
UNIVERSIDADE FEDERAL DE SANTA CATARINA

CENTRO TECNOLÓGICO

PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA DE PRODUÇÃO

A HYBRID GENETIC APPROACH TO SOLVE REAL MAKE-TO-ORDER JOB SHOP

SCHEDULING PROBLEMS

Doctoral Thesis submitted at the Graduate Program in Production Engineering -UFSC

MARCO ANTÔNIO BARBOSA CÂNDIDO

Tampa, February 1997

Department of Industrial and Management Systems
College of Engineering

I .__ University of South Florida
UNIVERSIDADE FEDERAL DE SANTA CATARINA 4202 East Fowler Avenue, ENB 118

CENTRO TECNOLÓGICO Tampa' “ J ,

PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA DE PRODUÇÃO

A HYBRID GENETIC APPROACH TO SOLVE REAL MAKE-TO-ORDER JOB SHOP SCHEDULING

PROBLEMS

Marco Antônio Barbosa Cândido successfully defended his doctoral thesis on April 10,1997.
The committee approved his thesis for a doctoral degree in Production Engineering.

Chair, Ind. & Mgmt. Sys. Engr., USF
Moderator

EXAMINING COMMITTEE:

Ricardo l\/l. Bafeta'Ph.D.

Chair, Grad. Prog. jn^Prod. Engr., UFSC

Supervisor

t

Rogério Ba

Pro-rector, U

Member

r. Eng.

Michael Weng, P fíü .

Ass. Prof., Ind. & Mgmt. Sys. Engr., USF

Member

Suresh K. Khator, Ph.D.

Prof., Ind. & Mgmt. Sys. Engr., USF

Co-supervisor

Fernando O. Gauthier, D r . Eng.

Ass. Prof., Grad. Prog, in Prod. Engr., UFSC

Member

TAMPA ST. PETERSBURG SARASOTA FORT MYERS LAKELAND
U N IV E R S ITY O F SO U TH FLO R ID A IS AN AFFIRMATIVE ACTIO N ' E O U A L ACCHSS / EQ U AL O PPO RTUN ITY INSTITUTION

To my father Antonio, my aunt Ita and my beloved wife Risia

ACKNOWLEDGEMENTS

I am grateful to my supervisor, Prof. Ricardo M. Barcia, and my co-supervisor,

Prof. Suresh K. Khator, for their precious guidance and support during my research. I

would also like to thank all my committee members as well as the professors and

secretaries from the Graduate Program in Production Engineering.

A B STR A C T

The existence of a gap between classical (theoretical) and real job shop scheduling

problems has been reported by several authors

Local search procedures (e.g., tabu search and simulated annealing) and genetic

algorithms have yielded very good results in classical job shop scheduling problems. However,

these techniques present poor modeling abilities and very few applications including real

production environment constraints have been reported. Moreover the search spaces

considered in those few real world applications are usually incomplete and the real constraints

included are small in number and environment dependent.

This work presents a robust hybrid genetic framework to solve job shop scheduling

problems with large number of real world constraints, such as jobs with several subassembly

levels, alternative processing plans for parts and alternative resources for operations,

requirement of multiple resources to process an operation (e.g., machine, tools, fixtures,

personnel), resource calendars, batch overlap, operation and job ready times, and sequence

dependent setups. Also, the approach considers multiobjective evaluation functions.

The system uses modified schedule generation algorithms, which incorporate several

decision support heuristics, to obtain a set of initial solutions. Each initial solution is enhanced

by a local improvement procedure. Then a hybrid genetic algorithm, which incorporates a local

hill climbing procedure, is applied to the set of local optimum schedules.

In order to support constraints and objectives of real production environments several

modifications are proposed in the active and non-delay schedule generation algorithms, in the

solution representation scheme and neighborhood structure of local search procedures, and in

the genetic algorithm operators. Several tailored heuristics to be embedded in the basic

algorithms are also proposed and analyzed.

The work is expected to reduce the gap between scheduling theory and practice, by

enabling high performance scheduling techniques (constructive heuristics, local search

procedures and genetic algorithms) to support real production environments.

TABLE OF CONTENTS
page

1. INTRODUCTION 1

1.1. SCHEDULING PROBLEMS 1

1.2. COMBINATORIAL SEARCH PROBLEMS 4

1.3. THEORETICAL AND REAL JOB SHOP SCHEDULING

PROBLEMS 6

1.4. THESIS GOAL AND STRUCTURE 8

2. APPROACHES TO SOLVE JOB SHOP SCHEDULING

PROBLEMS 10

2.1. INTRODUCTION 10

2.2. OPTIMAL APPROACHES 10

2.3. APPROXIMATION APPROACHES 11

2.3.1. DISPATCHING RULES 12

2.3.2. KNOWLEDGE BASED SYSTEMS 12

2.3.3. NEURAL NETWORKS 13

2.3.4. LAGRANGIAN RELAXATION 13

2.3.5. SIMPLIFIED OPTIMAL APPROACHES 14

2.3.6. LOCAL SEARCH AND GENETIC ALGORITHMS (METAHEURISTICS) 14

2.3.6.1. GENETIC ALGORITHM (GA) 16

2.3.6.2. TABU SEARCH (TS) 20

2.3.6.3. SIMULATED ANNEALING (SA) 20

2.3.6.4. OTHER LOCAL SEARCH PROCEDURES AND HYBRID MODELS 21

2.3.7. OTHER NON-OPTIMAL APPROACHES 21

2.4. CONCLUSIONS 22

23

23

23

25

26

27

29

31

35

36

38

41

41

46

47

51

62

64

68

68

72

75

77

78

80

LOCAL SEARCH AND GENETIC ALGORITHMS

INTRODUCTION

SCHEDULE GENERATION ALGORITHMS FOR CLASSICAL JSSP

LOCAL SEARCH ALGORITHMS

A REPRESENTATION SCHEME FOR CLASSICAL JSSPs

NEIGHBORHOOD STRUCTURES FOR CLASSICAL JSSPs

SOME IMPORTANT LOCAL SEARCH STRATEGIES

GENETIC ALGORITHMS

CODING SCHEMES FOR CLASSICAL JSSP

CROSSOVER AND MUTATION OPERATORS FOR CLASSICAL JSSP

POPULATION RELATED FACTORS FOR CLASSICAL JSSP

THE PROPOSED MODEL

SYSTEM SCOPE

THE MODIFIED SCHEDULE GENERATION ALGORITHMS

BASIC RELATIONS, CALCULATIONS AND OPERATIONS

DESCRIPTION OF THE SCHEDULE GENERATION ALGORITHMS

THE LOCAL IMPROVEMENT PROCEDURE

REPRESENTATION OF REAL WORLD CONSTRAINTS IN

DISJUNCTIVE GRAPHS

A NEIGHBORHOOD STRUCTURE

DEFINING A NEIGHBORHOOD STRUCTURE FOR REAL

PRODUCTION ENVIRONMENTS

PERFORMING A NEIGHBORHOOD MOVE AND

RECALCULATING THE EVALUATION FUNCTION

THE LOCAL HILL CLIMBING FRAMEWORK

THE HYBRID GENETIC ALGORITHM

POPULATION MANAGEMENT STRATEGIES AND GENETIC

OPERATORS

THE GENETIC ALGORITHM FRAMEWORK

5. EXPERIMENTAL RESULTS 83

5.1. INTRODUCTION 83

5.2. MODIFIED SCHEDULE GENERATION ALGORITHMS 85

5.3. LOCAL HILL CLIMBING 91

5.4. GENETIC ALGORITHM PARAMETERS 94

5.5. THE HYBRID GENETIC SYSTEM 98

5.6. REMARKS 107

6. CONCLUSIONS AND FURTHER RESEARCH 108

6.1. THESIS ORIGINALITY AND CONTRIBUTION 108

6.2. SOME MODELING REMARKS 109

6.3. FURTHER RESEARCH 110

REFERENCES 112

APPENDIX A. PROBLEM INSTANCES USED IN THE EXPERIMENTS 133

APPENDIX B. RANDOM PROBLEM GENERATOR PROGRAM 136

APPENDIX C. COMPUTATIONAL STRUCTURE OF THE HYBRID

SCHEDULING SYSTEM 204

APPENDIX D. PERFORMANCE OF THE HYBRID SCHEDULING SYSTEM

ON CLASSICAL JOB SHOP SCHEDULING PROBLEMS 208

2

27

37

42

43

46

50

53

57

64

65

65

66

66

67

70

73

74

89

93

96

97

100

102

103

104

105

136

146

154

LIST OF FIGURES

Scheduling Problem Taxonomy

Graph Representation of Classical JSSP

PMX, LOX and UX Crossover Operations

Bill of Material

Part Process Plan with Alternative Subprocess Routes

Scheduling System Diagram

Overlap Policies

Job Structures and Process Plans of Example 4.1

Gant Chart - Example 4.1

Graph Representation of Successive Operations within a Job

Graph Representation of Job Ready Time

Graph Representation of Operation Ready Time

Graph Representation of Machine Capacity Constraint

Graph Representation of Machine Maintenance

Solution Representation by a Digraph - Example 4.2

Flow Effect Example

Arc Reversal

Rearranging of Set PSfinai Due to a Move

Interaction ACTNON*DISP - Modified Schedule

Generation Algorithm

Interaction RESCH*ARCTYPE - Local Hill Climbing

Effect of Population Size in the GA Performance

Effect of Number of Generations in the GA Performance

Average System Performance through Time

Significant Interactions - Hybrid Genetic System

Effect of GACTNON - Hybrid Genetic System

Effect of INIT - Hybrid Genetic System

Effect of CONFOP - Hybrid Genetic System

BOMs - Jobs from Problem 1

BOMs - Jobs from Problem 2

BOMs - Jobs from Problem 3

Figure A.4. BOMs - Jobs from Problem 4 169

Figure A.5. BOMs - Jobs from Problem 5 179

Figure A.5. BOMs - Jobs from Problem 6 188

Figure C.1. System Structure Diagram 204

Figure D.1. Performance of the Hybrid System on Taillard’s Benchmarks 209

26

54

55

55

56

83

85

87

88

90

92

93

94

95

95

95

98

99

101

137

138

140

145

136

137

140

LIST OF TABLES

Example - Problem Data

Operation Related Data of Example 4.1

Resource Related Data of Example 4.1

Resource Requirement Data of Example 4.1

Time Results of Example 4.1

Description of the Problems

Factors Crossed in a Factorial Experiment Related to the

Modified Schedule Generation Algorithm

Significant Effects - Modified Schedule Generation Algorithm

Experiment Results - Modified Schedule Generation Algorithm

Arrangements of Factor Levels - Modified Schedule

Generation Algorithm

Factors Crossed in a Factorial Experiment Related

to the Local Hill Climbing

Solution Improvement Due to the Local Hill Climbing Procedure

Experiment Results - Local Hill Climbing

Arrangements of Factor Levels - Local Hill Climbing

Factors Crossed in a Factorial Experiment to Determine

GA Parameter Values

ANOVA Table - Genetic Algorithm Operators

Factors Crossed in a Factorial Experiment of the

Entire Hybrid System

Average System Performance

Experiment results - Hybrid Genetic System

Job Related Dada - Problem 1

Resource Related Data - Problem 1

Routing Structure and Operation Related Data - Problem 1

Operations with Sequence Dependent Setup Times - Problem 1

Job Related Dada - Problem 2

Resource Related Data - Problem 2

Routing Structure and Operation Related Data - Problem 2

151

155

155

158

168

169

170

172

178

179

180

182

187

188

189

191

201

208

Operations with Sequence Dependent Setup Times - Problem 2

Job Related Dada - Problem 3

Resource Related Data - Problem 3

Routing Structure and Operation Related Data - Problem 3

Operations with Sequence Dependent Setup Times - Problem 3

Job Related Dada - Problem 4

Resource Related Data - Problem 4

Routing Structure and Operation Related Data - Problem 4

Operations with Sequence Dependent Setup Times - Problem 4

Job Related Dada - Problem 5

Resource Related Data - Problem 5

Routing Structure and Operation Related Data - Problem 5

Operations with Sequence Dependent Setup Times - Problem 5

Job Related Dada - Problem 6

Resource Related Data - Problem 6

Routing Structure and Operation Related Data - Problem 6

Operations with Sequence Dependent Setup Times - Problem 6

System Performance on Taillard’s Job Shop Problems

1

CHAPTER 1

INTRODUCTION

1.1. SCHEDULING PROBLEMS

Scheduling is the allocation of resources over time in order to perform a set of

operations and meet certain objectives while respecting a set of constraints. Scheduling

problems appear in several areas. For instance, consider the scheduling of programs on

computers, cars to be repaired in a garage, professors to classes in schools, physicians

and nurses to patients in hospitals, production resources to jobs in manufacturing plants,

etc.

In industrial scheduling problems a set of resources (e.g., machines, tools,

personnel, fixtures) must be assigned over time to a set of operations in order to minimize

some cost function. Industrial scheduling has been widely studied since the pioneering

work of Johnson (1954) who proposed efficient algorithms for makespan minimization in

problems of two and three stages. This thesis deals with the general make-to-order job

shop scheduling problem which will be defined later.

The scheduling function is in the domain of production planning and control (PPC).

The PPC can be decomposed in four interrelated levels:

1. Master production plan. The master production plan is generated based on

demand forecasts (in make-to-stock production environments) and customer

orders (in make-to-order manufacturers). The master plan tells the quantity and

due date for each product.

2. Material and capacity requirements planning. A set of purchase and

production orders must be elaborated to accomplish the master production plan.

Also, an aggregate analysis of resource capacities and requirements is performed

to guarantee the feasibility of the production plan.

3. Production Scheduling. Once the due dates and quantities for all products as

well as the ready time for all orders, raw materials and components are

2

established, the resources must be assigned over time to perform operations in

order to meet the production objectives (e.g., reduce work in process, minimize

tardy jobs, etc.).

4. Shop control. A data collection and feedback system is used to control and

monitor the execution of the production scheduling.

This work regards mainly to the third level, although the proposed system can also

be used to aid the joint determination of material requirements, capacity planning, and

production scheduling through what-if simulation.

Classifications for scheduling problems according to several criteria were reported

by Graves (1981) and by Maccarthy and Liu (1993). Basically, scheduling problems are

classified according to the following criteria:

1. Demand generation (make-to-order vs. make-to-stock): In make-to-order

environments customers directly request the production orders. In make-to-stock

environments production orders are generated based on demand forecasts and

inventory replenishment policies, and scheduling also involves the determination

of lot sizes.

2. Job processing and environment complexity. The scheduling problem

taxonomy of figure 1.1 covers the majority of classical scheduling problems:

One-operation jobs;

single machine

parallel machines

open shop

y general flow shop

Multi-operation job s___► flow shop

permutation flow shop

1 job shop

Figure 1.1. Scheduling Problem Taxonomy

3

One-operation jobs are jobs composed of only one operation. In one-operation,

single machine problems all the operations must be executed on the same

machine. In one-operation, parallel machines problems each operation can be

processed on one of a set of identical or similar machines. A multi-operation job is

composed of a set of operations, each operation processed on a different

machine. In a flow shop all the multi-operation jobs have the same order of

processing through the machines, i.e., all jobs have the same processing route.

When a feasible solution to a flow shop scheduling problem requires all machines

to process the same sequence of jobs, we have a permutation flow shop. The flow

shop is only a particular case of the job shop problem, the most general

scheduling problem. In a job shop each job can be processed by a different (but

predefined) sequence of machines. An open shop scheduling problem occurs if

the set of operations that composes a job can be processed in any sequence, i.e.,

when there is no predefined job processing route.

3. Performance measure: A number of performance measures have been used to

evaluate the scheduling quality. They can be classified as:

• Criteria based on due dates: Maximum and mean tardiness, maximum and

mean lateness, number of tardy jobs, etc. (Sen and Gupta, 1984).

• Criteria based on resource utilization/flow time: Minimum and maximum

completion time, minimum and maximum flow time, work in process level, etc.

• Cost-based criteria: mean income loss, work in process cost, profit

maximization, etc. (Benton, 1993).

• Multi-criteria: analytical combination of single criteria or dominance analysis

can be used to evaluate schedule quality according to more than one single

criterion (Itoh, Huang and Enkawa, 1993; Daniels and Chambers, 1990; Sen

and Gupta, 1984).

A performance measure can also be classified as regular or non-regular. A

regular performance measure can not be improved by delaying the completion of

a job.

4

4. Dynamic nature of the production environment (dynamic vs. static

environment): In a static environment the scheduling data (orders, resource

availabilities, processing plans, etc.) are not allowed to change during the

scheduling execution, i.e., new orders are not added and specifications are not

altered during the scheduling execution. In a dynamic environment new orders

can be added and specifications can change during the scheduling execution.

5. Data specification (deterministic vs. stochastic data): Problem data such as

operation execution times and demand forecasts (in make-to-stock

manufacturers) may be considered deterministic or stochastic.

Most scheduling problems are classified as NP-complete combinatorial search

problems (Lenstra and Shmoys, 1995; Garey, 1979; King & Spachis, 1980; Goyal &

Sriskandarajah, 1988), which means that the time required to find the solution

exponentially increases with the problem size. There is no determinist algorithm able to

solve a NP-complete problem in polynomial time. Hence heuristics able to find good

solutions in reasonable amount of time are required. The computational complexity issue

is addressed in the following section.

1.2. COMBINATORIAL SEARCH PROBLEMS

Solving a combinatorial search problem is to find one solution that satisfies a set

of constraints among a very large but finite set of possible solutions (Karp, 1986). Well

known examples of combinatorial problems are scheduling, routing, knapsack,

assignment, VLSI circuit layout, Eulerian walk, Hamiltonian circuit, graph coloring, and

satisfiability problems, among thousands of others.

Combinatorial search problems can be decision or optimization problems. Solving

a decision problem requires only an answer to a yes or no question (e.g., is there any

Hamiltonian circuit in a given graph?). Instead, solving an optimization combinatorial

problem requires finding one arrangement among a set of feasible arrangements (e.g.,

determine the schedule that minimizes the makespan). Nevertheless, it is always

possible by using simple tricks to transform an optimization problem in a decision

5

problem. This allows all combinatorial problems to be treated as decision problems

without loss of generality.

Some combinatorial problems are easy and very efficient algorithms are available

to solve them (e.g., Eulerian walk problem), while others extremely hard and solving them

can require huge and impracticable computation effort (e.g, most scheduling problems).

A problem is called tractable if it can be solved in a number of steps bounded by a

polynomial in the size of its input (Edmonds, 1965), and intractable otherwise. For

instance, several sorting methods are usually bounded by n2 steps, where n is the

number of elements to be sorted. Therefore sorting problems are tractable. Other

problems (like scheduling problems) are bounded by an, n!, etc., and therefore are

intractable.

