:

NBL =
log(0.1)

10× log(1− 1
70 )

=
−1

−0.0625
= 16 (3.64)

16-base learners are needed to guarantee that at least 90% of the majority class are used. Training

more base learners is an expensive process. One of the alternative solutions is to use a mix of

oversampling and undersampling. Instead of using one constraint, tow constraints are used at the

same time: the minimum usage percentage (F%) and the maximum number of base learnersNBL.

We change the question to be: if at least F% of the majority class samples should be selected (at

least once) and the total number of base learners should be NBL, then, how many samples of the

majority class should be sampled each time?

NBL =
log(1− F%)

|n| × log(1− 1
|Majority| )

(3.65)

|n| = log(1− F%)

NBL× log(1− 1
|Majority| )

(3.66)

At least |n| samples need to be sampled from the majority class each time to guarantee the target

usage percentage F%. The actual number of samples to be used is directly related to the number

of samples in the minority class:

Q = Max(|Minority|, |n|) (3.67)

77



• If |n| ≤ |Minority|, then Q = |Minority|. This results in usage percentage greater than the

target. There is no need to perform oversampling on the minority class. Furthermore, the

number of base learners can be reduced while satisfying the usage percentage.

• if |n| > |Minority|, then Q = |n|. In this case, oversampling is applied on the minority class.

In some severe cases of data imbalance problem and under the restrictions of using small num-

ber of base learners and large coverage percentage, the |n| can be greater than the available

number of samples in the minority class. Oversampling the minority class by just duplicating the

samples may lead to overfitting problem. An alternative is to use a synthetic oversampling tech-

nique. In the next subsection, we will introduce the Variance-Based Adaptive SMOTE algorithm,

VA-SMOTE, to synthetically oversample the minority class.

3.3.3 Variance-based Adaptive Synthetic Minority Technique (VA-SMOTE) Algorithm

In synthetic oversampling, instead of oversampling the minority class by duplicating samples,

new samples are synthesized, such that one or more samples (original samples) are used to syn-

thesize new samples. SMOTE [14] is an oversampling method that is used to create new minority

samples by interpolating several minority-class instances that lie together. For each sample, one or

more of the K-nearest neighbors (KNNs) are selected. The original sample and its neighbors are

used to create new samples. The new instance is generated by random interpolation as follows:

NS = OS + a × distance(OS, KNNs) (3.68)

where NS is the new sample, OS is the original sample andKNNs is one of the neighbors sample.

a is a random number between 0 and 1, and distance() is the distance between the two samples

(the original sample and the KNNs sample). Even though this algorithm is very simple, it is proven

in literature that it is very efficient. In fact, using synthetic oversampling causes the decision bound-

aries of the minority class to be spread further into the majority class space and thus avoiding the

overfitting problem.

In this subsection, we will highlight some of the major drawbacks of SMOTE algorithm, more

specifically we will address the problem of SMOTE algorithm when it is used with sever data imbal-

ance problem and large within class variation. To explain the behavior of SMOTE algorithm under

different conditions let us consider the classification problem depicted in Figure 17 (a).
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Figure 17: Applying SMOTE algorithm on severe data imbalance problem with large within
minority class variation.

In this case, the ratio |B|
|A| is quite large. This data imbalance problem is considered as severe

data imbalance problem. The variation within the minority class A is large and the absolute number

of samples belong to class A (the minority class) is small. If we use the 5-NN to synthesize new

samples, as depicted in Figure 17 (b), the new sample (green triangle) can be anywhere along the

line between the original sample OS and theKNN sample (KNNs). Creating a new sample in this

region of the 2-D space will affect the training negatively. By looking at the original data, we know

that this region of the 2-D space is mainly related to the majority class. The new sample creates a

new separate region (island), instead of extending the minority class region. In fact, training a base

learner to classify these training examples may overfit the training data while trying to classify this

isolated region correctly, Figure 17 (c).

In this work, we propose an alternative to the original SMOTE algorithm, where we consider both

variation and number of samples in account. SMOTE algorithm includes specifying the KNN of the

original sample. If the absolute number of minority samples is small with large variation within the

class, there is no guarantee that these KNN samples are real near neighbors. In SMOTE algorithm,

the random variable (a) can take a value between 0 and 1, 0 ≤ a ≤ 1, thus the new sample can

be anywhere on the line between the two samples: NS = OS + a × distance(OS, KNNs). If

a = 0, the new sample is exactly the same as the original sample (general oversampling). In fact,

SMOTE algorithm is a generalization form of the general oversampling approach. In the modified

version, VA-SMOTE, the random variable a can take a value between 0 and ω, where 0 ≤ ω ≤ 1.

ω is given by:

ω = 1−G (3.69)
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G =
1

Z
√
|Minority|

(3.70)

where z is a positive number related to the variation within the minority class.

Larger variation results in larger z values and smaller variation results in smaller z values. If

we fix z and increase the number of samples in the minority class 1 → ∞, the value of G goes

from 1 → 0, thus the value of ω goes from 0 → 1. The more samples the larger ω, the less

samples the smaller ω. When we have sufficient number of samples the modified version of the

SMOTE algorithm converges to the original SMOTE algorithm (0 ≤ a ≤ 1) and when we have very

small number of samples and the variation within the minority class is large the modified version

converges to the original oversampling algorithm 0 ≤ a ≤ 0 + λ, where λ is very small value. But

how to specify the value of z? What if the variation among one dimension is greater than the others?

z can be given by:

z = (
1

d
)

d∑
i=1

std(Vi) (3.71)

where Vi is a 1 × |Minority| 1-D vector and d is the dimension of the data sample belongs to the

minority class. Vi is constructed by copying the ith value of each data sample.

z represents the average of standard deviations across each dimension. Even though calculat-

ing scalar z is a very simple way to get idea about the variation it may fail in some cases. Figure 18

depicts a very special case of data variation of two classes along two dimensions, F1 and F2.

The sample point of class B (lower left corner) represents the original sample and the five green

data points represent the 5−NN data samples. The scalar z value is specified as the average of

the different standard deviations across different dimensions:

z =
std(V1) + std(V2)

2
(3.72)

std(V1) < std(V2), the variation across the first dimension is smaller than the variation across the

second dimension.

The proposed BagStack classifier uses a combination of synthetic oversampling and undersam-

pling. Having small number of samples in the minority class can make the undersampling process

very challenging. Different samplesmay have different impacts on the decision boundary (e.g. SVM,

only few samples affect and decide the decision boundary). Considering all the samples equal in

the undersampling process may not be sufficient. But, how to define important samples (samples

that have significant impact)?
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Figure 18: Data imbalance problem with different variations across different dimensions.

Figure 19: Adaptive undersampling of the majority class.

The proposed undersampling approach is motivated by the Border-Line SMOTE approach. The

basic idea is to find the most difficult samples belonging to the majority class. Each sample Si ∈

Majority class is assigned a weight Wd = minv distance(Si, Rv), where Rv is the set of minority

samples. The samples with small Wd are more difficult samples. Then the samples are ordered

based on the distance weights and exponential distribution is used to sample from the majority

class. By using exponential distribution, the algorithm focuses more on the difficult samples, but

also support diversity by considering other samples. Using the same concept in specifying the most

difficult samples when applying the undersampling, we can select the most difficult samples from the

minority class to be used for synthesized other samples. Figure 19 depicts the proposed adaptive

undersampling technique.
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Algorithm 9 Variation-Based SMOTE algorithm VA-SMOTE.
1: Minority-Class: the set of samples belonging to the minority class.
2: N: the number of samples to be synthesized.
3: |Minority|: the total number of samples in the minority class.
4: Step 1: Find the variation based parameter Z̄:
5: for each dimension d: do
6: counter=1
7: for each sample S in the minority-class: do
8: Vd[Counter] = S[d]
9: counter=counter+1
10: end for
11: Z[d] = std[Vd], where Vd is a vector constructed by copying values from minority samples

across the dth dimension.
12: end for
13: Step 2: Find ω:
14: Z =

∑d
i=1 Z[i]

d
15: ω = 1− 1

Z
√

|Minority|
16: Step 3: Find the KNN of each sample in the minority class.
17: NSset = ϕ
18: Step 4: Synthesize new samples.
19: for each new sample i=1:N do
20: Randomly, select one of the minority class samples. The original sample OS.
21: Randomly, select one of the original sample OS nearest neighbour, KNNS

22: a = random number (0 ≤ a ≤ ω)
23: NS = OS + a × distance(OS, KNNS)
24: Add the new sample NS to the synthesized sample set:
25: NSset ← NS
26: end for

3.3.4 Data Imbalance Problem at the Meta-data Level

If the learning data set is imbalanced and the standard cross-validation is used to generate

the meta-data, the meta-data will also be imbalanced. Using imbalanced data (meta-data) set to

train the meta-classifier may result in a biased meta-classifier. The simplest way to deal with this

problem is to perform general oversampling/undersampling at themeta-data whichmay lead to over-

fitting/loosing important information. In this thesis, we propose a new cross-validation procedure,

imbalance-aware cross-validation. Figure 20 depicts the process of dividing the data into different

sets, learning, testing, training and validation. Figure 21 depicts the standard cross-validation and

Figure 22 depicts the class aware cross-validation.

In imbalance-aware cross-validation process, the set of all samples belonging to the same class
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Figure 20: Dividing data into different sets.

Figure 21: Standard cross-validation.

in the learning set is divided into M splits. Based on the number of samples belonging to the majority

class and the number of samples belonging to the minority class, repeatedly, construct your training

set and validation set by randomly sampling splits from different classes. Each time, one split is

selected randomly from each class to construct the validation set and all other sets are used to

construct the training set. Repeat the process for
⌈
|Majority|
|Minority|

⌉
times. Each time, the training set is

used to train the base learners and the validation set is used to generate the meta-data.

The next step is to perform undersampling on the meta-data by sampling from each class the
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Figure 22: Imbalance-aware cross-validation.

number of samples belonging to the minority class. Even though there are multiple samples in the

meta-data corresponding to the same data sample in the original learning set, the probability that

these samples have been generated by using exactly the same training set is very low, since we

randomly select different splits to construct the training set. These changes in the training set (differ-

ent data samples) result in slightly different base learners and thus different predictions (changes in

confidence). The main advantage of using this method over the general oversampling method, that

the oversampling is applied at different domain (the input domain) and the samples are different at

the output domain (meta-data) due to changes in the transformation (base learners). This will re-

duce the probability to have overfitting problems. Figure 22 depicts the class aware cross-validation

process.

Testing the same sample multiple times using different base learners that have been trained

using different training set results in multiple samples in the meta-data that correspond to the same

data sample in the learning set. Because the base learners are not exactly the same, these samples

will be slightly different.
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3.4 Experimental Results

In this section, we present the experimental results to verify and justify the BagStack classifier.

Different experiments were designed to show the effect of different parameters that control the be-

havior as well as the performance of the BagStack classifier. In subsection 3.4.1, we present the

experimental setup, more than 100 data sets are used, balanced and imbalanced data sets with

imbalance ratio varying between 1 and 40, binary and multi-class classification problems, data sets

with small and large number of samples. More details are presented in subsection 3.4.1. Subsec-

tions 3.4.2 to 3.4.10 present the results of different experiments.

3.4.1 Experimental Setup

In this section, we present a description of the datasets that we used in our analysis. We present

a full description of each one of the parameters that we are interested in. We use KEEL-dataset, a

dataset repository that includes different datasets [131]. The KEEL-dataset repository provides a

detailed categorization of different datasets and a description of their characteristics. The datasets

are organized in several categories and sub-categories. The categories of the datasets are derived

from the topics addressed in the experimental studies. Some of them are usually found in the

literature, like supervised (classification) datasets, unsupervised and regression problems.

The classification datasets include all the supervised datasets. All these datasets contain one

or more attributes which label the instances, mapping them into different classes. They distinguish

four subcategories of classification datasets: Standard datasets, imbalanced datasets; imbalanced

datasets are standard classification datasets where the class distribution is highly skewed among

the classes, multi instance datasets; multi-instance datasets represent problems where there is a

many-to-one relationship between feature vectors and its output attribute, and datasets with missing

values. In our experiment, we use datasets from the standard and the imbalance dataset subcate-

gories [132].

For different imbalanced datasets, they provide also processed versions where they use different

synthetic oversampling techniques to oversample minority classes to achieve data balance. For

these datasets, they divide the data into 5-folds, they apply synthetic oversampling only on the

training part.

85



Table 1, Table 2 and Table 3 show the different datasets that are used in our analysis and their

description. We include the name of the dataset, the number of classes, the number of samples

in the minority class, the number of samples in the majority class, and the imbalance ratio. The

imbalance ratio varies between 1 and 40. We divide the whole dataset into 5 categories based on

the imbalance ratio. Later we will show how changing different parameters affect the performance

on different data sets of different imbalance ratios.

In the following experiments, we address the effect of changing the parameters that control

the behavior of the BagStack classifier. The number of training algorithms (3.4.2), the coverage

percentage (3.4.3), using the number of base learners constraint (3.4.4), increasing the number of

regression functions in the ensemble of the EB-MDTR meta-classifier (3.4.5), using different meta-

classifiers (3.4.6), the imbalance-aware cross-validation (3.4.7), testing different types of meta-data

processing methods (3.4.8). In the last two subsections, we present a performance comparison to

other well-known ensemble classifiers (3.4.9) and justify the efficiency of using BagStack classifier

on images datasets (3.4.10).

3.4.2 Increasing the Number of Training Algorithms

One of the main concepts behind BagStack classifier is to combine different algorithms that

have different biases. Adding more training algorithms should provide more information that can

be used by the meta-classifier. This information can be used to make a robust decision about

the classification. In this experiment, we use 100 data sets that have different data imbalance

ratios, the imbalance ratio varies between 1 and 40. All other parameters that control the behavior

of the BagStack classifier are fixed. We turn off the imbalance-aware cross-validation and use

the standard V-fold cross-validation with V=5. We use only the coverage percentage constraint

to specify the number of base learners for each problem (coverage percentage=0.85). No pre-

processing for the data at the input level or at the meta-level is used. As a meta-classifier, we

use non-linear support vector machine with RBF kernel function. Table 4 shows the main training

algorithms that are used as base learners as well as the main parameters that are used with each

one of them. Table 5 shows the results of using different sets of training algorithms. We report the
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Table 1: Different datasets and their descriptions: Imbalance Ratio 1-2.

Dataset Name # Classes Minority Majority IR 1/IR
iris 3 50 50 1 1
movement_libras 15 24 24 1 1
movement_libras 7 330 330 1 1
texture 11 500 500 1 1
vowel 11 90 90 1 1
twonorm 2 3697 3703 0.998 1.0
ring 2 3664 2736 0.9807 1.02
optdigits 10 554 572 0.9685 1.03
mammographic 2 403 427 0.9438 1.06
tae 3 49 52 0.94231 1.06
penbased 10 1055 1144 0.922 1.08
penbased 10 105 115 0.91304 1.10
vehicle 4 199 218 0.91284 1.10
monk-2 2 204 228 0.89474 1.12
sonar 2 97 111 0.87387 1.14
banana 2 2376 2924 0.81259 1.23
australian 3 307 383 0.80157 1.25
heart 2 120 150 0.8 1.25
bupa 2 145 200 0.725 1.38
wine 3 48 71 0.67606 1.48
wine 3 48 71 0.67606 1.48
led7digit 10 37 57 0.64912 1.54
wdbc 2 212 357 0.59384 1.68
bands 2 135 230 0.58696 1.70
ionosphere 2 126 225 0.56 1.79
glass1 2 76 138 0.55072 1.82
magic 2 6688 12332 0.54233 1.84
ecoli-0_vs_1 2 77 143 0.53846 1.86
wisconsin 2 239 444 0.53829 1.86
wisconsin 2 239 444 0.53829 1.86
pima 2 268 500 0.536 1.87
pima 2 268 500 0.536 1.87
contraceptive 3 333 629 0.52941 1.89
contraceptive 3 333 629 0.52941 1.89

percentage (number) of data sets that experienced increase in the overall accuracy and the average

accuracy after adding one more training algorithm each time. These results are the average of 30

random splits, where 80% is used for learning (training and validation) and 20% is used for testing.

The most significant increase in the overall accuracy and the average accuracy over all data sets

happens after adding the first few training algorithms. Adding more training algorithms increases

the number of used base learners, this increment increases the dimension of the meta-data which

increases the tendency of the meta-classifier to over-fit the meta-data for some data sets. In fact, for

the last three to four training algorithms we added, we started experiencing reduction in the overall

classification accuracy due to overfitting problem. The used meta-classifier in this experiment is

support vector machine with non-linear kernel function (RBF). Table 6 depicts the average of the

overall accuracies and the average of the average class-accuracies over the 100 datasets. These
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Table 2: Different datasets and their descriptions: Imbalance Ratio 2-9.

Dataset Name # Classes Minority Majority IR 1/IR
iris0 2 50 100 0.5 2.0
glass0 2 70 144 0.48611 2.06
titanic 2 711 1490 0.47718 2.10
phoneme 2 1586 3818 0.4154 2.41
satimage 6 626 1533 0.40835 2.45
yeast1 2 429 1055 0.40664 2.46
marketing 9 505 1255 0.40239 2.49
haberman 2 81 225 0.36 2.78
haberman 2 81 225 0.36 2.78
vehicle1 2 217 629 0.34499 2.9
vehicle0 2 199 647 0.30757 3.25
ecoli1 2 77 259 0.2973 3.36
spectfheart 2 55 212 0.25943 3.85
appendicitis 2 21 85 0.24706 4.05
newthyroid 3 30 150 0.2 5.0
new-thyroid 3 30 150 0.2 5.0
new-thyroid1 2 35 180 0.1944 5.14
new-thyroid2 2 35 180 0.1944 5.14
hepatitis 2 13 67 0.19403 5.15
ecoli2 2 52 284 0.13831 5.46
dermatology 6 20 111 0.18018 5.55
dermatology 6 20 111 0.18018 5.55
balance 3 49 288 0.17017 5.88
balance 3 49 288 0.17017 5.88
segment0 2 329 1979 0.16625 6.02
glass6 2 29 185 0.15676 6.38
yeast3 2 163 1321 0.12339 8.10
glass 6 9 76 0.11842 8.44
glass 6 9 76 0.11842 8.44
ecoli3 2 35 301 0.11628 8.60
page-blocks0 2 559 4913 0.11378 8.79

results are the average of 30 random splits, where 80% is used for learning and 20% is used for

testing.

3.4.3 Increasing the Coverage Percentage

In this experiment, we study the effect of increasing the coverage (usage) percentage. We

know that increasing the coverage percentage increases the number of used base learners. Table

7 shows how changing the coverage percentage affects both overall and average class-accuracies.

In Table 7, we present the number of data sets that experience increment in overall accuracy and

average class-accuracy when increasing the coverage percentage. In this experiment, we fix all

other parameters. We use three different training algorithms, svm, svm linear regression (LASSO)

and leastsquares linear regression (lasso) as base learners. We turn off the imbalance-aware cross-
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Table 3: Different datasets and their descriptions: Imbalance Ratio 9-40.

Dataset Name # Classes Minority Majority IR 1/IR
yeast-2_vs_4 2 51 463 0.11015 9.08
glass-0-1-5_vs_2 2 17 155 0.10968 9.12
yeast-0-2-5-6_vs_3-7-8-9 2 99 905 0.10939 9.14
yeast-0-2-5-7-9_vs_3-6-8 2 99 905 0.10939 9.14
ecoli-0-4-6_vs_5 2 20 183 0.10929 9.15
ecoli-0-1_vs_2-3-5 2 24 220 0.10909 9.17
ecoli-0-2-6-7_vs_3-5 2 22 202 0.10891 9.18
glass-0-4_vs_5 2 9 83 0.10843 9.22
ecoli-0-3-4-7_vs_5-6 2 25 232 0.10776 9.28
vowel0 2 90 898 0.10022 9.98
zoo 7 4 41 0.097561 10.25
ecoli-0-1-4-7_vs_2-3-5-6 2 29 307 0.094463 10.59
led7digit-0-2-4-5-6-7-8-9_vs_1 2 37 406 0.091133 10.97
ecoli-0-1_vs_5 2 20 220 0.090909 11.0
glass-0-1-4-6_vs_2 2 17 188 0.090426 11.06
glass2 2 17 197 0.086294 11.59
cleveland 5 13 160 0.08125 12.31
ecoli-0-1-4-6_vs_5 2 20 260 0.076923 13.0
cleveland-0_vs_4 2 13 164 0.079268 12.62
shuttle-c0-vs-c4 2 123 1706 0.072098 13.87
yeast-1_vs_7 2 30 429 0.06993 14.30
glass4 2 13 201 0.064677 15.46
coil2000 2 586 9236 0.063447 15.76
page-blocks-1-3_vs_4 2 28 444 0.063063 15.86
dermatology-6 2 20 338 0.059172 16.90
zoo-3 2 5 96 0.052083 19.20
shuttle-6_vs_2-3 2 10 220 0.045455 22.0
yeast-1-4-5-8_vs_7 2 30 663 0.045249 22.10
yeast4 2 51 1433 0.03559 28.10
winequality-red-4 2 53 1546 0.034282 29.17
poker-9_vs_7 2 8 236 0.033898 29.50
yeast-1-2-8-9_vs_7 2 30 917 0.032715 30.57
yeast5 2 44 1440 0.030556 32.73
ecoli-0-1-3-7_vs_2-6 2 7 274 0.025547 39.14
thyroid 3 17 666 0.025526 39.18

Table 4: Training Algorithms.

Training Algorithm Parameters
Decision Tree Maximum number of splits = 400.
SVM Regression, LKF, Zscore normalization.
Linear regression SVM, lasso, solver= sparsa, lambda = 0.1, No-Opt.
Linear regression LS, lasso, solver= sparsa, lambda = 0.1, No-Opt.
Linear regression SVM, ridge, lambda = 0.5, No-Opt.
Linear regression LS, ridge, lambda = 0.5, No-Opt.
SVM Classification, LKF, standardize = 1.
Random Forest Classification, NBL = 5.
Regression-Bagging Ensemble regression, NBL =10
Regression-Boosting Ensemble regression, LSBoost, NBL =10

validation. We use nonlinear support vector machine with RBF kernel function as a meta-classifier.

