17,994 research outputs found

    Design and Analysis of an Estimation of Distribution Approximation Algorithm for Single Machine Scheduling in Uncertain Environments

    Full text link
    In the current work we introduce a novel estimation of distribution algorithm to tackle a hard combinatorial optimization problem, namely the single-machine scheduling problem, with uncertain delivery times. The majority of the existing research coping with optimization problems in uncertain environment aims at finding a single sufficiently robust solution so that random noise and unpredictable circumstances would have the least possible detrimental effect on the quality of the solution. The measures of robustness are usually based on various kinds of empirically designed averaging techniques. In contrast to the previous work, our algorithm aims at finding a collection of robust schedules that allow for a more informative decision making. The notion of robustness is measured quantitatively in terms of the classical mathematical notion of a norm on a vector space. We provide a theoretical insight into the relationship between the properties of the probability distribution over the uncertain delivery times and the robustness quality of the schedules produced by the algorithm after a polynomial runtime in terms of approximation ratios

    Framework for sustainable TVET-Teacher Education Program in Malaysia Public Universities

    Get PDF
    Studies had stated that less attention was given to the education aspect, such as teaching and learning in planning for improving the TVET system. Due to the 21st Century context, the current paradigm of teaching for the TVET educators also has been reported to be fatal and need to be shifted. All these disadvantages reported hindering the country from achieving the 5th strategy in the Strategic Plan for Vocational Education Transformation to transform TVET system as a whole. Therefore, this study aims to develop a framework for sustainable TVET Teacher Education program in Malaysia. This study had adopted an Exploratory Sequential Mix-Method design, which involves a semi-structured interview (phase one) and survey method (phase two). Nine experts had involved in phase one chosen by using Purposive Sampling Technique. As in phase two, 118 TVET-TE program lecturers were selected as the survey sample chosen through random sampling method. After data analysis in phase one (thematic analysis) and phase two (Principal Component Analysis), eight domains and 22 elements have been identified for the framework for sustainable TVET-TE program in Malaysia. This framework was identified to embed the elements of 21st Century Education, thus filling the gap in this research. The research findings also indicate that the developed framework was unidimensional and valid for the development and research regarding TVET-TE program in Malaysia. Lastly, it is in the hope that this research can be a guide for the nations in producing a quality TVET teacher in the future

    On the Benefits of Inoculation, an Example in Train Scheduling

    Get PDF
    The local reconstruction of a railway schedule following a small perturbation of the traffic, seeking minimization of the total accumulated delay, is a very difficult and tightly constrained combinatorial problem. Notoriously enough, the railway company's public image degrades proportionally to the amount of daily delays, and the same goes for its profit! This paper describes an inoculation procedure which greatly enhances an evolutionary algorithm for train re-scheduling. The procedure consists in building the initial population around a pre-computed solution based on problem-related information available beforehand. The optimization is performed by adapting times of departure and arrival, as well as allocation of tracks, for each train at each station. This is achieved by a permutation-based evolutionary algorithm that relies on a semi-greedy heuristic scheduler to gradually reconstruct the schedule by inserting trains one after another. Experimental results are presented on various instances of a large real-world case involving around 500 trains and more than 1 million constraints. In terms of competition with commercial math ematical programming tool ILOG CPLEX, it appears that within a large class of instances, excluding trivial instances as well as too difficult ones, and with very few exceptions, a clever initialization turns an encouraging failure into a clear-cut success auguring of substantial financial savings

    A hybrid genetic approach to solve real make-to-order job shop scheduling problems

    Get PDF
    Tese (doutorado) - Universidade Federal de Santa Catarina, Centro TecnologicoProcedimentos de busca local (ex. busca tabu) e algoritmos genĂ©ticos tĂȘm apresentado excelentes resultados em problemas clĂĄssicos de programação da produção em ambientes job shop. No entanto, estas abordagens apresentam pobres habilidades de modelamento e poucas aplicaçÔes com restriçÔes de ambientes reais de produção tĂȘm sido publicadas. AlĂ©m disto, os espaços de busca considerados nestas aplicaçÔes sĂŁo nomlalmente incompletos e as restriçÔes reais sĂŁo poucas e dependentes do problema em questĂŁo. Este trabalho apresenta uma abordagem genĂ©tica hĂ­brida para resolver problemas de programação em ambientes job shop com grande nĂșmero de restriçÔes reais, tais como produtos com vĂĄrios nĂ­veis de submontagem, planos de processamento altemativos para componentes e recursos alternativos para operaçÔes, exigĂȘncia de vĂĄrios recursos para executar uma operação (ex., mĂĄquina, ferramentas, operadores), calendĂĄrios para todos os recursos, sobreposição de operaçÔes, restriçÔes de disponibilidade de matĂ©ria-prima e componentes comprados de terceiros, e tempo de setup dependente da sequĂȘncia de operaçÔes. A abordagem tambĂ©m considera funçÔes de avaliação multiobjetivas. O sistema usa algoritmos modificados de geração de programação, que incorporam vĂĄrias heurĂ­sticas de apoio Ă  decisĂŁo, para obter um conjunto de soluçÔes iniciais. Cada solução inicial Ă© melhorada por um algoritmo de subida de encosta. EntĂŁo, um algoritmo genĂ©tico hĂ­brido com procedimentos de busca local Ă© aplicado ao conjunto inicial de soluçÔes localmente Ăłtimas. Ao utilizar tĂ©cnicas de programação de alta perfomlance (heurĂ­sticas construtivas, procedimentos de busca local e algoritmos genĂ©ticos) em problemas reais de programação da produção, este trabalho reduziu o abismo existente entre a teoria e a prĂĄtica da programação da produção