Informally, a problem is in class P if it is tractable. Precisely, P is the set of all

decision problems solvable in polynomial time. A formal formulation of this and other

concepts presented in this section is beyond the scope of this thesis. They can be found

in the book by Garey and Johnson (1979).

A decision problem D1 is reducible to a decision problem D2 if and only if problem

D1 can be transformed in D2 by a polynomial time function. Therefore if D2 is in P then

D1 will also be in P.

NP (non-deterministic polynomial) is the class of decision problems that are

checkable in polynomial time, i.e., given a solution, one can check if the solution is correct

in polynomial time. Of course all problems in P are also in NP, that is, PcNP. The

question if P=NP has not been answered yet. However, it is highly probable that they are

not the same set, because if P=NP finding a solution and checking a solution would

present the same difficulty and this is not an appealing idea.

A decision problem D is NP-complete if it lies in NP and if all problems in NP are

reducible to D. It means that if a polynomial algorithm exists to solve a NP-complete

problem, then all others will also be solved in polynomial time. However, we must not

expect this to happen. Instead, heuristics that find good (but not guaranteed optimal)

solutions must be developed to overcome this likely inherent intractability of NP-complete

6

problems. The NP-complete problems are the most difficult combinatorial problems. The

absolute majority of the scheduling problems are NP-complete. The list of known NP-

complete problems is very large, containing hundreds of problems (Garey and Johnson,

1979).

1.3. THEORETICAL AND REAL JOB SHOP SCHEDULING PROBLEMS

The existence of a gap between scheduling theory and practice has been reported

by several authors (Maccarthy and Liu, 1993; Mckay, Safayeni and Buzacon, 1988;

Graves, 1981; Candido et al, 1995). A large number of benchmark job shop scheduling

problems have been proposed by several authors for comparison purposes (Fisher and

Thompson, 1963; Tailllard, 1993; Drummond, 1996; Adams, Balas and Zawack, 1988;

Applegate and Cook, 1991). Most of these problems, as well as most of the scheduling

research performed so far do not consider some important issues of the real job shop

(e.g., they usually consider the requirement of only one resource per operation). These

theoretical benchmark problems are here named classical job shop scheduling problems

as opposed to real job shop scheduling problems which this thesis intends to solve.

In the classical job shop scheduling problem (JSSP), a set of n jobs is processed

on m machines. Each job is composed of a set of operations that have to be processed

in a prespecified order. The problem is to find the best sequence of operations on each

machine in order to minimize the maximum completion time (makespan) or any other

single regular performance measure (Baker, 1974) without violating the precedence

constraints. This problem was proved to be NP-complete. The following assumptions are

adopted when dealing with classical JSSP:

• All the machines and jobs are available at time zero.

• Each machine can process only one operation at a time.

• There is only one unit of each machine type.

• A machine is the unique resource required to process an operation.

• Buffer space for work in process (WIP) is unlimited.

• Operation preemption is not allowed, i.e., once initiated, an operation must be

completed before another operation be started on the same machine.

• Batch overlap is not allowed, that is, each batch is treated as a single unit.

7

. • The environment is static, i.e., new jobs are not inserted in the scheduling during its

execution and no machine breakdowns occur.

• All problem data are deterministic.

• Each job corresponds to only one part, i.e., bill of materials and assembly situations

are not allowed.

A large variety of constraints and relaxations must be added to classical JSSP in

order to represent real production environments. The number and type of constraints

depend on the environment under consideration. It is impractical to design an universal

scheduling system that considers all the characteristics of every production environments.

Nevertheless, some constraints and alternatives have a high frequency of occurrence in

real job shop environments. A scheduling system which models these commonly

encountered characteristics would be able to solve a large number of industrial job shop

scheduling problems that rise in practice. We include the following characteristics in a

relevant subset of real constraints and alternatives:

• Several sub-assembly levels, i.e., existence of a bill of material for each product (job) y

• Additional renewable resources requirements to perform an operation (e.g., tools,

fixtures, manpower)

• Alternative processing plans for each job: technologically different operation

sequences or/and flexible precedence constraints on an operation sequence. ^

• Alternative machines with possible different setup and processing times for each J

operation

• Machine, tool, fixture and staff calendar (e.g. preventive maintenance, staff training) j

• Ready times for raw material and purchased components ^

• Sequence dependent setup times ^

• Batch overlap (different operations of the same batch being performed simultaneously)

• Batch splitting and grouping

• Limited buffer space associated to each machine/work cell

• Upper and lower bounds to the waiting time of some operations

• Existence of transportation times and constrained availability of material handling

devices

A system that intends to deal with a large number of real job shops must consider

the above constraints and also be able to deal with multicriteria evaluation functions and

work under dynamic conditions.

1.4. THESIS GOAL AND STRUCTURE

As it will be shown in next chapters, knowledge based systems and dispatching

rules embedded in simulation models are the approaches that better represent real

environment constraints. However, their performance in terms of evaluation criteria are

usually worse than the performance obtained by local search procedures (like simulated

annealing and tabu search), genetic algorithms, and tailored heuristics (like the shifting

bottleneck procedure). On the other hand, the latter algorithms have poor modeling

abilities and very few applications including real production environment constraints have

been reported. The search spaces considered in those few real world applications are

usually incomplete and the real constraints included are small in number and environment

dependent.

This thesis intends to develop a robust framework using local search and genetic

algorithms, beyond constructive heuristics, to deal with real make-to-order job shop

scheduling problems. A large number of real world constraints are considered in the

proposed model, such as jobs with several subassembly levels, alternative processing

plans for parts and alternative resources for operations, requirement of multiple resources

to process an operation (e.g., machine, tools, fixtures, staff), job and operation ready

times, resource calendars, batch overlap and sequence dependent setups. Also, the

approach considers multiobjective evaluation functions. To achieve this goal, a number

of modifications are proposed in the active and non-delay schedule generation

algorithms, in the solution representation scheme and neighborhood structure of local

search procedures, and in the genetic algorithm operators. Several tailored heuristics to

be embedded in the basic algorithms are also proposed and analyzed.

9

Therefore, it is expected a reduction of the gap between scheduling theory and

practice, by enabling high performance scheduling techniques to support real production

environments.

The thesis is organized as follows. Chapter two reviews the literature in the make-

to-order job shop scheduling problem. Chapter three briefly describes Local Search and

Genetic Algorithms and how they have been used to solve scheduling problems. In

chapter four the models developed in this thesis to solve real JSSP are presented.

Simulation results related to the proposed system are reported in chapter five. Finally,

conclusions and further research suggestions are addressed in chapter six.

10

CHAPTER 2

APPROACHES TO SOLVE JOB SHOP SCHEDULING PROBLEMS

2.1. INTRODUCTION

A large amount of work in JSSP has been reported over the past three decades

using several approaches: optimal methods, dispatching rules, constraint-based

intelligent systems, Lagrangian relaxation, neural networks, tailored heuristics, tree

search techniques, Petri nets, control theory, inductive learning models, local search

procedures and genetic algorithms. A study comparing some of these techniques was

presented by Tsang (1995). A number of good surveys and books have also been

published (Pinson, 1995; B^ker, 1974; Maccarthy and Liu, 1993; Graves, 1981; King and

Spachis, 1980; Rodammer and White, 1988; Sen and Gupta, 1984; Cândido et al, 1995;

Parker, 1995; Sule, 1996; Blazewicz et al, 1994; Zweben and Fox, 1994; Mattfeld, 1996;

French, 1982; Brucker, 1995). These surveys are very useful due to the extraordinary

amount of research developed in this area. However, most of them are focused on

specific approaches (e.g., operational research, knowledge-based systems, etc.).

In this chapter a brief review of the different approaches to solve JSSP is

presented. Two major classes of techniques can be distinguished: optimal methods and

approximation methods.

2.2. OPTIMAL APPROACHES

The optimal approaches usually utilized by operational research scientists are

used only to solve small instances of classical job shop scheduling problems due to the

inherent intractability of the problem. The most used techniques are branch and bound,

mixed integer programming and dynamic programming (King and Spachis, 1980). The

best results achieved so far are due to Applegate and Cook (1991); Brucker, Jurisch and

Sievers (1994); and Carlier and Pinson (1989, 1991, 1994). In these attempts

sophisticated branch and bound methods based on disjunctive graph formulation were

used to minimize makespan in classical JSSP. They solved small benchmark problems

(e.g., 10x10 job shop of Muth and Thompson) in a reasonable amount of time, but (as

11

expected) they failed to solve medium and large problems in a reasonable time. Basically

the branch and bound methods differ with respect to the elimination rules, the branching

schemes, the bounding mechanisms, and the calculation of lower bounds in the search

tree.

Good lists of scheduling problems solved by optimal methods are found in

Maccarthy and Liu (1993) and in Vaca (1995). Other interesting applications of optimal

methods are described by Sarin, Ahn and Bishop (1988), Alidaee (1993), Schrape and

Baker (1978), and Gascon and Leachman (1988).

2.3. APPROXIMATION APPROACHES

Approximation methods or heuristics attempt to find good (but not necessarily

optimal) solutions in a reasonable computational time. In a wide sense, heuristics can be

defined as algorithms whose convergence to an optimal or even feasible solution can not

be guaranteed. A review of application areas for heuristics, morphologic classifications

and methodologies to design them are explained by Muller-Merbach (1981).

Because JSSP is NP-complete, a great research effort has been applied over the

last three decades in the development of good scheduling heuristics. Many of these non-

optimal heuristic techniques can deal with large problems (intractable for optimal

techniques) in reasonable computational time. Note that heuristics can be developed to

solve general or specific (environment-dependent) scheduling problems (He, Yang and

Deal, 1993; Han and Dejax, 1991; Hertz and Widmer, 1989).

The main non-optimal techniques used to solve job shop scheduling problems are

presented next. Special attention will be given to the so called metaheuristics which

include local search and genetic algorithms.

12

2.3.1. Dispatching Rules

Dispatching rules are probably the most popular method in the scheduling of

complex real job shops, and are very often embedded in schedule generation algorithms

(see chapter 3) and in commercial scheduling packages.

Dispatching rules determine the operation to be processed next on a given

resource among a set of schedulable operations. When a non-delay schedule generation

algorithm is being adopted, the set of schedulable operations corresponds to a queue of

tasks on the machine input buffer. Excellent surveys about dispatching rules were

published by Blackstone, Phillips and Hogg (1982), Baker (1974), and Bertrand (1983).

Dispatching rules are easy to implement and are computationally inexpensive. They can

be based on processing times (e.g., SPT - Shortest Processing Time), due dates (e.g.,

EDD - Earliest Due Date), costs (e.g., margin profit based rule), or any other

characteristic of the production environment. Rules obtained by the combination of single

rules have also been applied. Dispatching rules can be classified as local or global rules.

Local rules look at each machine individually while global rules dictate which operation to

be scheduled next based on the entire shop status.

The performance of a dispatching rule depends not only on the evaluation function

being used but also on a number of interconnected factors such as due date assignment

method, tightness of due dates, machine loading level or job arrival rate, truncation

method applied in certain rules, and production environment type (Blackstone, Phillips

and Hogg, 1982; Baker, 1984; Bertrand, 1983; Kaplan and Unal, 1993; Bertrand, 1983;

Ahiro, Isoda and Awane, 1984; Kannan and Ghosh, 1993).

2.3.2. Knowledge Based Systems

Since the middle eighties many knowledge based systems using constraint

propagation techniques have been developed (Atabakhsh, 1991; Zweben and Fox, 1994;

Rodammer and White, 1988; Kanet, 1987). Well known examples of these “intelligent”

scheduling systems are ISIS (Fox and Smith, 1984), OPIS (Smith, 1994), OPAL

13

(Bensana, 1988), SOJA (Le Pape, 1985), Micro-Boss (Sadeh, 1994), ILOG (Le Pape,

1995), IxTeT (Laborie and Ghallab, 1995), among others.

These systems are able to deal with real instances of scheduling problems, i.e.,

several of the modeling requirements of real production environments described in

chapter 1 are taken into account by knowledge based systems. Nevertheless they

present high development cost and time, and their performances often depend on the

performance of a human specialist (which is likely of low quality in a combinatorial

situation). Moreover, the applications already implemented are usually environment-

dependent and therefore general conclusions are difficult to draw.

2.3.3. Neural Networks

Recently a few feedback neural networks have been used to solve scheduling

problems (Gallone, Chapillet and Alexandre, 1995; Peterson and Soderberg, 1993; Lo

and Bavarian, 1991). Classical JSSPs were solved with a neural network based on the

Hoppfield model implemented by Satake, Morikawa and Nobuto (1993). Chang and Jeng

(1995) proposed an interesting neural network model to solve large instances of job shop

scheduling problems.

Feedforward neural networks have also been used in hybrid scheduling systems

as the ones developed by Sim, Yeo and Lee (1994), and by Rabelo et al (1993).

2.3.4. Lagrangian Relaxation

Lagrangian relaxation is a technique suitable to find lower bounds in combinatorial

minimization problems. Basically, we take the primary integer formulation of the problem

and relax some constraints into the objective function by attaching Lagrange multipliers to

them. The relaxed problem (called LLBP - Lagrangian Linear Bound Program) is solved to

optimality and a Lagrangian heuristic is applied to convert the LLBP solution into a

feasible one (Beasley, 1993).

14

Lagrangean relaxation is a promising tool to deal with JJSP. Good results have

been obtained by Hoitomt, Luh and Pattipati (1993), Luh and Hoitomt (1993), Chang and

Chien (1993), Czerwinski and Luh (1994), Chen and Hsia (1994), Dobson and Khosla

(1995), and Chen, Chu and Proth (1995). Some of these works consider a few of the real

world constraints described in chapter 1, such as products with bill of materials and

requirement of multiple resources per operation.

Lagrangian relaxation could also be classified as one of the simplified optimal

approaches described next.

2.3.5. Simplified Optimal Approaches

Such models usually interrupt the search for the optimal solution after a certain

CPU time, returning the current upper bound (King and Spachis, 1980), or reduce the

search space by including a set of additional constraints (e.g., Bestwick and Lockyer,

1979). Relaxing constraints, modifying coefficients and decomposing the problem (e.g.,

Ghosh and Gaimon, 1993; Serafini and Speranza, 1994; Raman and Talbot, 1993) are

other tricks that simplify the original problem and allow the application of optimal

approaches.

A high performance procedure, which can be viewed as a truncated branch and

bound algorithm, is the well-known shifting bottleneck procedure (Adams, Balas and

Zawack, 1988). The algorithm ingeniously divides the scheduling problem into a set of

one machine optimization and reoptimization problems.

Obviously, reaching the optimal solution can not be guaranteed by these

approaches.

2.3.6. Local Search and Genetic Algorithms (Metaheuristics)

A number of research efforts have shown the high performance of local search

procedures and hybrid genetic algorithms for solving small and large job shop scheduling

problems. These algorithms are also called metaheuristics.

15

The most commonly used metaheuristics for scheduling purposes are genetic

algorithms (Goldberg, 1989), tabu search (Glover and Laguna, 1993) and simulated

annealing (Kirkpatrick, Gelatt and Vecchi, 1983). The theoretical basis of these

techniques are described in chapter three. Applications of other local search techniques

to JSSPs (e.g., threshold acceptance) have also been reported (Dueck and Scheuer,

1990; Aarts et al, 1994; Lin, Haley and Sparks, 1995).

Genetic algorithms and feedback neural network have strong similarities with local

search procedures and many authors consider them special cases of local search

procedures. This section conducts a literature review with respect to the use of

metaheuristics for JSSPs. Special attention is addressed to GA approaches.

When dealing with local search algorithms, one must define a representation

scheme and a neighborhood structure. Moving operators provide moves from the current

solution to a neighboring one. The neighborhood structure can be analyzed in its

completeness and uniqueness. The completeness regards to the capability of

representing all feasible active schedules and the uniqueness concerns to the unique

correspondence between a schedule and its representation. A representation is complete

if it can represent all active schedules and is unique if for each schedule corresponds only

one representation. A representation is redundant if each schedule can have more than

one representation. A move in the neighborhood is considered legal or illegal if it yields

feasible or infeasible solutions respectively. The schedule builder (also called decoding

procedure) is an important external element that performs the mapping from the

representation to the schedule itself. Depending on the application, part of the search

procedure is performed by the schedule builder. Classical schedule builders are the semi

active, active and non-delay ones. All these concepts are detailed in chapter three.

Concerning to the search space topology for classical JSSP, a good analysis was

performed by Mattfeld and Bierwirth (1996). Studying the "fitness landscape" of hard and

easy benchmark problems, the authors addressed that the landscapes are difficult to

16

search for local search algorithms because the local optima are widely spread. However,

the smoothness of the neighborhood suggests the use of adaptive search.

2.3.6.1 Genetic Algorithm (GA)

A large number of applications of GA for JSSP have been published over the last

decade. Most of these genetic algorithms were proposed to solve the classical JSSP or

small variations of the classical problem (Yamada and Nakano, 1995; Kim and Lee, 1994;

Fang, Ross and Come, 1993; Aarts et al, 1994; Mattfeld, 1996; Croce, Tadei and Volta,

1995; Park and Park, 1995; Bierwirth, 1994; Biegel and Davern, 1990; Bierwirth, Mattfeld

and Kopfer, 1996; Falkenauer and Bouffouix, 1991; Reeves, 1995; Whitley, 1991). They

differ from one another mainly in the representation schemes, in the schedule builder

ability and responsibility, in the genetic operators, in the hybridization level with other

heuristics (commonly used to generate high quality initial solutions or to improve previous

generated solutions), and in the performance measure adopted. Many of these works

have designed experiments to compare different operator types and rates, and

representational schemes.

Related to the representations, one can use direct or indirect representation. In

the direct representation (Bruns, 1993) the chromosome is the schedule itself and

complex crossover operators are required to create new solutions. In the indirect

representation simple operators are allowed and the chromosome must be mapped to a

feasible schedule through a schedule builder (decoding procedure). An encoding scheme

must also be analyzed by its completeness and redundancy level. Indirect representations

are the most commonly used encoding schemes. Some indirect representation schemes

encountered in the literature are job permutation, permutation of jobs with repetition,

permutation of operations, permutation of operations per machine, and job-ordered list

per machine. They differ in redundancy level, completeness, and complexity of the

recombination operators required (see chapter three).