These results are the average of 30 random splits, where 80% is used for learning and 20% is used

for testing.
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Table 5: The total number of datasets that experienced increase in the overall accuracy / average
accuracy when using more training algorithms.

Training Algorithms Overall Accuracy Average Accuracy
DT → DT+SVMR 89 85
+ LR, SVM, Lasso 74 70
+ LR, Leastsquares, Lasso 76 70
+ LR, SVM, Ridge 78 71
+ LR, Leastsquares, Ridge 86 81
+Classification, SVM 70 62
+ Classification, RF 64 56
+ Ensemble Regression, Bagging 78 67
+ Ensemble Regression, LSBoost 65 57

Table 6: The average of the overall-accuracy and the average accuracy over the 100 datasets
when using more training algorithms.

Training Algorithms Overall Accuracy Average Class Accuracy

DT 81.6% 69.04%
+SVMR 86.18% 74.59%
+ LR, SVM, Lasso 85.16% 73.26%
+ LR, Leastsquares, Lasso 84.57% 72.41%
+ LR, SVM, Ridge 84.00% 71.66%
+ LR, Leastsquares, Ridge 85.11% 73.10%
+Classification, SVM 83.96% 71.36%
+ Classification, RF 79.02% 65.78%
+ Ensemble Regression, Bagging 77.67% 63.41%
+ Ensemble Regression, LSBoost 76.53% 60.87%

Table 7: The total number of datasets that experienced increase in the overall accuracy / average
class-accuracy when increasing the coverage percentage.

Coverage Percentage Overall Accuracy Average Accuracy
50% → 60% 77 69
60% → 70% 81 74
70% → 80% 84 75
80% → 90% 82 74
90% → 95% 80 72

Increasing the coverage percentage increases the number of base learners; adding more base-

learners increases the tendency of the meta-classifier (SVM-RBF) to overfit the meta-data.

3.4.4 Using Different Constraints: Number of Base-learners

The total number of base learners to be used per each training algorithm is controlled by using

one of the following constraints: the coverage percentage, the number of base learners or both

of them. In this experiment, we test the performance of the BagStack classifier when using the

number of base learners as constrain. In this experiment, we fix all other parameters. We use

three different training algorithms, SVM, SVM linear regression (LASSO) and least squares linear
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regression (LASSO) as base learners. We turn off the imbalance-aware cross-validation. Ran-

dom Forest is used as a meta-classifier. The number of base learners used for each data set is

a function of the number of base learners that is used with the corresponding data set when us-

ing only coverage percentage constraint of 85%. We consider this number of base learners as

the base to achieve a coverage percentage of 85%. In each experiment, we reduce the number

of base learners. NBLDS = NBLDS(Coverage Percentage = 85%) × Reduction Factor.

NBLDS(Coverage Percentage = 85%) is the number of base learners used to deal with the

dataset DS when the using 85% coverage percentage. Reduction Factor is a real number that

takes a value between 0 and 1. Decreasing the number of base learners decreases the coverage

percentage of the majority class in each dataset. In this experiment we tested different reduction

factor, 1.0 (no reduction, uses the same number of base learners that used when the coverage per-

centage is 85%), 0.6 and 0.2. We run these experiments using only the number of base learners as

constrain. Table 8 shows the number of data sets that experienced reduction in the overall accuracy

and the average accuracy when changing the reduction factor. Increasing / decreasing the number

of base learners affects the overall accuracy and the average accuracy for each dataset in a differ-

ent way. In some cases, reducing the number of base learners improves the accuracy, the direct

explanation for this is that the less number of base learners reduce the tendency of meta-classifier

to overfit the meta-data.

Table 8: The total number of datasets that experienced reduction in the overall accuracy and
average accuracy when changing the reduction factor.

Reduction Factor Overall Accuracy Average Accuracy
1.0 → 0.6 69 56
0.6 → 0.2 69 60

3.4.5 Increasing the Number of Regression Functions in the Ensemble Meta-classifier (EB-

MDTR)

In the proposed classifier, we propose an ensemble-based multi-response DT regression meta-

classifier EB-MDTR. In the standard MLR, a linear regression function is defined for each class. In

the proposed meta-classifier, an ensemble of Decision Tree (DT) regression functions are defined
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for each class. In this section, we address the effect of changing the number of DT regression

functions when building each ensemble.

We fix all other parameters. We use ten different training algorithms (Table 4) as base learners.

We turn off the imbalance-aware cross-validation and use the standard cross-validation with V=5

folds. Only the coverage percentage constraint is used (85%). Two versions of the proposed EB-

MDTR are used. In the first version (EB-MDTR0), each ensemble linear regression model uses

the predictions of all base learners to construct the meta-data instance. In the second version

(EB-MDTR1), each class-related ensemble linear regression model uses the predictions of base

learners that have been trained on samples belonging to the same class to construct the meta-data

instance. These results are the average of 30 random splits, where 80% is used for learning and

20% is used for testing.

Table 9: The total number of datasets that experienced increase in the overall accuracy / average
accuracy when changing the meta-classifier.

Meta-Classifier Overall Accuracy Average Accuracy
MLR (Optimize lambda) → EB-MDTR0(4) 70 81
EB-MDTR0(4) → EB-MDTR0(12) 74 71
EB-MDTR0(12)→ EB-MDTR0(20) 58 51
MLR (Optimize lambda) → EB-MDTR0(4) 70 81
MLR (Optimize lambda) → EB-MDTR0(12) 81 85
MLR (Optimize lambda) → EB-MDTR0(20) 87 90
MLR (Optimize lambda) → EB-MDTR1(4) 70 81
EB-MDTR1(4)→ EB-MDTR1(12) 82 74
EB-MDTR1(12)→ EB-MDTR1(20) 77 72
MLR (Optimize lambda) → EB-MDTR1(4) 69 81
MLR (Optimize lambda)→ EB-MDTR1(12) 82 87
MLR (Optimize lambda) →EB-MDTR1(20) 83 87

Table 10: The average of overall accuracies and average accuracies over 100 data sets when
using different meta-classifiers.

Meta-Classifier Overall Accuracy Average Accuracy
MLR (Optimize lambda) 83.88% 67.77%
EB-MDTR0(4) 84.62% 73.51%
EB-MDTR0(12) 86.36% 75.55%
EB-MDTR0(20) 86.42% 75.41%
MLR (Optimize lambda) 83.90% 67.01%
EB-MDTR1(4) 84.36% 73.83%
EB-MDTR1(12) 85.93% 75.42%
EB-MDTR1(20) 86.62% 75.45%

Table 9 depicts the number of datasets that experienced increase in the overall accuracy / av-

erage accuracy. By switching from the standard MLR to the proposed EB-MDTR meta-classifier,
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70 datasets experienced increase in the overall accuracy and 81 datasets experienced increase

in the average accuracy. This was the case for both EB-MDTR0 and EB-MDTR1. Increasing the

number of DT regression functions in the ensemble of each class increases the number of datasets

that experienced increase in both overall and average accuracies. This increase was more signifi-

cant when using the 4 DT regression functions and 12 DT regression functions. For the maximum

number of DT regression functions in the ensemble (20 DT ensemble functions), 87 datasets ex-

perienced increase in the overall accuracy when using EB-MDTR0 and 83 datasets when using

EB-MDTR1. In the other hand, 90 datasets experienced increase in the average accuracy when

using EB-MDTR0 and 87 when using EB-MDTR1.

Table 10 depicts the average of overall accuracies and the average of average accuracies overall

the 100 datasets when using different meta-classifiers. Three important notes. First, the results for

both EB-MDTR1 and EB-MDTR0 are comparable. Both meta-classifiers can handle the overfitting

tendency due to the increase in the dimension of the meta-data. Bagging-Based MDTR is able

to handle overfitting problem and variance error. This reduces the demand for knowledge and

experience when using the BagStack classifier. Second, it is well known that adding more base

learners to the bagging ensemble reduces the variance error, but eventually will converge to a

minimum value. In our experiment, we notice that increasing the number of the MDTR functions

reduces the generalization error and improve the classification accuracy (both overall and average

accuracies). Since the increase in performance when increasing the number of base learners from

12 to 20 is not really significant, we think that using only 20MDTR functions to build each ensemble is

reasonable. In reality, adding more functions may still reduce variance error, but we do not think that

going above 25-30 functions will add any value. There will be always tradeoff between the number

of MDTR regression functions that construct the ensemble, the computational complexity and the

gain (reduction in generalization error GE) that can be achieved. Third,the difference in the overall

accuracy when usingMLR and EB-MDTR is around 2.5, while the difference in the average accuracy

is around 8. This big difference in improvement can be explained as follow. Imbalanced datasets

introduce biased errors. It is well known that biased errors cannot be reduced by using bagging,

but changing the regression function is a major contributor in reducing the sensitivity to imbalance

datasets and generating biased classifiers. In fact, linear regression functions that are used in

the MLR meta-classifier are trained by minimizing the least square error under a regularization

constraint (lasso regularization). This minimization problem has higher tendency to generate biased
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regressor functions when the data is imbalanced. However, DT regression functions are non-linear

and are built by using binary split trees where at each node a regression-based splitting rule is used.

These regression decision trees have lower tendency to generate biased classifiers when the data

is imbalanced.

3.4.6 Using Different Meta-classifiers

In this experiment, we study the performance of changing the meta-classifier. We have tested 9

different meta-classifiers. SVM, MLR, EB-MDTR, RF [133], bagging, RUSBoost [134], Subspace-

Boosting [135], TotalBoost [136] and LPBoost [137]. For bagging and Boosting, we use cross-

validation-based optimization to optimize the number of learners (Decision Tree) and the maximum

number of splits. Table 11 presents the number of times each meta-classifier outperformed all the

others (slightly outperformed with ∓2% of the best performing, according to randomly splitting the

datasets). We turn off the imbalance-aware cross-validation and use the standard V-fold cross-

validation with V=5. We use only the coverage percentage constraint to specify the number of base

learners for each problem (coverage percentage=0.85). No pre-processing for the data at the input

level or at the meta-level is used. These results are the average of 30 random splits, where 80% is

used for learning and 20% is used for testing.

Both MLR and the proposed EB-MDTR have been tested in two different modes, in the first

one, all predictions that are generated by the base classifiers are concatenated to construct the

meta-data instance (MLR0, EB-MDTR0), in the second one, for each class-related linear regression

function (ensemble), the corresponding predictions by base learners that include the same class are

concatenated to construct the meta-data instance (MLR1, EB-MDTR1) (similar to the same concept

used by StackC). 25 linear regression functions are used to build one ensemble linear regression

function corresponding to each class. These results are the average of 30 random splits, where

80% is used for learning and 20% is used for testing.

Three major points are concluded. RF, Bagging, EB-MDTR0 and EB-MDTR1 are very compa-

rable. In specific, RF performance is very comparable to using EB-MDTR. RF wins more data sets

than EB-MDTR1 but less than EB-MDTR0. SVM (RBF) and other boosting techniques show higher

tendency to overfit the meta-data. Having bad base learners (base learners that use noisy training
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Table 11: Performance comparison of using different meta-classifiers.

Meta-Classifier Winning Times Average overall accuracy
SVM-RBF 36 76.06%
RF 77 87.82%
Bagging 74 87.27%
Subspace 20 69.9%
TotalBoost 47 84.4%
LPBoost 23 81.95%
MLR0 29 83.88%
MLR1 37 83.90%
EB-MDTR0 78 86.42%
EB-MDTR1 74 86.62%

data or unhelpful training algorithms) may affect these meta-classifiers and thus lead to overfitting

problem. The proposed Multi-response linear decision tree regression proofs its ability to resist

overfitting. In fact, the result that EB-MDTR0 wins more datasets than EB-MDTR1 contradicts the

results published in StackC. In StackC, the authors argue that using predictions from base learners

that have been trained on classes that include class of interest (the class that we are generating

the linear regression function to) reduces the tendency of the linear regression to overfit the data.

It is worth mentioning the correlation between the Random Forest and the proposed Bagging-

based MDTR. In RF, a set of decision trees is trained. Each decision tree is trained on a subset

of the training data that is randomly generated by Bootstrap sampling from the original data set

(learning set, Meta-data set). When training the decision tree, at each node a random subset of the

features (attributes) is used to make the split decision. This is correlated to what is happening when

building the Bagging-based MDTR. In EB-MDTR, we build an ensemble of regression decision tree

functions that are trained on different subsets of the training data (learning data) using bootstrap

sampling.

3.4.7 Using Imbalance-aware Cross-validation to Deal with the Data Imbalance Problem at the

Meta-level

Dealing with the data imbalance problem at the input level by using the concept of bag-stack

classifier improves the quality of the base learners and the quality of the meta-data. Using imbal-

ance learning data results into imbalance meta-data. Having imbalance meta-data increases the

tendency of the meta-classifier to be biased toward the majority class. Three different solutions

can be applied; (1) Processing the learning set to deal with the data imbalance problem by us-
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ing either oversampling or synthetic oversampling; (2) processing the meta-data to deal with the

data imbalance problem by using oversampling or synthetic oversampling and (3) using imbalance-

aware cross-validation to deal with the data imbalance problem. The main difference between the

1st and the 2nd options is by applying the oversampling technique at the input space or at the meta-

data space. In the last approach, several versions of the transformation functions (base-learners)

are used to generate several meta-data instances by using the same input instance followed by

undersampling. While this section main concern is to show and verify the impact of imbalance-

aware cross-validation on the average-class accuracy, the next two sub-sections (3.6.8 and 3.6.9)

focus on the first two solutions, comparing imbalance-aware cross-validation to other oversampling

techniques that are applied at the meta-data space (3.6.8) and the input space (3.6.9).

In this experiment, we test the ability of the imbalance-aware cross-validation to deal with the

data imbalance problem using 100 data sets. We use three different training algorithms, svm, svm

linear regression (lasso) and leastsquares linear regression (lasso) as base learners. For each data

set, we run the experiment twice, once using the standard cross-validation technique with V-Fold

equal 5 and other when using the imbalance-aware cross-validation. It is well known that different

training algorithms have different sensitivity levels for data imbalance problem. In order to make

sure that the results are independent of the meta-classifier, we repeat the whole experiment using

different meta-classifiers. In this experiment, we use eight different meta-classifiers: SVM, Random

Forest, Ensemble Bagging, MLR, EB-MDTR, LPBoost, Subspace-Boosting and TotalBoost. Both

MLR and the proposed EB-MDTR have been tested in two different modes, in the first one, all

predictions that are generated by the base classifiers are concatenated to construct the meta-data

instance (MLR0, EB-MDTR0), in the second one, for each class-related linear regression function

(ensemble), the corresponding predictions by base learners that include the same class are con-

catenated to construct the meta-data instance (MLR1, EB-MDTR1) (similar to the same concept

used by StackC). Decision tree is used as the base learner in all ensemble meta-classifiers except

the Subspace where KNN is used. cross-validation is used to optimize the number of base learners

and the maximum number of splits in all ensemble classifiers.

Table 12 depicts the number (percentage) of datasets that experienced increase in the over-

all and average accuracies when using imbalance-aware cross-validation. These results are the

average of 30 random splits, where 80% is used for learning and 20% is used for testing.
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Table 12: The number of datasets that experienced increase in the overall, average and both
accuracies when using imbalance-aware cross-validation.

Meta-Classifier IR 1-2 IR 2-5 IR 5-40 Total
OA AA OA AA OA AA OA AA

SVM 42.8% 54.3% 33.3% 93.3% 30.0% 90.0% 35.0% 78.0%
RF 48.6% 62.9% 20.0% 80.0% 10.0% 90.0% 25.0% 79.0%
Bagging 42.9% 60.0% 13.3% 93.3% 16.0% 88.0% 25.0% 79.0%
Subspace 57.1% 68.6% 33.3% 100% 34.0% 94.0% 42.0% 86.0%
TotalBoost 42.9% 57.1% 33.3% 86.7% 26.0% 78.0% 33.0% 72.0%
LPBoost 54.3% 60.0% 46.7% 80.0% 22.0% 90.0% 37.0% 78.0%
MLR0 37.1% 45.7% 20.0% 86.7% 32.0% 86.0% 32.0% 72.0%
MLR1 51.4% 65.7% 60.0% 100% 34.0% 88.0% 44.0% 82.0%
EB-MDTR0 54.3% 65.7% 20.0% 86.7% 18.0% 94.0% 31.0% 84.0%
EB-MDTR1 54.3% 60.0% 20.0% 93.3% 16.0% 92.0% 30.0% 81.0%

Table 12 is divided into different categories according to different imbalance ratios. This exper-

iment was designed to show only how using imbalance-aware cross-validation can improve the

average accuracy (AA) and not to compare different meta-classifiers. The main purpose of trying

different meta-classifiers is to show that the proposed technique has a consistent effect when using

different meta-classifiers. In general, we experienced increase in average accuracy when using

imbalance-aware cross-validation comparing to using the standard cross-validation. In fact, using

imbalance-aware cross-validation followed by undersampling at the meta-data level improves the

average accuracy. This improvement in the average accuracy may affect the overall accuracy neg-

atively, the higher the imbalance ratio the higher the improvement in the average accuracy and the

less improvement (negative impact) in the overall accuracy.

3.4.8 Testing Different Meta-data Processing Methods

Dealing with the data imbalance problem at the meta-data level can be done by applying over

sampling (synthetic oversampling) at the meta-data. In this experiment, we compare the perfor-

mance of using imbalance-aware cross-validation to deal with data imbalance problem to other

oversampling techniques that can be used to synthesize meta-data instances. 100 data sets are

used. We report the number of data sets on which each of the processing methods outperformed

all others (or slightly outperformed by ∓2% of the highest performing) and the average of average

accuracies over 100 datasets. We use three different training algorithms, SVM, SVM regression

(lasso) and least squares regression (lasso) as base learners. We use the coverage percentage

(85%) constraint to control the number of base-learners.
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Since different meta-classifiers have different sensitivity to data imbalance problem, we test

different meta-classifiers. Nonlinear support vector machine with RBF kernel function, Random

Forest, ensemble bagging, MLR0, MLR1, EBMDTR0 and EBMDTR1 are used as meta-classifiers.

These results are the average of 30 random splits, where 80% is used for learning and 20% is used

for testing. Imbalance-aware cross-validation achieves the highest average accuracy among the

100 datasets and wins (slightly wins within ∓2%) the highest number of datasets. Random forest

and EBMDTR1 achieves the highest average accuracy.

Table 13: The average of average accuracies over 100 datasets and the number of datasets each
meta-data processing methods win when using different meta-classifiers.

Classifier Metric Meta-Data Processing Method
SMOTE BL-SMOTE VASMOTE ROS RUS IACV+RUS

RF AA 79.3 78.4 79.08 78.1 81.4 81.9
DS 18 13 18 10 21 53

SVM (RBF) AA 73.9 73.0 73.7 74. 76.3 79.7
DS 17 14 20 23 23 66

Bagging AA 78.3 77.8 78.3 77.4 80.8 81.2
DS 11 14 11 11 30 56

MLR0 AA 66.8 65.4 66.9 66.5 66.2 70.6
DS 16 7 7 12 16 52

MLR1 AA 65.9 64.5 66.5 66.0 66.5 74.6
DS 11 7 14 11 12 55

EBMDTR0 AA 70.1 68.3 68.8 68.6 71.1 79.3
DS 8 12 7 10 16 64

EBMDTR1 AA 68.6 67.8 68.8 68.3 70.7 80.9
DS 14 7 11 8 12 66

3.4.9 Performance Comparison to Other Well-known Ensemble Classifiers

BagStack classifier was designed to deal with data imbalance problem when different training

algorithms (base learners) of different biases are combined. Instead of using bagging or boosting,

BagStack classifier uses the concepts of bagging and stacking to train and combine several train-

ing algorithms. BagStack classifier addresses the data imbalance problem at different levels. In

literature, many other ensemble classifiers were proposed to deal with the data imbalance problem.

In this experiment, we compare the performance of our classifier to other ensemble classifiers that

have been designedmainly to deal with data imbalance problem or to other ensemble classifiers that

uses a pre-processed data sets using one of the most common synthetic oversampling methods:

ENN-SMOTE, SMOTE and TomeLinks algorithms.

Forty-six data sets were used in this experiment. Each data set is divided into five folds. Each
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time four folds are combined to construct the training set and one-fold is used for testing. Two

versions of these five folds are exists. The first one is the original data set, as described above, four

folds are combined to construct the training set and one-fold is used for testing. The second version

is the processed one. In this version the training set is processed using one of the aforementioned

synthetic oversampling techniques. The training set is balanced by synthesizing samples from

minority classes. The testing set is kept as it’s without any processing. It is very important to highlight

that using synthesized samples in the testing process is not legitimate. Synthesized samples can

only be used in the training, the testing process should be done on original samples. This is the

main reason, why we divide the data form the beginning into several folds and into training/testing

sets before applying any synthetic oversampling technique.

Different classifiers and ensemble classifiers are used. Linear Support Vector Machine, None-

Linear Support Vector Machine with radial Basis Function, Decision Tree, Random Forest, Ad-

aBoost (M1, M2), Bagging, Random undersampling boosting RUSBoost, Subspace-Boost, Total-

Boost, LPBoost. In all ensemble classifiers except subspace we use decision tree as the base

learner, for subspace we use KNN. We optimize both of the number of base learners and the maxi-

mum number of splits. These classifiers were tested using the processed (balanced) datasets. We

test each classifier using three different versions of the dataset, one that was processed by using

ENN-SMOTE algorithm, another by using SMOTE algorithm and the last one is by using TomeLinks

algorithm.

On the other hand, we use BagStack classifier in six different configurations, we change both of

types of base learners and the type of meta-classifier. In one configuration, we use three different

training algorithms, SVM, SVM regression (LASSO) and least squares regression (LASSO) as base

learners. In another configuration, we use 10 different training algorithms. We use three different

meta-classifier, Random forest where we optimize the number of decision tress, Ensemble-Based

Multi-Response Decision Tree Regression with concatenating the outputs of all base learners to

construct a meta-data instance (EBMDTR0) and Ensemble-Based Multi-Response Decision Tree

Regression with concatenating the outputs of base learners that use the target class (the class that

we are training the regression function to predict) as one of the two classes that are used to train

the base learner (EBMDTR1).