    Sparse experimental design : an effective an efficient way discovering better genetic algorithm structures

    Get PDF
    The focus of this paper is the demonstration that sparse experimental design is a useful strategy for developing Genetic Algorithms. It is increasingly apparent from a number of reports and papers within a variety of different problem domains that the 'best' structure for a GA may be dependent upon the application. The GA structure is defined as both the types of operators and the parameters settings used during operation. The differences observed may be linked to the nature of the problem, the type of fitness function, or the depth or breadth of the problem under investigation. This paper demonstrates that advanced experimental design may be adopted to increase the understanding of the relationships between the GA structure and the problem domain, facilitating the selection of improved structures with a minimum of effort

    A Comparative Representation Approach to Modern Heuristic Search Methods in a Job Shop

    Get PDF
    The job shop problem is among the class of NP- hard combinatorial problems. This Research paper addresses the problem of static job shop scheduling on the job-based representation and the rule based representations. The popular search techniques like the genetic algorithm and simulated annealing are used for the determination of the objectives like minimizations of the makespan time and mean flow time. Various rules like the SPT, LPT, MWKR, and LWKR are used for the objective function to attain the results. The summary of results from this paper gives a conclusion that the genetic algorithm gives better results in the makespan time determination on both the job based representation and the rule based representation and the simulated annealing algorithm gives the better results in the mean flow time in both the representations

    Efficient Algorithms for Unrelated Parallel Machine Scheduling Considering Time of Use Pricing and Demand Charges

    Get PDF
    There is an ever-increasing focus on sustainability and energy consumption worldwide. Manufacturing is one of the major areas where energy reduction is not only environmentally beneficial, but also incredibly financially beneficial. These industrial consumers pay for their electricity according to prices that fluctuate throughout the day. These price fluctuations are in place to shift consumption away from “peak” times, when electricity is in the highest demand. In addition to this consumption cost, industrial consumers are charged according to their highest level of demand in a given window of time in the form of demand charges. This paper presents multiple solution methods to solve a parallel machine shop scheduling problem to minimize the total energy cost of the production schedule under Time of Use (TOU) and demand charge pricing. The greedy heuristic and genetic algorithm developed are designed to provide efficient solutions to this problem. The results of these methods are compared to a previously developed integer program (IP) solved using CPLEX with respect to the quality of the solution and the computational time required to solve it. Findings of these tests show that the greedy heuristic handles the test problems with only a small optimality gap to the genetic algorithm and optimal IP solution. The largest test problems could not be solved by the genetic algorithm in the provided time period due to difficulty generating an initial solution population. However, when successful the genetic algorithm performed comparably to the CPLEX solver in terms solution quality yet provided faster solve times

    Schedule Generation Schemes for Job Shop Problems with Fuzziness

    Get PDF
    We consider the job shop scheduling problem with fuzzy durations and expected makespan minimisation. We formally define the space of semi-active and active fuzzy schedules and propose and analyse different schedule-generation schemes (SGSs) in this fuzzy framework. In particular, we study dominance properties of the set of schedules obtained with each SGS. Finally, a computational study illustrates the great difference between the spaces of active and the semi-active fuzzy schedules, an analogous behaviour to that of the deterministic job shop.This research has been supported by the Spanish Government under research grants FEDER TIN2010-20976-C02-02 and MTM2010- 16051 and by the Principality of Asturias (Spain) under grants Severo Ochoa BP13106 and FC-13-COF13-03

    Using micro genetic algorithm for solving scheduling problems

    Get PDF
    Job Shop Scheduling Problem (JSSP) and Timetable scheduling are known to be computationally NP–hard problems. There have been many attempts by many researchers to develop reliable scheduling software, however, many of these software have only been tested or applied on an experimental basis or on a small population with minimal constraints. However in actual model JSSP, the constraints involved are more complicated compared to classical JSSP and feasible schedule must be suggested within a short period of time. In this thesis, an enhanced micro GA, namely micro GA with local search is proposed to solve an actual model JSSP. The scheduler is able to generate an output of a set of feasible production plan not only at a faster rate but which can generate a plan which can reduce the makespan as compare to those using manual. Also, in this thesis, the micro GA is applied to the timetabling problem of Faculty of Electrical Engineering Universiti Teknologi Malaysia which has more than 3,000 students. Apart from having more students, the faculty also offers various different type s of specialized courses. Various constraints such as elective subjects, classrooms capacity, multiple sections students, lecturer, etc have to be taken into consideration when designing the solution for this problem. In this thesis , an enhanced micro GA is proposed for timetable scheduling in the Faculty to overcome the problems. The enhanced micro GA algorithm is referred to as distributed micro GA which has local search to speed up the scheduling process. Comparisons are made with simple GA methods such that a more optimal solution can be achieved. The proposed algorithm is successfully implemented at the Faculty meeting a variety of constraints not achievable using manual methods
    • 

    corecore