There are other "non-standard" and powerful GA models for the JSSP. In a

number of works the GA operates on a set of dispatching rules. In the system proposed

17

by Herrmann, Lee and Hinchman (1995) a chromosome is a list of dispatching rules, one

for each machine. In attempts due to Dorndorf and Pesch (1995), and Chiu and Yih

(1995) the size of the dispatching rule list (chromosome) is equal to the number of

operations and each rule (gene) is responsible for one dispatching decision. Storer, Wu

and Vaccari, (1992) suggested that the chromosome could be formed by a dispatching

rule list, each of these rules would control the sequencing process for a time window or a

specific number of operations. These representations permit the use of simple

recombination operators and allow easier implementations of complex scheduling

environments, as shown by Herrmann, Lee, and Hinchman (1995).

Other interesting GA models used for JSSPs are those involving random keys

which encode solutions with random numbers (Bean, 1994). The search is performed

over the random key space, making easy the application of simple recombination

operators.

Dorndorf and Pesch (1995) used a GA to determine the selection of nodes in the

enumeration tree of the shifting bottleneck procedure. The chromosome is a permutation

of machines determining the sequence of single machine problems for the shifting

bottleneck procedure.

Some researchers have used GA unsupervised machine .learning models

(Goldberg, 1989). They apply bidding systems (Aytug, Koehler and Snowdon, 1994) and

reward propagation techniques (Holsapple et al, 1993) to solve the JSSP. Aytug, Koehler

and Snowdon (1994) proposed an adaptative dispatcher for a work cell with different

parallel machines. The dispatcher owns a knowledge base whose rules are updated over

the time through a GA learning system. In the work due to Chiu and Yih (1995), a GA

operating on dispatching rule lists generates solutions that are used as training examples

for a learning algorithm that acquires scheduling knowledge and represent it in a binary

decision tree.

In problems involving more complex production environments, the search space

may be explored partially by the schedule builder. However some studies have shown the

18

superiority of approaches that integrate problem specific knowledge in the GA

representation and recombination operators (Uckum, Bagachi and Kawamura, 1993;

Bruns, 1993), avoiding the schedule builder to perform any significant part of the search.

Many papers that attempt to schedule more realistic environments are concerned

to specific facilities (Biegel and Davern, 1990; Syswerda, 1991; Hamada et al, 1995;

Gilkinson, Rabelo and Bush, 1995). For instance, Hamada et al (1995) used a hybrid GA

with rule based reasoning to solve a scheduling problem with a number of preferences

(soft constraints) in a steelmaking company. An expert system was used to generate

initial solutions to the GA, each satisfying at least one preference. The fitness function

took into account the makespan and the violation of the preferences.

Some research attempts that consider additional constraints and alternatives

related to real production environments are presented next. Particularly, we are interested

in works that treat the additional real constraints as elements influencing directly the GA

search.

A few papers report the use of GA in environments with alternative processing

plans and alternative machines. In Uckum, Bagachi, and Kawamura (1993) an order has

alternative processing plans and operations can be processed on alternative machines.

The GA searches the space of all job order permutations. Using recombination operators

processing plans are assigned to job orders and machines are assigned to operations

specified in the plans. Nevertheless, the representation is incomplete and redundant,

since the schedule builder assigns all the operations of the first job, then all the

operations of the second job and so forth. Bruns (1993) attempted to solve a similar JSSP

with a GA that used direct representation. In this model the schedule builder was

eliminated and the representation was the schedule itself. The drawback of the direct

representation was the complexity of the recombination operators needed to produce a

"good" set of feasible schedules. The operators used in Bruns’s work were not able to

generate all active schedules. Gilkinson, Rabelo and Bush (1995) considered alternative

machines per work cell. Each gene of the chromosome represented a work cell. A gene

was composed of a list of operations and respective machines. The representation was

complete and unique only because the production line is a flow shop. Also, some

19

operations were permitted to be simultaneously processed on the same machine.

Holsapple et al (1993) used a hybrid GA/filtered beam search approach to schedule a

flexible manufacturing cell where alternative machines and inter-station transfer time were

allowed. The GA determined the job sequence (hence the representation was incomplete)

and the filtered beam search chose the machines to process each operation of a

predefined job sequence. The GA was implemented with an unsupervised learning

procedure using reward propagation. Another GA using direct representation was

implemented by Blume (1994). Alternative processing plans for each job and multicriteria

cost functions were considered. Apparently, the GA searched for good sets of processing

plans, while priority rules assigned operations to machines.

Sequence dependent setup times were considered by schedule builders in the GA

implementations due to Rubin and Ragatz (1995), Gilkinson, Rabelo and Bush (1995),

Syswerda (1991), and Uckum, Bagachi, and Kawamura (1993). Multiobjective criteria

have also been incorporated into GA models (Uckum, Bagachi, and Kawamura, 1993;

Syswerda, 1991; Hamada et al, 1995; Gilkinson, Rabelo and Bush, 1995; Blume, 1994).

The dynamic nature of the problem was also studied by a number of researchers (e.g.,

Bierwirth et al, 1995). Lee and Shaw (1993) proposed a GA model to jointly solve the lot

sizing problem and the scheduling problem in a flow shop environment. Gonzalez, Torres

and Moreno (1995) reported a genetic algorithm for the no-wait flowshop problem, which

is similar to a TSP. A complex scheduling problem with resource constraints was

addressed by Syswerda (1991). The problem also considered task priorities, alternative

setups and other weak constraints. Nevertheless, the GA manipulated only the task

sequences, being the schedule builder responsible to build a legal schedule. The

performance measure was based on the violation of weak constraints and on satisfaction

of priorities.

In this section we reviewed the utilization of GA for scheduling problems. Most

applications attempt to solve classical scheduling problems. Only a few works considered

additional real world constraints. However, in these efforts the search spaces were

incomplete and the real constraints included were usually small in number and

environment dependent.

20

2.3.6.2. Tabu Search (TS)

The Tabu Search procedures have widely been applied to solve classical JSSPs

(Barnes and Chambers, 1995; Dell’Amico and Trubian, 1993; Sun, Batta and Lin, 1995;

Widmer, 1991; Barnes and Laguna, 1993). The applications are based on the disjunctive

graph representation (see chapter three). Usually the neighborhood moves are obtained

by reversing critical path arcs or making other changes in precedence relations on the

longest path. Broader neighborhood structures also based on changing precedence

relations on the critical path were proposed by DeH’Amico and Trubian (1993). Sun, Batta

and Lin (1995) restricted the search to the active schedule space and the moves were

performed by active chain manipulation. Tabu search applications for JSSP usually

consider the makespan criterion. An exception is found in Widmer (1991), who used a TS

approach to minimize a multiobjective function in the scheduling of a flexible

manufacturing system with tool magazine capacity constraints. The main differences

among the several TS applications for JSSPs are related to the search strategies (e.g.,

memory functions, aspiration criteria, etc.).

Compared to other local search procedures, Tabu Search approaches have

yielded very good results in the classical JSSP making use of relatively low computational

time.

2.3.6.3. Simulated Annealing (SA)

Simulated annealing is another powerful local search technique suitable to deal

with classical JSSPs (Laarhoven, Aarts and Lenstra, 1992; Lin, Haley and Sparks, 1995;

Aarts et al, 1994; Krishna, Ganeshan and Ram, 1995; Musser, Dhingra and Blankenship,

1993; Jeffcoat and Bulfin, 1993; Lourenco, 1995).

Most applications try to minimize the makespan. They adopt the disjunctive graph

representation and the moves are based on reversing critical arcs or changing some

other precedence relation on the critical path. Jeffcoat and Bulfin (1993) considered a

resource constrained scheduling problem in parallel processors. The objective function to

21

be minimized was related to resource constraint violations, that is, this procedure tried to

minimize the infeasibility. Simulated annealing algorithms usually require high

computational time to achieve good solutions.

2.3.6.4. Other Local Search Procedures and Hybrid Models

An interesting local search procedure used to solve JSSP is threshold accepting

(Dueck and Scheuer, 1990; Aaarts, Laarhoven, Lenstra and Ulder, 1994). It can be

viewed as a deterministic simulated annealing, where a move is accepted if the difference

in the evaluation function value between neighboring solutions is less than a non-negative

threshold value. This value decreases during the search process.

Other important local search algorithms are multi-start iterative improvement

(Aaarts, Laarhoven, Lenstra and Ulder, 1994), Twofold Look-ahead Search (Itoh, Huang

and Enkawa, 1993), path algorithm (Werner, 1993), ant system (Dorigo Manniezo and

Colorni, 1996), beam search, etc.

Pure genetic algorithms have performed worse than Tabu Search and Simulated

Annealing for classical JSSP. This gap can be narrowed by hybridizing the GA with local

hill climbing procedures, as shown by Matfeld (1996) and by Yamada and Nakano (1995).

The hybridization allows the GA to work in the local optimum domain. Hybrid approaches

between SA and GA (Lin and Hsu, 1993; Shen, Pao and Yip, 1994), and between TS and

GA (Glover, Kelly and Laguna, 1995) have also shown to be promising since they

incorporate advantages of one technique into another. Lourengo (1995) performed a

computational study of local search algorithms hybrid with large-step methods for JSSPs.

Sophisticated large-step moves were performed to diversify the search and local search

procedures (as SA) operated after each large-step move.

2.3.7. Other Non-Optimal Approaches

The production scheduling can be modeled as a control system, whose inputs are

job orders, material and resource requirements, disturbances (e.g., machine breakdown),

and controlled inputs (e.g., maintenance schedule). The system state is described by

22

variables like WIP, resource availability, etc. The outputs can be for instance the inventory

level of final products at time t (Rodamer and White, 1988).

Petri net theory has also been successfully used to model scheduling problems,

as described by Lee and Jung (1995), by Xiong, Zhou and Manikopoulos (1995), and by

Richard, Jacquet, Cavalier and Proust (1995).

Near-optimal (and a few optimal) techniques have been applied to resource

constrained scheduling problems, as described by Blazewicz and Finke (1994). In

inductive learning-based scheduling models (Piramuthu, Raman and Shaw, 1994)

appropriate dispatching rules are selected to be applied according to the current state of

the manufacturing system. There are also many other tailored heuristics used to solve

JSSP. The review of all these methods is beyond the scope of this work.

2.4. CONCLUSION

Local search and hybrid genetic approaches have presented very good results in

classical JSSP with makespan as criterion. However, the application of these procedures

to real production environments is restricted to some specific facilities. Dispatching rules

and knowledge based systems are still the most commonly used approaches to real world

scheduling problems. Thus, the development of local search and genetic based

scheduling systems that incorporate broad modeling capabilities is a promising research

area.

23

CHAPTER 3

LOCAL SEARCH AND GENETIC ALGORITHMS

3.1. INTRODUCTION

In chapter 2 a literature review on the use of local search and genetic algorithms

for job shop scheduling was presented. In this chapter these algorithms will be described

with the purpose of explaining how they have been used to deal with classical JSSP. So

this chapter provides the theoretical basis required to comprehend the scheduling models

proposed in chapter 4 for real JSSP.

Both local search and genetic algorithms improve existing solutions.

Therefore these algorithms require a constructive heuristic to generate initial solutions.

Typical schedule generation algorithms are the semi-active, active and non-delay

schedule generation algorithms. These classical procedures are described in next

section. Afterwards, local search and genetic algorithms are addressed.

3.2. SCHEDULE GENERATION ALGORITHMS FOR CLASSICAL JSSP

In a semi-active schedule no operation can start earlier without changing a

machine processing sequence or violating a technological constraint. An active schedule

is a schedule where no operation can start earlier without delaying any other operation,

i.e., an operation never waits on a machine input buffer if it can be completed before the

next operation to be processed on the same machine arrives in the input buffer (Baker,

1974). The set of active schedules is a subset of the semi-active schedule set. All optimal

solutions related to any regular measure are active. Therefore not all semi-active

schedules need to be examined to find the optimal solution. Note that a regular

performance measure is nondecreasing in job finishing time, i.e., it can not be improved

by delaying the completion time of any job. The active schedule generation algorithm due

to Thompson and Giffler (1960) for classical JSSP is presented below. Let:

PSi = partial schedule at stage i, corresponding to the set of operations already scheduled

at stage i.

24

Si = set of schedulable operations at stage i, each of them corresponding to an operation

whose preceding operation on the job has already been scheduled (inserted in PSi).

The active schedule generation algorithm works as follows:

1) i = 0. PSi = S| = 0 .

2) Insert in PS, the first operation of each job.

3) Determine the minimum operation completion time 0* = minUESi {lu + tu}, where lu and tu

are the earliest start time and total processing time of operation u respectively. Let m*

be the machine required to complete operation u* at time (j>*.

4) Determine the set Si'cSi such that S/ = {u / ue Si, Iu<<))*, and u is processed on m*}.

5) Randomly select an operation u(1) from Si' to be scheduled next.

6) Form PSi+1 by adding u(1) to PS,. Form Si+1 by removing u(1) from Si. Insert in Si+1 the

operation that directly succeeds u(1) on the job.

7) i = i + 1.

8) If S |*0 return to step 3; else stop and calculate the evaluation function value.

The above algorithm is able to generate all active solutions for a classical job shop

scheduling problem, as proved by Thompson and Giffler (1960).

In a non-delay schedule no machine is kept idle if it could begin processing an

operation, i.e., a machine is never idle if its input buffer is not empty. The non-delay

schedule set is a subset of the active schedule set. An optimal schedule is not necessarily

a non-delay one. The non-delay schedule generation algorithm for classical JSSP can be

obtained by changing steps 3 and 4 of the procedure described above.

The non-delay schedule generation algorithm is presented below:

1) i = 0. PSi = Si = 0 .

2) Insert in PSi the first operation of each job.

3) Determine the minimum operation start time <j>* = minueSi {U. where lu is the operation

u earliest start time. Let m* be the machine required to start processing operation u*

at time 0*.

25

4) Determine the set Si'cSi such that Sf = {u / ue Si, lu=(|)*, and u is processed on m*}.

5) Randomly select an operation u(1) from Si' to be scheduled next.

6) Form PSi+1 by adding u(1) to PSi. Form Si+1 by removing u(1) from Si. Insert in Si+1 the

operation which is the direct successor of u(1) on the job.

7) i = i + 1.

8) If S j*0 return to step 3; else stop and calculate the evaluation function value.

3.3. LOCAL SEARCH ALGORITHMS

Local search techniques have been successfully applied to classical JSSPs. The

results reached by some tabu search and simulated annealing algorithms are among the

best known for a number of benchmark job shop scheduling problems.

Local search techniques try to continuously improve solutions initially obtained by

constructive heuristics. Given a solution s, the neighborhood of s is a set of solutions that

can be derived by applying predefined slight modifications to s, i.e., by performing a

move. So one must define a neighborhood structure and the related moving operators.

The moving operators provide moves from one solution to another in the neighborhood.

The control strategy determines whether the current solution will be replaced by a

neighboring solution. The process continues until a termination criterion is fulfilled. For

instance, consider a local hill climbing using the steepest descendent strategy. In this

simple local search procedure the current solution (initially obtained by a constructive

heuristic) is replaced by the neighboring solution that results in the greatest improvement

in the evaluation function to be optimized. The process continues until a solution with no

improving neighbor has been reached, i.e., until a local optimum has been found.

The basic elements of any local search procedure are the representation scheme,

the neighborhood structure and the control strategy. Representation schemes and

neighborhood structures are problem-specific. For example, a job shop scheduling

problem and a graph coloring problem will use different representation schemes and

neighborhood structures. In the following subsections the representation schemes and

neighborhood structures more commonly used to solve classical JSSP will be presented.

Then some basic local search strategies will be discussed.

26

3.3.1. A Representation Scheme for Classical JSSP

Almost all local search approaches to classical JSSP use the disjunctive graph

representation scheme due to Roy and Susman (1964). In this formulation a job shop

problem is represented by a graph G = (V, A u H). The vertex set V corresponds to the

set of operations, the arc set A connects consecutive operations of the same job, and the

set of edges H consists of edges connecting operations processed on the same machine.

When the edge set H is transformed into a conjunctive arc set S, i.e., when an orientation

is given to all edges, and no cycle occurs, a solution is obtained. For practical purpose

only the arcs belonging to the Hamiltonian path Li of each machine i need to be

represented in the solution digraph. Arc (u,v)eLi <=> operation v is the operation processed

after u on machine i. The final digraph obtained D = (V, A u L), where L=u Li, LcS,

represents a particular schedule. The makespan corresponds to the length of the longest

path in D.

For instance, suppose the rectangular classical JSSP of three jobs and three

machines of table 3.1. The disjunctive graph G representing the problem instance and a

digraph D of a particular solution are shown in figure 3.1, where vertex Oji is the ith

operation of job j. The dashed lines in graph G are the edges of H. In the solution graph D

the edge set H was replaced by the Hamiltonian selection L. In this example the critical

path corresponds to the vertex sequence (source, 0 3i, On, 0 12, 0 2i, 0 32, 0 33, 0 13, sink),

and its length (makespan) is equal to 45 time units.

Job Machine / processing time

first operation second operation third operation

1 M1 / 5 M2 / 7 M3 / 4

2 M 2 /10 M3 / 8 M1 / 2

3 M1 14 M 2/12 M3 / 3

Table 3.1. Example - Problem Data

27

3.3.2. Neighborhood Structures for Classical JSSPs

A neighborhood structure determines the set of neighboring solutions that can be

reached from the current solution by performing a move or transition. Three important

28

properties of neighborhood structures are size, connectivity and feasibility (Mattfeld,

1996).

The neighborhood size, i.e., the average number of possible moves, is an

important parameter to determine the computational time. A neighborhood structure holds

the connectivity property if the optimal global solution can be reached from any solution

through a finite number of moves (including non-improving moves). A move,

characterized by a set of slight modifications in the current solution, can lead to a legal

(feasible) or illegal (infeasible) solution. Neighborhoods that detain the connectivity

property and whose moves always lead to feasible solutions are usually desirable.

Nevertheless, when a local hill climbing algorithm is being implemented the connectivity

property is not important anymore, because this local search strategy only allows

improving moves. In this case it is desirable the smallest neighborhood structure for which

all improving moves are available.

The absolute majority of local search applications in classical JSSPs adopt the

disjunctive graph representation scheme, and the neighborhood moves are obtained by

reversing arcs on the critical path or making other changes in precedence relations on the

critical path. The following neighborhood structures presented good results when

minimizing makespan in classical JSSPs:

N1 (Laarhoven, Aarts and Lenstra, 1992): Given a solution digraph D, a move is

generated by reversing an arc (v,w) on the critical path, such that operation w is the

immediate successor of operation v on a machine k. The reversal of (v,w) always

results in a feasible (acyclic) solution. Moreover, the reversal of arcs on the critical

path are the only arc reversals that can reduce the makespan value. N1 also holds the

connectivity property. For instance, consider the solution represented by digraph D in

figure 3.1 whose longest path is (source, 0 31, On, 0 12, 0 2i, 0 32, 0 33, 0 13, sink). The

neighborhood of D, N1(D), consists of the solutions obtained by reversing the

following arcs: (031, On), (Oi2, 0 21), (021, 0 32), and (0 33, 0 13).