Table 14 shows the comparison of different methods in terms of overall classification accuracy.

Instead of reporting the average of overall accuracies over all datasets (the forty-six data sets),
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we report the number of data sets on which each one of the classifiers outperformed all others (or

slightly outperformed∓1 of the best performance). Since our classifier has been designed mainly to

deal with data imbalance problem, it has been designed to maximize and focus more on the average

accuracy and not the overall accuracy, the BagStack classifier was able to win a significant number

of datasets, the main competitor is the Random Forest classifier. This is highly expected, according

to well-known studies [138] that address a full comparison between large number of classifiers on

large number of datasets, Random Forest and Support Vector Machine (RBF) represent ones of

the best classifiers that one can start with. Random Forest is a Bagging-Based Ensemble classifier

that is known to resist overfitting the training data. BagStack classifier shows high performance

when more and different training algorithms are used as base learners. This gives the classifier the

ability to analyze more complex relations that are built based on different biases induced by using

different training algorithms.

Table 14: Comparison of different methods in terms of overall classification accuracy.

Classifier ENN SMOTE TomeLinks IACV
SVM-Linear 7 8 5 -
SVM-Nonlinear RBF 15 15 13 -
Decision Tree 4 2 4 -
Random Forest 15 23 12 -
AdaBoost (M1, M2) 10 18 8 -
Bagging 14 21 12 -
RUSBoost 0 5 1 -
Subspace-Boost 7 7 7 -
TotalBoost 2 7 1 -
LPBoost 3 9 10 -
BagStack (RF-3BL) 6 6 4 10
BagStack (EBMDTR0-3BL) 0 0 0 2
BagStack (EBMDTR1-3BL) 0 0 0 2
BagStack (RF-10BL) 15 20 16 19
BagStack (EBMDTR0-10BL) 9 9 7 18
BagStack (EBMDTR1-10BL) 9 9 7 18

Table 15 shows the comparison of different methods in terms of average accuracy. Similar to

overall accuracy, instead of reporting the average of the average accuracies over all datasets, we

report the number of datasets on which each classifier outperformed the other classifiers (slightly

outperformed the other classifiers, ∓1 of the best performance). BagStack classifier outperformed

all other classifiers achieving the highest number of data sets. In fact, this table shows two im-

portant aspects regarding the performance of the BagStack classifier, the first one is the supreme

of Imbalance-Aware cross-validation over all other synthetic oversampling techniques when using

BagStack Classifier. This demonstrates that the quality of the synthesized meta-data instances
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by using different versions of base learners using slightly different training data is higher than the

quality of transforming multiple instances that have been synthesized in the input space and trans-

formed using the same set of base learners. The other aspect is that BagStack classifier was able

to beat all other classifiers and outperformed all of them on the highest number of datasets.

Table 16 shows the comparison of different classifiers in terms of overall and average accuracies.

In this table, we report the number of data sets on which each one of the classifiers outperformed

(slightly outperformed within ∓1 of the best performance) all other classifiers, we consider both

of overall and average-class accuracy. This table shows which classifier is better in handling the

tradeoff between maximizing the overall accuracy and maximizing the average-class accuracy. The

BagStack classifier was able to beat all other classifiers.

Table 15: Comparison of different methods in terms of average accuracy.

Classifier ENN SMOTE TomeLinks IACV
SVM-Linear 10 11 8 -
SVM-Nonlinear RBF 5 3 6 -
Decision Tree 4 2 2 -
Random Forest 10 7 7 -
AdaBoost (M1, M2) 8 5 8 -
Bagging 11 8 7 -
RUSBoost 2 2 1 -
Subspace-Boost 0 0 0 -
TotalBoost 2 2 2 -
LPBoost 5 3 6 -
BagStack (RF-3BL) 5 3 3 8
BagStack (EBMDTR0-3BL) 0 0 0 2
BagStack (EBMDTR1-3BL) 0 1 0 2
BagStack (RF-10BL) 11 7 5 18
BagStack (EBMDTR0-10BL) 2 4 6 20
BagStack (EBMDTR1-10BL) 2 4 6 21

3.4.10 BagStack Classifier on Images Datasets

In order to justify using the BagStack classifier on images datasets, we tested the BagStack

classifier on five different datasets. The process of images classification can be divided into two

main steps: Features extraction (image representation) and features classification. For the last

two decades, many images-related features have been invented and have been used successfully

in image-classification tasks, Scale Invariant Feature Transform (SIFT) [139], Speed Up Robust

Features (SURF) [140], Histogram of Gradients (HOG) [141], Shape Context Descriptor [142], Self-
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Table 16: Comparison of different methods in terms of overall classification accuracy and average
accuracy.

Classifier ENN SMOTE TomeLinks IACV
SVM-Linear 17 19 13 -
SVM-Nonlinear RBF 20 18 19 -
Decision Tree 8 4 6 -
Random Forest 25 30 19 -
AdaBoost (M1, M2) 18 23 16 -
Bagging 25 29 19 -
RUSBoost 2 7 2 -
Subspace-Boost 7 7 7 -
TotalBoost 4 9 3 -
LPBoost 8 12 16 -
BagStack (RF-3BL) 11 9 7 18
BagStack (EBMDTR0-3BL) 0 0 0 4
BagStack (EBMDTR1-3BL) 0 1 0 4
BagStack (RF-10BL) 26 27 21 37
BagStack (EBMDTR0-10BL) 11 13 13 38
BagStack (EBMDTR1-10BL) 11 13 13 39

Similarity Descriptor SSIM [143], Gist [144], Local Binary Pattern LBP [145] and Geometric Blur

[146] among the others. These features are hand engineered features. In other words, to extract

any of these features there is a set of operations (steps) that should be done. Many of them are

local features which decodes a local region in the image that may contain few number of pixels

into a feature vector. Features extracted from the same image can be combined together using

Bag of Visual Words (BoW) [147] or sparse coding [148] scheme to construct a single, rich and

efficient representation of the image. This representation is used to train a classification model (e.g.

BagStack classification model).

During the last few years, the trend in image classification has been shifted away from using

hand-engineering features toward learning these features by using training data. In other words, the

features extraction process is not considered anymore as a separate process. Modern classification

models (DNN models, e.g. Convolution Neural Networks [149, 150, 151, 152, 153, 154, 155], Deep

Belief Networks [156] … etc.) takes images as inputs (2-D, 3-D images). The features extraction

process is embedded in the model itself and it is done internally as part of the classification process.

The extracted features represented by filters coefficients are task-dependent.

Convolution Neural Networks demand hundreds of thousands of images to achieve high classi-

fication accuracy. This number of images may not be available for many different types of image-

classification problems. DNN models that have been trained using large number of images from

one domain can be used to extract features from other images in another domain. In fact, it is

well-known that in CNN the first few layers perform features extraction. These layers change the
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representation of the image into another representation that is used as input for later layers. The

network can be divided into two major parts, the convolution layers and the fully connected layers.

Convolution layers extracted features from the image, the first few fully connected layers process

the output of the last convolution layer to generate a rich representation of the input image. This

rich representation is used as input for the last few fully connected layers that learn how to classify

these representations into different classes. The outputs of the first few fully connected layers can

be used as features. These features can be used with other classifiers, e.g. SVM, Random Forest,

and BagStack Classifier.

In this section, we will use two different types of features: SIFT and DNN-Based Features. SIFT

features are extracted, sparse coded (Dictionary Size 2000, Lambda = 0.2) and combined using

max-pooling to come up with a single rich representation of the image. Two DNN models (AlexNet

[149] and VGG-16 [150]) are used. The outputs of the fully connected layers 17 and 19 of AlexNet

[149], 33 and 35 of VGG-16 [150] are used as features resulting in 4-DNN based Features and in

total 5 features.

Five different images datasets are used, Birds [157], Butterflies [158], Scene-15 [159], Surface-

Defect Dataset (NEUSDD) [160] and STL-10 [161]. Birds and Butterflies datasets are small datasets

of 6 and 7 classes respectively. Scene-15 datasets contains 15 different categories (bedroom, coast,

highway… etc.), Surface-Defect dataset contains 6 different types of surface defects, these defects

are captured from jet engine blades.

The STL-10 dataset is inspired by the CIFAR-10 dataset but with some modifications. Each

class has fewer labeled training examples than in CIFAR-10. SLT-10 consists of three different

parts, training, testing and unlabeled data. Originally, the data set is designed to take advantage of

the unlabeled data through unsupervised learning. Since this is not the case for BagStack classifier,

we do not use the unlabeled data, we use only the training and the testing sets. Figure 23 shows

sample images from each one of these datasets.

The BagStack classifier was used, two different types of base learners, Linear Support Vector

Machine and Random Forest Classifier (N = 5). We use the BagStack classifier in two different

configurations. In the first configuration, we use only the coverage percentage constraint to decide

the total number of base learners (Coverage Percentage = 90%), we turn off the imbalance-aware

cross-validation and use Random Forest as a meta-classifier. In the second configuration, we use

103



Figure 23: Sample images of different datasets. (a) Birds dataset (6-classes), (b) butterflies
dataset (7-classes), (c) Surface Defects (6-classes), (d) SLT-10 (10 classes) and (e) Scene-15

(15-classes).

only the coverage percentage constraint to decide the total number of base learners (Coverage

Percentage = 80%), we turn on the imbalance-aware cross-validation and use Random Forest as a

meta-classifier.

Table 17 shows the overall classification accuracy, the average accuracy and the standard devi-

ation for 20 random splits. Each time 80% of the dataset is used for training and 20% of the dataset

is sued for testing. Using imbalance-aware cross-validation improves both of overall accuracy and

average accuracy and reduces standard deviation (variance error).
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Table 17: The overall classification accuracy and average accuracy on different images datasets.

Dataset IACV = OFF IACV = ON
OA STD AA STD OA STD AA STD

Birds 97.92% ±1.7 97.92% ±1.7 97.92% ±0.5 97.92% ±0.5
Butterflies 95.97% ±1.1 95.6% ±1.3 96.37% ±0.5 96.65% ±0.7
Surface-Defects 100% ±0.0 92.87% ±0.9 93.1% ±0.2 93.44% ±0.2
SLT-10 92.8% ±0.9 92.87% ±0.9 93.1% ±0.2 93.44% ±0.2
Scene-15 92.9% ±0.7 92.76% ±0.7 93.26% ±0.5 93.47% ±0.5

3.4.11 Conclusion

In this chapter,the BagStack classifier is introduced, a classifier that uses both bagging and stack-

ing concepts to deal with data imbalance problems when different training algorithms of different

biases are being used.

We first explained the rational behind stacking based classifiers and the rational behind bagging

classifiers. A stacking based classifier is used to transform the problem from one domain (the

input domain) to another domain (the meta-data domain) where one of the available classifiers can

achieve higher accuracy as compared to applying different training algorithms on the input domain.

The Bagging ensemble technique is used to reduce the variance error.

We introduced both selection and mixing problems. A mixing problem is a generalization of the

selection problem. Homogeneous and heterogeneous mixing problems are introduced. We intro-

duce the BagStack classifier and the main contributions to deal with the data imbalance problem.

In the last section, we verified the performance of the BagStack classifier on more than 100

datasets. We addressed many aspects of the classifier trying to explain the effect of changing

parameters that control the behavior of the classifier. We compare the classifier to other well-known

ensemble classifiers that have been designed to deal with the data imbalance problem. Finally, we

verify the performance of the BagStack classifier on image datasets.
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Chapter 4

MULTIFEATURE, SPARSE-BASED APPROACH FOR DEFECTS CLASSIFICATION IN

SEMICONDUCTOR UNITS

Automated inspection systems play an important role in manufacturing to guarantee higher qual-

ity and reduce production costs. Currently available defect detection and classification systems are

customized and hard-wired to the detection of particular classes of defects and cannot deal with new

unknown classes of defects. This issue is aggravated by the very small sample size of available

anomalies for learning and by the data imbalance problem, since the number of defective samples is

significantly much smaller than the number of normal samples. This work presents a novel multifea-

ture, sparse-based defect detection and classification approach that uses the stacking and bagging

concepts to enhance the classification accuracy. The stacking-based classifier is augmented with

a novel adaptive over/undersampling technique to deal with the data imbalance problem. A simple

pruning technique is proposed to eliminate bad base learners. Shortage of defective units, sim-

ilarities within different classes of defects, wide variation within the same defect class, and data

imbalance are the main challenges to deal with. Experimental results on real-world data from Intel

show that the proposed approach results in a high classification accuracy as compared with the

existing methods.

4.1 Introduction

Automated visual inspection (AVI) systems are gaining growing interest in the manufacturing

industry. Inspection is an important process to detect defective products and keep these from

reaching customers. Humans can be engaged in the inspection process but, due to issues, such

as tiredness, consistency, and boredom, their performance is often unreliable. In some cases, such

as when components to be inspected are very small and the production rate is very high, the use

of manual inspection is not possible. Therefore, the AVI systems started playing important roles in

advanced manufacturing to guarantee the quality of products in a timely manner [162].

Different sources of defects lead to large variations in defect types. Figure 24, 25 and 26 depict

different types of defects. Currently available defect detection and classification systems are cus-
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tomized and hard-wired to the detection of particular classes of defects and cannot deal with new

unknown classes of defects. The inability to adapt to new types of defect results in additional han-

dling and additional inspection time depending on the number and types of defects being inspected,

and in the failure of detecting new or unknown defects. Dealing with new unknown defects neces-

sitates redesigning the existing automated algorithms, which causes long development cycles, and

delays, and which requires human effort to support constantly the design and development of the

system.

Detection and classification tools can provide important information about defects’ types, sizes,

locations, distributions, and repetitions. Determining the stage of production responsible for the

fault and classifying these defects are important when corrective actions need to be taken. This

classification system allows the defect reduction team to identify the most important defect types

and, in many cases, to provide a first pass indication of the most likely source of the defects and

thus focus efforts on fixing the issue. Data mining methods have been used successfully in the field

of data classification; however, to the best of our knowledge, no data mining method was proposed

for defect detection and classification for semiconductor units in the manufacturing industry. Some

prior works applied data mining methods to assessing the quality of semiconductor wafers and

equipment but not semiconductor units [163, 164, 165, 166, 167]. The main difference between

these two levels that the similarities between two wafers are higher than the similarities between

two units related to the same product. Mainly, all subsequent steps after wafer fabrication, cutting,

adding components and using epoxy to glue die onto the substrate, may introduce different types

of variations. Discriminating between acceptable variations and defects is more challenging at the

unit level.

In this work, we present a multifeature, sparse-based (instead of using the original representa-

tions of features, we use corresponding sparse representations) defect detection and classification

approach that is adaptive to the number and type of defects and features. The approach adopts

the stacking concept [ensemble stacking] and designs a novel stacking-based classifier to achieve

high classification accuracy. In addition to the problem of designing the classification model, this

work addresses related problems that include pre-processing techniques, features extraction and

selection, and improving the data quality to help the classifier achieve the best performance. To

deal with the data imbalance problem, the proposed stacking-based classifier is augmented with a

novel adaptive sampling technique; the proposed adaptive sampling technique includes adaptive
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Figure 24: Defects in the die area. (a) Foreign material on die. (b) Scratch on die. (c) Crack. (d)
Fingerprint on die. (e) Epoxy on die.

Figure 25: Defects in the epoxy area. (a) Excess epoxy. (b) FM on epoxy. (c) Missing Epoxy.

undersampling and a new synthetic oversampling method. The proposed approach is evaluated

using real data collected at Intel and is shown to lead high classification accuracy. The approach is

cost-effective, robust, and flexible in that it is easy to train by an operator using a small-size sample

set of defects.

4.2 Types of Defects and Database

Defects can occur due to a variety of causes, including unintended human interaction, failures

of machines that are used in the manufacturing process, low quality materials, or any unexpected
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Figure 26: Other Defects. (a) Damage component. (b) FM on substrate.

events, such as power failure. Defects can affect one or more parts of the semiconductor unit, such

as the die, epoxy, and substrate regions of the unit. The types of defects may differ depending on

the manufacturing stage. Some of these defect types include cracks, fingerprints, epoxy on die,

and defects due to foreign material, such as hair, threads, fibers, dust, or fluids. The basic objective

to be achieved is to reduce underrejection and overrejection rates.

Many defects are considered in this paper, including foreign material on die, epoxy on die,

scratches, fingerprints, and cracks. Figure 24, Figure 25 and Figure 26 shows the types of de-

fects we are working with. The non-uniform distribution of defects can be considered as an addi-

tional challenge. For example, the probability of having foreign material is much higher than having

scratch on die.

4.3 System Overview

The proposed system uses the means of image processing and data mining to perform defect

detection and classification. Inputs of the system are grayscale images of semiconductor units. Im-

ages are taken by using high resolution line scan cameras (∼ 16 µm \ pixel); the used lighting

condition is red bar lights. Images are captured using line scan cameras as the tray of parts scans

under the camera. By using change detection and image processing means, defects are detected

and segmented. The first step is to use image processing means to perform segmentation. As a

result, the unit image will be divided into three separate parts (sub-images): die, epoxy, and sub-

strate. Every part will be processed separately. The segmented sub-images are further processed
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for detecting and segmenting out potential defect samples. In order to characterize the detected

defect samples, each segmented defect sample is cropped (manually) by enclosing it within a tight

bounding box, and is forwarded to the second processing block in which a suitable image represen-

tation is generated by extracting different features. We found that no single feature is good for all

possible defect types. Therefore, in order to enable the system to adapt to different types of defects,

multiple feature types F1, F2, ... , FN are used as part of the proposed approach.

The shortage of defective samples emphasizes maximizing the usage of available defects’ im-

ages in order to achieve a high classification accuracy. For this purpose, a background features sub-

traction is introduced to eliminate features due to background noise. The extracted non-background

features are sparse coded. Sparse codes corresponding to the non-background features are gen-

erated by using separate dictionaries, one for each feature type. The resulting sparse multifeature

representation is forwarded to the final stage, where the classification process takes place. The

classification process adopts a stacking-based technique to combine different features. The pro-

posed classifier is novel in terms of how subtasks are assigned to different BLs , how features

are distributed. The proposed classifier is augmented with a novel adaptive sampling technique to

deal with the data imbalance problem when training each BL, and with a new ensemble pruning

method to eliminate bad BLs. More details about the defects’ representation, feature extraction,

and classification framework are presented in the next Sections.

4.4 Image Representation

The BagStack classifiers consists of base learners that are trained to solve different prob-

lems using different subsets of the data (Bagging), different training algorithms and different rep-

resentations (Stacking – different bias classifiers). We consider eight different features, Scale-

Invariant feature transform (SIFT) [139], Histogram of Gradients (HOG) [141], self-similarity de-

scriptor (SSIM) [143], geometric blur [146], and deep neural network (DNN)-based features

[149, 150, 151, 152, 153, 154, 155, 156]. SIFT [139] represents a patch of the image in terms

of the weighted response of a gradient histogram and results in scale-, rotation-, and shift-invariant

features. The number of extracted features can be controlled by setting a threshold value in SIFT,

with a higher threshold resulting in a lower number of features. When using small threshold val-

ues (e.g., at zero threshold) most of the extracted features is not related to the defect of interest
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but is mainly irrelevant background features. Increasing the SIFT threshold value can reduce the

number of features, but cannot guarantee rejecting background features while keeping relevant

defect-related features. Image processing can be used to set the background to zero, and thus, no

features will be detected. Unfortunately, this will create strong edges causing artificial features to

be detected according to these strong edges. These artificial features are shared among different

defects, and thus affect the classification accuracy adversely. Eliminating background features in

an efficient way is important. For this purpose, we train a non-linear SVM classifier to distinguish

between defect-related features and background-related features. Background-related features are

filtered out. Like SIFT, the HOG [141],[168] also describes an image patch in terms of image gradi-

ent histograms. In this work, we use the slightly improved HOG formulation described in [168].

Sparse signal representation arises in applications of compressed sensing and has been

adopted successfully in image processing and computer vision applications. In sparse coding, the

extracted features can be represented using a sparse representation [148] with a reduced number

of nonzero elements. Given a predefined sample set D = [c1, c2, ... , ck] ∈ Rd×k, also referred

to as a dictionary D, and an input sample y ∈ Rd×1, where k is the number of elements in D and

d is the feature dimension; the sparse representation problem can be formulated as the following

minimization problem, where x ∈ Rk×1 is the sparse representation: argminx∥X∥1 s.t D.x = y,

Our sparse coding framework consists of the following steps: 1) dictionary construction; 2) sparse

coding; and 3) pooling. These three steps are described in the remaining part of this section.

Given a set of images {I1, I2, ..., In}, where n is the number of images. For each image Ii, a set

of features yi1, yi2, ..., yibi is extracted, where i (1 ≤ i ≤ n) is the image index, and bi is the number of

features in the ith. Each type of feature is processed separately to generate a corresponding dictio-

nary (one for each feature type). For all features belonging to a feature type, y11 , ..., y1b1, ..., yn1 , ..., ynbn

with a total number
∑n

i bi, we applyK−means clustering on all
∑n

i bi features to get the dictionary

D = [c1, c2, ... , ck], where the kth dictionary element (also called atom) ck is the centroid of the

kth cluster. Atoms (elements) in the dictionary are not required to be orthogonal. Sparse coding is

done by finding a linear combination of a “few” atoms fromD that is “close” to the signal y. Separate

dictionaries will be used for different types of features.

The dictionaryD contains atoms that can be used to represent each feature in the image (in here,

the term “image” is used to refer to a candidate defect image region in die, epoxy, or substrate). Two

main methods can be used: hard assignment and soft assignment. In hard assignment, extracted
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feature is compared with atoms in the dictionary, and the closest atom in terms of Euclidean dis-

tance is used to represent it. One major limitation of hard assignment is that the representation

is obtained by considering only the closest atom in the dictionary. However, it is possible that a

feature may be close to multiple atoms. Recent studies, such as linear spatial pyramid matching

(SPM) using sparse coding for image classification [169] and locality-constrained linear coding for

image classification [170], show that soft assignment approaches, such as sparse coding, which

assign multiple close atoms to represent features usually yield better results than hard assignment

approaches. In this sparse coding framework, each feature is represented as a sparse linear com-

bination of atoms in the dictionary corresponding to that feature type. The ℓ1 − norm is used to

generate the sparse code.