N2 (Matsuo et at, 1988; Aarts et al, 1994): Given a solution digraph D, a move is

generated by reversing arc (v,w) on the critical path, such that w is the immediate

29

successor of v on machine k, and either the predecessor of v or the successor of w on

machine k is not on the critical path, provided they exist. As in neighborhood N1, the

reversal of (v,w) always produces a feasible solution. The reversal of arcs defined in

N2 are the only arc reversals that can enhance a solution. However, as shown by

Dell’Amico and Trubian (1993) N2 does not hold the connectivity property. Aarts et al

(1994) showed that neighborhood N2 outperformed N1 for several benchmark JSSPs

using different local search approaches. Obviously N2 is smaller than N1, since only a

subset of moves of N1 is available in N2.

More intricate neighborhood structures were proposed by DeN’Amico and Trubian

(1993) and Balas and Vazacopoulos (1994). These neighborhoods presented, however,

larger sizes. As it will become clear in next chapter, large neighborhoods are not suitable

for real JSSP. Since the objective here is to review the concepts on which our models are

based, these more sophisticated neighborhood structures will not be described.

Note that neighborhood structures N1 and N2, as well as the more intricate

neighborhoods proposed by Dell’Amico and Trubian (1993) and Balas and Vazacopoulos

(1994) are proper only to minimize makespan, since the moves are based on reversal of

arcs on the longest path.

3.3.3. Some Important Local Search Strategies

The simplest local search strategy is local hill climbing, where only improving

moves are acceptable. As described by Reeves (1993) there are three basic hill climbing

strategies. Next descent strategy selects the first found improving neighbor to replace the

current solution. Steepest descent method searches the entire neighborhood and selects

the neighbor which yields the greatest evaluation function improvement. Random descent

randomly chooses an improving solution to replace the current solution. When there is no

neighbor which enhances the evaluation function value the local hill climbing algorithm

stops and the current local optimum is reported.

In order to extend the search, avoiding to finish the procedure at the first (and

probably poor) local optimum found, more sophisticated strategies to control the search

30

process were developed. Among them Simulated Annealing (Kirkpatrick, 1983) and Tabu

Search (Glover and Laguna, 1993) have yielded very good results for classical job shop

scheduling problems. These algorithms attempt to find near-optimal solutions by allowing

some moves toward worsening solutions.

Simulated annealing is an analogue of an algorithm used in statistical physics

which simulates the cooling of a solid previously heated past its melting point back to its

solid state. The properties of the cooled solid depend on the cooling rate. Simulated

annealing can also be considered a special case of local search algorithm and it has been

successfully utilized in combinatorial optimization. Simulated annealing is applied to

classical JSSP as follows:

Let D be the current digraph solution and F(D) the makespan associated to D. The

solution D is replaced by a randomly selected neighboring solution D’ with probability P

given by

P = min {1, exp (- (F(D’) - F(D))/c }

where c is the control parameter corresponding to the temperature in the physic model.

The value of c gradually decreases during the search process. At early iterations (high

temperatures) the probability of accepting worsening moves is high. This probability

decreases in the course of the annealing process, until the system freezes and no

worsening solution is accepted. Note that improving solutions are accepted with

probability 1 during the whole search. Using neighborhood structure N1 Laarhoven, Aarts

and Lenstra (1992) proved that the annealing algorithm converges to a global minimum

energy state (global optimum solution) if the sequence of values of c converges to zero,

and the Markov chains generated at each temperature are of infinite length. This result is

valid provided neighborhood structure N1 is adopted. Four parameters must be chosen to

implement finite-time simulated annealing:

• the length of the Markov chains, i.e., the number of moves evaluated at each

temperature

• the initial and final values of c (temperature)

31

• the decrement rule of c.

Tabu search is a powerful local search strategy to solve combinatorial search

problems. Tabu search has presented marked success in classical job shop scheduling.

In this approach the current solution is replaced by the best not forbidden neighboring

solution (which is not necessarily better than the current solution). At each iteration there

is a list of forbidden solutions. The forbidden solutions are a set of recently visited

solutions. Actually, instead of a list of forbidding solutions, the algorithm keeps a list of

forbidden moves that once performed will result in the forbidden solutions. Storing a list of

forbidden moves, called tabu list (T), is computationally cheaper than storing a list of

entire solutions. The existence of prohibited moves guides the search process to

unexplored regions of the solution space. It also prevents cycling, i.e., it prevents that the

algorithm moves from a local optimum solution D to a solution D’ and then back to D,

repeating this cycle indefinitely. Each time a solution D is replaced by a neighboring

solution D’, the move that would transform D’ in D again is inserted at the end of the tabu

list T, while the first move in T is removed, i.e., a move remains a tabu move during a

certain number of iterations. In addition, an aspiration criterion is associated with each

move. If the aspiration criterion is satisfied the move is considered admissible even it is a

tabu move. Aspiration criterion is used for example to allow a tabu move that results in

the best solution found so far. Other mechanisms like frequency-based memory are also

used to coordinate intensification and diversification of the search process (Glover and

Laguna, 1993).

Other local search approaches like threshold accepting (a deterministic version of

simulated annealing) and multi-start iterative improvement have been used to solve

JSSP. However, the results obtained were not as enthusiastic as the ones produced by

tabu search, simulated annealing and genetic algorithms hybridized with local hill

climbing.

3.4. GENETIC ALGORITHMS

Genetic algorithms have been widely used to solve hard combinatorial problems

like job shop scheduling problems.

32

As described by Goldberg (1989) genetic algorithms are robust (efficient and

efficacious) optimization methods abstracted from nature’s adaptation process. GAs

search from a population of strings (chromosomes) corresponding to encoded solutions.

Individuals from the population are selected to reproduce based on survival of the fittest,

i.e., the fitter the individual the higher the probability of being chosen to reproduction.

Reproduction, crossover and mutation are applied to successive populations of

individuals to generate new and likely fitter populations. Reproduction is the copy of

chromosomes into successive generations according to their fitness, i.e., the higher the

chromosome fitness the higher the probability of the chromosome being entirely or

partially copied into the next generation. Crossover is a random exchange of sections of

the parent’s chromosomes. Together, reproduction and crossover conduct the adaptation

process by reproducing and combining high quality genetic materials in successive

generations. Mutation operators, which randomly perform slight modification in the

chromosomes, are used in attempt to recover high-performance genetic materials that

eventually are eliminated from the gene pool by reproduction and crossover.

In GA terminology chromosomes are strings representing solutions. Genes

correspond to variables or features, the values of the variable or feature are called alleles.

The position of a gene in a chromosome is called locus. The encoded structures

(chromosomes) correspond to the genotype, while the solutions themselves obtained by

decoding the chromosomes are the phenotype. The fitness of an individual or

chromosome can be interpreted as the evaluation function value associated to the

chromosome.

Several variations of genetic algorithms have been proposed. A basic GA template

is presented below, where i is the generation counter:

1) i=0;

2) Generate an initial population of solutions P(i) using a random generation algorithm;

3) While the termination criterion is not satisfied do

3.1) Generate P(i+1) from P(i) by applying reproduction, crossover and mutation;

3.2) i = i+1;

4) Return the best individual in P(i);

Blblioteca Universitdria
UFSC

q . gL6ir*

33

Step 3.1 of the basic GA template is detailed below, where rand(1) is a randomly

generated real number between 0 and 1:

a) Decode the M individuals of population P(i) and evaluate them, i.e., calculate their

fitness values.

b) Initialize P(i+1) empty;

c) While the number of individuals in P(i+1) is less than M do

c.1) Select a couple of parents pi and p2 from P(i) with probability proportional

to their fitness;

c.2) If rand(1) < crossover rate then

apply the crossover operator to p! and p2 obtaining new individuals

Oi and o2;

else

o^p , and o2=p2;

c.3) For j=1to2do

If rand(1) < mutation rate then

apply the mutation operator to Oj obtaining Oj’;

else

Oj’=Oj;

c.4) Insert o / and o2’ in P(i+1);

The formal mathematical validation of genetic algorithms can be simplified by

introducing the concept of schema (similarity template). Considering only binary

representations a schema is a string over the extended alphabet {0,1 ,*}, where * is a don’t

care symbol, i.e., * can be 0 or 1. For instance the two strings

10011010

01110110

are examples of the schema

* *★

34

Short length, low order, high performance schemata (also called building blocks)

are combined by the GA producing probably better individuals during the adaptation

process. The incidence of these above average desirable schemata exponentially

increases in successive generations.

Other important characteristic of a GA is its implicit parallelism. Although at each

generation the computational effort performed is proportional to the population size n,

about n3 schemata are processed in parallel. A formal schemata analysis is reported by

Goldberg (1989).

Binary encoding schemes and related traditional crossover operators like simple

crossover, two points crossover, and uniform crossover are not suitable for most

combinatorial problems, including job shop scheduling problems. For these problems

higher-cardinality alphabets must be utilized. For example, permutation schemes are

used in a number of combinatorial problems. Solutions to a traveling salesman problem

(TSP) can be encoded by a permutation of letters, each representing a city. The

sequence of letters in the chromosome corresponds to the sequence in which the cities

are visited.

Combinatorial problems usually present high degree of epistasis. Epistasis occurs

when changes in gene frequencies at different loci are not independent. Epistatic

problems require non-standard crossover operators able to produce feasible offspring

and maintain important blocks of dependent linked loci. Also, special mechanisms to

increase selection pressure must be used in epistatic domains (Goldberg, 1989).

Next subsections briefly describe the coding schemes, genetic operators, and

population management strategies extensively used in applications of GAs for classical

job shop scheduling problems.

35

3.4.1. Coding Schemes for Classical JSSPs

Application of GAs in classical job shop scheduling problems are usually carried

out by non-binary indirect representation schemes. We should remember that a

representation scheme is complete if it can represent all optimal schedules and non-

redundant if there is an one to one relationship between the genotype and the phenotype.

Redundancy causes false competition. The most used representation schemes and their

main characteristics are listed below:

1) Job Permutation (Uckum, Bagachi and Kawamura, 1993; Biegel and Davern, 1990;

Hamada et al, 1995; Whitley, 1991):

• Chromosome: permutation of jobs

• Low redundancy level

• Incomplete

2) Permutation with repetition (Fang, Ross and Come, 1993; Bierwirth, Mattfeld and

Kopfer, 1996; Bierwirth, 1994; Mattfeld, 1996):

• Chromosome: permutation of jobs with repetition. Each job appears in a

permutation as many times as its number of operations

• Medium redundancy level

• Complete (completeness depends on the decoding procedure)

3) Permutation of operations (Kim and Lee, 1994, 1995):

• Chromosome: preference list of all operations

• Highly redundant

• Complete (completeness depends on the decoding procedure)

36

4) Permutation of operations per machine (Falkenauer and Bouffouix, 1991; Croce,

Tadei and Volta, 1995):

• One subchromosome per machine. Each subchromosome is a preference list

of operations to be processed in the machine

• Low redundancy level

• Complete (completeness depends on the decoding procedure)

5) Disjunctive, graph / job-ordered list per machine (Aarts et al, 1994; Park and Park,

1995, Yamada and Nakano, 1995):

• One (sub)chromosome per machine. Each is a ordered list of operations to

be processed in the machine

• Unique (non-redundant)

• Complete

Although the last representational scheme is complete and unique, it requires

more complex recombination operators to produce feasible solutions.

An overview of crossover and mutation operators used for classical JSSPs is

given in the following section.

3.4.2. Crossover and Mutation Operators for Classical JSSPs

Genetic operators are related to representation schemes. A survey of crossover

operators for ordering applications was presented by Poon and Carter (1995).

Considering representation schemes based on permutation without repetition (schemes

1, 3 and 4) the following crossover operators have been widely used:

• PMX (partially matched crossover): The two parental strings are aligned and two

crossover points are chosen at random. The region between these points defines a

matching section or interchange mapping in which exchanges between parents are

performed point by point. PMX tends to keep the absolute positions of elements.

37

• LOX (linear order crossover): A matching section is determined in a similar way to

PMX. At first the elements in parent 2 that occur in the matching section of parent 1

are deleted. Then the remaining part of parent 2 is combined with the matching

section of parent 1 such that the exchanged substring keeps its original position. The

other offspring is obtained in the same manner. LOX tends to respect relative

positions.

• UX (uniform order crossover): The offspring chromosome is initialized empty. At

each position one of the two parents is randomly chosen and the element at the first

position in the chosen parent is inserted next in the offspring string. The element is

then deleted from both parents. Complementary choices at each position determine

the other offspring.

Examples of UX, PMX and LOX crossover operators are shown in figure 3.2.

Some other useful crossovers for permutation-based representations are C1

(Reeves, 1992), cycle crossover (Goldberg, 1989), and edge-recombination crossover

(Whitley et al, 1991).

p, = 7 8 1 3 6 4 1 1 9 2 5 PMX o, = 7 3 1 8 1 5 1 6 9 2 4

p2 = 2 4 1 8 1 5 1 7 9 3 6 * o2 = 2 5 1 3 6 4 1 7 9 8 1

p1 = 7 8 1 3 6 4 1 1 9 2,5 ___ 7 _ I 3 6 4 I _ 9 2 _ LOX^ o, = 7 3 1 8 1 5 1 6 4 9 2

p2 = 2 4 1 8 1 5 I 7 9-36 2 _ I 8 1 5 1 7 9 __ o2 = 2 8 1 3 6 4 1 1 5 7 9

Pi = 7 8l3!6|4 1 9 2 5 parental sequence: UX = 7 2 4 8 3 1 6 5 9

p2= 2 4 8jl 5 7 9 3 6 1 2 2 1 1 2 1 2 2 o2 = 2 7 8 4 1 3 5 6 9

Figure 3.2. PMX, LOX and UX Crossover Operations

Some of these crossover operators were modified to deal with representations

based on permutation with repetition. Bierwirth (1996) proposed the generalized order

crossover (GOX) which is an extension of LOX for permutation with repetition. Similarly

38

Mattfeld (1996) proposed the generalized position crossover (GPX) and the generalized

uniform crossover which are generalizations of PX and UX respectively.

Several mutation operators have been applied to permutation-based

representations in job shop scheduling problems. Swap mutation exchanges the values

(alleles) of randomly chosen adjacent loci. When the two loci (whose alleles are

exchanged) are not necessarily adjacent, we have the order mutation. The position

mutation randomly changes the position of an element (allele) in the chromosome.

In most applications crossover rates are between 0.5 and 1.0, and mutation rates

are between 0.01 and 0.1.

3.4.3. Population Related Factors for Classical JSSPs

Seeding, selection method, fitness scaling, population size, termination criterion,

decoding procedure, hybridization level, among others, are important factors in the

performance of GAs in classical JSSPs. Here it will be described only commonly adopted

variations of these factors. Further details on these issues are reported by Goldberg

(1989) and Reeves (1993).

Seeding is the generation of the initial population. Semi-active, active and non

delay schedule generation algorithms are frequently used to generate an initial population

of schedules. Other heuristics (e.g., dispatching rules) can be embedded in these

procedures to improve the quality of initial solutions. A good set of initial solutions can

help the GA to reach better solutions, but can also lead to a premature convergence.

In traditional GAs, parents are stochastically selected for reproduction through a

hypothetical roulette wheel, i.e., the probability of a chromosome be selected is

proportional to its fitness. This selection scheme is called stochastic sampling with

replacement. Several other selection schemes were proposed (De Jong, 1975).

Deterministic sampling and expected value models eliminate or reduce the variance in the

roulette wheel selection, that is, they try to eliminate or reduce the difference between the

expected and actual number of copies of an individual. Overlapping populations can be

39

implemented by selecting a proportion of the population for reproduction. Their offspring

replace only part of the population members. This method is called incremental

replacement. Elitist selection ensures the inclusion of the best individual of the current

population into the next one. Baker (1985) proposed a ranked-based selection where

individuals within the population are sorted according to their fitness and this ranking is

used to guide the selection. In epistatic domains (including JSSPs) the use of increased

selection pressure is required to avoid a tedious and almost non-improving search.

Severe selection methods like elitist and ranked-based selections are more suitable for

epistatic problems (Mattfeld, 1996).

Fitness scaling are also used to control the selection pressure. At early stages

there exist a large number of poor solutions and only a few good solutions. If absolute

fitness values are used in the selection process the GA will prematurely converge. On the

other hand, at later stages the fitness variance within the population is small and the

search process will be similar to a random walk if absolute fitness values are used in the

calculation of selection probabilities. Scaling the fitness values at each generation

overcomes these problems. Let f be the absolute fitness value of an individual. The

scaled fitness f is given by

f = af + b

where parameters a and b can be determined by several ways. Goldberg (1989) suggests

that a and b must be obtained from the conditions (considering maximization problems):

1 f’ - fi • » average “ 'average

2 . f’max = 2 f m a x (if f ’ m i n < 0 then the condition f’min = 0 replaces the condition f’max =

2 fm ax)

W h e r e faveragei fmin and fmax are respectively the average, minimum and maximum fitness

values within the population. A more severe selection (Mattfeld, 1996) can be achieved by

determining the values of a and b such that:

40

1 . f'm in = 0

2 f - f - fi max “ *max 'min

These transformations can be easily extended for minimization problems.

Population size is an important GA parameter. A small size drives the population

to a restricted small portion of the solution space, while a large population size is

computationally expensive. Although better results are reached by increasing the

population size, Nakano (1994) observed a saturation of this trend. Also, ideal population

size seems to be dependent on the chromosome length (Reeves, 1993).

Termination criteria are usually based on a fixed number of generations, or on a

population convergence metric (like entropy). For classical JSSPs sophisticated

convergence-based termination criteria can produce non-desirable results (Mattfeld,

1996), once significant improvements can be achieved after several generations of

stagnation (phenomenon also observer in our GA implementation for real JSSPs). In

other cases high genetic diversity can exist during several generations without any

significant improvement be achieved.

The decoding procedure is used to obtain the solution phenotype (and associated

fitness value) from the solution chromosome. Semi-active, active and non-delay schedule

generation procedures have been used to decode strings of characters into schedules.

The sequence of alleles in the chromosome determines, at each stage, the operation to

be scheduled next from a set of schedulable operations.

As mentioned earlier the hybridization of the genetic algorithm with a local hill

climbing was shown to enhance the GA performance in classical JSSPs. This can be

achieved by applying a local hill climbing procedure to each individual right after it has

been decoded.

Several of the GA concepts described here for classical JSSPs will be useful in

the development of a scheduling system for real JSSPs.

41

CHAPTER 4

THE PROPOSED MODEL

4.1. SYSTEM SCOPE

As described in earlier chapters, local search approaches like Tabu Search (TS)

and Simulated Annealing (SA) have yielded very good results in classical JSSP when

minimizing makespan. These approaches use the disjunctive graph representation

scheme with moves obtained by reversing arcs on the critical path. Such critical arcs

reversing moves are suitable only to minimize makespan. Also, the disjunctive graph can

not easily represent real life constraints, although some insights were presented by White

and Rogers (1990).

We have also discussed that pure genetic algorithm (GA) methods usually

perform worse than TS or SA for well known benchmark JSSP. This performance gap

can be eliminated by hybridizing the genetic algorithm with a greedy local search

procedure, as shown by Yamada and Nakano (1995) and Mattfeld (1996). These

attempts were however limited to makespan minimization in classical job shop scheduling

problems. Genetic-based scheduling systems that take into account some real

production environment constraints have previously been implemented. However, the

search space considered is usually incomplete and the real constraints included are small

in number and are environment dependent.

This work attempts to develop a robust framework to deal with real job shop

scheduling problems. In order to support constraints and objectives of real production

environments a number of modifications are proposed in the active and non-delay

schedule generation algorithms, in the solution representation scheme and neighborhood

structure of local search procedures, and in the genetic algorithm operators. The

following commonly encountered characteristics are considered in this framework:

1. Precedence and resource capacity constraints. These are the classical JSSP

constraints. They assure that precedence relationships among operations of the same

part are respected and that each resource processes at most one operation at a time.

42

2. Several subassembly levels for each job. A job (final product) can be composed of

several parts. Precisely, a bill of material is defined for each job. For instance,

consider the following bill of material of a job:

Figure 4.1. Bill of Material

In order to produce 1 unit of the job (final product) 1 unit of part 4 and 3 units of

part 3 are required. Similarly producing 1 unit of part 4 requires 2 units of part 2 and 1

unit of part 1. Here part 4 is called the succeeding part of parts 1 and 2, as well as

part 5 is the succeeding part of part 4 and 3. On the other hand parts 4 and 3 are the

preceding parts of part 5, and part 1 and 2 are the preceding parts of part 4. Parts 1,

2 and 3 are at the first level of the bill of material, while part 4 and 5 are at the second

and third levels respectively.

3. Additional renewable resource requirements to perform an operation (tools, fixtures,

personnel, etc.). Processing an operation may require several resource types.

Several units of each resource type can also be required. However, only one

machine can be used to process an operation. For instance executing an operation O

may require machine M and three other resource types: one unit of resource type X,

one unit of resource type Y and 2 units of resource type Z, where X can be an

operator with certain special skills, and Y and Z two different tools. The proposed

system assumes that there is considerably more competition for machines than for

other resources. So machine resources are treated differently as it will be shown

later. This assumption is real for most production plants.

4. Alternative processing plans for each part. Sometimes a part can be processed by

two or more technologically different sequence of operations, that is, by two or more

different sequence of machine types.

43

In order to facilitate the modeling of alternative processing plans the part process

is divided into a sequence of subprocesses. There is no feasible sequence of

operations that can process the part without the use of at least one operation of each

subprocess. So a unique sequence of subprocesses determines all possible

processing plans for a part. Each subprocess can be performed by alternative

operation routes. Each route is formed by a sequence of machine cells, each

machine cell corresponding to an operation. A machine cell is a set of identical

machines. However, if a set of identical machines processes some operations with

sequence dependent setups, then each one of these machines is modeled as a

machine cell. This modeling trick is adopted in order to simplify the active schedule

generation algorithm developed in section 4.2. The user must provide the part

processing plans to the system. When dividing a process into subprocesses, the user

must maximize the number of subprocesses, once it minimizes the total number of

alternative subprocess routes, and therefore enhances the performance of the

schedule generation algorithm (see section 4.2). Note that the number of alternative

subprocess routes is defined as the number of subprocesses routes minus one. The

following example illustrates these concepts:

Figure 4.2. Part Process Plan with Alternative Subprocess Routes

In the above diagram, the part process is divided into the three subprocesses Sub

1, Sub 2, Sub 3. The number of routes and alternative routes in Sub 1 are five and

four respectively, in Sub 2 are one and zero, and in Sub 3 are two and one. For

instance, a possible processing plan can be executed by the following sequence of

machine cells: M5, M7, M8, M9. In this processing plan the route M5, M7 was chosen

44

among the subprocess 1 routes, the subprocess 2 has only one possible route (M8)

and M9 was chosen as the subprocess 3 route.

Note that it is assumed that different subprocess routes are defined only by

different sequences of machine cells. The other resources (e.g., staff, tools) required

to process the operation are not allowed to vary either in type or in quantity. That is,

resources other than machines do not generate alternative subprocess routes.

Nevertheless, the proposed framework will also work if this assumption is relaxed by

defining each route as a sequence of resource sets (instead of machine cells), each

resource set corresponding to an operation.

5. Alternative resources for each operation. Since there can be more than one unit of

each resource type in the production plant, there can exist alternative sets of

resources to process an operation.

6. Machine, tool, fixture and staff calendars (e.g., preventive maintenance, staff training,

etc.). Machines have scheduled breaks for maintenance and cleaning, tools can need

sharpening, personnel requires vacation and training. The resources in the

production environments are not operational 100% of the time. So, the calendar of

each resource must be taken into account.

7. Ready times for raw material and externally produced parts, represented by job and

operation ready times. Very often processing an operation requires raw materials or

components not manufactured in the plant, but purchased from suppliers. These

materials and components may be available only after a specific point in time. The

inventory control system must provide the availability dates of these items to the

scheduling system, which in turn interprets them as operation and job ready times,

once a job or operation can not be initiated unless all raw materials and components

required are available.

8. Sequence dependent setup times. An operation presents sequence dependent setup

time when its setup time depends on which operation was previously processed on

the machine. Therefore a setup table must exist for each of these operations.

45

9. Batch overlap, i.e., successive operations of the same batch of parts being

performed simultaneously. For instance, let the batch size of a part be equal to 40

and let the manufacturing of this part requires 2 operations. Under certain conditions

(see section 4.2) the second operation can be initiated after only a fraction of the 40

parts has completed the first operation. For instance, each time 10 parts finish the

first operation they are transported to another machine cell to the second operation.

Although batch overlap is allowed, concurrent processing of the same operation on

more than one machine is not allowed, i.e., batch splitting is not allowed. It means

that an operation can start without all parts of the batch has completed the preceding

operation, but only one resource set (with only one machine) is chosen to process an

operation. Also, batch preemption is not allowed, i.e., once an operation execution

starts, it must not stop until the complete batch has been processed. The overlap of

the last operation of a job can be used to model partial shipping. Two different

overlap policies can be applied, depending on the requirement of parts, to initiate the

setup. These issues will be addressed later again in section 4.2.

10. Any regular multiobjective evaluation function, i.e., any combination of regular

performance measures. The multiobjective function considers combinations of

regular performance measures only, because the moves in the local improvement

algorithm are based on active chain manipulation and the recombination operator in

the GA is embedded in an active schedule generator. Also, it is assumed that the

multiobjective function is provided by the user. A regular performance measure can

not be improved by delaying the completion time of any job. The most commonly

used regular performance measures can be grouped in the following basic sets, each

set formed by equivalent measures (as shown by French, 1982):

e) Mean flow time, Mean completion time, Mean waiting time, Mean lateness

f) Maximum completion time (makespan), Mean machine idle times, Total machine

idle time, Mean number of jobs being processed per unit time

g) Maximum tardiness

h) Maximum lateness

i) Maximum flow time

j) Mean tardiness

46

One can easily prove that any linear combination of these criteria are also regular.

Only linear combinations will be considered here, although any other combinations

which result in a regular measure can also be used. Mean and maximum eariieness

are examples of important non regular performance measures. The inclusion of these

criteria in the objective function is not prohibited. However, as mentioned above, the

system is not well prepared to minimize non-regular measures.

As it will become evident in next sections, the extra computational difficulties

introduced by the above characteristics are not simply additive. In many cases they

interact with one another and a considerably large amount of computational time must be

X^spent to consider all of these constraints simultaneously.

The proposed system is composed of three basic modules: the modified schedule

generator algorithm, the local hill climbing procedure and the hybrid genetic algorithm.

The system works as follows: a set of initial solutions is obtained by modified active and

non-delay schedule generation algorithms. Each initial solution is enhanced by a local

improvement algorithm. Then a genetic algorithm hybridized with a local hill climbing

procedure is applied to the set of local optimum schedules. The genetic algorithm is

dependent on the schedule generation algorithm, since its crossover operator is

embedded in the decoding procedure performed by the schedule generator. An overview

of the proposed scheduling system is shown in the diagram below

Figure 4.3. Scheduling System Diagram

The next three sections describes the three basic system modules.

4.2. THE MODIFIED ACTIVE AND NON-DELAY SCHEDULE GENERATION

ALGORITHMS

As described in chapter 3, an active schedule is a schedule where no operation

can start earlier without delaying any other operation. In a non-delay schedule no

47

machine is kept idle if it could begin processing an operation (Baker, 1974). The non

delay schedule set is a subset of the active schedule set which is a subset of the semi

active schedule set. It was shown that all optimal schedules related to any regular

measure are active, but not necessarily non-delay (French, 1982). The active schedule

generation algorithm developed by Giffler and Thompson (1960) is able to generate all

possible active schedules for classical job shop scheduling problems. A large amount of

research has been reported on the use of deterministic or probabilistic dispatching rules

in active and non-delay schedule generation algorithms proposed by Thompson and

Giffler (1960). These schedule generation algorithms have also been used to generate

good initial solutions in applications with genetic algorithms or other local search

procedures for classical JSSP (Mattfeld, 1996).

In this section a modified active schedule generation algorithm which deals with

the real job shop scheduling problems described in section 4.1 is proposed. Afterwards,

some simplifications in the basic algorithm are presented to enhance its computational

performance and a modified non-delay schedule generation algorithm is developed.

Finally, a set of heuristics to be embedded in these modified schedule generation

algorithms are proposed.

4.2.1. Basic Relations, Calculations and Operations

We present here some basic relations, operations and calculations commonly

used in the algorithms developed in this work.

Availability of resources to process an operation

Let Qr be the number of resources of type R in the system. Let RSU be the set of

resources required to process operation u - RSU = {(R, qR), where qR units of resource

type R are required to process operation u}. The availability of resources to start

processing operation u at time t is verified by the availability of at least qR out of QR

resources of type R from t to t+tu, V (R, qR)e RSU, where tu is the total batch processing

time of operation u. Note that the resource calendars (including maintenance, vacation,

etc.) must be taken into account.

48

Precede (prec) and succeed (sue) operators

The precede (prec) and succeed (sue) operators determine respectively all the operations

that directly precede and succeed an operation of a job, considering prespecified

subprocess routes (i.e., subprocess routes already chosen) and several subassembly

levels.

If u is the first operation of part p, with p not in the first level of the bill of material

of job j, then prec(u) results in a set of more than one operation, each of these operations

being the last operation of a part preceding part p in the bill of material of job j. If u is the

first operation of part p, with p in the first level of a bill of material (i.e., p has no preceding

parts), then prec(u)=0. If u is not the first operation of part p, prec(u) results in the

operation that technologically precedes u in the processing plan of p.

If u is the last operation of job j, then suc(u) = 0 . If u is not the last operation of

job j, than suc(u) results in the operation that technologically succeeds u in the processing

plan of job j.

In a very similar way the succeed and precede operators are defined in the

subprocess and part domains.

Determination of batch overlap time (tou)

The batch overlap time of operation u is defined as the minimum amount of time (after

operation u has begun) required to start processing the operation^succeeding u on job j

(suc(u)) and will not interrupt it due to unavailability of parts. Let au be the minimum

transport batch of operation u, which is defined as the minimum number of parts from a

batch of size n that can be transported after the completion of operation u. The concept

of minimum transport batch usually corresponds to the concept of unit load in material

handling theory.

49

In order to simplify the calculation of tou, let the minimum transport batch oiu be such

that the ratio n/tXu is an integer. This theoretical assumption is adopted here only for

clarity purposes. Let tsu be the setup time of operation u and topu the unit execution time

of u. The following two batch overlap policies are defined:

Policy 1. An operation setup is initiated only after at least one minimum transport batch of

the preceding operation has arrived at the machine input buffer. It means that an

operation setup is initiated only after parts to be processed become available. This policy

must be adopted when the setup time is not very large or the time data variance is high

There are two cases, as shown below:

a) tou = tsu+{Xu*topu, if tsuc(u) > a u* t o p SUC(u) + (n - a u)*topu

b) tou = tu - tsuc(u) + (Xu topSUC(u), if tsuc(u) < cXu topSUC(U) + (n - ccu) topu

Policy 2. An operation setup can be initiated without any part be available, given that no

time gap occurs between the setup and the beginning of operation execution. Again,

there are two cases:

a) tO y = tS y + (Xy t O P U “ tS g u c (y) , I f tO P g u c (u) ^ t O P y

b) tOu = ty tsuc(u) + CXu topSUC(U), if topSUC(U) ^ topu

These four situations are described in the following diagrams:

Policy 1 / case a:

Policy 1 / case b:

s' ' r ; ' ^

t S u -a/topu- -(n- auj’ topu- Otg tOPsuc(u)

o c

>

t

50

Policy 2 / case a:

Policy 2 / case b:

Figure 4.4. Overlap Policies

Note that tou under policy 2 can be negative, meaning that a time demanding setup

can start before the setup of the preceding operation has started. In order to avoid this

situation we consider tou = max {tou, 0}.

When u is the last operation of a subprocess s, then the value of tou depends on

the route chosen for the following subprocess (suc(s)). Moreover, if u or suc(u) are

sequence dependent setup operations, then tou will also be sequence dependent.

Partial shipping can easily be modeled by allowing overlap in the last operation of

a job. Here, as in the rest of this work, the transportation times were not considered. As

long as transportation devices are always available, only as few modifications in the tou

equations are required to include the inter-station transportation times.

Determination of operation earliest start time (lu)

The earliest start time of an operation u (lu) is obtained by determining the minimum lu,

such that:

• lu > r j , rj is the job ready time

• lu > rou , rou is the operation ready time

• lu > maxprec(u) { Ip r e c (u) + to prec(U)}, tou is the batch overlap time

51

• There is availability of resources to process the operation from lu to (lu+tu), where tu is

the total batch processing time of operation u

After the introduction of these concepts, we can describe the modified active and

non-delay schedule generation algorithms.

4.2.2. Description of the Schedule Generation Algorithms

The modified active scheduling generation algorithm (MASGA) will now be

presented. The algorithm can be viewed as a generalization of the classical active

schedule generation algorithm proposed by Giffler and Thompson (1960), and it is a

robust framework for heuristic-based scheduling research in real production environments

as the one described in section 4.1.

An active schedule is now defined as a schedule where no operation can start

earlier, even using another set of resources, without delaying other operation.

The following symbols are used in the algorithm:

PSi = partial schedule at stage i, corresponding to the set of operations already scheduled

at stage i.

Si = set of schedulable operations at stage i, corresponding to the set of operations at

stage i for which all the preceding operations are in PSi.

RCO,),* = set of resources which can be used to complete operation u* at time 0*.

NPjp= Number of parts directly preceding part p in the bill of material of job j

ITRU = Set of resources selected to process operation u

The MASGA works as follows:

1) i = 0; PSi = 0 ; Si = 0 .

2) For each part p such that NPjp=0, randomly select exactly one route for the first

subprocess of p and insert the first operation of the chosen route in Sf .

52

3) For all operations ue Si such that u is the last operation of a subprocess and suc(u) *

0 , randomly select one route among the alternative routes of the succeeding

subprocess (if it has not been already selected).

4) Determine the minimum operation completion time when overlap is allowed <t)*=minueSi

{lu + tou}, where lu and tou are obtained as previously shown considering as

“prespecified routes” the ones selected in steps 2 and 3.

5) Let u* be the operation related to <(>*. Determine RCCV, the set of all resources that

can be used to complete operation u* at time <(>*. That is, for all types of resources

required to process u*, include in RCO,,,* the resource units available from lu* thru

(j)*=|u.+tu., without violating resource calendars.

6) Determine the set Si'cSj such that S/ = { u / ueSi, lu<<|>*, and processing u from lu to lu

+ tu can use at least one resource belonging to RCO^}.

7) Randomly select an operation u(1) from Sj’ to be scheduled next.

8) Randomly select the resource set ITR m to process operation u(1) from time lu(1) to lu(1)

+ tU(D-
9) Determine tdou(t), where tdou(i> is the decrease in lu(1) caused by not considering

resource requirements other than machine to process operation u(1). This variable will

be used by the local hill climbing algorithm.

10) Form PSi+1 by adding u(1) to PSi. Form Si+1 by removing u(1) from S j.

11) If the last scheduled operation u(1> is the last operation of a part p and suc(p) * 0 ,

then

Npjsuc(p)= NpjSUC(P)-1.

If Npjsuc(p)= 0 then add suc(u(1)) to Si+1,

else add suc(u(1)) to Si+1

12) i = i + 1.

13) If Sf* 0 return to step 3; else stop and calculate the evaluation function value.

Note that the determination of tdou(,) is done only to facilitate the starting of the

local improvement procedure (see section 4.3). The following simple example illustrates

the reasoning of the MASGA:

53

Example 4.1.

Two jobs (products) must be scheduled in a job shop. The first job is composed by three

parts and the other job has only one part. The flowcharts below show the routing

structure of jobs (Ji), parts (Pi), subprocess (Si), routes (Ri) and operations (Oi) provided

by the process planning:

J1:

P1 P3

\ J] ----------------------- § 1 \

J2:

P4 S7

Figure 4.5. Job Structures and Process Plans of Example 4.1

Job J1 is composed of three parts (P1, P2, and P3), part P3 being the succeeding

part of parts P1 and P2. One unit of part P1 and one unit of part P2 are required to

produce one unit of part P3 (Job J1). Therefore, in this example, the batch sizes of parts

P1, P2 , P3, and job J1 are identical. Part P1 is composed of two subprocesses (S1 and

S2). There are 2 subprocess routes for subprocess S1, one requiring operations 01 and

54

02, and the other requiring only operation 03. The rest of the flowcharts are interpreted

similarly. Supposing that all job and operation ready times are zero and that there is no

sequence dependent setup operation, the following table provides some important

problem data:

Job

(batch

size)

Part Subprocess Route Operation Operation

setup time

Unit

operation

execution

time15?u

Minimum

transport

batch

J1 (10) P1 S1 R1 01 5 1.5 10

02 7 2.0 5

R2 03 3 3.0 5

S2 R3 04 5 1.0 5

P2 S3 R4 05 8 1.5 2

P3 S4 R5 06 7 2.5 2

S5 R6 07 4 2.0 2

R7 08 2 0.5 5

J2 (15) P4 S6 R8 09 9 4.0 3

S7 R9 010 2 1.5 3

R10 011 6 2.0 5

Table 4.1. Operation Related Data of Example 4.1

The production environment is composed of 3 machine cells, the first containing 2

machines and the others containing one machine each. Five other resource types are

also used. The description of all resources used in this problem is shown in table 4.2,

where Qij is the jth unit of resource type i. The start time and duration of scheduled

breaks (for maintenance, training, etc.) for each resource in the scheduling horizon are

also displayed.