Let D = [c1, c2, ..., ck] be the dictionary where ci values, i = 1, ...,K, are the atoms. Denote yib

as the bth feature in the ith image. We try to find a sparse linear combination of atoms to represent

the feature yib. Mathematically, we solve the following optimization problem:

Xi
b = argminx

1

2
∥Dx− yib∥2 + λ∥x∥1, s.t. x ≥ 0 (4.1)

Where xi
b ∈ Rk×1 is the sparse code for the feature yib, λ > 0 is a tunable parameter, and ∥.∥1

denotes the ℓ1 − norm. A larger λ yields a code xi
b that has more zero elements (higher level of

sparsity). The above problem is well known as “LASSO” [171] with an additional non-negativity

constraint. This problem can be efficiently solved by many packages, such as the sparse learning

with efficient projections and stochastic coordinate descent approach [172].

Pooling plays a very important role in image classification, which is usually used to achieve

more compact image representations that are more robust to noise and variation. Let Xi be the

collection of sparse codes for features in the ith image, such that Xi = [xi
1, x

i
2, ..., x

i
b]. We define

the pooling function by hi = p(Xi), where hi is the pooled image representation from Xi. The

pooling function p(.) is applied to each row of Xi. Thus, the pooling function p yields a pooled

image representation hi of size k × 1, where K is the number of atoms (base elements) in the

dictionary. Different pooling generates different image representations. There are different choices

of pooling functions commonly used in the image processing community, such as average pooling,

ℓ2−norm pooling, and max pooling. In average pooling, each code is treated equally. Suppose ui
m

is the mth row of Xi, then the pooled image representation is computed as hi
m = avg(ui

m), m =

1, 2, 3, ..., k. Average pooling is the most commonly used. However, average pooling treats each

code equally, which may degrade the performance, since there may exist a lot of codes irreverent
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to image defects. Like average pooling, ℓ2 − norm pooling utilizes all information among codes. In

ℓ2 − norm pooling, the pooled image representation is obtained as hi
m = ∥ui

m∥,m = 1, 2, 3, ..., k,

where ∥ui
m∥2 values represent the ℓ2 − norm of ui

m. The ℓ2 − norm pooling usually works better

when the codes are not very sparse. In contrast to average pooling and ℓ2 − norm pooling, max

pooling only selects the strongest signal among the codes. The pooled image representation is

obtained as hi
m = max(ui

m), m = 1, 2, 3, ...,K. Theoretical analysis of pooling functions suggests

that max pooling leads to the best results when the codes are sparse. In fact, methods with max

pooling have been shown to achieve the state-of-the-art results in image classification [173].

4.5 Classification Framework

In the multi-class classification problem, where multiple features are needed to distinguish be-

tween different classes, designing a strong classifier that can deal with these classes in an efficient

way is a challenge. In many cases, onemay have to deal with making decisions regarding which fea-

tures to use, and which base- \meta- classifier(s) would be the most appropriate for the considered

problem. Using multiple features can be done by using ensemble methods, e.g., bagging, boosting,

stacking, or classification hierarchy. Ensemble techniques were shown to result in improved per-

formance in terms of classification accuracy. In this work, we propose a stacking-based classifier.

Stacking is a multilayer ensemble method of combining multiple models that have been learned

for the classification task(s). The output of a former layer is taken as the input information of the

subsequent layer in order to learn a classification model, so as to obtain a combined classification

result with better classification performance as compared with an individual classifier.

In the literature, multiple versions of stacking techniques were developed. The first version

of the stacking ensemble technique was introduced in [49] and was later extended to regression

problem. A detailed review of more recent stacking is presented in the literature review. The major

limitation of these stacking techniques is the demand for large number of samples to perform training.

Furthermore, these methods do not offer strategies to deal with the data imbalance problem nor

strategies to eliminate bad BLs.

The proposed stacking-based classifier is designed to deal with the data imbalance problem,

small number of training samples, similarity between classes and variation within the same class by

integrating novel adaptive over-/under- sampling technique [adaptive undersampling and new syn-
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thetic minority oversampling technique (SMOTE)-based synthetic oversampling], a new ensemble

pruning to eliminate bad BLS , and metadata synthetic oversampling.

In this section, we introduced the first version of BagStack classifier. It is the classifier

that used to generate the results at the end of this chapter. Since in the first phase, we

worked mainly with manually cropped defects on the die region, the number of defects to

consider was slightly small. In fact, many of the parameters that are adaptively specified (in

BagStack Classifier) in the run time based on the task at hand are heuristically optimized in

this first version.

4.5.1 Stacking: One-versus-all Confidence-based System

Ensemblemethods for classification have been shown to achieve a better classification accuracy

than the individual component classifiers if the component classifiers perform better than chance

(better than random guessing) and are diverse, which gives the ability to eliminate independent

errors. Meta-learning techniques employ a metaclassifier that generalizes over the space of outputs

from base-level classifiers. The proposed metaclassifier is a stacking-based classifier that uses

one-versus-all (OV A) trained base classifiers. More details about the training of BLS and the

metaclassifier are given in the following.

Figure 27 depicts the proposed classification framework. LetM be the number of classes. Every

sample will be represented by using a set of N features: F1, F2, ... FN . In one implementation,

our system makes use of three features (F1 = FSIFT , F2 = FHOG, F3 = FSHXT ). However,

the proposed system can be designed to use other features. For each class m, m = 1, 2, ...,M ,

Q BLS are used for each feature resulting in Q × N BLS for N features to implement an (OV A)

classifier for the corresponding class m. This results in a total of Q ×N ×M BLS · BL, BLm,q:Fi ,

assigned to a class m, where 1 ≤ m ≤ M , 1 ≤ q ≤ Q and 1 ≤ i ≤ N , is trained to perform the

classification problem (Class m vs. All) based on feature Fi. Every time a base classifier BLm,q:Fi

is trained, L samples are sampled per class and adaptive sampling (up/down), depending on the

number of samples of the class, is applied. This is different from the BagStack classifier, where

the number of base learners assigned to each problem is adaptively specified depending on

the data imbalance ratio and other constraints.
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Figure 27: Stacking-based, OVA confidence-based system. For training, the confidence data fed
to the metaclassifier correspond to TR training samples, and thus takes the form of a TR x (Q · N ·

M) matrix. For testing, the confidence data are (Q · N · M)-length vector.

As indicated previously, during the training process, L samples per class are randomly sampled

from the training data and used to train a base classifier. For training the metaclassifier, the entire

training data are used to generate a TR× (Q.N.M) confidence matrix, where TR is the size of the

training data,Q is the number ofBLS used for each feature per class,M is the number of considered

classes, and N is the number of features. For each training sample, the confidence outputs of BLS

are concatenated to generate a row of the confidence matrix. The confidence matrix entries are

then used to train the metaclassifier.

In the case where the training set is sufficiently large, it is recommended to divide the training

data into two subsets. The first subset can be used to train the first layer of classifiers (BLS) and

the second subset can be used to test these classifiers and generate the confidence matrix that

will be used to train the metaclassifier. In our case, we have two main problems: the lack of a
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large training data set and the severe data imbalance problem. The value L should be selected,

such that BLS will not suffer any overfitting problem. Selecting L to be very large will affect the

quality of metadata that is used to train the metaclassifier. Selecting L to be very small may lead to

overfitting problem. Adaptive data sampling and ensemble pruning strategies are proposed to deal

with this challenge. To enhance the quality of the classifier (the strong classifier), we need to be

sure that the values generated by the BLS can be reliably used by the metaclassifier to generate

final decisions. Increasing L can enhance the quality of each BL, since more training samples are

used to train each BL. At the same time, since we are sampling randomly from the training data,

if L is very large, this creates multiple copies of the same BL, thus losing the diversity property.

Diversity is very important in stacking-based classifiers and represents one of the major success

factors. In addition to that, because we are testing on the whole training data, if a relatively large

L value is used, most of the training data samples are used in training BLS and, thus, have been

seen by BLS before generating the confidence matrix. The BLS would erroneously generate a

high confidence value even when the corresponding feature is not a good one for the considered

classification problem. This is different from the BagStack classifier where imbalance-aware

cross validation is used to generate the meta-data.

4.5.2 Adaptive Sampling

The proposed sampling technique is designed mainly to deal with the lack of training samples

as well as the data imbalance problem. Each time a BL is trained, L samples are selected per

class (Class c versus All) where All =
∪m

i=1,i̸=c Classi. L samples are sampled from Class c and

(L\M) samples are sampled per each class (Classi ∈ All). For each class, if the available number

of samples is greater than the target number of samples (L for Class c and (L \M) for all other

classes), undersampling is applied, and if the number of samples is less than the target number of

samples, synthetic oversampling is applied.

The proposed synthetic approach is a modified version of SMOTE algorithm. The SMOTE al-

gorithm has been modified to consider three important factors: similarity between different classes,

variation within the same class, and the small number of samples. SMOTE algorithm includes speci-

fying theKNNs. In some cases, the number of samples of the class that needs to be over-sampled

is very close to k. Because of the variation within the same class, there is no guarantee that the
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KNN samples are near neighbors. In SMOTE, the random number a can take any value between

zero and one, and thus the new synthetic sample can be anywhere between the two original sam-

ples. If these two samples are not neighbors and because of variations within the class, there is

a probability that the synthesized sample will be closer to the other class (the majority class). In

the modified version, the random number a can take a value between 0 and ω = 1− 1
z
√
n
, where n

is the number of samples and z is a positive integer number. Smaller number of samples results

in smaller ω and larger number of samples results in larger ω. In other words, when the number

of samples belonging to the minority class is very small, we enforce the synthesized sample to be

closer to the original sample by choosing a smaller ω.

If the data imbalance ratio is very severe and since the numbers of samples of minority classes

are much smaller than the numbers of samples of the majority classes, undersampling can lead to

loss information. The proposed undersampling approach is motivated by the Border-Line SMOTE

approach. The basic idea is to specify the most difficult samples belonging to the majority class.

Each sample si ∈ majority class is assigned a distance weightWd = minv distance(si, rv), where

rv ∈ minority class. The samples with a small Wd are more difficult samples. Then, the samples

are ordered based on the distance weights and the exponential distribution is used for sampling. By

doing this, we allow the algorithm to focus more on difficult samples, but also support diversity by

considering other samples.

4.5.3 Ensemble Pruning

Ensemble learning consists of training a number of BLS whose predictions are then combined

to yield a single classification decision. In general, using complementary classifiers can lead to a

higher accuracy than individual classifiers in the ensemble. The main drawback of the ensemble

techniques is the need to have full access to all these BLS . The results generated by these BLS

should be available before generating the final decision. Usually, using ensemble strategies may

push the demand to higher computational capabilities and more storage. In some cases, defining

bad BLS that do not contribute toward higher accuracy is also necessary. Furthermore, eliminat-

ing these BLS can reduce the computational complexity and storage requirements for testing new

samples.

To address these issues, several methods have been developed to select a subset of the classi-
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fiers within the ensemble that solves the classification problem in an optimal way. These methods

are named pruning. Given a set of BLS , confidence data matrix, and the corresponding labels of

each row of the confidence matrix, the proposed pruning method can analyze the ability of each

BL to distinguish between the target Class c and the all other classes (Class c vs. all). The basic

idea is to use the entropy to measure the quality of each BL. Each column (BL) of the confidence

data matrix is processed separately. A weight is assigned to each BL based on it is ability to distin-

guish between the two classes. These weights are calculated as follows. The first step is to apply

a positive/negative rectification on the confidence matrix. Any value greater than or equal to zero

is set to one (+1) and any value less than zero is set to negative one (−1). In the second step,

we find the sum of all elements belonging to the same label (label c and label all). If the two sums

(sumc and sumall) have the same sign, the efficiency of this BL to distinguish between the two

classes is low, and thus the weight of this BL is set to zero. If the two sums have different signs,

the weight of the BL is set to be the average of the normalized sums, where the normalized sum

related to Class c is the division of sumc by the number of samples that have the label c and the

normalized sum related to the class all is the division of sumall by the number of samples that have

other labels.

Given that onlyB% of theBLS need to be kept. The simplest way is to selectB% of theBLS that

have the highest weights. But, this may affect the diversity property, which is significant factor in the

success of ensemble strategy. Instead of selecting B% of BLS that have the highest weights, we

divide the selection process into subset selection problems. Each set ofBLS that solve the problem

Class cvs.all is processed separately. (B% \ (M)) × Q.N.M BLS of the highest weights of each

set are selected, where Q.N.M is the total number of BLS and M is the number of classes. The

confidence data matrix is modified by removing columns corresponding to deleted BLS . The rest of

the confidence data matrix is used to train the metaclassifier. There are two benefits of applying

pruning: (1) reduce the computational complexity and (2) reduce the tendency of the meta-

classifier to overfit the meta-data. We noticed that reducing the number of base learners can

improve the performance if the meta-classifier is used without any regularization (e.g., SVM(RBF)

is known to overfit the data if not regularized carefully). In the BagStack classifier, we propose the

EB-MDTR classifier, which has better ability to resist overfitting and thus applying pruning in this

case may not improve the performance.
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4.5.4 Meta-data Synthetic Oversampling

The data confidence matrix, which is used to train the metaclassifier, was generated by using an

imbalanced data set. Therefore, achieving a high quality metaclassifier necessitates dealing with

the data imbalance problem at the metadata level. For this purpose, the aforementioned SMOTE

algorithm is used to deal with the data imbalance problem by oversampling the minority classes.

Again, BagStack classifier handles this issue using a different strategy. In the proposed BagStack

classifier, we propose imbalance-aware cross validation to handle the data imbalance prob-

lem at the meta data level.

4.6 Experimental Results

In this section, we evaluate the main two components of the system: the defect representation

framework and the classification framework. We evaluate the proposed system from two aspects:

classification accuracy and stability. The performance results are obtained by applying the proposed

system on real-world data from Intel.

4.6.1 Database and Experimental Setup

The database provided by Intel Corporation contains images for more than 3000 units. More

than 95% of these images are clean images. The rest of the images are distributed over five types

of defects in a nonuniform fashion. The defects we are working with are: foreign material on die

(48 Images), scratch on die (9 Images), fingerprint on die (8 Images), epoxy on die (69 Images),

and cracked die (33 Images). A model was trained to perform background features subtraction and

separate dictionaries (one for each feature) were generated by applying K-means clustering with k

= 2000. These dictionaries were then used to generate sparse codes corresponding to extracted

features. Max pooling was used to combine features to come up with a single representation for

the image for each feature type. The resulting multifeature sparse representations are then input

to the stacking-based classification stage.

Linear SVM classifiers are used as BLS and a nonlinear SVM (RBF ) is used as a metaclassi-

fier. For each feature type, 100 BLS are used. Thus, the total number of BLS is 100 × N , where

119



N is the total number of features. Each time a BL is trained, L samples are sampled per class

(Class c vs. all) or P% of samples are sampled, depending on which option is used. For all exper-

imental results, 70% of the data are used for training and 30% are used for testing. The reported

classification results are the average of 30 simulations.

4.6.2 Data Representation

We compare the proposed multifeature sparse-based defect characterization framework with

other well-known existing methods, such as linear SPM using sparse coding, locality-constrained

linear coding, Dirichlet-based histogram feature transform, image feature by histogram of oriented

p.d.f. gradients, andDNN -based features. DifferentDNN models are used, AlexNet, GoogLeNet,

and VGG19, to extract features. For all of these DNN networks, we extract the responses of the

last fully connected layer. Table 18 shows the classification accuracy. For each one of these exper-

iments, nonlinear SVM is used as a classifier, except for the last two rows. In the last two rows, we

use the proposed classifier with different sets of features. In one case, we consider the classifier

with hand engineered features (SIFT , HOG, and SHXT descriptors), and in the other case, we

consider features extracted by using pre-trained DNN networks. The purpose of this comparison

is to show that the data representation framework is an efficient one comparing with the others’ sys-

tems. To keep the comparison consistent, we use the same dictionary size (2000) for our method,

the linear SPM using sparse coding method, and the locality-constrained linear coding method.

Table 18: Comparison of different representation methods in terms of classifications accuracy.

Data Representation Classifier Feature OA AA
Linear SPM using sparse coding

SVM (RBF)

SIFT 92.2 81.6
Locality-constrained linear coding HOG 92.9 85.7
Dirichlet-based histogram feature transform SIFT 88.7 68.8
Histogram of oriented p.d.f gradients SIFT 89.2 71.8
AlexNet DNN-Based 91.3 85.6
GoogLeNet DNN-Based 89.4 86.2
VGG DNN-Based 90.4 87.7

multi-feature sparse based
SVM (RBF) SIFT 93.4 87.9

HOG 93.6 91.18

Proposed classifier SIFT, HOG and SHCXT 97.6 93.9
AlexNet, GoogLeNet and VGG19 94.3 91.5

70% of the data is used for training and 30% is used for testing. The results are the average over 30 simulations. In all cases a nonlinear SVM model is used
as the main classifier except for the last two rows, where the proposed stacking based classifier is used (120 linear SVM base learners, three features, nonlinear
SVM meta-classifier, L=24 samples)

Table 18 presents the obtained classification performance results. We consider two important

measures: the overall accuracy and the average accuracy. The overall accuracy indicates the ac-

tual number of images classified correctly out of all images in the testing set. The average accuracy
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is obtained by first computing the accuracy for each individual class, and then taking the average

over the computed class-based accuracies. This measurement is particularly important when the

data are imbalanced with some classes having significantly more samples than others, which can

bias the overall accuracy. Maximizing both of these measures is desired. The highest values

for these measures are obtained by using the proposed multifeature sparse-based classification

method. From Table 18, it can be seen that our proposed method achieves a higher classifica-

tion performance as compared with others even when only using a single feature type (e.g., SIFT

or HOG). We also compare the proposed classification framework with feature-transform-based

techniques. The achieved classification accuracy of the proposed method is higher as compared

with these methods even when using the SIFT feature only. Recently, DNN has been attracting

attention for large scale image classification problems. Training DNN models is very expensive and

requires a large number of images to avoid overfitting. Instead of training a DNNmodel from scratch,

which is also not feasible due to the low number of training defect samples in our application, we

used three pre-trained models to extract features. Sparse-based data representation framework

can lead to higher classification accuracy as compared with the existing methods even when using

single feature, such as SIFT or HOG, and even when using a typical nonlinear SVM classifier. The

classification accuracy increases further when using the proposed multifeature sparse-based data

representation with the proposed stacking-based classifier. In addition, it should be noted that our

multifeature sparse-based characterization framework results in a higher classification accuracy as

compared with using DNN -based features.

4.6.3 Classification Framework

In this section, we evaluate the proposed stacking-based classifier. We consider four impor-

tant evaluations. First, we address the effect of using adaptive sampling, ensemble pruning, and

metadata synthetic oversampling on the classification accuracy. Second, we evaluate the proposed

classifier when using different sampling techniques to deal with the data imbalance problem when

training each BL, including the proposed adaptive sampling technique. Third, we compare the clas-

sification accuracy of the proposed stacking-based classifier to other well-known ensemblemethods

that are designed specifically to deal with the data imbalance problem. Fourth, we evaluate the sta-
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bility and the scalability of the system when adding more data to the training set and using more

features.

Table 19 shows the classification accuracy when using the proposed classifier. Six features are

used (SIFT, HOG, SSIM, GB, and two DNN-based features). A total of 600 linear SVMs are used

as BLS (100 per feature). The proposed data representation framework is used to represent the

images. Sparse codes are generated by using separate dictionaries of 2000 atoms. In Table 19, the

first row shows the classification accuracy when the proposed stacking classifier is tested without

applying adaptive sampling, ensemble pruning, or metadata synthetic oversampling. The second

row shows the classification accuracy when using the proposed adaptive sampling. The third row

shows the classification accuracy when ensemble pruning is enabled, and metadata synthetic over-

sampling is disabled. The fourth row shows the accuracy when ensemble pruning is disabled, and

the metadata synthetic oversampling is enabled. Finally, the last row shows the accuracy when

both are enabled. From Table 19, it can be seen that the major improvement in both overall and

average accuracy happens when we use adaptive sampling instead of random over-/under- sam-

pling. Introducing ensemble pruning or metadata synthetic oversampling (second and third rows

of Table 19) improves the average accuracy, but can affect the overall accuracy negatively. Since

the testing set is an imbalanced data set, the average accuracy is more important and a better

representative for the system performance. Table 19 shows that the best performance is obtained

when the proposed adaptive sampling, ensemble pruning, and metadata synthetic oversampling

are enabled (last row of Table 19). The adaptive sampling enhances the quality of each BL. The

ensemble pruning eliminates bad base learners. Finally, augmenting ensemble pruning with meta-

data synthetic oversampling can enhance both of overall and average accuracies. The last column

to the right shows the time required to run each experiment. It can be seen that the computational

complexity is less when using ensemble pruning, due to the fact that fewer BLS are used when

testing new samples; thus, less time is required to generate the confidence vector for each sample.

In order to evaluate the proposed adaptive sampling, we compare different types of sampling

techniques to deal with the data imbalance problem when training BLS . In the proposed approach,

L samples are sampled for each class (class c vs. class all) and adaptive sampling is used to deal

with the data imbalance problem. For comparison, P% of the training data are sampled per class

and different existing sampling techniques are used to deal with the data imbalance problem. Table
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Table 19: Evaluating the proposed classifier when using adaptive sampling, ensemble pruning,
and meta-data synthetic oversampling.