55

Resource Description Scheduled break (start time, duration)
Q11 Machine of type 1 -
Q12 Machine of type 1 (30, 10)
Q21 Machine of type 2 (15, 15)
Q31 Machine of type 3 -
Q41 Operator of type 4 (0, 10), (80,20)
Q42 Operator of type 4 (50, 15)
Q51 Operator of type 5 -
Q52 Operator of type 5 (150,20)
Q53 Operator of type 5 (45,20)
Q61 Tool of type 6 -
Q62 Tool of type 6 (50,30)
Q71 Tool of type 7 (12,10)
Q72 Tool of type 7 -
Q73 Tool of type 7 (65,25)
Q81 - Tool of type 8 (160,10)

Table 4.2. Resource Related Data of Example 4.1

Next table describes the resource requirement of each operation:

»

Using overlap policy 1, the algorithm works as follows:

Operation Machine type Other resources (type, quantity)

01 1 (4,1), (8,1)
02 3 (5,1), (7,1)
03 2 (5,1), (7,2)
04 1 (4,1)
05 1 (4,1),(6,1)
06 3 (8,1)
07 2 (5,1)
08 1 (4,1)
09 2 (5,1),(8,1)

010 3 (5,1),(6,1)
011 1 (4,1)

Table 4.3. Resource Requirement Data of Example 4.1

Stage Step PS| .
scheme Si

Cjj-peopeztsoà
Subprocess

routes
selected

u7<|>*
°P/ TCZK,ho

RCO*.
°i ?frC.

Sî ÙT7U24ÏJS

Si’ u' V ITRU(i) / tdoU(D

0 1 0 0 - - - - -

0 2 0 {03,05,09} R2,R4,R8 - - - -

0 3 0 {03,05,09} R3)R5,R9 - - - -

0 4-5 0 {03,05,09} 05/11 {Q11 ,Q12,Q42,
Q61 ,Q62}

- -

0 6 0 {03,05,09} - 05/11 {011,012,042,
Q61,062}

{05} —

0 7-11 {05} {03,09} - - - - 05/{Q11 ,Q42,Q62}/0
1 3 {05} {03,09} - - - - -
1 4-5 {05} {03,09} - 03/53 {Q21,Q51,Q52,

Q71,072,073}
- -

1 6 {05} {03,09} - 03/53 {021,051,052,
071,072,073}

{03,09} -

1 7-11 {05,09} {03,010} - - - - 09/{Q21,052,081 }/0
2 3 {05,09} {03,010} - - - - -

2 4-5 {05,09} {03,010} - 03/122 {021,051,052,
053,071,072,073}

- -

2 6 {05,09} {03,010} " 03/122 {021,051,052,
053,071,072,073}

{03,010} -

2 7-11 {05,09,03 {010,04} - - - - 03/{Q21,052,071 ,Q73}/0
3 3-11 {05,09,03,

010}
{04} “ 010/123.5 {031,051,053,

061,062}
{010} 010/{Q31,053,061 }/0

4 3-11 {05,09,03,
010,04}

{06} - 04/142 {011,012,041,
042}

{04} 04/{Q12,Q42}/0

5 3-11 {05,09,03,
010,04,06}

{08} R7 06/196 {031,081} {06} 06/{Q31 ,Q81}/23

6 3-13 {05,09,03,
010,04,06,08}

0 - 08/209 {011,012,041,
042}

{08} 08/{Q11,Q41}/0

Table 4.4. Solution Procedure Table of Example 4.1

57

The total processing time, overlap time and earliest start time of the scheduled

operations are shown below, together with the color legend used in the Gantt chart that

follows. In this example a very poor solution was obtained

Operation Total Processing Time Overlap Time Start Time Color

03 33 23 99 _
04 15 10 132

05 23 11 0

06 32 26 170

08 7 7 202

09 69 49 30

•010 24.5 24.5 99 ■ •
Table 4.5. Time Results of Examp e 4.1

Time

Figure 4.6. Gantt Chart - Example 4.1

If sequence dependent setup operations do not occur, the MASGA describe

above is able to generate all active schedules (and hence all optimal solutions) in job

58

shop scheduling problems considering all real production environment constraints and

alternatives described in section 4.1. Moreover, all schedules generated are active.

However, if sequence dependent setup operations are present the overlap time of

operation u (tou) in step 4 can not be precisely determined, and hence <)>* can be under or

overestimated. This will happen when suc(u) is a sequence dependent setup operation,

if so, its setup time (tssuc(U)) can not be determined yet, once suc(u) is not even in set Sj.

As tSsuc(u) is used in the calculation of tou and tou used in the calculation of <(>*, <]>* can not

be exactly determined. Three different strategies can be taken to solve this impasse:

1) choose the shortest setup time in the setup table of suc(u) and use this value in the

calculation of tou. This will maximize tou and <J>* as well. As consequence a few semi

active schedules (but not active schedules) can be generated. Of course the

algorithm will still be able to generate all optimal solutions.

2) choose the largest setup time in the setup table of suc(u) and use this value in the

calculation of tou. This will minimize tou and <)>*. Therefore a few active schedules will

never be generated and the capability of generating all optimal schedules will not be

hold anymore. Note that all the schedules will be active.

3) choose the average or default value for the setup time of suc(u). This does not

guarantee that all optimal solutions will be generated or that all generated schedules

will be active. However it reduces the number of non active schedules (compared to

strategy 1), and also decreases the probability of not being able to generate the

optimal solution (compared to strategy 2). As long as the MASGA described will be

used here to generate a set of initial solutions, this third strategy will be adopted.

The setup times of suc(u) chosen above are only for the calculation of <)>*. The

exact setup time value will only be known when suc(u) is scheduled.

Steps 5 and 6 of the MASGA can be modified to include only machines in RCO$-.

This would disable the algorithm from generating all feasible active schedules, but would

speed up the procedure. The modifications in steps 5 and 6 are the following:

5) Let u* be the operation related to (j>\ Determine RCO^, the set of all machines that

can be used to complete operation u* at time <(>*. That is, if c is the machine type

required to process u*, then include in RCO** all machines of type c available from lu-

thru <t>*=lu*+tu*, without violating machine calendars.

6) Determine the set S/cSi such that Si' = {u / ue Si, lu<<t>*, and processing u from lu to lu +

tu can use one of the machines belonging to RCO^-}.

When only machines are considered in RCCV, the MASGA is said to be in its

simplified generation mode, as opposed to the complete generation mode that also

includes resources other than machines in RCO*-. The use of simplified generation

mode probably does not affect the solution quality very much, since the competition level

for’machines is considerably higher than for other resources.

Better results have been obtained by using dispatching rules in non-delay

schedule generation algorithms, instead of active schedule generation algorithms (Baker,

1974). Slight modifications in steps 4 and 6 can transform MASGA in a non-delay

algorithm. They are:

4) Determine the minimum operation start time (j)*=minueSi {U, where lu is obtained as

previously shown.

6) Determine Sj' = { u / ueSi, lu=<|>*, and processing u from lu to lu + tu can use at least

one resource belonging to RCO$*}.

Both active and non-delay schedulers using complete and simplified generation

modes will be used in the simulations described in chapter 5. Following the modified non

delay schedule generation algorithm (MNSGA) adopting the simplified generation mode is

presented:

1) i = 0; PSi = 0 ; Si = 0 .

2) For each part p such that NPjp=0 randomly select exactly one route for the first

subprocess of p and insert the first operation of the chosen route in S i.

59

60

3) For all operations ue Si such that u is the last operation of a subprocess and suc(u) *

0 , randomly select one route among the alternative routes of the succeeding

subprocess (if it has not been already selected).

4) Determine the minimum operation start time <t>*=minueSi {lu}, where lu is obtained as

previously shown.

5) Let u* be the operation related to <(>*. Determine RCCV, the set of all machines that

can be used to complete operation u* at time <J>*. That is, if c is the machine type

required to process u*, then include in RCO^* all machines of type c available from lu.

thru <t)*=lu-+tu*, without violating machine calendars.

6) Determine the set S/cS, such that S/ = { u / ueSj, lu=<t>*, and processing u from lu to lu

+ tu can use at least one machine belonging to RCO ,̂*}.

7) • Randomly select an operation u(1) from Si' to be scheduled next.

8) Randomly select the resource set ITR u(„ to process operation u<1) from time lu0) to Iu(d

+ tU(i).

9) Determine tdou(,), where tdou(1) is the decrease in lu(1) caused by not considering

resource requirements other than machine to process operation u(1). This variable will

be used by the local hill climbing algorithm.

10) Form PSi+1 by adding u(1) to PSi. Form Si+1 by removing u(1) from S i.

11) If the last scheduled operation u(1) is the last operation of a part p and suc(p) * 0 ,

then

Npjsuc(p)= N p jsuC(p)-1.

If NpjSUC{p) = 0 then add suc(u(1)) to Si+1,

else add suc(u(1)) to Si+1

12) i = i + 1.

13) If S i*0 return to step 3; else stop and calculate the evaluation function value.

In the schedule generation algorithms proposed in this section, selections in steps

2, 3, 7, and 8 were made at random. However, one can also make these selections using

deterministic or probabilistic heuristics. Of course, if only deterministic heuristics are

used the algorithm will be able to generate only one solution.

61

4.2.3. Heuristics Embedded in the Modified Schedule Generation Algorithms

The following heuristics were developed to aid the selections in steps 2, 3, 4, and

8 of the modified schedule generation algorithms presented in the last section:

Selection of subprocess routes (Route Selection Heuristic)

The selection of subprocess routes in steps 2 and 3 are based on two different objectives:

(1) balance resource utilization, avoiding highlighted bottlenecks, (2) choose efficient

routes, i.e., routes associated with low processing times.

Let P(rt,s,i) be the probability of choose route rt to execute subprocess s at stage i,

where a stage corresponds to the selection of a route in the MASGA. Let RU(R,i) be the

expected utilization time of a machine from cell R at stage i; QR be the number of

machines in cell R; MCU the machine cell required to process operation u; tu the operation

u processing time; N the total number of operations of all jobs; TRS the number of

alternative routes of subprocess s. Then:

RU(R,i)= (I tu + I tu*P(rt,s,i))/Qr
U€ rt / rt chosen ue rt / rt not chosen
MC«=R MCv*R

The expected weighted utilization time of machines in a specific route rt at stage i is given

by Rt(rt,i), where:

Rt(rt.i) = E tu*RU(R,i)

The route rt processing time, Rpt(rt), is simply:

Rpt(rt) = X t u
uert

Let 0<a<1 be the relative importance between balancing resource utilization and adopting

efficient routes. P(rt’,s,i) is considered inversely proportional to:
TR. TR.

a*Rpt(rt’) /X R p t(r t) + (l-a)*R t(r t ’,i) / X R t(rt,i)
rt =1 rt=1

The method to determine the values of P(rt,s,i) is recursive, since P(rt,s,i) is used to

calculate RU(R,i) either. So, at each stage the following convergent problem is solved:

62

P(rt,s,i) is initialized with P(rt,s,i-1), V rt

P0(rt,s,i)=0, V rt,

while maxrt IP(rt,s,i)-PO(rt,s,i)l>ERROR do

P0(rt,s,i) = P(rt,s,i);

determine P(rt,s,i) as described above;

Note: P(rt,s,1)=1/TRS

Selection of the operation to be scheduled next

The determination of which operation of S/ to be scheduled next (dispatching procedure)

in step 7 is done totally at random or by using the traditional shortest processing time

dispatching rule (SPT).

Selection of the resource set to process an operation (Minimum Gap Heuristic)

The choice of the resource set ITRU<1) to process operation u<1> in step 8 is done in order to

minimize time gaps in such resources. So a resource is chosen among others in order to

minimize the difference between lu(1) and lu+tu', where u’ directly precedes operation u(1) on

this resource.

The performance of these heuristic will be determined in the experimental designs

carried out in chapter 5. Note that other approaches can be adopted to make these

selections. For instance, decision trees built by inductive learning methods [13] can be

used instead of the heuristics proposed above.

Once the initial schedules have been generated, a local improvement procedure is

applied to these solutions in order to enhance their evaluation function values. The local

improvement algorithm used is described in the following section.

4.3. THE LOCAL IMPROVEMENT PROCEDURE

When dealing with local search algorithms, one must define the neighborhood

structure and the related moving operators. The moving operators provide moves from

one solution to another in the neighborhood.

63

As described in chapters 2 and 3, local search procedures like Tabu Search,

Simulated Annealing, Threshold Acceptance, and simple Local Iterative Search (Local Hill

Climbing) have widely been applied to the classical JSSP, considering makespan as

criterion. These applications are based on the disjunctive graph representation, and

neighborhood moves are obtained by reversing arcs on the critical path or making other

changes on precedence relations in the critical path.

In this section the graph representation is expanded to support real environment

constraints. Further, a neighborhood structure based on active chains manipulation is

developed to support multiobjective functions and real world constraints. Like the

modified schedule generation algorithms, the local search framework developed here is

robust. It can be used to implement any local search procedure (as Tabu Search and

Simulated Annealing), by only adding the respective control strategy.

Here, a simple Local Hill Climbing Search, also known as Local Iterative Search,

will be implemented. In this approach, only moves to better solutions are accepted. The

search stops when no improving move is available, that is, when a local minimum has

been reached.

The local improvement framework developed takes into account all the real world

constraints described in section 1, except alternative subprocess routes and alternative

machines. It means that all subprocess routes must be selected before the local hill

climbing procedure be applied. Also, each operation must be assigned to a machine

before the algorithm starts running, and no other machine can be used to process the

operation during the iterative search cycle, that is, when a move is performed the

machine used to process an operation is not allowed to change. Nevertheless,

assignment of resources other than machines will be allowed to change when moves in

the neighborhood are implemented.

Some representation schemes, the basic neighborhood structure, and the local hill

climbing algorithm itself are introduced next.

64

4.3.1. Representation of Real World Constraints in Disjunctive Graphs

A job shop problem is represented by a graph G=(V, A u H). The set of nodes V

corresponds to the set of operations, the arc set A connects consecutive operations of the

same job, and the set of edges H connects operations processed on the same machine.

When the edge set H is transformed into a conjunctive arc set S, a solution is obtained.

For practical purpose only the arcs belonging to the Hamiltonian path l_i of each machine i

are represented. Arc (v, u)e L| <=> operation u is the next operation after v to be processed

on machine i, i.e., v<u. The final digraph obtained D = (V, A u L), where L=u Lj,

represents a particular schedule. If arc (v, u)e A then u=suc(v). If arc (v,u)e L then v<u.

Next, this classical schedule representation scheme is extended to include real

world constraints. A graph representing a solution of an example problem is also

provided at the end of this section. The following arcs are used to represent real job shop

scheduling problems:

a) Sequence of operation within a job are represented by arcs (u,v) e A, where u and v

are consecutive operations of the same job. The weight of (u,v) is the sum of tou

(overlap time of operation u) and tdov (decrease in the start time of operation v

caused by not considering resource requirements other than machine to process v).

The weight tou + tdov of arc (u,v) means that operation v can be initiated tou + tdov

time units after operation u has started. If v is the first operation of a part p, then

there will be as many of these arcs arriving on v as the number of directly preceding

parts of part p. These arcs are illustrated below:

Successive operations within a part: Successive operations in a subassembly:

tou + tdov f \

Figure 4.7. Graph Representation of Successive Operations within a Job

65

b) Job ready times are modeled as the first operation of a job j. Therefore, we create

arcs (u,v) e A with weights corresponding to the sum of job ready time and tdov,

where u is a dummy node and v is the first operation of part p of job j, given that part

p has no preceding part. The arc connecting the source node and u has weight zero.

This modeling trick is shown in the following figure, where rj is the ready time of job j,

and v1 and v2 are the first operation of parts p1 and p2. Parts p1 and p2 are in the

first level of the bill of material of job j, i.e., they are not preceded by any part.

c) Similarly, an operation ready time is represented by creating an arc (u,v) € A of

weight corresponding to the sum of ready time of operation v (rov) and tdov, where u is

a dummy node connected to the source node by an arc of weight zero. The following

figure illustrates the graph representation of an operation ready:

Figure 4.8. Graph Representation of Job Ready Time

Figure 4.9. Graph Representation of Operation Ready Time

d) Machine capacity constraints are represented by arcs (u,v) e L, where operation u

directly precedes operation v on a-machine. The arc weight corresponds to the sum

of tu (total processing time of operation u) and tdov, as shown in the diagram below:

Figure 4.10. Graph Representation of Machine Capacity Constraint

e) Machine calendar constraints are considered by modeling each scheduled

maintenance break as an one operation job. The maintenance beginning time is the

job ready time, the maintenance duration is the total operation processing time, and

the desired maintenance finishing time is the job due date. In the objective function a

high weight must be assigned to the violation of this due date in order to enforce the

fulfillment of the machine calendar. So we create an arc (u,v) e A of weight

corresponding to the maintenance starting time (rm), where u is a dummy node

• connected to the source node by an arc of weight zero and v (maintenance operation)

is connected to the sink node by an arc of weight equal to the maintenance duration

time (tm). The following figure illustrates the graph representation of a machine

maintenance operation:

The dummy operations related to machine calendars and ready times must be

included in the graph structure, and hence in the topological sorted set associated to the

graph. Note that the first sorted set is the final PSi generated by the schedule generation

algorithm, which is represented here by PSfinai. Each machine m maintenance operation

must be inserted in PS(inai at a position right before the first operation to be processed on

machine m after the maintenance operation. The ready times can be placed in the

beginning of PSnnai.

Figure 4.11. Graph Representation of Machine Maintenance

67

EXAMPLE 4.2. Consider the same data of example 4.1, but also include ready times for

job 1 and operation 8. Let A, B, C, D, E, F be respectively the maintenance operation

ready time of machine Q12, the maintenance operation of machine Q12, the maintenance

operation ready time of machine Q21, the maintenance operation of machine Q21, the

ready time of job 1, and the ready time of operation 8. The digraph of figure 4.12

corresponds to a particular solution of the scheduling problem. The dashed arrows

correspond to arcs in L and the others correspond to arcs in A.

Figure 4.12. Solution Representation by a Digraph - Example 4.2

Once a problem representation scheme was developed a neighborhood structure

that allows moving from one solution to another must be defined.