Classifier Adaptive Sam-
pling Pruning Meta-data Syn-

thetic OS OA AA training
t(s)

testing
t(s)

The proposed classifier

OFF OFF OFF 96.2 92.74 317 1.31
ONN OFF OFF 98.1 97.01 397 1.42
ONN ON OFF 97.5 98.12 405 0.253
ONN OFF ON 97.6 97.24 415 1.34
ONN ON ON 98.3 98.2 421 0.26

70% of the data used for training and 30% for testing. The results are the average over 30 simulations. In all cases: L=24 samples, 600 base learners (linear
SVM) are used, nonlinear SVM (RBF) is used as a meta-classifier. When adaptive sampling is active, z=3 is used. When ensemble pruning is active (1/N) of the
total number of base learners are kept, where N is the total number of features. when meta-data synthetic oversampling is active, SMOTE synthetic oversampling
is used. 6 features are used SIFT, HOG, SSIM, GB and 2 DNN-based features (Ref Model: FC6 and FC7)

20 shows the comparison of using different existing sampling techniques with the proposed stacking-

based classifier. For each class in the training set, 50% of the training samples are used to train

each BL. The problem that should be solved by each BL is OV A, where the sampled instances

belonging to the target class (one) are grouped together and all other instances belonging to other

classes (all) are grouped together to form one class. As indicated earlier, the OV A problem is

inherently imbalanced, as the set of all data points from all other classes is likely to outnumber the

number of samples of the target class.

InRUS, the majority class among these classes (one and all) is under-sampled by dropping sam-

ples randomly until both of them have the same number of instances. In all other cases, synthetic

oversampling is used instead of undersampling. Table 20 shows the classification accuracies when

using the proposed adaptive sampling method, the original SMOTE algorithm, Adaptive SMOTE,

and Border-Line SMOTE. Table 20 shows that the highest classification accuracy can be achieved

when using the proposed adaptive sampling technique.

Table 20: Evaluating the proposed classifier with different sampling techniques in terms of
classification accuracy.

Classifier Sampling Method OA AA D5 D17 D24 D13 D9

The Proposed Classifier
- Pruning = ON
- Meta-Data Synth = ON
- Over Sampling = ON

Adaptive Sampling 98.31 98.17 99.1 98.5 93.3 100 100
RUS 94.01 94.01 97.4 96 90 100 86.6
SMOTE 95.94 95.86 97.6 95 97 100 90
AdaSMOTE 96.03 94.33 98.0 96.2 96 100 82
Border-Line SMOTE 95.77 94.05 97.4 98 98 100 83.3

70% of the data is used for training and 30% is used for testing. The proposed stacking-based classifier is used for all the compared settings. The number of
base learners is 600. 6 features are used, SIFT, HOG, SSIM, GB and two DNN-Based Features. 50% (L=24 samples) of the training data is sampled to train each
base learner. Linear SV Ms are used as base learners and nonlinear SVM (RBF) is used as meta-classifier. Ensemble pruning is enabled and B% =1/N, where
N= 6, of the total base learners are kept. Meta-data synthetic oversampling is enabled, SMOTE synthetic oversampling is used to deal with the data imbalance
problem at the meta-data level. when adaptive sampling is used z value is 3.

The next set of experiments was done to compare the classification accuracy of the proposed

classification framework with other classification models. In these experiments, we compare with

Boosting-based and Bagging-based ensemble methods. These methods are designed to deal with

the data imbalance problem. The Boosting-based methods include AdaBoost.M1 and Viola–Jones
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classifier; these two methods change the distribution (weights) of the training data adaptively such

that as the training is going forward, the classifier will focus more on difficult samples. SMOTE-

Boosting and Border-Line SMOTE-Boosting are techniques designed specifically to deal with the

data imbalance problem by synthetically oversampling the minor classes in the training subset. The

training subset is the subset used to train each BL. The RUS-Boost ensemble technique uses

under-sampling to deal with the data imbalance problem. Adaptive RUS-Boost considers the distri-

bution (weights) of the training samples when performing the under-sampling. The algorithm keeps

difficult samples by dropping easy samples of small weights. The Bagging-based methods include

the bagging technique with under-sampling, SMOTE-Bagging, Border-Line SMOTE-Bagging, and

the RBBag.

In bagging with under-sampling, an equal number of samples (P% of the training instances

belonging to the minority class) are sampled per class, with the number of samples sampled per

class being equal to the number of samples in the smallest minority class to train each BL. It

is important to note that the BLS used with Boosting and Bagging ensemble methods are multi-

class classifiers. In SMOTE-Bagging and Border-Line SMOTE-Bagging, synthetic oversampling is

used to deal with the data imbalance. For each class, samples are synthesized, such that the total

number of samples in the current training subset belonging to the same class is equal to the number

of samples of the majority class in the same subset. The proposed stacking-based classifier is used

with ensemble pruning and metadata synthetic oversampling to generate the results shown in Table

21. The proposed multifeature sparse-based defect characterization framework is used for all the

compared classifiers. From Table 21, it can be seen that the highest classification accuracy can be

achieved when using the proposed confidence-based classifier.

Table 21: Comparison of different classification methods in terms of classification accuracy.

Classifier OA AA D5 D17 D24 D13 D9
The proposed classifier 98.31 98.17 99.1 98.5 93.3 100 100
AdaBoost.M1 95.51 91.68 95.3 98.1 96.6 100 68.3
Viola-Jones 96.55 93.51 96.8 98.3 97.5 100 75.0
SMOTE-Boosting 95.08 90.51 96.8 97.5 95.0 100 63.3
Border-Line SMOTE Boosting 95.6 90.54 98.0 98.1 95.0 100 61.66
RUS Boost 94.05 95.66 95.0 91.3 97.1 100 95.0
Adaptive RUS Boost 91.98 93.46 96.0 85.6 99.2 100 86.66
Bagging-under sampling 87.05 93.0 88.8 78.9 97.2 100 100
SMOTE-Bagging 96.7 94.6 97.4 98.1 95.0 100 82.5
Border-Line SMOTE Bagging 96.8 95.8 97.6 98.3 93.2 100 90.0
RBBag 89.4 94.04 91.1 81.1 98.0 100 100
70% of the data is used for training and 30% is used for testing. The results are the average over 30 simulations. The number of base learners is 600, 6 features
are used SIFT, HOG, SSIM, GB, and two DNN-Based Features. 70% (L=24 samples) of the training data is sampled to train each base learner. Linear SVMs
are used as base learners. Nonlinear SVM (RBF) is used as meta-classifier for the proposed approach. Ensemble pruning is enabled and (B%=1/N, where N=6)
of the total base learners are kept. Meta-Data synthetic oversampling is enabled, SMOTE synthetic oversampling is used to deal with the data imbalance at the
meta-data level. Adaptive sampling is used with a z value of 3.
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Table 22 shows the incremental classification accuracy when using the proposed model with

100 BLS per feature when incrementally using more training data and/or more features. From

Table 22, it can be seen that using multiple features to perform classification outperforms using any

of the features individually. Similarly, increasing the percentage of the training data increases the

classification accuracy. The system can achieve high classification accuracy even when using a

small number of samples to perform the training. For example, Table 22 shows that the proposed

system can achieve a 95.88% average classification accuracy using only 30% of the available data

to perform training.

Table 22: Incremental classification accuracy.

Percentage of data used for training SIFT +HOG +SSIM +GB +REF: F7, + REF: F6
30% 76.8 78.3 80.05 81.2 95.88
40% 84.8 85.1 86.98 87.77 96.15
50% 92.9 93.0 93.1 93.1 97.62
60% 93.0 93.0 93.0 93.26 97.98
70% 93.9 94.0 94.3 94.4 98.05
80% 94.5 95.0 95.0 97.9 98.5
The most left column shows the percentage of data used for training. The rest of the data used for testing. We tested the proposed classifier by increasing the
percentage of training data and the number of used features. the second column shows the classification accuracy when using only SIFT feature, the third column
shows the result when using SIFT and HOG, … etc. 100 x N linear SVM base learners used each time where N is the number of features. The used meta-classifier
is a nonlinear (RBF) SVM. Adaptive sampling (z=3), ensemble pruning (B%=1/N) and meta-data synthetic (SMOTE) are enabled. The results are the average
over 30 times simulations.

4.7 Additional Experiments: Defects Classification Using the BagStack Classifier

This section presents the classification accuracy of the BagStack classifier implementation as

discussed in chapter 3. In this section, we will also consider defects on the epoxy, on the substrate

in addition to the defects on the die area. We consider 10 different defect types: Foreign material

on die, epoxy on die, scratch on die, finger-print on die, foreign material on epoxy, excess epoxy,

missing epoxy, damage components and foreign material / scratch on substrate (Table 23).

The BagStack classifier is used in different settings. In these settings, we vary the number and

types of base learners (Table 24), the number and types of features (SIFT and DNN based features),

different meta-classifiers (Random Forest (100 with optimization), EBMDTR0 and EBMDTR1, Lin-

ear SVM, SVM(RBF), Bagging(DT) and Boosting(DT)) and turning On/Off the imbalance aware

cross validation. Coverage percentage is the only constraint that is used to decide the total num-

ber of base learners, 90% coverage percentage is used when we turn off the imbalance-aware

cross validation and 80% coverage percentage is used when we turn on the imbalance-aware cross
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Table 23: Types of defects, descriptions and number of images available for each type.

Defect type Region Description Number of Im-
ages

Foreign material on die Die Foreign material (hair, dust, etc) on die 60
Fingerprint on die Die Fingerprint on die 19
Scratch on die Die scratch on die 8
Epoxy on die Die Excess epoxy over the die area 40
Cracked die Die Cracked/broken die 21
Excess epoxy Epoxy Excess Epoxy over the substrate 12
Foreign material ob
epoxy Epoxy Foreign material on epoxy 44

Missing epoxy Epoxy Missing epoxy/ partially missing eoxy 33

Damage component Component Foreign material or epoxy touching the
component 26

Foreign material on sub-
strate Substrate Foreign material/scratch on substrate 89

validation. In the first version EBMDTR0, we concatenate the outputs of all base learners to con-

struct a meta-data instance, in the second version EBMDTR1, to fit a regression tree to predict a

specific class c, we use meta-data instances that are constructed by concatenating the outputs of

base-learners that have been trained using the class c.

Table 24: Training algorithms used as base learners.

Index Training Algorithms Parameters
BL1 Decision Tree Maximum number of splits = 400
BL2 SVM SVM, Linear, Z-Score
BL3 Linear Regression SVM-Regression, Lasso, Sparsa, Lambda=0.1, no optimization
BL4 Linear Regression LSE-Regression, Lasso, Sparsa, Lambda=0.1, no optimization
BL5 Linear Regression SVM-Regression, Ridge, Sparsa, Lambda=0.1, no optimization
BL6 LSE-Regression, Ridge, Sparsa, Lambda=0.1, no optimization
BL7 SVM SVM, RBF, Z-Score
BL8 Random Forest Random Forest, classification, number of learners=5
BL9 Ensemble regression-bagging Ensemble regression, bagging, number of learners =10
BL10 Ensemble regression, boosting Ensemble regression, LSBoost, number of learners=10

Tables 25, 26, 27 and 28 show overall classification accuracy, average accuracy, standard de-

viation and the average classification accuracy of each class (the 10 defects classes). In each

experiment, we use 80% of the data for training and 20% for testing. The reported results are the

average of 10 times.

126



Table 25: Overall accuracy and average accuracy when using two features and two types of base
learners.

MC IACV Overall Average Die Epoxy Others
OA STD AA STD CR EPX FM FP SC EXS FM MIS SUB DC

SVML OFF 0.89 0.03 0.81 0.06 0.97 0.88 0.92 0.2 0.8 0.82 0.9 0.93 0.94 0.72
SVML ON 0.89 0.02 0.9 0.04 0.97 0.83 0.95 0.9 0.88 0.89 0.83 0.96 0.88 0.94
SVM OFF 0.86 0.02 0.72 0.05 0.63 0.91 0.85 0.1 0.53 0.82 0.89 0.92 0.94 0.62
SVM ON 0.87 0.02 0.88 0.05 0.93 0.87 0.94 0.8 0.9 0.93 0.81 0.92 0.85 0.86
RF OFF 0.91 0.02 0.87 0.03 0.97 0.94 0.94 0.4 0.85 0.89 0.88 0.94 0.93 0.92
RF ON 0.91 0.01 0.9 0.02 0.97 0.88 0.94 0.6 1 0.92 0.81 0.99 0.92 0.94
Bagging OFF 0.88 0.02 0.84 0.04 0.97 0.86 0.94 0.3 0.88 0.89 0.81 0.92 0.91 0.88
Bagging ON 0.86 0.03 0.87 0.02 0.97 0.81 0.87 0.7 0.95 0.85 0.78 0.95 0.88 0.98
RUSBoost OFF 0.76 0.06 0.77 0.06 0.93 0.79 0.8 0.6 0.83 0.76 0.69 0.71 0.76 0.82
RUSBoost ON 0.8 0.03 0.83 0.04 0.9 0.72 0.89 0.7 0.88 0.89 0.69 0.9 0.78 0.92
EBMDTR0 OFF 0.86 0.03 0.81 0.03 0.97 0.75 0.97 0.5 0.68 0.77 0.88 0.92 0.94 0.76
EBMDTR0 ON 0.89 0.02 0.89 0.03 0.83 0.83 0.94 0.9 0.85 0.93 0.83 0.94 0.93 0.94
EBMDTR1 OFF 0.9 0.02 0.88 0.04 0.87 0.83 0.96 0.7 0.9 0.89 0.89 0.94 0.89 0.92
EBMDTR1 ON 0.88 0.02 0.9 0.04 0.93 0.86 0.93 0.9 0.93 0.95 0.78 0.96 0.88 0.92
80% of the data is used for training and 20% is used for testing. The results are the average over 10 simulations. Two features are used VGG16 (ImageNet): FC6 and FC7. Two types of base
learners are used: Decision Tree (DT) and Linear Support Vector Machine SVML

Table 26: Overall accuracy and average accuracy when using five features and two types of base
learners.

MC IACV Overall Average Die Epoxy Others
OA STD AA STD CR EPX FM FP SC EXS FM MIS SUB DC

SVML OFF 0.89 0.01 0.83 0.03 0.94 0.93 0.99 0.56 0.71 0.89 0.85 0.93 0.97 0.5
SVML ON 0.93 0.02 0.94 0.01 1 0.9 0.96 1 0.88 0.96 0.88 1 0.93 0.93
SVM OFF 0.83 0 0.67 0.04 0.39 0.94 0.84 0.22 0.54 0.68 0.9 0.94 0.93 0.33
SVM ON 0.91 0.02 0.93 0 1 0.91 0.87 1 0.88 0.95 0.88 0.91 0.93 0.97
RF OFF 0.93 0.02 0.91 0.03 1 0.94 0.94 0.73 0.85 0.92 0.94 0.96 0.94 0.9
RF ON 0.92 0.02 0.93 0.04 0.9 0.9 0.94 0.93 0.95 0.96 0.87 0.94 0.94 1
Bagging OFF 0.88 0.03 0.87 0.05 0.94 0.92 0.91 0.78 0.83 0.87 0.86 0.91 0.86 0.87
Bagging ON 0.89 0.02 0.92 0.01 0.89 0.89 0.95 1 0.88 0.94 0.78 0.93 0.91 1
RUSBoost OFF 0.79 0.05 0.82 0.03 0.94 0.83 0.85 1 0.92 0.85 0.77 0.86 0.87 0.97
RUSBoost ON 0.85 0.05 0.89 0.03 1 0.74 0.85 1 0.67 0.73 0.76 0.88 0.78 0.8
EBMDTR0 OFF 0.9 0.01 0.88 0.03 1 0.91 0.97 0.67 0.75 0.87 0.87 0.92 0.91 0.92
EBMDTR0 ON 0.9 0.02 0.92 0.03 1 0.89 0.91 0.93 0.88 0.93 0.83 0.95 0.89 0.98
EBMDTR1 OFF 0.88 0.03 0.86 0.02 0.93 0.83 0.98 0.8 0.65 0.81 0.85 0.93 0.91 0.92
EBMDTR1 ON 0.89 0.02 0.91 0.01 0.89 0.84 0.95 1 0.92 0.97 0.77 0.89 0.91 0.97
80% of the data is used for training and 20% is used for testing. The results are the average over 10 simulations. Five features are used, SIFT, AlexNet (ImageNet): FC6 and FC7, VGG16
(ImageNet): FC6 and FC7. Two types of base learners are used: Decision Tree (DT) and Linear Support Vector Machine SVML

Table 27: Overall accuracy and average accuracy when using two features and all types of base
learners.

MC IACV Overall Average Die Epoxy Others
OA STD AA STD CR EPX FM FP SC EXS FM MIS SUB DC

SVML OFF 0.87 0.009 0.84 0.003 0.85 0.98 0.85 0.66 0.62 0.88 0.81 0.96 0.82 1
SVML ON 0.9 0.007 0.89 0.002 1 0.84 1 0.68 0.88 0.81 0.88 0.93 0.9 1
SVM OFF 0.91 0.007 0.87 0.002 0.86 0.89 0.88 0.67 1 0.81 0.88 0.86 0.98 0.85
SVM ON 0.9 0.004 0.9 0.001 1 0.89 0.88 0.67 1 0.81 0.87 0.86 0.99 1
RF OFF 0.91 0.008 0.89 0.003 1 0.89 0.93 0.67 0.88 0.82 0.9 0.97 0.89 1
RF ON 0.91 0.007 0.9 0.002 1 0.89 0.89 0.67 0.88 1 0.81 1 0.9 1
Bagging OFF 0.89 0.009 0.84 0.003 0.84 0.87 0.88 0.34 0.88 0.81 0.86 1 0.9 1
Bagging ON 0.89 0.005 0.91 0.002 0.84 0.87 1 1 1 0.93 0.69 0.86 0.98 0.91
RUSBoost OFF 0.85 0.006 0.89 0.002 0.84 0.84 0.89 1 0.88 0.93 0.66 0.97 0.84 1
RUSBoost ON 0.9 0.009 0.92 0.003 1 0.84 0.84 1 1 0.81 0.96 0.93 0.9 0.9
EBMDTR0 OFF 0.91 0.005 0.94 0.002 1 0.81 0.96 1 1 0.82 0.86 0.97 0.99 1
EBMDTR0 ON 0.89 0.003 0.93 0.001 1 0.87 0.96 1 1 0.89 0.73 0.9 0.95 1
EBMDTR1 OFF 0.93 0.006 0.93 0.002 1 0.89 0.96 1 0.76 0.97 0.85 0.97 0.97 0.91
EBMDTR1 ON 0.9 0.006 0.93 0.002 1 0.79 1 1 1 0.89 0.86 0.89 0.92 1
80% of the data is used for training and 20% is used for testing. The results are the average over 10 simulations. Two features are used, VGG16 (ImageNet): FC6 and FC7. All types of base
learners are used

4.8 Comparison with DNN-based Solutions

Deep Neural Network represents one of the most important advances that got significant atten-

tion in computer vision. More specific, Deep Convolution Neural Network CNN has been achieving

the best results in computer vision competitions since 2012 when a CNN-based solution (ALEXnet)

achieved the best results in the ILSVRC competition. Since then, CNN has been considered as
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Table 28: Overall accuracy and average accuracy when using Five features and all types of base
learners.

MC IACV Overall Average Die Epoxy Others
OA STD AA STD CR EPX FM FP SC EXS FM MIS SUB DC

SVML OFF 0.91 0.03 0.94 0.01 1 0.9 0.95 0.97 0.87 0.97 0.89 0.98 0.98 0.9
SVML ON 0.89 0.03 0.93 0.01 0.99 0.97 0.94 0.87 0.85 0.95 0.84 0.97 0.96 0.98
SVM OFF 0.51 0.03 0.37 0.008 0.01 1 0.82 0.31 0.01 0.16 0.66 0.45 0.2 0.02
SVM ON 0.83 0.03 0.72 0.009 0.19 0.98 0.94 0.7 0.65 0.36 0.74 0.9 0.91 0.82
RF OFF 0.93 0.01 0.86 0.003 1 0.95 0.97 0.7 0.51 0.81 0.95 0.97 0.97 0.81
RF ON 0.95 0.01 0.95 0.004 1 0.95 1 0.92 1 0.97 0.88 0.86 0.99 0.91
Bagging OFF 0.94 0.03 0.89 0.01 1 0.9 0.98 0.73 0.9 0.93 0.91 0.85 0.94 0.71
Bagging ON 0.92 0.02 0.91 0.008 1 0.91 0.97 1 0.77 0.86 0.88 0.84 0.9 1
RUSBoost ON 0.88 0.03 0.87 0.009 1 0.85 0.91 0.82 0.76 0.9 0.93 0.92 0.69 0.9
RUSBoost OFF 0.94 0.02 0.93 0.007 1 0.83 0.94 0.92 1 0.9 0.92 0.98 0.92 0.92
EBMDTR0 OFF 0.89 0.02 0.89 0.006 1 0.8 0.84 1 0.76 0.86 0.81 0.91 0.99 0.91
EBMDTR0 ON 0.96 0.02 0.96 0.006 1 0.93 0.93 1 0.9 1 0.96 0.94 0.91 1
EBMDTR1 OFF 0.96 0.02 0.94 0.006 1 0.92 1 0.93 0.78 0.91 0.89 0.94 1 1
EBMDTR1 ON 0.98 0.03 0.95 0.01 1 0.98 0.99 1 0.9 1 0.81 0.97 0.98 0.91
80% of the data is used for training and 20% is used for testing. The results are the average over 10 simulations. Five features are used, SIFT, AlexNet (ImageNet): FC6 and FC7, VGG16
(ImageNet): FC6 and FC7. All types of base learners are used

a very important research topic in machine learning and computer vision. In this section, we will

compare the performance of the BagStack classifier (the best results) to different CNN-based so-

lutions. It is well known that training a new CNN model from scratch to solve a specific machine

learning problem is very expensive in the context of the need to have large number of images (most

of the time millions of images) and the computational complexity. We will compare our results to

CNN-based results using three different ways. (1) using pre-trained well-known models as features

extractors, and then the extracted features are used to train different classifiers (e.g., SVM, Random

Forest, … etc.). (2) Fine-tuning well-known pre-trained models using our data. (3) training our own

model using our data.

We used six different CNN models, AlexNet, VGG16, VGG19, GoogleNet, ResNet50 and

ResNet152. In the first experiment, we use these models as features extractors. Since these mod-

els are trained to predict images from the ImageNet data base, the last layer (softmax) has 1000

outputs, one per each class. Instead of reading the output of the last layer, we read the outputs of

the intermediate layers which represent different representations of the input image. These repre-

sentations can be seen as features that are extracted from the image. For each one of thesemodels,

we optimize the overall accuracy and the average per-class accuracy across (1) different features

representations (the output of different layers), (2) different classifiers (DT, SVM, SVM(RBF), Ran-

dom Forest, Bagging, AdaBoost.M2, RUSBoost and Viola-Jones Classifier), and (3) using data-

augmentation in training and testing.

In the data augmentation process, each image has been processed using the means of image

processing to generate other images. We perform rotation (30, 60, 90, …. 360), flip vertical and

horizontal, scale down (0.9, 0.8 and 0.7) and scale up (1.1, 1.2 and 1.3) followed by cropping where

we crop the upper left corner, upper right corner, lower left corner, lower right corner and the center.

128



In total, for each image we generate additional 32 images which results into 33 images including

the original image. We tested applying data augmentation in the training process and / or data

augmentation in the testing process. When applying data augmentation in the training, it is very

important to know that all different versions of the same original sample are bundled together. The

sampling is applied at the original samples and all samples belonging to the same original one will

move together in the training / testing processes. In the testing process, the final prediction of a

sample is calculated as the average of predictions (voting) of the samples belonging to this sample.

Figure 28 depicts some of the images that are generated by using data augmentation.

Figure 28: Sample images of data augmentation: (a) The original image, (b) Flip horizontal and
vertical, (c) rotating the image and (d) scale down and scale up followed by cropping the four

corners and the center.

We also fine-tuned some of these models using fine tuning to solve our problem. Fine-tuning the

models to solve new problems necessitates changing the architecture of the network and re-training

the model. We change the last layer (softmax), instead of predicting 1000 outputs (the number of

classes in the image net) we use a softmax layer to predict 10 outputs (the number of classes in

our problem). Data augmentation is used again in the training and the testing processes. We fine-

tuned AlexNet, VGG16 and GoogleNet. Stochastic Gradient Descent is used for training starting

with (0.001) learning rate. AdaDelta method is used to control the learning rate. The used batch

size is 16. The data is divided into 80% learning and 20% testing. The 80% learning is divided into

70% training and 10% validation.

Finally, we train also our own model. Since the available number of images is small, we kept

our model very simple to avoid overfitting problems. We used data augmentation in both training
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and testing processes. Our network contains 2-convolution layers, each one is followed by linear

rectification and max pooling layers, 2-fully connected layers, each one is followed by a drop-out

layer and finally a softmax layer. Stochastic Gradient Descent SGD is used for training starting with

(0.01) learning rate. AdaDelta method is used to adaptively change the learning rate. The used

batch size is 16. The data is divided into 80% learning and 20% testing. The 80% learning is divided

into 70% training and 10% validation.

Table 29 depicts the comparison results. The results are the average of 5-times when using the

models as a feature extractor, 5-times for the BagStack classifier and 3-times when we fine-tuned

the models to our own problem and when we train our own model. It is important to know that five

different features are used when training the BagStack classifier, 4 of them are DNN-based features

(2 features are extracted from AlexNet and 2 features from VGG16) and SIFT feature. We use all

learning algorithms listed in Table 24 as base learners.

Table 29: Comparison of different classification methods in terms of overall and average
classification accuracy.

Specifications Overall Accuracy Average Accuracy
Feature Name Augmentation Classifier OA STD AA STD

REF-19-FC7 Yes AdaBoostM2(SVM) 94.94% 0.60% 96.46% 0.38%
VGG16-33 Yes ViolaJones(SVM) 95.64% 0.24% 94.48% 2.37%
VGG19-39 Yes AdaBoostM2(SVM) 94.51% 1.12% 95.78% 0.88%
GoogleNet-CLS1-FC2 Yes ViolaJones(SVM) 94.09% 1.69% 94.14% 2.10%
ResNet50-FC1000 Yes SVMRBF 95.70% 0.35% 93.66% 3.21%
ResNet152-FC1000 Yes ViolaJones(SVM) 92.97% 0.49% 94.70% 0.50%
REF-ALEX Yes softmax 95.60% 1.30% 95.80% 1.40%
VGG16 Yes softmax 94.90% 3.50% 93.30% 4.00%
GoogleNet Yes softmax 95.00% 4.50% 93.20% 3.00%
Training New Model Yes softmax 95.20% 5.20% 93.92% 2.30%
BagStack Classifier No - 97.50% 3.00% 95.30% 1.00%
BagStack Classifier Yes - 98.63% 2.60% 98.02% 0.81%

4.8.1 Conclusion

In this chapter, we present a multifeature sparse-based defects’ characterization framework. To

the best of our knowledge, this is the first work that uses machine learning to address the problem

of defects detection and classification at the level of semiconductor units. The proposed framework

consists of an enhanced multifeature sparse-based representation and a stacking-based classifier.

The proposed data representation is augmented with background features subtraction to enhance

the classification accuracy when very few samples are available. The proposed stacking-based

classifier integrates a novel adaptive sampling technique. Ensemble pruning and metadata over-

sampling effectively deal with the data imbalance and enhance the quality of the metaclassifier.
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We tested the performance of the proposed approach on real images from Intel. The proposed

approach was shown to result in a high classification accuracy by using few numbers of images

for training comparing with other well-known ensemble techniques that are designed specifically to

deal with data imbalance problem. The proposed system is able to achieve a high classification

accuracy even when a small number of samples are used for training (30%) and a high level of

scalability in the sense that adding more features can only improve the accuracy. The proposed

system can achieve 95.88% average classification accuracy when only 30% of the data is used for

training and an average accuracy of 98.5% when 80% is used for training (Table 22).

In the last section, we compare the BagStack classifier to different DNN-based classification

methods. We consider three different ways of using deep learning in image classification: using

pre-trained models to extract features, fine-tuning pre-trained models and training our own model.

Due to the fact that the available number of images is very limited, we use data augmentation. For

each image another 32 images are extracted. The results in Table 29 shows that BagStack classifier

outperforms all other classification techniques.
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Chapter 5

LOCALLY ADAPTIVE STATISTICAL BACKGROUND MODELING WITH DEEP LEARNING

BASED FALSE POSITIVE REJECTION FOR DEFECTS DETECTION IN SEMICONDUCTOR

UNITS

In this chapter, A system for the detection and classification of defects in semiconductor units

is presented. The proposed system consists of three stages: proposal generation stage, defect

detection stage and refinement stage. In the proposal generation stage, changes on the target

unit are detected using a novel change detection approach. In the second stage, a deep neural

network is used to classify detected regions into either defective or non-defective regions. Non-

defective regions are regions exhibiting allowable changes due to factors such as lighting conditions

and subtle differences in manufacturing. The defect detection stage was adopted from [174] and

achieves up to 94.3% accuracy. In practice, defects that are smaller than a specified tolerance size

are ignored by manufactures. The tolerance size depends on the defect types and is determined

based on risk factors. In order to ignore such defects, our approach includes a final refinement

stage wherein the detected defects are categorized by a stacking-based ensemble classifier into

different classes. Defects smaller than their corresponding tolerance size are ignored. The refined

system achieves up to 97.88% overall detection accuracy.

This chapter introduces an automated system for defects detection in semiconductor units includ-

ing die, epoxy and substrate regions. The presented system is immediately applicable to different

types of defects on die, epoxy and substrate. Inputs of the system can be either color or grayscale

images.

5.1 Introduction

Automated inspection systems are used in manufacturing to control the quality of products, re-

duce product waste, and improve efficiency. Inspection is an important process to detect defective

products and keep these from reaching customers. Non-contact optical sensing systems are consid-

ered that use a camera to monitor the quality of products. Optical inspection systems do not require

physical contact with the inspected material and can perform at high speed. However, optical meth-
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Figure 29: Examples of (a) defective samples and (b) non-defective samples. It can be seen that
some of the non-defective regions exhibit small changes due to small foreign materials or epoxy

dots. These small changes are small in size and can be ignored.

ods bring additional challenges because of the intrinsic variability in captured images, e.g., lighting

conditions and manufacturing differences. State-of- the-art defect detection systems are sensitive

to such variability in the sense that they are not able to distinguish allowable non-defective variations

from actual defects.

In this chapter, optical-based detection and classification of defects on semiconductor units is

considered. There are several unique challenges associated with this problem domain. Firstly,

there is a significant amount of intrinsic variability from unit to unit. This variability is most evident in

the epoxy region, where it is difficult to control the manufacturing process such that the epoxy is the

same for each unit. Secondly, the sizes of defects are often very small in relation to the size of the

entire unit. Finally, due to the current progress of the semiconductor manufacturing process, defects

are less likely to occur, but it is still important to detect these defects. Figure 29 depicts examples

of defective and non-defective regions. The defects exhibit a wide range of variability. Defects can

occur because of foreign materials, damaged components, scratches, cracks and epoxy related

problems. The proposed system can handle these defects regardless of the location in the unit.

In addition to this, there are many small manufacturing variations that would not be considered

as defect. Often these variations look like defects but differ in size. In this work, sixteen different

products and ten different types of defects are considered.

Semiconductor units consist primarily of four different parts: die(s), substrate, epoxy and com-
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ponents. While the die is mostly a uniform region, the substrate and the epoxy are more complex

textures. Epoxy material is sensitive to light variations, which creates different types of acceptable

variations. The work in this chapter represents an extension to our previous work in the previous

chapter [175]. In [175], only defects classification on the die area is considered. This work is con-

cerned with defect detection over all the unit (die, epoxy and substrate). While the detection of

defects on the die area is relatively straightforward due to the uniformity of the die region, the de-

tection of defects on the substrate and epoxy regions is more challenging. Our system can detect

and recognize defects on die, substrate and epoxy.

A multi-stage system for defect detection and classification is proposed that can handle many of

the aforementioned difficulties. In the first stage, change detection is performed wherein potential

defects’ locations are generated. The proposed change detection process (proposal generation

stage) consists of two steps: modeling and subtraction. In the modeling step, a set of reference

images (non-defective units) are used to generate a statistical-based locally adaptive abstraction

model to describe the perfect units. In the subtraction step, the target unit is compared to the

model pixel-by-pixel to generate the change detection mask. In some cases, the detected changes,

which are related to regions that are significantly different from the corresponding regions in the non-

defective units, are not true defects. For example, some changes due to light and epoxy variations

are acceptable changes. For this reason, each detected region is further classified into either non-

defective region (false positive) or defective region (true positive) using an adopted DNN-based

classifier (defect detection stage) [174]. In the refinement stage, in order to eliminate false positives

that are smaller in size than a tolerance size, a stack-based classifier [175] is used to classify defects

into different classes. Next, corresponding to different defect types, a type-dependent size threshold

is used to filter out tolerated small-size defects.

The contributions of this chapter can be summarized as follows. 1) This work represents the

first work to consider defects detection and classification in semiconductor units including die(s),

epoxy, substrate and components. To our knowledge, this is the first work to use machine learning

to detect and classify defects in semiconductor units. 2) In this chapter, a locally adaptive statistical

background modeling for change detection is proposed.

The rest of this chapter is organized as follows. Section 2 discusses previous and related works.

An overview of the proposed defect detection and classification system is presented in Section 3.

Section 4 presents a detailed description of the change detection process including image repre-
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sentation, statistical background modeling and change detection. Section 5 presents briefly the

adopted deep neural network-based defect detection stage to distinguish between defective and

non-defective regions. This defect detection stage was developed by collaborator Samuel Dodge

at the ASU IVU Lab. The refinement stage is presented in Section 6. Performance evaluation

results are presented in Section 7 followed by a conclusion in Section 8.

5.2 Problem Formulation and Related Work

Several existing computer vision methods have been presented for defect/change detection

[176, 177, 178, 179], object detection [180], and background subtraction [181, 182, 183, 184, 185,

186, 187]. While the problem of interest in this chapter is a defect detection and classification

problem, it has its own challenges that make other related methods in the literature not able to

achieve acceptable performance. In this section, some of the state-of-the-art methods in this domain

will be covered, explain how they are connected to our problem and their limitations.

In this chapter, the problem of defect detection and classification in the semiconductor fabrication

process at the unit level is addressed. In the literature, many approaches were proposed to deal

with this problem at the wafer level [188, 189, 190, 191, 192] but not at the unit level. While two

wafers, belonging to the same product, should be mostly identical, two units belonging to the same

product may exhibit some acceptable variations due to subsequent processing steps. Mainly, all

subsequent steps after wafer fabrication, cutting, adding components and using epoxy to glue die

onto the substrate, may introduce different types of variations. Discriminating between acceptable

variations and defects is challenging at the unit level.

The problem of defect classification in the die region of semiconductor units was previously stud-

ied in [175]. In [175], no automated defect detection is presented, rather than the inputs aremanually

cropped from unit images. This ensures that defects are nicely centered in the input images. By

contrast, our proposed system performs defect detection and classification, which is a more diffi-

cult problem. In [175], the authors addressed the defect classification problem on the die while our

work addresses the detection and classification problem on the die, epoxy and substrate. In our

system, the only human-provided input is the training dataset consisting of ground-truth defective

and non-defective samples. After training, the system automatically detects, crops and classifies

defects. Our approach is similar to the RCNN [180] paradigm for detecting objects in natural im-
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ages. In this work, instead of objects we are looking for defects, and instead of natural images,

semiconductor units are being considered. In RCNN, for object detection, selective search [193] is

used to generate candidate boxes that could contain objects. In our case, such selective search

fails to find meaningful objects because defects occupy a very small region of the image, and do not

exhibit characteristics like objects in a natural scene. When we attempted to use selective search

[193], we found that most of the generated boxes centered around the components of the unit rather

than the defects. Instead of selective search, we propose in this work a statistical-based change

detection method based on statistical background modeling as described later in Section 4. After

detection, RCNN uses a deep neural network (DNN) fine-tuned from a pre-trained neural network

to perform classification. A DNN is also used here; however, the proposed DNN is a unique archi-

tecture and has been trained from scratch due to major differences between natural images and

semiconductor images. Furthermore, the proposed DNN architecture is not applied to the semicon-

ductor input image directly but rather it is applied to regions in the image where significant changes

from a reference normal (non-defective) unit model are detected. These candidate defect regions

are generated by our novel proposed statistical-based change detection stage.

In change detection algorithms, the goal is to find the differences between two or more images.

However, depending on the application domain, the algorithm can be quite different. Many applica-

tions try to separate the foreground from background in video. This class of approaches is called

background subtraction. In [176], the authors present a review of state-of-the art methods for back-

ground subtraction. Another application domain is to detect changes between two images [177, 178]

(e.g., remote sensing images [179]). In this later application, the goal is to detect changes in a pair

of images. However, our problem contains certain intrinsic variabilities (such as epoxy changes)

that give unsatisfactory results when using existing or generic “off-the shelf” change-detection algo-

rithms.

Background subtraction methods learn a model of the background for different locations in the

image, and then compare a pixel to the learned background model to determine whether it is fore-

ground or background. This background model should be flexible enough to capture all acceptable

and expected variations yet able to adapt to new variations. The model can be learned at the block

level [181] or at the pixel level [182]. The pixel level provides a more accurate result; however, the

computation and storage requirements are much greater. In existing statistical-based background

modeling, the background model can be a parametric model, such as a single Gaussian [183] or a
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mixture of Gaussians [184], or a non-parametric model such as using a codebook to represent the

background [185]. Background subtraction methods can be applied directly to the raw images using

pixel intensities to learn a background model [184] or to other image representations, e.g., texture

features. In [181], local binary patterns (LBP) [186] are used as texture features to capture back-

ground statistics. LBP features are robust to changes in illumination. Going a step further, intensity

information and texture information can be combined [187]. The authors of [187] proposed a multi-

layer background subtraction technique which combines LBP features with color measurements in

the RGB color space.

Another related field is change detection in remote sensing images [179]. In remote sensing,

there are often only two images, corresponding to two different time instances, to compare. With a

lack of more images, using background subtraction related methods cannot accurately model the

statistics of pixels. To compensate for the lack of temporal information, remote sensing algorithms

often make use of spatial information. The first step in change detection algorithms is to produce

a difference image that gives the likelihood of a change. Among the earliest methods to find a

difference image is to use a simple subtraction operation [179]. An alternative to subtraction is the

ratio method which is less susceptible to illumination and other small changes in the images [194],

[195]. Change Vector Analysis (CVA) [177] uses spectral information to map the change magnitude

and direction. Principal component analysis was also adopted to produce an initial change detection

mask [195]. The methods proposed in [196] and [197] use a mixture of Gaussians to model the local

statistics around a pixel and the Kullback-Leibler divergence is used to compute the difference.

Once a difference image has been obtained, then the problem of change detection reduces to an

image segmentation problem. This segmentation can be performed using thresholding [198, 199]

or clustering methods [200, 201, 202, 203].

In this chapter, a change detection algorithm is proposed designed specifically for defects de-

tection in semiconductor units and which integrates both image intensity and local binary patterns

to describe the local image characteristics. Describing the image features in terms of a simple para-

metric model as in [183] cannot accurately describe the statistics. A non-parametric model based

on a set of histograms learned from the data using the K-means clustering algorithm is adopted.

The refinement stage adopts the stacking-based classifier proposed in our previous work [175].

The lack of defective images and the data imbalance problem represent the main challenges that

the stacking-based classifier [175] is designed to deal with. The classifier integrates a stacking-
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Figure 30: Workflow of the proposed system.

based ensemble method with adaptive sampling technique to achieve high accuracy under these

circumstances. By contrast, under these same circumstances, it is difficult for a deep neural network

to learn a function that does not overfit the training samples or that can perform well on the unseen

defective samples that are not part of the training set.

5.3 System Overview

The proposed system consists of three stages: change detection stage, defect detection stage

and refinement stage. Figure 30 depicts an overview of the proposed system. The proposed sys-

tem uses statistical background modeling and data mining to perform defect detection and classifi-

cation. The change detection process consists of two main steps: background modeling, wherein

a locally adaptive statistical background modeling is proposed to model the background (i.e., the

non-defective unit), and background subtraction, wherein the target image is processed for change

detection. The model describes non-defective imaged units and captures different possible varia-

tions. A statistical model of images of the non-defective units at each pixel is learned. Detecting

changes is done by comparing target images to the learned background model pixel-by-pixel.

The change detection mask is used as input to the defect detection stage. The defect detection

stage uses a deep neural network (DNN) to determine whether detected changes are defects or

ignorable ones. The adopted DNN architecture is a multi-column architecture that has several input

slices (consisting of the target unit’s image as the first slice followed by the images of non-defective

units). The network learns to distinguish between acceptable changes and defective regions. Each

candidate defective region is processed by the defect detection stage (one-by-one) and classified

into either defective or non-defective region. The network has been trained using labeled detected

regions. In some cases, multiple neighboring regions are detected for the same defect (for example,
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this is common in the case of the fingerprint on die defect). These latter regions, corresponding to

the same defect, are considered defective regions.

In the refinement stage, a stacking-based ensemble classifier is used to classify defects into

different classes. Based on a defect’s type and size, these defects are considered as either ac-

ceptable defects or not. Using a single size threshold for all the different defect types may lead to

many false positive alarms. However, using a different class-specific size threshold for each type of

defect can effectively reduce false positive alarms. More details about the proposed methods are

presented in Sections 4 to 6.

5.4 Change Detection Stage

The change detection process is the first step in the proposed framework. It consists of two

major sub-steps: offline modeling and online detection. In the modeling process, a set of images

corresponding to non-defective units from the same product line is used to build an abstract rep-

resentation of imaged non-defective units. The modeling process results in a background model

consisting of W × H sub-models, one at each pixel location, where W and H are the width and

height of the reference images. Each pixel has a corresponding non-defective “background” model

that captures all possible variations at this pixel location across all reference images. In the detec-

tion process, target images are compared to the derived background model pixel-by-pixel using a

proposed change detection procedure. The proposed procedure is a nonparametric method that

uses both temporal and spatial information to improve the detection accuracy. The change detec-

tion procedure measures the deviation of the target pixel from the corresponding sub-model at the

same pixel location.

5.4.1 Image Representation

Designing a robust change detection solution starts with the image representation that is used

through the modeling and detection processes. While the simplest solution is to use intensity values

directly, this solution may not be able to cope with illumination and noise variations, which lead to

false positives. Instead, both normalized intensity values and texture features based on local binary

patterns (LBP) are used. First, change detection using these two representations separately is
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applied, and then a spatial-based merging algorithm is employed to combine the detected changes

resulting from each representation.

When using normalized intensity values, each pixel is normalized by subtracting the mean com-

puted in aWnorm×Wnorm window around it. This normalization is necessary to handle local accept-

able variations between different units. Selecting an optimal Wnorm depends on the input image

resolution and the defect type. Selecting a large normalization window results in losing the ability to

adapt to local image statistics. Selecting a small normalization window results in a high correlation

between pixels, in which case normalization will result in a representation with values very close

to zero. The values of the normalized pixels depend on the pixel’s location and neighboring image

characteristics. For example, edge pixels or pixels that are close to edge pixels have relatively large

absolute values pixels on opposite sides of an edge will have different signs (+ve, -ve), and pixels

belonging to uniform regions (e.g., die) will have values close to zero. Figures 31 (a) and 31 (b)

illustrate the normalization process.

Using intensity normalization is very robust against light variations and thus results in a smaller

number of false positive alarms compared to using raw intensity values. However, some defects

have intensity values close to the background (e.g., scratch on substrate). The detection of such

defects in the normalized intensity domain is challenging. Local Binary Patterns (LBP ) [186] are

widely used to represent local image characteristics for a variety of applications including back-

ground subtraction because of their computational efficiency, and effectiveness in representing

local image variations. The LBP representation, in its simplest form, is a texture descriptor that

encodes the relationship between a central pixel and neighboring pixels within a pre-defined neigh-

borhood, into a sequence of binary values (a binary pattern). If the difference between pixels is

greater than or equal to zero, the binary value is set to be one and if the difference is less than

zero, the value is set to be zero. A modified version of the basic LBP called threshold-based LBP

is used. Threshold-based LBP requires the difference to be higher than a threshold tlbp to set the

value to zero. This makes the LBP robust against small variations due to noise. To compute local

binary patterns, aWlbp×Wlbp pixel square pattern with eight neighbor pixels is utilized. LBP works

very well in detecting small defects with sharp edges that introduce texture changes. In choosing

Wlbp and tlbp, we optimize for better detection rate, at the expense of more false positives. These

false-positives are filtered out in the subsequent steps.