68

4.3.2. A Neighborhood Structure

Several neighborhood structures, characterized by sets of moves, have been

proposed for the classical JSSP with makespan as criterion. Recently, procedures that

perform fast makespan estimation for each move and easily recalculate the makespan

after a move has been chosen were also developed. These procedures and comparisons

among different neighborhoods are reported in (Dell'Amico and Trubian, 1993) and

(Mattfeld, 1996).

In this section, a neighborhood is proposed to deal with multiobjective evaluation

functions and the already described real world constraints. Moreover, the evaluation

function recalculation procedures mentioned in the above paragraph is extended to

support such complex environments.

4.3.2.1. Defining a Neighborhood Structure for Real Production Environments

As defined in (Sun et al, 1995) for classical JSSP, an active chain of operation u in

a schedule is a chain of operations starting in u and finishing in an operation with earliest

starting time equal to zero, and with no time interval between the starting time of an

operation and the completion time of the preceding operation in the chain. Two

consecutive operations u and v in the chain are such that (u,v)eA or (u,v)eL. If a

schedule is a semi-active one, there is at least one active chain for each operation. It is

simple to see that an active chain of operation u corresponds to the head of the operation

plus the operation itself. The makespan corresponds to length of the longest active

chain, i.e., to the length of the critical path.

As mentioned in section 4.1, the approach proposed here admits any combination

of regular measures as objective function. It was proved by Laarhoven et al (1992) that

the makespan can only be improved by changing precedence relations among operations

on the critical path. Similarly the value of any regular measure can only be improved by

changing precedence relations in active chains of last operations of the jobs. Therefore,

for each regular measure considered in the multiobjective function is associated a subset

of active chains. For instance, the makespan is associated to the longest active chain,

the mean tardiness is associated to all active chains of last operations of tardy jobs, and

69

so on. These active chains are called here relevant active chains. After the solution

graph has been augmented with the set of dummy operations defined in section 4.3.1, the

relevant active chains are extracted from it.

The procedure to build an active chain of an operation is described below, where

the variables lu, tou, tu, tdou and lu have been defined in section 4.2:

Starting with the operation and moving backwards, select to include next in the

chain one of the following operations (supposing that the most recently included operation

is v):

1) u, such that v = suc(u), and lu + tou + tdOv= lv

2) u, such that u<v, and lu + tu + tdOv= lv,

Note that operations u and v above also include the dummy operations used to

model machine maintenance and ready times.

If more than one operation can be selected to enter the chain, then decreasing

selection priorities are assign to the following operations: (1) job and operation ready

times, (2) operations from the same job, (3) operations processed on the same machine.

Such selection priorities tend to minimize the neighborhood size and speed up the
algorithm.

A block in an active chain (Bj) is a string of consecutive operations that are

processed on the same machine i. A neighborhood structure is defined below:

Given a solution D=(V, A u L), its neighborhood N(D) consists of all schedules

derived from D by reversing one arc (u,v), where both operations u and v belong to a

block Bj of a relevant active chain; and v does not indirectly succeed u in the same job;

and either u is the first operation of B, or v is the last operation of B,.

The requirement of v not being a indirect successor of u in the neighborhood

structure definition above is due to what was named here “flow effect”. The flow effect

can occur if batch overlap is allowed. Then it is possible for an arc (u,v) in a relevant

active chain be such that u<v and v indirectly succeed u in the same job. For example, let

u, w and v be three consecutive operations of the same job (i.e., v=suc(w) and w=suc(u)),

and let u and v require the same machine to be processed. The following diagram
illustrates a flow effect.

70

• V

to,.

tl t2

Figure 4.13. Flow Effect Example

If u and v did not require the same machine, v could be initiated at time t1. As t1<t2 arc

(u,v), and not (w,v), is inserted in the active chain. However, (u,v) can not be reversed in

a neighborhood move due to technological constraints. Note that there are no two

successive operations in a job that are processed on the same machine, because the

“two operations” would be modeled as a unique operation.

The following two lemmas are presented and proved:

Lemma 4.1. In the neighborhood N all the available moves lead to feasible schedules (no
cycle).

Proof. Let c and d be successive operations on a block of a relevant active chain. The

reversal of arc (c,d) can lead to a cycle only if there is a path p from suc(c) to prec(d), as

can be inferred from figure 4.14. Let v be the last operation on path p that is from the

same job of c. By the way overlap time was defined, the finishing time of operation v (fv) is

greater than the finishing time of operation c (fc), i.e., fv>fc. If path p exists, then an

operation w such that v<w (w succeed v on the machine) will exist either. As v and w are

processed on the same machine the earliest start time of w (lw) must be greater than or

71

equal to the finishing time of v, i.e., Iw> fv. Therefore lw> fv> fc. As d is the operation after

the path p we have ld-tdod> lw> fv> fc, where tdod was defined in section 4.2. Thus ld > fc

+ tdod and hence arc (c,d) can not be on the active chain.

Lemma 4.2. Considering any combination of regular measures as the evaluation function,

the reversal of an arc can lead to an evaluation function improvement only if the reversal

move is available in neighborhood N, given that sequence dependent setups and multiple

resource requirements are not considered.

Proof. The improvement of a regular performance measure value can only be achieved

by reducing the length of relevant active chains. Reversing an arc not belonging to a

relevant active chain can not reduce the active chain length. Further, suppose that b, c, d

and e are successive operations on a block of a relevant active chain. Thus le=lb+tb+tc+td

(given that only machine is used to process an operation, i.e., tdOj=0 for all operations i).

As shown in figure 4.14, the reversal of arc (c,d) will not affect the start time of operation

e (le) and hence the active chain length. Therefore a regular performance measure can

only be improved by reversing an arc (c,d) of a relevant active chain, where either c is the

first operation of a block or d is the last operation of the block.

If the presence of multiple resources for each operation (which generates tdo) and

sequence dependent setup operations are considered, the statement that only changes in

relevant active chains can improve the evaluation function does not hold anymore. If the

weight of an arc in an active chain is sequence dependent, it can be modified by

reversing arcs out of the active chain. Similarly, changing the allocation of resources

other than machines can alter the value of tdou , with u in the active chain, and hence

alter the active chain length. However, these effects were disregarded and only moves

based on rearranging blocks of relevant active chains were considered.

As for the classical JSSP, the connectivity property does not hold if at least c or d

is required to be either the first or the last operation of a block.

As mentioned in last chapter, other neighborhood structures have been proposed

for classical job shop scheduling problems. For instance, in (Dell’Amico and Trubian,

1993) a neighbor is obtained by moving an operation to the position closest to the first or

72

the last operation of its block for which feasibility is preserved. Dell’Amico and Trubian

(1993) also considered the reversal of two arcs in one move. These neighborhoods

usually reach better local optima. They however require greater computational effort due

to their larger sizes. Once considering multiobjective function instead of makespan

drastically increases the neighborhood size, these structures will not be used here.

Nevertheless, the framework is robust enough to support them.

Depending on the control strategy adopted a number of neighboring solutions

must be evaluated in order to select a move. The exact calculation of the makespan

value (in classical JSSP) for each of these neighboring solutions require large CPU time.

In Dell’Amico and Trubian (1993) is described a fast method to calculate lower bounds for

the makespan of each neighboring solution in order to overcome this problem.

Unfortunately, a similar procedure is not suitable for real production environments. Even

if a fast procedure to calculate lower bounds for an active chain length after a move has

been done is available (and it is not available), the multiobjective nature of the evaluation

function would invalidate the approach. As an operation usually belongs to several

relevant active chains, a promising move regarding to an active chain can produce bad

results in other chains. Further, the presence of multiple resources, sequence dependent

setups and batch overlap would increase the computational time required to calculate the

lower bound and decrease its quality. Thus, an exact calculation of the evaluation

function value for every neighboring candidate solutions will be necessary. Similarities

between neighboring solutions will be used to enhance this calculation.

4.3.2.2. Performing a Neighborhood Move and Recalculating the Evaluation Function

Let Bi be a block of operations in a relevant active chain to be processed on

machine i. The following modifications must be performed in the solution graph D to

reverse an arc (c,d) from block Bi!

1) Reverse (c,d) obtaining (d,c).

2) If (b,c) e L exists, then remove (b,c) from L and construct arc (b,d).

3) If (d,e) e L exists, then remove (d,e) from U and construct arc (c,e).

4) If at least one of the operations c, d, or e has sequence dependent setup times, then

update the total processing time of operations c, d, and e, and the overlap time of

73

operations prec(d), d, prec(c), c, prec(e) and e (if the operations exist). That is,

recalculate the values of t<j, tc, t©, tOprec(d)i too, tOprec(c)» tOc, tOprect©)» and tOe.

The following figure illustrates the reversal of (c, d) described above:

In the above figure, operations b, c, d and e are processed on the same machine

The graph corresponding to the new solution is obtained by implementing the set

of modifications just described in the original graph D. The new solution is represented

by D’ = (V’, A u L’). The arc weoghts in D’ are not yet determined because the move

could have changed the values of tdou.

Before the calculation of the evaluation function value associated to a solution

graph F(D), all the operations must be sorted. This procedure can be simplified here by

taking advantage of similarities between neighboring solutions.

The first sorted set of operations is provided by a modified schedule generation

algorithm and corresponds to the final partial schedule set PS(i„al. As described in

Mattfeld (1996) and illustrated in the diagram below, the reversal of (c,d) only affects the

sorting of nodes between c and d in PS^ai. The new sorting is achieved by dividing X into

Figure 4.14. Arc Reversal

74

X' and X", where X' is composed by all operations in X that directly or indirectly precede

operation d, and X" = X - X‘. This can be achieved by a labeling algorithm (Bradley, Hax

and Magnanti, 1977). The sorted operation sets before and after reversing (c,d) are

represented by PSfinai and PSfinar. The following figure describes the sorted operation sets:

V

u X’ d c X” W

V

PSfinar

Figure 4.15. Rearranging of Set PS(inai Due to a Move

After the move has been applied and the operation sorting has been achieved the

earliest start time of each operation and the evaluation function value can be determined

as follows:

1) The values of l„ (earliest operation start time) and tdOu (decrease in lu caused by not

considering resource requirements other than machine to process operation u) remain

unchanged for all operations u in U. That is, the move does not affect operations in

U.

2) From the first operation in V’ to the last operation in PS(inar do:

• determine the earliest start time lu by adding the following two constraint to the set

of constraints used to determine lu in section 4.2.1:

75

1) lu > lv + tv, where (v, u)e L\ i.e., v<u

2) machine used to process operation u remains unchanged, i.e., assign

to process operation u the same machine that was used to process u in

the previous solution

• if the same set of resources ITRU used to process u in the previous solution is

available from L to lu + tu then assign this resource set to operation u; else

determine this resource set by the same selection process used in step 8 of the

MASGA.

• determine the new value of tdou.

3) Once the earliest start time lu of all operations have been calculated, determine the

new evaluation function value.

Remark that the machine used to process an operation u can not change from

one solution to another. So the selection of set ITRU in the above procedure does not

include the selection of the machine.

4.3.3. The Local Hill Climbing Framework

Using the graph representation scheme and the neighborhood structure described

in last sections any local search procedure can be implemented. This work implements a

simple local hill climbing which adopts as control strategy the acceptance of the first

improving neighbor. The search stops when a local minimum is reached. A simple hill

climbing is used instead of a more sophisticated local search technique (e.g., Tabu

Search) because the genetic algorithm will provide the diversification required to lead the

search to new regions and escape from poor local minima. Further, the acceptance of

the first improving neighbor instead of the best improving neighbor is adopted due to the

unavailability of fast multiobjective function estimation methods. The calculation of the

exact evaluation function value for all neighboring solutions prior the selection is

computational expensive. So, the acceptance of the first improving neighbor is the most

efficient strategy, even considering that the number of moves to reach a local optimum

using this strategy is about 75% greater than the number of moves required by selecting

76

the best improving neighbor, as reported in (Mattfeld, 1996) for classical JSSP with

makespan as criterion.

The local hill climbing procedure works as follows:

1) Use the schedule generation algorithm to determine an initial feasible solution D.

2) While a local minimum has not been reached do

2.1) Determine the set of relevant active chains of D

2.2) Perform a move in the neighborhood of D, i.e., select a solution D’e N(D)

2.3) Calculate the evaluation function value of the new solution F(D').

2.4) If F(D')<F(D) then the move is accepted and D=D'.

In step 2.2 of the local hill climbing algorithm an arc (c,d)el_ is selected to be

reversed among a set of candidate arcs (see the neighborhood structure definition in

section 4.3.2). This selection can be made randomly, sequentially (from the first to the

last candidate arc of each relevant active chain), or heuristically.

In this work we propose a simple heuristic to determine the priority of reversing an

arc. The heuristic was called “bottleneck heuristic”. It takes into account the frequency of

occurrence of an arc in the relevant active chains, and the importance of the chains

where the arc appears. The bottleneck heuristic works as follows:

1) Determine a weight for each relevant active chain. This weight is directly related to

the objective function. If a regular measure has a high weight in the objective

function, so it will have its associated active chains. Precisely, the weight of a

relevant active chain associated to any maximum-based regular measure (e.g.,

makespan, maximum tardiness) is the weight of the measure in the objective function.

The weight of the relevant active chains associated to mean-based regular measures

(e.g., mean flow time, mean tardiness) is the weight of the measure in the objective

function divided by the number of jobs that participate in the measure value. For

example, consider a 10 job problem, and the following objective function: F =

2*Makespan + 3*Mean flow time. The weight of the longest active chain is

2+3/10=2.3 and the weight of all other nine relevant active chains is 3/10=0.3

77

2) Select an arc (c,d)e L to be reversed next with probability proportional to the sum of

weights of all active chains where (c,d) appears, given that (c.d) is a candidate arc to

be reversed according to the neighborhood structure defined in section 4.3.2.

The local hill climbing procedure developed in this section is used not only to

improve the initial solutions generated by the modified schedule generation algorithms but

it is also hybridized with the genetic algorithm described in next section.

4.4. THE HYBRID GENETIC ALGORITHM

In this section a hybrid genetic algorithm framework to solve JSSP in real

production environments is described. The genetic algorithm works in the local optimum

domain due to the application of local hill climbing to each new individual generated by

reproduction. The decoding procedure, which maps a genotype to a scheduling solution

corresponding to a phenotype, and the recombination of individuals are performed

simultaneously. The decoding procedure is basically the modified active or non delay

schedule generation algorithm, and the crossover operator is embedded in it. The

crossover operator is able to combine parent solutions differing not only in the assignment

of starting time for operations, but also in the routes assigned to subprocesses and in the

resources assigned to operations.

The chromosomes are basically the sorted sets PSfinai. This representation

scheme allows the mapping of all active or non delay schedules, depending on which

generation strategy (active or non delay) is adopted. That means that the representation

scheme is complete. Although the representation scheme corresponds to the highly

redundant “permutation of operations” scheme described in chapter 3, the way the

crossover operator is related to the decoding procedure attenuates this redundancy.

The genetic operators and population management strategies used by our hybrid

GA are defined next.

78

4.4.1. Population Management Strategies and Genetic Operators

A classical proportional selection scheme is adopted. The fitness (objective

function value) is scaled to the range [0, Fmax - Fminj, where Fmax and Fmin are

respectively the maximum and minimum fitness value within the population. This scaling

leads to a more severe selection scheme, avoiding a tedious (and hence time expensive)

recombination of individuals without significant fitness improvement, that is, avoiding a too

slow population convergence.

The number of offsprings is equal to the population size. Also, non-overlapping

populations and elitism are adopted. Elitism assures that the best individual is always

passed to the next generation. The termination criterion is based on a fixed number of

generations. More elaborated termination criteria based on population diversity have not

bee proved to be proper for job shop scheduling problems (Mattfeld, 1996). Moreover, a

fixed number of generations is more suitable for comparisons in simulation studies.

Two crossover operators are applied: the subprocess route crossover and the

basic crossover. The basic crossover operator proposed here is similar to the uniform

crossover operator as well as to the active schedule constructive crossover proposed by

Park and Park (1995) for classical job shop scheduling problems.

The subprocess route crossover and the basic crossover operations embedded in

the decoding procedure are described below:

a) Randomly select k subprocess routes from a parent and S-k subprocess routes from

the other, where S is the total number of subprocesses considering all the jobs to be

scheduled. Exchange these subprocess routes between the parents to obtain the

offspring subprocess routes. This procedure corresponds to the subprocess route

crossover. For each new set of subprocess routes (corresponding to a new individual)

perform step b.

b) Apply a slightly different modified active or non delay schedule generation algorithm.

The differences to be observed are the following:

79

• All the procedures concerning to selection of subprocess routes are not considered

because the subprocess routes are already determined.

• In step 7 of the schedule generation algorithm, an operation u(1)€Sj‘ must be selected

to be scheduled next. This selection procedure is modified here to include the basic

crossover operator. Thus, one must select to be scheduled next an operation u(1)

such that u(1)e Si'nPSfinai(j), and u(1) is the operation that first appears in PSfinai0) among

the operations from S /o P S ,^ , for j=1 or j=2, where PSfinai(j) is the sorted operation

set of parent j, i.e., the parent j chromosome. Algorithmically speaking, the selection

of u(1) in step 7 of the modified schedule generation algorithm works as follows:

1) Randomly select one of the two parents. Let j* be this parent. If Si'nPSfmaio*) =

0 then the other parent must be assigned to j*. Note that this empty

intersection can occur when all operations in S/ belong to subprocess routes

not used by parent j*.

2) Select to be scheduled next the operation u(1)e Si'nPSfinai(j*), such that u(1) is the

operation that first appears in PSfinaio*) among the operations in S /riP S ^-).

• In step 10 of the modified schedule generation algorithm, insert the operation u(1) in

the sorted set of the offspring solution PSfinai(0f{spring)

Mutation operators are applied to the offspring with low probability. As in the

crossover, a subprocess route mutation and a basic mutation are implemented. The

subprocess route mutation is implemented by randomly choosing a subprocess and

changing its route to another randomly selected. The basic mutation chosen is the

position based mutation, in which a randomly selected operation u* is arbitrarily moved

from one position to another in PSfinai. A position based mutation was adopted due to its

superior results in classical JSSP (Mattfeld, 1996). The mutation operations are

described below:

a) Subprocess route mutation: Randomly choose a subprocess and change its route to

another randomly selected. In the sorted operation set PS^i, remove all operations of

the old subprocess route and sequentially insert the operations of the new route in the

same loci of the old ones. If the new route has more operations than the old route,

the “exceeding” operations are inserted right after the old route last locus.

b) Basic mutation: Apply a position based mutation to the individual chromosome PSfinai

80

c) Decoding: Apply a slightly different modified schedule generation algorithm. The

differences to be observed are the following:

• All the procedures concerning to selection of subprocess routes are not

considered because the subprocess routes are already determined.