140



Figure 31: Intensity-based and LBP-based image representations. Behavior of the
intensity-normalized region representation in slow varying regions (a) and near edges (b). For

uniform regions, the output values are very small. For edge regions, the output is very large along
the edge. (c) Computation of the LBP features.

Let Pi,j be the intensity of a pixel at location (i, j) and let P be the total number of its considered

neighboring pixels (e.g.P = 8) in Figure 31.c. The value of the LBP code of the pixel pi,j is given

by:

LBPi,j =

P−1∑
z=0

S(pz − pi,j)× 2z (5.1)

Where pz is the intensity of the zth neighbor pixel and

S(pz − pi,j) =

1, |pz − pi,j | ⩾ tlbp

0, |pz − pi,j | < tlbp

(5.2)

In (1), the P neighboring pixels Pz are scanned in a counterclockwise fashion with z = 0 corre-

sponding to the starting pixel to the right of the center pixel pi,j and z = P − 1 corresponding to the

last scanned pixel. Figure 31 (c) illustrates the process of LBP feature extraction.
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Figure 32: Background Modeling. Background modeling consists of three main steps. 1)
Histogram construction; 2) Applying K-means on the histograms; 3) Finding the mixing percentage
of each cluster. K is the number of clusters; I1, I2, ..., IN are the input-reference images; Pi,j is
the pixel location (i, j) for which N histograms are computed, one for each image In, n = 1, ..., N ,

using spatial neighborhood WHist ×WHist. For each cluster i, the centroid i and the mixing
percentage MPi are calculated.

The threshold-based LBP is not invariant to rotations of the input image. Image registration may

result in small rotations. As the LBP patterns are obtained by circularly sampling around the center

pixel, rotation of the input image results in significantly different LBPs. Since image registration

represents a pre-processing step in our framework (Section 4) a rotation-invariant threshold-based

LBP is needed. For this purpose, a uniformity measure U is used as in [186]. U is the number of

bitwise transitions from 0 to 1 or vice versa when the bit pattern is considered circular. A local binary

pattern is called uniform if its uniformity measure is at most Uth = 2. The value of the uniform LBP

code of a pixel Pi,j is given by:

LBPUth
i,j =


∑P−1

z=0 S(pz − pi,j), U(LBPi,j) ≤ Uth

P + 1, Otherwise
(5.3)

where:

U(LBPi,j) =

P∑
z=1

|S(pz − pi,j)− S(pz−1 − pi,j)| (5.4)

Such uniform-based LBP descriptor is robust to noise and adds an extra level of rotation and

grayscale invariance.

Using each of the intensity-based and LBP-based representations, a binary change detection

mask can be generated for each representation as described in Section 4.B where a value of 1 at
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a pixel location (i, j) denotes that a change is detected at that location. The final change detection

mask is generated by combining the detection masks corresponding to each representation as

described in Section 4.C.

5.4.2 Learning Models and Change Detection

Figure 32 illustrates the proposed framework for learning a background (“non-defective” unit)

model. The learned model is subsequently used as part of the change detection stage. The input

images, consisting of N reference images (i.e., images of non-defective units) are registered first

to ensure alignment. Alignment is necessary to improve the quality of the background model and

reduce the false positives. The Enhanced Correlation Coefficient maximization algorithm (ECC)

[204] from the MATLAB Image Alignment Toolbox [205] is used to perform registration. The ECC

algorithm is an extension to the Lucas-Kanade [206] algorithm but has the desirable characteristic

of being invariant with respect to photometric distortions. One of the reference images is randomly

selected to be the reference for the alignment.

A general formulation for change detection is learning a background model M wherein M con-

sists ofW ×H sub-modelsMi,j , one for each pixel location (i, j), and determining how well a pixel

representation x
′

i,j at a location (i, j) fits the sub-model Mi,j . x
′

i,j could be a normalized intensity

or LBP representation. The result of the change detection process is a binary image Z (detection

mask) given by:

Zi,j =

1, f(x
′

i,j |Mi,j) > λ

0, f(x
′

i,j |Mi,j) ≤ λ
(5.5)

where f(x
′

i,j |Mi,j) is a function that measures the deviation of the pixel x
′

i,j from the corresponding

sub-model Mi,j at the corresponding pixel location (i, j). The sub-model Mi,j is learned using

samples x
′ 1...N
i,j from all reference images (I1 ... IN ) at the same location (i, j). N is the total

number of reference images used to train the model. Using N reference images in this manner is

similar to the concept of using temporal information across a sequence of video frames.

Motivated by remote sensing algorithms [194, 195, 197, 203], where only two images (reference

and target) are available, spatial information is also being used within each image to increase the

robustness against noise, light variations and registration error. For each pixel x′

i,j in an image, we

use all pixels in the same image and within a window Whist ×Whist centered at the location (i, j)

143



to construct a histogram. One can think about this histogram as a feature that describes the pixel

(i, j) in the considered image.

Histograms of pixels (intensity-based or LBP-based representations) can be constructed by ei-

ther using a uniform or non-uniform quantization. In uniform quantization, the distance between

bins are equal while in the non-uniform quantization distances can be different. In the proposed

approach, two different types of quantization are used: a non-uniform quantization for the normal-

ized intensity values and a uniform quantization for the LBP representation. Figure 33 shows both

uniform and non-uniform histogram bins. Due to spatial correlation, the majority of the normalized

intensity pixels have values close to zero. For this reason, the number of bins assigned to values

close to zero is higher in the histogram to capture small intensity variations. This improves the

discrimination capabilities of the histogram descriptor.

The background sub-model Mi,j at pixel location (i, j) is learned using the histograms H1...N
i,j .

Let Hn
i,j be the constructed histogram at location (i, j), where n, 1 ≤ n ≤ N , is the index of the

reference image and (i, j) is the spatial pixel location. For example, the modelMi,j could be taken

as the average of the histograms at location (i, j); however averaging histograms can lead to a

less discriminative smooth histogram. An alternative is to model the histograms using a mixture of

Gaussian (MOG) distributions.

In this thesis, a nonparametric modeling technique is proposed that uses the K-means clustering

algorithm. K−means clustering is performed on the histogramsH1...N
i,j to generate a set ofK << N

histograms Ĥ1
i,j , Ĥ

2
i,j , ..., Ĥ

K
i,j , where K is the number of clusters. These histograms are obtained

by computing the centroid of each cluster. These histograms capture all significant variations at a

pixel location (i, j).

Typically, the K − means algorithm uses Euclidean distance to measure distances between

different data points. In the proposed approach, the data points are histograms. The distance

between histograms can be measured using the symmetric form of the Kullback-Leibler Divergence

(KLD), given by:

DSKLD(Q1∥Q2) =
DKLD(Q1∥Q2) +DKLD(Q2∥Q1)

2
(5.6)

where Q1 and Q2 are two probability distributions (normalized histograms), and DKLD is the KLD.

Figure 32 depicts the process of using N reference images to fit a model corresponding to the

location (i, j). Compared with averaging or mixture of Gaussians, our method can more accurately

model the data (Figure 34).
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Figure 33: (a) Uniform and (b) Non-uniform histogram bins.

Figure 34: Model generation using K-means clustering. (a) Histograms from 25 patches drawn
from the same location in N = 25 reference images; (b) average histogram; (c) five cluster
centroids “histograms” learned from the data using the proposed method. Compared with

averaging, the cluster centroids can better represent the local data characteristics.

The similarity between reference images typically result in relevant histograms being grouped

into a relatively small number of clusters after applying the SKLD-based k-means algorithm. Other

clusters would contain the less relevant noisy histograms. To avoid using clusters that capture noise

related variations, the mixing percentage MPk is defined as:

MPK =
NK

N
(5.7)

where MPk is the mixing percentage of the cluster k, Nk is the number of histograms belonging
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to cluster k and N is the total number of histograms (which is equal to the number of reference

images). MPk is used as a measure of confidence of how much cluster k represents background

or acceptable variations.

Given a target image T , to perform change detection at pixel (i, j), first the histogram HT
i,j at

pixel (i, j) is first computed in target image T using all pixels within a windowWhist×Whist centered

at pixel (i, j). Then, the SKLD distance between HT
i,j and each of the centroid histograms Ĥk

i,j ∈

Mi,j s.t MPk > α is computed, and determine the minimum computed distance (f). The minimum

distance (f) measures how different the target patch is from the reference patches. This measure

f is used to compute a binary change mask Z as follows:

Zi,j =

1, f(HT
i,j |Mi,j) > λ

0, f(HT
i,j |Mi,j) ≤ λ

(5.8)

where

f(HT
i,j |Mi,j) = min

∀ Ĥk
i,j∈Mi,j s.t. MPk>α

DSKLD(HT
i,j∥Ĥk

i,j) (5.9)

where MPk = Nk

N is the mixing percentage of each cluster k, Ĥk
i,j is the centroid of cluster k in

model Mi,j , HT
i,j is the computed histogram in the target image at the location (i, j), Nk is the

number of histograms belonging to cluster k, N is the total number of reference images used to

fit the model, and α is a parameter that is used to ignore clusters that contain a small number of

reference histograms.

Our model is a hybrid of traditional background subtraction models and change detection models

used for remote sensing. Background subtraction models consider only x1...N
i,j for fitting the model.

x1...N
i,j represents the temporal information at the pixel (i, j). On the other hand, the change detection

models, which typically consider two images (reference and target), incorporate spatial information.

Consequently our model uses both spatial and “temporal” information because the model Mi,j is

determined using the spatial information (histograms) from all reference images: H1...N
i,j . These

reference images provide information that is similar to the temporal information provided in video-

based background subtraction.

5.4.3 Mask Fusion

From the previous step, two change detection masks are obtained: one based on normalized

intensity features (ZI) and one based on LBP features (ZLBP ). The two change detection masks
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are complementary: the LBP feature-based mask helps in detecting potential defective regions

(e.g., defective regions with smooth edges) that the normalized intensity-based mask misses, and

vice versa. If a simple logical OR operation is used to merge the two masks, the false positives of

the two methods will be combined. Similarly, if a logical AND operation is used, any region that is

only detected by a single method is removed.

A heuristic merging algorithm is developed based on two observations: 1) the LBP-based de-

tection algorithm performs better in detecting defects that are close to the edges in the unit; and 2)

the LBP-based detection algorithm can detect all defective regions but results in many small false

positive regions (due to the complex texture of the substrate). These false positive alarms are fil-

tered out by using the intensity-based change detection mask. The edge mask (E) of the unit is

generated using an edge detection algorithm. Changes, that are detected using the LBP-based

representation and are close to the edges in the edge mask (E), are added to the final mask Zf .

In order to detect changes that are close to edges, a dilated edge detection mask is generated

by applying a morphological dilation operation to the edge mask E. Then, pixel locations with a

corresponding value of 1 in ZLBP and which also overlap with the dilated edge mask are added to

the final mask Zf . A size threshold t parameter is subsequently used to decide how to proceed with

the other remaining regions where change is detected by using the intensity-based representation

and/or the LBP-based representation. Regions smaller than a threshold t are added to the final mask

Zf if a change ismarked as detected in this region in bothZI andZLBP . Regions of size greater than

the threshold t are added to the final change detection mask if a change in such regions is detected

by ZLBP . The reason why only the LBP-based detection results is considered in the last case, is

that some defects can be only detected by using the LBP-based representation (e.g., scratch on

substrate) because of the similarity between the defect intensity value and the background intensity

value. Figure 35 illustrates the change detection algorithm. Algorithm 1 describes the steps of the

mask fusion process.

5.4.4 Efficient Implementation

The potential downside of our algorithm is that it is computationally intensive to compute the

symmetric KLD between the histogram of each patch (HT
i,j) in the target image and the corre-
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Figure 35: Change Detection. The change detection is a subtraction algorithm, where the
symmetric KLD distance is calculated between the target histogram and each centroid histogram
in the considered learned model. If the distance is less than a threshold λ, the pixel is considered
to be a background pixel with no change, otherwise a change is detected at that pixel location.

sponding model histograms Ĥ1
i,j , Ĥ

2
i,j , ..., Ĥ

K
i,j . To reduce the computational complexity, a greedy

subsampling-based algorithm is proposed. In the proposed algorithm, the image id divided into a

square grid. Each cell in the grid has aWsub×Wsub pixels. The algorithm begins by only processing

one pixel in each cell (e.g., the pixel at the center). In the second iteration, only the pixels that are

labeled as changes in the first iteration are considered. For each one of these pixels we process

the 8-connected pixels. The algorithm continues by processing the 8-connected pixels of each pixel

predicted as change in the previous iteration. Pixels that have already been processed in the previ-

ous iterations will not be processed again. The algorithm terminates when there are no new pixels

to process.

Because the algorithm ignores the 8-connected pixels of each pixel that is predicted as back-

ground in the previous iterations, many of the pixels will not be processed. This reduces the ex-

ecution time. Although this implementation does not guarantee producing the same result as the

original algorithm, in practice, it achieves almost the same performance. The proposed greedy al-

gorithm potentially can miss some pixels that would be labeled as changes by the original algorithm.
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Figure 36: Merging algorithm.

However, these pixels tend to be part of a region smaller than Wsub ×Wsub pixels. By choosing

Wsub to be sufficiently small, such small regions are very unlikely to be part of a true defect, and

most often are due to noise.

Figure 37 depicts an example of using the iterative change detection algorithm. For this specific

example, it is possible to mark the image as defective as early as the second iteration, since the

largest connected change detection region is large enough to consider the unit as defective. After

the first few iterations, changes in the change detection mask become insignificant. For this specific

example, the last iteration was iteration 7. On average, based on experimental results, the total

number of iterations is 3 to 4 iterations for defective images and 2 to 3 iterations for non-defective

ones.

Let Cinitial be the computational complexity of processing all the pixels in the considered in-
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Figure 37: Iterative Change Detection. (a) Defective image; (b) change detection mask after the
first iteration; (c) second iteration; (d) third iteration and (e) seventh iteration (the last iteration).

put image. Let Cgreedy be the computational complexity of the iterative version to finish all iter-

ations. Depending on the size of the cell Wsub × Wsub, the computational complexity (CTgreedy)

of processing an image, which can be defined as the number of pixels being processed in the

input image multiplied by a constant factor (the time needed to process one pixel), is bounded

by CToriginal/(Wsub × Wsub) and CToriginal, such that CToriginal/(Wsub × Wsub) ≤ CTgreedy ≤

CToriginal.
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5.5 Defect Detection Stage

Regions detected by the change detection process represent regions of change in the unit.

Detected regions should contain any defects in the image (true positives), but also may contain

changes in the image due to other acceptable variations (e.g., lighting differences and small manu-

facturing differences) between units (false positives). The goal of the Defect Detection Stage is to

classify changes into either defective regions (true positives) or good regions (false positives). With-

out any a-priori knowledge of the manufacturing process, it is difficult to determine which changes

are defects and which changes can be ignored. We propose to learn the differences using a data-

driven deep learning framework. In different applications, the tolerance of what constitutes a defect

may be different. For instance, in some applications a certain defect may be acceptable, whereas in

another application the defect would be unacceptable. The provided training data implicitly defines

this tolerance for learning.

We choose to incorporate a deep neural network to learn this information. The motivation behind

choosing a deep neural network instead of another classifier is two-fold: 1) the deep network can

learn features that may bemore appropriate to the problem domain (semiconductor units) compared

with hand crafted features designed to work well on many problem domains; 2) the deep neural

network can be easily finetuned in the future if new defects need to be detected or can be easily

adapted to similar future problems. It is possible to use a pretrained network and adapt it to our

problem domain (as in [207]). However, the common pretrained networks are trained on natural

image datasets. Our data is very different than natural images. Training a network from scratch

can result in a much smaller network than pretrained networks on natural images, which results in

computation and memory savings.

The Defect detection stage was designed and developed by Samuel Dodge of the IVU Lab.

More details about this stage can be found in [174].

5.6 Refinement Stage

The refinement stage consists of two steps: classifying defective regions into different classes

and using defect-type dependent size threshold to filter out the false positives (small ignorable

defects). Classifying defects into different classes serves the objective of understanding the types
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and distributions of defects. This is very beneficial in applying root cause analysis to understand

sources of different defects and taking correction actions. Filtering out defects based on their sizes

improves the accuracy of the whole system and reduces the false positive alarms. Different defects

impact the functionality of the unit differently. In fact, the size of the defect plays a major role in

deciding if a defect is a fatal one or not. This is the main reason why size-based filtering is applied

after classifying the defects into different classes. To classify the detected defects, the multi-feature

stacking-based classifier (BagStack) proposed in [175] is used. The BagStack classifier has been

designed to deal with the data imbalance problem and with small number of instances. The main

idea behind the BagStack classifier is to use bagging to deal with the data imbalance problem at the

base classifiers level and stacking to combine different training algorithms. Diversity is achieved at

the base level by using different features. Six different features are used: SIFT, HOG, SSIM, GB and

DNN-based features. Linear support vector machine SVM is used for each of the base classifiers

and non-linear support vector machine (RBF) for the meta-classifier. More information about the

BagStack classification can be found in [175].

5.7 Evaluation

In this section, the evaluation of the proposed approach is presented. First, a description of the

dataset that is used in our experiments is presented. Then, performance results are presented for

each stage of the proposed system starting with results for the change detection stage followed by

results for the defect detection and refinement stages.

5.7.1 Dataset

A dataset of semiconductor units provided by Intel Corporation is used. The dataset consists of

16 different types of products. In total, we have 261 defective units and 2551 non-defective units.

400 of the non-defective units are used as reference images to learn the background (25 reference

images per product). The defects have a nonuniform distribution; there are many more instances

of some defect types than others. Grayscale images of the units are taken by using high resolution

line scan cameras (16 μm/pixel). For each product, the number of defective units is much smaller

than the number of non-defective units.
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Table 30: Parameters of detection stage.

Parameter Description Value
Wnorm Normalization window size 21
Whist Histogram window size 16
Wlbp LBP window size 11
λlbp LBP background threshold 4.0
λintensity Intensity background threshold 1.8
αlbp LBP mixing percentage threshold 0.3
αintensity Intensity mixing percentage threshold 0.3

We randomly split the 261 defective units and the 2151 non-defective images (after excluding

the 400 reference images) into 60% training, 20% validation and 20% testing. In the following exper-

iments, we repeat the random training split 5 times and report average results.

5.7.2 Change Detection

The behavior of the proposed change detection approach is controlled by the set of parameters

shown in Table 30. In general, changing these parameters can affect the true positive rate (TPR)

and the false positive rate (FPR). Increasing the true positive rate is important to enhance the ability

of the system to capture true defects while reducing the false positive rate is important to reduce

the non-defective unit’s rejection rate.

Values for the parameters listed in table 30 are chosen to give a high sensitivity for the change

detection stage, at the expense of a higher number of false alarms. These false alarms will be

corrected in the subsequent stages (defect detection stage and refinement stage). In our approach,

we set the parameter values with the goal of optimizing the defect detection capability. We chose

λlbp = 1.8 and λintensity = 4.0 to maximize the true positive rate, such that we can detect all the

defects while reducing the false positive rate.

Figure 38 depicts the change detection stage results for several defects. The first defect (top

row) can mainly be detected by using the LBP-based change detection. The other defects can

be detected by fusing both the intensity-based and LBP-based change detection masks. In some

images, the intensity-based change detection mask can be used to reduce the false positive alarms

that are present in the LBP-based change detection mask.
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Figure 38: Comparison of change detection results: (a) Original image; (b) Ground truth mask; (c)
Intensity-based change detection mask ZI ; (d) LBP-based change detection mask ZLBP ; (e)

fused mask Zf ; (f) detected changes overlayed on original image.

5.7.3 Defect Detection Stage

True positive rates and false positive rates can be measured at the pixel level, the region level

or the unit level. In our application, what really matters is detecting if a unit is defective or not. Since

different defects can consist of several regions and can have different expected sizes, looking at
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the region level or the pixel level may lead to misleading results. For example, fingerprint on die is

usually a large defect (large number of pixels) containing a large number of regions, while foreign

material on die is usually a small defect containing only one region.

As described in [174], the deep neural network was implemented using the Theano Python library

[208]. Data augmentation is performed during the testing to improve the stability of the results. For

each detected region, the original box as well as 4 other boxes are considered. Each of the 4 other

boxes is shifted 5 pixels from the original box. The final output is made by averaging the outputs

from each box. A unit is considered defective if at least one of the regions is labeled as defective

in the unit. A unit labeled as non-defective will have no defective regions. More details about the

implementation and performance analysis of the defect detection stage can be found in [174].

5.7.4 Refinement Stage

The refinement stage represents a vital stage in the proposed approach. In this stage, we are

interested in two performance measurements: precision and recall. Precision is defined as the

number of units that are correctly predicted as non-defective divided by the total number of units

predicted as non-defective. Recall is defined as the number of units that are correctly predicted

as non-defective divided by the total number of ground-truth non-defective units. Both recall and

precision can be calculated by using the confusion matrix.

The used classifier [175] is a multi-feature sparse based classifier. Twenty base learners are

used for each feature-problem combination. Six features (SIFT, HOG, GB, SSIM and DNN-Based

features) [175] are used. The classifier uses a stacking-based technique to combine the predictions

of several base classifiers. Table V shows the number of imaged units predicted as good (i.e., non-

defective) and the number of imaged units predicted as defective at the output of the detection

stage and the refinement stage (confusion matrices). It is very important to know that only regions

detected and marked as defective regions in the second stage will be processed in the refinement

stage. For this reason, any real defective region that is missed in the detection stage will not be

further detected, while good regions that are flagged by the defect detection stage as defective can

be filtered out by using the refinement stage. In practice, it is expensive to miss-classify defective

units as good units. Thus, it is better to select the operation point in the sensitivity-specificity curve

such that we maximize the true positive rate (recall) while minimizing the false negative rate, even
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Table 31: The confusion matrices of both defect detection stage and refinement stage

Ground Truth Detection Stage Refinement Stage
G D G D

G 430 410.3 19.7 427.6 2.4
D 52 7.6 44.4 7.8 44.2

though that point may increase the number of false positive alarms; the refinement stage can be

used to filter out these false positive regions.

Using the confusion matrices in Table 31, we can compute the precision and the recall val-

ues. For the defect detection stage, the precision = (410.3)/(417.9) = 98.18 and the recall =

(410.3)/(430) = 95.42. For the refinement stage, the precision = (427.6)/(435.4) = 98.2 and the

recall = (427.6)/(430) = 99.44. The main improvement of using the refinement stage after the

defect detection stage is to increase the recall percentage by accepting more good units.

5.8 Discussion and Conclusion

This chapter presents a defect detection and classification framework. To the best of our knowl-

edge, this is the first work that uses machine learning to address the problem of defects detection

and classification at the level of semiconductor units, wherein defect detection is performed in an

automatic way and all regions of the unit are included. The proposed framework consists of three

main stages: change detection, defect detection and refinement stage. The contributions of this

thesis include the change detection stage and the refinement stage. The change detection is a

locally adaptive change detection algorithm. The defect detection algorithm makes use of a novel

deep neural network architecture designed and implemented by Samuel Dodge of the IVU Lab at

ASU. The refinement stage is a stack-based classifier. We tested the performance of the proposed

approach on images of real semiconductor units. The proposed approach was shown to result in

a high detection and classification accuracy. The proposed system was able to achieve a 98.2%

precision and a 99.44% recall values.

The proposed method can handle different types of acceptable variations (e.g., light variations,

epoxy variations). Our method can ignore these differences while still maintaining the ability to

detect the actual defects. Although our change detection system is designed specifically for semi-
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conductor units, it can also be applied to other problems (e.g., surface defect detections) that have

similar types of nuisance variations (e.g., lighting conditions and material physical properties).
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Chapter 6

STEEL SURFACE DEFECT DETECTION AND CLASSIFICATION

This chapter addresses another real application from industry to prove the efficiency and high

performance of the proposed BagStack classifier. Surface defect detection in steel products is a

hot research topic due to the large number of challenges in this application and the demand to have

accurate algorithms that can satisfy the real time requirements. This chapter is organized as follow.

In Section 6.1, an introduction to steel surface defect detection problem is presented. In Section 6.2,

the main challenges associated with this problem are introduced. Section 6.3 presents the literature

review of steel surface defect detection and classification. Section 6.4 presents the classification

results using the BagStack classifier and compares its performance to other recent methods in the

literature.

6.1 Introduction

Steel is one of the most important metals on the planet. Its importance emerges from the fact

that steel is the most common metal on earth and it is used in diverse and a large number of

industrial applications. The variation of products in the iron and steel industry necessitates agile

and reconfigurable production systems that adapt to various products. This is important to reduce

product development time and shorten the product lifecycles. The main two products of steel are

the slabs (1, 600× 250× 12, 000mm3) and billets (150× 150× 12, 000mm3). Slabs are subsequently

rolled into hot strips and then into cold strips. Billets are rolled into structures of various dimensions.

The steel strip is one of the main products of iron and steel industry, and its quality directly affects

the quality and performance of the final product [209, 210].

Strength, toughness, ductility, weldability, durability and surface quality are some of the prop-

erties that define the quality of the steel. While some of these properties result from the steel’s

chemical compositions, others result from the manufacturing process. Surface quality represents

the most important quality parameter, particularly for flat-rolled (hot or cold) steel products. The

presence of defects on the surface of a steel strip has serious implications and limits its use sig-

nificantly. Surface defects (the most common defects) do not only affect the appearance of the
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product, but also affect negatively other favorable properties, e.g., wear resistance, high temper-

ature resistance, corrosion resistance, abrasion resistance and fatigue strength of the steel strip

[209, 211].

The quality of the raw materials, the rolling process, the system control, the failures in production

machineries and many other factors contribute to different surface defects. Different defects have

different adverse effects on steel surface quality. Surface defects consist of many different types of

defects, including scratches, surface crazing, rolled-in scale, scars, insect prints, inclusions, bright

prints, burrs, seams, black burn, iron scales, pollution, hole, bruise, blisters, edge crack, water

droplets (pseudo defect), … etc. Figure 39 depicts samples of six kinds of typical surface defects

from the NEU surface defect database [209]. Each row shows one example image from each of 300

samples of a class. In the market, steel products have different tolerance standards for different

defects. So, it is not only important to detect the defects but also to identify each one of them

[209, 210, 211].

Quality control is a big challenge for steel production; if not performed adequately, quality control

can affect greatly the quality of steel and consequently, can cause significant economic loss. Visual

surface inspection is playing a critical role in the industrial production of steel strip and such a system

can be used to control the product quality. Traditional manual surface inspection procedures are

not sufficient and awfully inadequate to ensure high quality and a defect-free surface. Due to high

line speed, operators’ fatigue, highly subjective nature, being time consuming and other adverse

factors, the manual inspection process is hardly satisfactory and cannot meet the requirement of

real-time online detection [209, 211, 212].

The importance of surface quality requires that effective and efficient methods be implemented

to replace traditional manual visual inspection. To overcome the limitations of human inspection,

automated surface inspection systems (ASIS) have become essential to the production system to

assist or replace human decisions. In recent years, the visual-based inspection technology, as

a kind of non-contact inspection method, has become a research hot-spot in the field of surface

defect inspection. This method integrates many advanced technologies including image processing,

optics, pattern recognition, artificial intelligence, and has obtained real-time, and relatively high

detection accuracy and reliability. A good defect recognition algorithm should be able, in addition

to detecting and localizing the defects, to classify them into different categories with high accuracy
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Figure 39: Six kinds of typical surface defects from the NEU surface defect database.From left to
right: rolled-in scale, patches, crazing, pitted surface, inclusion, scratches.

and to meet the real time requirements. Defect classification is the task to assign a defect to one

class or category.

6.2 Challenges in Steel Surface Defect Recognition

Despite all the advantages (speed, accuracy and upgradability) that come with the visual-based,

non-contact surface inspection systems in the steel industry, they face several challenges. The

production environment where the inspection equipment (lighting systems, cameras and process-
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ing units) resides, is hazardous. The presence of high temperature, dust, oil, water droplet and

vapor are very common. Even though the production environment is considered controllable with

respect to steel and iron production standards, this kind of environment with all these variations is

considered an uncontrolled environment for visual-based inspection systems. Both lighting systems

and cameras are vulnerable in the presence of shock and vibration, which introduces additional re-

quirements at the hardware and the algorithm levels to increase the robustness of the system. The

operating speed of steel production lines is very high. In general, the speed for flat steel products

at the end of the rolling where the inspection happens can reach up to 20 m/s. Operating at such

high speeds requires special image processing techniques and equipment that can provide high

inspection rates and a short execution time. High variation of surface defects is reported. These

defects do not follow specific standards and they also vary also from mill to mill, from production line

to another and from product to another. A large number of cameras is required to cover the product,

e.g., in flat steel products, two sets of cameras are required to cover the top and the bottom of the

product. Each set may contain 3 to 4 cameras to cover the entire width of the strip. Changes in

illumination (uneven illumination) can easily affect the stability of the algorithm and the performance

of the detection algorithm [209, 210, 211, 212].

Steel surface defects experience high intra-class variations and high inter-class similarities. In

fact, images of defects belonging to the same category can exhibit different types of variations; e.g.,

appearance, texture and color. On the other side, images of defects belonging to different categories

may exhibit different types of similarities. Data drift is defined as changes to data over time. In

a more technical way, it can be defined as the change that happens to the true data generating

distribution over time. Data drift is considered as one of the challenges in online machine learning.

Training models on data and testing models on different data that has been generated by using a

different generating distribution is problematic and can result in erroneous inference. In the steel

industry, the data drift can happen due to different reasons: using a single production line to produce

different products, using different production lines to produce the same product; with the passage

of time, the physical conditions of the equipment and of the detection device will change. These

kinds of changes are negligible on the production environment but can affect the performance of

the models that are used in the inspection systems. Training a separate model for each product

may not be a feasible option. In fact, collecting defective images for each product may take a long

time, and in many cases it is even longer than the product life time. This means that the surface
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inspection algorithms should be able to carry knowledge from one product (several products) to

new products in an efficient way that can improve the accuracy of the system on the new products

[209, 211, 212].

6.3 System Overview

Automated surface inspection systems mainly include two major components: defect detection

and defect classification. In the defect detection phase, images of the target product are acquired,

these images are scanned and processed to localize and segment potential defects. In many cases,

distinguishing between real-defects and pseudo-defects is considered as part of the defect detec-

tion process. In the defect classification phase, the detected defects are classified into different

categories. While these two stages are considered to be complementary to each other, they still

can be evaluated and improved separately [210, 211, 212]. The defect detection phase consists

of two main steps: modeling the background to build a template that is used in the second step.

In the second step, the input image is compared to the background template to detect potential

defects. The defects classification process consists of three main steps: feature extraction, feature

aggregation and defect classification. Feature extraction and aggregation is the step of finding a

new representation for the image. A representation that can be used as input for the classifica-

tion algorithm. It is worth mentioning that the ASIS pipeline changed over the time from a simple

pipeline, that depends on the traditional image processing techniques like using structural meth-

ods (e.g., edge, skeleton, morphological operations), thresholding methods (e.g., Otsu), spectral

methods (e.g., Fourier transform, wavelet transform) and model-based methods (e.g., gaussian

mixture, low-rank matrix model) to a more advanced pipeline, that depends on machine learning

based technology which includes features extraction (e.g., HOG, SIFT, LBP, CLBP, SCXHT…etc.)

[209, 212, 213] and pattern classification (e.g., SVM, KNN, DNN, … etc.) [209, 211, 212, 214].

6.4 Related Work

The automated surface inspection started in the 1980s as a result of the high demand for steel

products. The vision-based automatic inspection systems became a succedaneum for human-

inspection gradually. This section briefly presents the literature review for steel surface defect
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detection methods, using traditional machine learning techniques to classify detected defects and

using deep learning-based techniques to detect and classify steel surface defects. For more de-

tails, Neogi et al. provides a relatively comprehensive review of state-of-the-art steel surface defect

detection and classification algorithms using vision-based techniques [209].

To classify defects using traditional methods of machine learning, features are extracted from

defective images, these features are then used to find amore compact and rich representation of the

image using, for example, bag of visual words or sparse coding techniques. The new representation

is then used to train and test a classifier, (e.g., SVM, KNN, NN, DT, … etc).

In [210], a new feature is proposed based on Complete Local Binary Pattern (CLBP). An adja-

cent evaluation window which is around the neighbor is constructed to diminish the effect of noise

interference on the system’s performance. The new feature is tested when adding different levels

of Gaussian noise using two main classifiers KNN and SVM. The new feature is compared to other

features using the same classifiers. The authors of [215] present a multi-feature-based defect clas-

sification approach. In this approach, multiple features are extracted, ULBP, GLCM, HOG, Gabor

filter-based features and gray level histogram features. Then these features are combined and SVM

classifiers are trained with a random subspace of the features. Finally, a Bayes classifier was trained

as an evolutionary kernel fused with the results from the sub-SVM to form an integrated classifier.

A defect classification framework is presented in [216]. The proposed framework is a multi-feature

based one. It uses three types of image features, including geometric feature, grayscale feature

and shape feature. These features are extracted and combined. The classification model is based

on support vector machine. Cross-validation is used to optimize the classification model. A One-

versus-onemethod is used to solve themulti-class classification problem. A new feature is proposed

in [217]. The paper proposed the generalized completed local binary patterns (GCLBP) framework.

the new feature is built on top of the Improved completed local binary patterns (ICLBP) and the im-

proved completed noise-invariant local-structure patterns (ICNLP). [218] presents a new approach

for defect classification in strip steel using multiple hyper-spheres support vector machine with ad-

ditional information (MHSVMþ). [219] performs automatic detection of surface defects on rolled

steel using computer vision and artificial neural networks. [220] enhances the performance of sur-

face defect classification based on an improved BP algorithm. In [221], the authors described an

automated visual inspection system with discrete wavelet transform (DWT) features and a support

vector machine (SVM).
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In recent years, deep learning (DL) methods have been achieving good performance on image

related tasks such as object recognition. Despite the challenges of applying deep learning in the

ASI field due to the small number of images, many methods [213] that use deep learning reported

competitive results on both defect detection and classification problems [213]. Deep convolutional

neural network (CNN) is trained purely on raw defective images. The network consists of two parts,

the first few layers (convolution layers) represent the features extraction process and the last few

layers (fully connected layers) represent the classification process. These two parts are combined

and trained in a single process. In CNN, we not only learn a classifier but also the best feature

extraction. This is considered a major advance in machine learning-based computer vision, where

we replace using the hand engineered features with features that are learned based on the training

data. The lack of data represents a challenge when training CNNs since, due to the large number

of parameters, the risk of overfitting becomes higher. Data augmentation and transfer learning are

used to alleviate the overfitting problem.

A generic DL-based ASI method is presented in [211]. This method includes feature transferring

from a pre-trained DL network and convolution of patch classifier over input image. The input image

is divided into cells and each cell is processed to generate a probability that a defect exist. Then,

these predictions are combined to generate a heat map. Finally, the heat map is thresholded to

detect and classify defects. [212] is another proposed method that makes use of deep learning.

Three different convolution neural networks are trained first. Then, the three models are combined

by using averaging. Thus, this method represents an ensemble-based approach that uses DCNN

models instead of weak learners. In [213], an end-to-end framework is proposed for defect detection

and classification. For detection, the symmetric surround saliency map is used. For classification,

deep convolutional neural networks (CNNs) which directly use the defect image as input and pro-

vide the defect category as output. In [214], a new CNN-based architecture is presented to perform

both defect detection and recognition for a metallic surface against complex industrial scenarios.

The method consists mainly of two separate steps, defect segmentation and classification. The

CASAE module [214] can transform a defect image to a pixel-wise prediction mask that contains

only defective pixels and background pixels. To quickly obtain the defect category in real inspec-

tion environments, a compact CNN is also presented. [222] is another approach that uses deep

learning to perform steel surface defect classification. In this paper, a convolutional neural network

is proposed to learn multiple useful feature representations for classification from low level (raw
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pixels) to high level (object). Convolutional kernels are initialized by the learned filter kernels that

come from sparse auto-encoders. Recently, the You Only Look Once (YOLO) framework has been

presented for the purpose of object detection [223]. In [223], a new framework was proposed based

on YOLO to detect defects on the steel surface. In [224], another approach that uses deep learning

is proposed. A deep convolution neural network is trained to classify steel surface defects. How-

ever, the results of the CNN with two different structures still could not reach the requirement of high

precision, and no benchmark defect database is used to evaluate its performance. [225] proposed

a flexible multi-layered deep feature extraction framework based on CNN via transfer learning to

detect anomalies in anomaly datasets. A majority voting mechanism is also designed to overcome

the problems of overfitting by combining deep features with linear support vector machine (SVM)

classifiers. The deep network structures designed by the above two methods are primarily aimed

at the classification task of an imaged defect; and the position of the defect is not localized.

6.5 Results and Analysis

In this section, we present the results of the BagStack classifier when applied to the steel surface

defect classification problem. The NEU steel surface defect database [210] is used. The NEU

dataset contains six different defects. Figure 39 depicts the different defects in the NEU dataset.

Each class contains 300 (200 x 200) images. In all these experiments, we use 50% (150) images

for training and 50% (150) for testing.

Table 32 shows the results of testing different classifiers, using different features. The table

shows the overall accuracy and the standard deviation when available and as mentioned in the

reference papers. The DL-Based flag indicates whether or not the method uses a deep learning

based classifier, mainly a convolution neural network. The Ensemble flag indicates whether or

not the method is an ensemble based method. In some cases, the method is both DL-based and

Ensemble-based, which means that multiple DL-based methods are used and the predictions of

these methods are combined together using bagging for example. If the method is an ensemble

method, the column shows the main models used in this ensemble.

In this experiment, we tested different configurations of the BagStack classifier, basically chang-

ing the meta-classifier. We use 5 different features, SIFT, and 4 DL-based features (REF(FC6),

REF(FC7) [149], VGG16(FC6) and VGG16(FC7) [150]). The five features are used together with
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Table 32: Comparison of different methods in terms of overall classification accuracy using the
NEU dataset.

Classifier Feature(s) (Average)
OA STD DL

Based Ensemble Ensemble
Models REF

NNC LBP 95.07 0.71 No No [210]
SVM LBP 97.93 0.66 No No [210]
NNC LTP 95.93 0.39 No No [210]
SVM LTP 98.22 0.52 No No [210]
NNC CLBP 96.91 0.24 No No [210]
SVM CLBP 98.28 0.51 No No [210]
NNC AECLBP 97.93 0.21 No No [210]
SVM AECLBP 98.93 0.63 No No [210]
SVM GLCM 90.01 No No [211]
GBC GLCM 94.2 No No [211]
MLR MLBP 97.3 No No [211]
NNC SCN 97.3 Yes No [211]
SVM MLBP 97.8 No No [211]
GBC MLBP 97.8 No No [211]
SVM SCN 98.5 Yes No [211]
MLR GLCM 98.61 No No [211]
MLR DeCAF 99.27 Yes No [211]

Resnet-32 99.07 0.27 Yes No [212]
WRN-10 99.69 0.21 Yes No [212]
WRN-20 99.72 0.166 Yes No [212]

Bagging 99.89 0 Yes Yes
Resnet-32,
WRN-10
WRN-20

[212]

CNN 99.05 Yes No [213]

BYEC-Stacking
ULBP, GLCM,
HOG,Gabor,
Gary level Hist

96.3 No Yes SVM [215]

BagStack-RF
SIFT

Ref(FC6)
Ref(FC7)

VGG16(FC6)
VGG16(FC7)

99.822 0.001 No Stacking DT, SVM (RBF)
LR (LSE, Lasso)
LR (SVM, Lasso)
LR (LSE, ridge)
LR (SVM, ridge)

Bagging
Boosting, RF

BagStack
Classifier

BagStack-EBMDTR0 99.855 0.005 No Stacking
BagStack-EBMDTR1 99.912 0.007 No Stacking
BagStack-SVML 99.955 0.001 No Stacking
BagStack-SVM 92.33 0.214 No Stacking
BagStack-Bagging 99.56 0.0036 No Stacking
BagStack-Boosting
(RUS) 96.125 0.179 No Stacking

each configuration. For each configuration several features are used to train base learners. Nine

different base learners are used, decision tree, linear SVM, linear regressions ((LSE, Lasso), (LSE,

Ridge), (SVM, Lasso) and (SVM, Ridge)), Bagging (DT), Boosting (DT) and Random Forest. Seven

BagStack configurations are implemented and tested. The main difference between these config-

urations is the used meta-data classifier. Seven different meta-classifiers are used including, Ran-

dom Forest RF, Ensemble-based multiple decision tree regression (EBMDTR0/1), Linear Support

Vector Machine, Bagging of decision tree, and random undersampling boosting using decision trees.

The main difference between EBMDTR0 and 1 is that the first one uses all the outputs from the base

learners and the latter uses only a subset of the outputs when training each regression function. In

5 out of the 7 configurations, the BagStack classifier is able to achieve a classification accuracy

higher than 99.0%. The reported average overall accuracy is the average of 10 times.
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Chapter 7

CONCLUSION

Ensemble classifiers have attracted significant attention during the last two decades. An en-

semble classifier combines multiple base learners (weak) to build a stronger one. The three most

known ensemble classifiers are Bagging, Boosting and Stacking. In this work, a new classifier (the

BagStack classifier) is proposed. The new classifier uses the concepts of bagging and stacking

to deal with the data imbalance problem under the assumptions of having few number of samples,

within class variations and similarities between classes. The classifier can combine multiple training

algorithms and data representations that have non-zero generalization error (bias and variance) to

achieve better accuracy. This work also addresses the problem of defect detection and classifica-

tion in semiconductor units. A locally adaptive statistical background modeling approach for defect

detection is proposed. To prove the effectiveness of the proposed BagStack classifier, defect clas-

sification on steel surfaces is also considered. This chapter summarizes the main contributions of

this work and suggests possible directions for future research.

7.1 Contributions

The main contributions of this work are as follows:

• BagStack classifier is proposed to handle the data imbalance problem when the number of

available samples from one class is relatively small as compared to the other class(es).

• This work adopted the method of solving the multi-class classification problem by first con-

verting it to a set of binary classification problems and then training several base learners to

solve each one of these binary problems (bagging). A novel method was proposed to specify

the number of base learners and the number of samples to sample from the majority and the

minority classes adaptively. The main objective is to maximize the usage of the majority class

under the constraint of using a specific number of base learners for all problems.

• Variation-based, Adaptive, Synthetic Minority Oversampling Technique (VA-SMOTE) is pro-

posed to oversample the minority class and undersample the majority class. VA-SMOTE
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considers the variation within the minority class and the number of samples belonging to the

minority class to control the behaviour of the synthetic process.

• This work proposes the imbalance-aware cross-validation to generate balanced meta-data.

Using the standard V-fold cross validation to generate the meta-data and train the BagStack

classifier results in imbalanced meta-data and a biased meta-classifier. The proposed ap-

proach adaptively increases the number of folds (K) to handle the data imbalance problem

at the meta-level.

• A multi-stage defect detection and classification framework is proposed to detect defects in

semiconductor units. The proposed framework consists of three stages: proposal generation,

defect detection and refinement stage. A locally adaptive statistical background modeling is

proposed for proposal generation and change detection.

7.2 Future Research Directions

There are several directions that can be explored in future work:

• The proposed defect detection and classification framework can be applied to other problem

domains wherein data imbalance is a problem and multiple features are needed to achieve

high accuracy. In this work, defect detection and classification are considered in semiconduc-

tor units and steel surfaces.

• The proposed framework can be combined with other recent advances in image synthesis

methods (e.g., Generative Adversarial Network) to synthesize images that can be used for

training.

• Pruning techniques can be applied at the base-learners level to eliminate redundant classifiers

which serves both complexity and performance. Reducing the number of base learners can

reduce the tendency of the meta-classifier to overfit the meta-data.

• The BagStack classifier is a general classifier that can be applied to different classification

problem. Providing the mathematical insights to identify problems wherein BagStack classifier

can overcome other well-known ensemble classifiers is beneficial.
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