• In step 7 of the MASGA, select to be scheduled next an operation u(1) such that

u(1) is the operation that first appears in PSfinai among the operations from Si' n

PSfinal-

• The operation u(1) must be inserted in the sorted set PSfinai_new of the mutated

solution in step 10 of the modified schedule generation algorithm.

Other GA applications dealing with alternative processing plans have been

reported. As noted in chapter 3, the representation schemes used in such applications

are very limited, being usually incomplete and redundant. Instead, the genetic algorithm

proposed here can explore a large solution space and presents almost no redundancy.

The solution search space is determined by the schedule generation strategy adopted.

Comparisons between non delay and active generation strategies in the GA will be

addressed in chapter 5. Also the proper set of algorithm parameters (e.g., crossover and

mutation rates, population size) will be determined..

4.4.2. The Genetic Algorithm Framework

The final hybrid genetic algorithm framework work as follows, where random(1) is

a random generated real number between zero and one:

1) i=0. Generate an initial population of good schedules P(0) using the modified active

or non-delay schedule generation algorithms proposed in section 4.2.

2) For each individual of the population apply the local hill climbing algorithm described

in section 4.3.

3) i = i + 1.

4) For j=1 to (population size)/2 do

81

4.1) select two parents within the population using a proportional selection scheme

over scaled fitness values.

4.2) if random(1) < basic crossover rate

then

if random(1) < subprocess route crossover rate

then

generate two new individuals by applying the two

crossover operators.

else

generate two new individuals by applying only the basic

crossover operator

else

the two parents are assigned to the new two individuals without

modification

4.3) for each of the two new individuals do

if random(1) < basic mutation rate then

apply the basic mutation to the new individual

if random(1) < subprocess route mutation rate then

apply the subprocess route mutation to the new individual

4.4) for each of the two new individuals do

if the new individual is not identical to one of its parents then

apply the local hill climbing to the new individual

4.5) include the two new individuals in population P(i)

5) If the best solution of P(i-1) is not already in P(i) then include it in P(i) in the place of

the worst solution of P(i). That is, apply the elitism policy.

6) If i = maximum number of generations then stop, else return to step 3.

Note that the route crossover is applied only in conjunction with the basic

crossover, but the mutation operators are independent of one another.

Genetic algorithms hybridized with local improvement procedures have been

successfully used to minimize makespan in classical JSSP. In this chapter we extended

this approach to deal with scheduling problems encountered in real production

environments.

82

The framework proposed presents high modeling capabilities. It also supports

(and requires) a number of heuristics that aid to guide the search process. A number of

variations of the basic framework can be easily obtained . For instance, eliminating the

hill climbing algorithm results in a " pure" GA approach. In the next chapter the influence

of several heuristic and configuration options in the overall system performance is
analyzed.

83

CHAPTER 5

EXPERIMENTAL RESULTS

5.1. INTRODUCTION

This chapter describes the set of experiments designed to determine the influence

of several factors (configuration options) on the performance of the hybrid scheduling
system.

A complex problem generator program was developed to aid simulation studies.

The program is able to randomly generate problems with the large number of real world

constraints considered here. The user specifies the probability distributions of 20

variables (e.g., setup time, time gap between consecutive maintenance breaks, number

of parts directly preceding a part in the bill of material of a job, etc.), and also the values

of 13 other variables and parameters (e.g., overlap policy, mean machine static loading

rate, probability of occurrence of job and operation ready times, etc.), and the program

randomly generates a problem instance. A set of 6 problems was used in the

experiments. Basically, the problems vary in size, level of competition for resources and

availability of alternative routes. The most important qualitative attributes of these

benchmark problems are shown in the table 5.1 below. The problem generator program

and the problems used here are detailed in appendixes A and B respectively.

Problem Size (number of

operations)

Level of competition for resources

(other than machines)

Availability of

alternative routes

1 Small (106) Medium Medium
2 Large (416) Medium Medium
3 Medium (237) Medium Medium
4 Small (142) High Medium
5 Small (116) Low Medium
6 Small (161) Medium High

Table 5.1. Description of the Problems

84

Note that the number of operations in the table above is the average number of

operations really scheduled by the schedule generation algorithm. Because of the

presence of alternative routes and machine maintenance operations the total number of

operations in the problems is much higher. For instance, problem 1 has 151 operations

and problem 6 has 323 operations.

The description of the problems given above suggests that the attributes size,

level of competition for resources and availability of alternative routes should be used as

factors in a factorial experiment. If the reader goes through appendix B, a different

conclusion will be drawn. The problems considered are much too complex and it is

impossible to fix one attribute and vary others because a large set of parameters are

connected to each of these qualitative attributes. Therefore, experiments were conducted

with each problem separately and results were put together to draw overall conclusions.

The performance of the proposed models is also related to the multiobjective

function being used. The design of the ideal multiobjective function is a complex

environment dependent problem and will not be addressed in this work. Although the

system is prepared to deal with any combination of regular performance measures, all the

experiments were conducted using the following function: F = Caver + Cmax = Mean

completion time + Makespan. Due date dependent measures (e.g., tardiness, lateness,

etc.) were not adopted in order to avoid the effect of due date tightness in the system

performance. The influence of due date assignment method and due date tightness in

the performance of different dispatching rules was discussed in chapter 2.

In the next three sections, the three basic modules of the system (the modified

schedule generation algorithm, the local hill climbing and the genetic algorithm) are

analyzed separately in order to understand the significance of several configuration

options and adjust their levels. Afterwards, the entire hybrid system is studied.

All the experiments were conducted using a PC with a pentium 100 MHz

processor and 32 MB of RAM memory.

85

5.2. MODIFIED SCHEDULE GENERATION ALGORITHMS

The modified schedule generation algorithm has a number of possible

configurations. This section analyzes the effect of different configuration options under

several problem instances. The simulations in this section are concerned only with the

schedule generation algorithm. The objective here is to examine the effects of different

program options on the quality of the initial solutions. The local hill climbing and the

genetic algorithm will be addressed later.

A full factorial experiment was performed for each problem instance. The factors

(configuration options) crossed in the experiment are described in the following table.

The number of replicates was fixed at 200 (small mean variances are desirable for

comparison purposes).

Factor

(symbol)

Level Description

Generation strategy 1 Active schedule generation algorithm
(ACTNON) 2 Non delay schedule generation algorithm

Route selection method 1 Random selection of subprocess routes

(METROUT) 2 Route selection heuristic

Dispatching procedure 1 Random dispatching
(DISP) 2 SPT (Shortest Processing Time rule)

Resource selection method 1 Random selection of resources
(HEURITR) 2 Minimum gap heuristic

Generation mode 1 Complete generation mode
(GENMOD) 2 Simplified generation mode

Table 5.2. Factors Crossed in a Factorial Experiment Related to the Modified

Schedule Generation Algorithm

When all configuration options are set to level 1 the schedule generation algorithm

is said to be in its basic configuration. Such configuration will be useful in next sections,

where other system modules are tested. Note that basic configuration does not mean

best configuration. It is only the one that allows the exploration of the largest search

86

space. Therefore, basic configuration adopts factor levels suitable to the exploration of a

solution space as large as possible.

The value of a in the route selection heuristic was fixed at 0.75, where a is the

relative importance of selecting fast subprocess routes and (1-a) is the relative

importance of balancing resource utilization. This value worked well for several problem

instances. In practice, however, this parameter must be adjusted to each particular

environment.

Dispatching rules tend to confine the search to a small region of the solution

spacem, causing premature convergence of the GA. Because of this only SPT

dispatching rule was tested.

Table 5.3 shows the significant main effects and interactions for each problem and

their respective P values. Only effects related to P values less than 0.075 are reported.

87

P ro b le m S ig n ifican t e ffec ts - P va lu e s

M ain e ffec t T w o fac to rs in terac tion T h re e fac to rs in teraction F o u r factors

in teraction

1 ACTNON - 0.000

METROUT - 0.000

DISP - 0.000

GENMOD - 0.002

ACTNON'DISP - 0.000

ACTNON'GENMOD - 0.000
ACTNON'DISP'GENMOD - 0.002

2 ACTNON - 0.000

METROUT - 0.000

DISP - 0.000

HEURITR - 0.006

ACTNON'METROUT - 0.053

ACTNON'DISP - 0.000

METROUT*DISP - 0.000

DISP'HEURITR - 0.000

METROUT*DISP'HEURITR - 0.013

3 ACTNON - 0.000

METROUT - 0.000

DISP - 0.000

GENMOD - 0.034

ACTNON'METROUT - 0.001

ACTNON'DISP - 0.000
ACTNON'METROUTDISP - 0.000

ACTNON'METROUT'HEURITR - 0.044

METROUT*DISP'GENMOD - 0.018

ACTNON'METROUT'DISP'HE
URITR - 0.024

METROUTDISP'HEURITR'GE
NMOD - 0.030

4 ACTNON - 0.000

METROUT - 0.000

DISP - 0.000

HEURITR - 0.000

ACTNON'METROUT - 0.001

ACTNON*DISP - 0.000

ACTNON'HEURITR - 0.001

ACTNON'GENMOD - 0.001

METROUTDISP - 0.004

DISP'HEURITR - 0.003

DISP'GENMOD - 0.000

ACTNON'DISP'GENMOD - 0.000

5 ACTNON - 0.000

METROUT - 0.000
ACTNON'DISP - 0.000

6 ACTNON - 0.000

METROUT - 0.000

DISP - 0.000

HEURITR - 0.007

ACTNON'DISP - 0.000

ACTNON'HEURITR - 0.004

ACTNON'GENMOD - 0.005

METROUT*DISP - 0.049

METROUT*HEURITR - 0.029

DISP'GENMOD - 0.005

ACTNON'DISP'HEURITR'GEN
MOD - 0.049

Table 5.3. Significant Effects - Modified Schedule Generation Algorithm

Variations in the evaluation function values due to changes in factor levels and the

correspondent confidence interval for these differences (level of significant of 0.05) are

reported in the next table. Because interactions are significant, these variation values are

not due to changing main factor levels alone. Differences in CPU time are also shown in
the table.

88

Significant main effects Evaluation Function Value (Average) Computational time - single run

(sec)
factor at factor at confidence variation factor at factor at variation
level 1 level 2 interval for (%) level 1 level 2 (%)

differences
1 ACTNON 1741.599 1617.131 (119.6, 129.4) 7.1 0.022 0.021 4.5

METROUT 1710.110 1648.620 (56.6, 66.4) 3.6 0.017 0.026 -52.9
DISP 1700.335 1658.395 (37.0, 46.8) 2.5 0.023 0.021 8.7

GENMOD 1675.493 1683.238 (-12.7, -2.8) -0.5 0.022 0.021 4.5

2 ACTNON 4511.023 4268.095 (226.9, 258.9) 5.3 0.116 0.111 4.3
METROUT 4511.285 4267.833 (227.5, 259.5) 5.4 0.095 0.132 -38.9

DISP 4294.624 4484.494 (-205.9, -173.9) -3.7 0.110 0.116 -5.5
HEURITR 4400.848 4378.269 (5.7, 37.7) 0.5 0.113 0.113 0

3 ACTNON 4087.135 3746.413 (328.4, 353.0) 8.3 0.047 0.046 -2.1
• METROUT 3970.582 3862.966 (95.3, 119.9) 2.7 0.036 0.060 -66.7

DISP 3826.746 4006.802 (-192.4,-167.8) -4.7 0.048 0.048 0
GENMOD 3910.129 3923.419 (-25.6,-1.0) -0.3 0.048 0.047 2.1

4 ACTNON 2281.593 2073.377 (200.4, 216.0) 9.1 0.028 0.030 -7.1
METROUT 2238.078 2116.892 (113.4, 129.0) 5.4 0.023 0.035 -52.2

DISP 2106.700 2248.271 (-149.4, -133.8) -6.7 0.028 0.030 -7.1
HEURITR 2187.944 2167.027 (13.1,28.7) 1.0 0.028 0.029 -3.6

5 ACTNON 1569.815 1483.535 (80.0, 92.6) 5.5 0.013 0.012 7.6
METROUT 1539.040 1514.310 (18.4,31.0) 1.6 0.008 0.015 -87.5

6 ACTNON 2751.061 2546.987 (194.9,213.3) 7.4 0.033 0.032 3.0
METROUT 2706.571 2591.477 (105.9, 124.3) 4.3 0.018 0.048 -166.7

DISP 2636.495 2661.553 (-34.3, -15.9) -1.0 0.033 0.033 0
HEURITR

e a r-_____ :

2655.351 2642.697 (3.5,21.9) 0.5 0.033 0.033 0

Table 5.4. Experiment Results - Modified Schedule Generation Algorithm

The variation values above were calculated as follow: (Evaluation function value

(or CPU time) with factor at level 1 - Evaluation function value (CPU time) with factor at

level 2) / Evaluation function value (CPU time) with the factor at level 1. So positive

values for the percentage variations mean enhancement in performance, since we are

dealing with a minimization problem. All the evaluation function values in the table are

averages over 16 treatments * 200 replicates = 3200 solutions.

The analysis showed a large number of significant interactions. An in-depth study

of these interactions will not be conducted here. The interaction ACTNON*DISP,

however, was highly significant in all problem instances and deserves special attention. A

89

behavior pattern can be drawn from the charts in figure 5.1 that graphically display this

interaction in all problems. Clearly SPT rule is more effective in the non delay scheduling

generation algorithm while random dispatching is more suitable for the active schedule
generation algorithm.

Interaction ACTNON*DISP -
Problem 1

§ g 1600
5 1500
^ i 1400

ACTNON

Interaction ACTNON*DISP -
Problem 3

ACTNON

Interaction ACTNON*DISP -
Problem 2

C j j 4800
•2 g 4600
J g 4400 „
g z 4200 - -
“ * § 4000

DISP=1

DISP=2

ACTNON

Interaction ACTNON*DISP -
Problem 4

4>
2600

o 75> 2400 1 — ♦ — DISP=1

3 c
o
?

2200 DISP=2
(0> 2000
UJ c

3 1800

2

ACTNON

interaction ACTNON*DISP -
Problem 5

Interaction ACTNON*DISP -
Problem 6

c
a>3 2900

.2 to> 2800
3 c

o 2700
m> o 2600
Hi c

3 2500

-DISP=1

-DISP=2

ACTNON ACTNON

Figure 5.1. Interaction ACTNON*DISP - Modified Schedule Generation Algorithm

For each problem instance we stored the set of factor levels that produce the best

results, and also the best set of factor levels with random dispatching procedure

(DISP=1). This latter arrangement of best factor levels (with DISP=1) will be used later in

the entire system experimental design. These two sets along with the basic configuration
described earlier are shown in table 5.5.

Problem Configuration Factor levels Average

Evaluation

CPU

time

(sec)ACTNON METROUT DISP HEURITR GENMOD Function Value
1 General best set of factor levels 2 2 2 2 2 1526.4 0.025

Best set of factor levels with DISP=1 2 2 1 2 1 1628.2 0.025
Basic configuration 1 1 1 1 1 1762.3 0.021

2 General best set of factor levels 2 2 1 2 1 4119.4 0.133
Best set of factor levels with DISP=1 2 2 1 2 1 4119.4 0.133

Basic configuration 1 1 1 1 1 4404.5 0.100
3 General best set of factor levels 2 2 2 1 3645.0 0.062

Best set of factor levels with DISP=1 2 2 1 1 1 3686.9 0.067
Basic configuration 1 1 1 1 1 3933.9 0.038

4 General best set of factor levels 2 2 1 1 2 2005.7 0.033
Best set of factor levels with DISP=1 2 2 1 1 2 2005.7 0.033

Basic configuration 1 1 1 1 1 2190.4 0.025
5 General best set of factor levels 2 2 2 1452.6 0.017

Best set of factor levels with DISP=1 2 2 1 1 1 1478.3 0.017
Basic configuration 1 1 1 1 1 1569.0 0.012

6 General best set of factor levels 2 2 1 2 2443.0 0.046
Best set of factor levels with DISP=1 2 2 1 1 2 2517.9 0.046

Basic configuration 1 1 1 1 1 2736.1 0.021

Table 5.5. Arrangements of Factor Levels - Modified Schedule Generation Algorithm

91

For all problems the non delay schedule generation algorithm performed on

average 7.1% better than the active one. The route selection heuristic worked well in all

problem instances, enhancing the average system performance by 3.8%, but also

increased the computational time by 77%. In problem 6, characterized by large number

of alternative routes, the increase in CPU time due to the route selection heuristic

reached 166%. When the non delay schedule generation strategy was being used, SPT

rule achieved an average performance 1.5% higher than random dispatching. However,

SPT rule degraded the average system performance by 6.2% when the active schedule

generation strategy was adopted. The main effect of factor generation mode (GENMOD)

was determined to be significant only in problems 1 and 3, where using the complete

generation mode improved the system performance by about 0.4% at a small

computational cost. The resource selection method presented significant effect in 3 out

of the 6 problems. In such problems, the use of the minimum gap heuristic causes an

average gain in performance of 0.7% compared to random selection of resources.

5.3. LOCAL HILL CLIMBING

This section investigates the performance of the local hill climbing algorithm and

its configuration options. Here, the local search algorithm is examined alone. Its effect in

the entire hybrid genetic system will be addressed in section 5.4.

Similar to the previous section, for each of the six problem instances a full factorial

experiment with 200 replicates for treatment was performed. All the initial solutions were

generated by the scheduling generation algorithm in its basic configuration (ACTNON =

METROUT = DISP = HEURITR = GENMOD = 1). A description of the factors crossed in

this experiment is given in the following table:

92

Factor (symbol) Levels Description

Resource changing between

moves (RESCH)

1

2

Resources (other than machines) required to

execute an operation are allowed to change

when a move in the neighborhood occurs.

Resources required to execute an operation

are not allowed to change when a move is

performed

Method for selecting the arc to

be reversed (ARCTYPE)

1

2

Bottleneck heuristic

Random choice of the arc to be reversed

Table 5.6. Factors Crossed in a Factorial Experiment Related to the Local Hill Climbing

Note that the selection of the arc to be reversed is made among the candidate

arcs in the neighborhood structure defined in last chapter, no matter which selection

method is being adopted (random or bottleneck heuristic).

The improvement in the evaluation function values achieved by the local hill

climbing over the initial solutions generated by the schedule generation algorithm (in its

basic configuration) is reported in the following table. The computational time of the local

hill climbing is also described.

Problem Average Evaluation Function Value Computational time - single run (sec)

Initial

solution

Initial solution

enhanced by the

local hill climbing

Variation

(%)

Initial solution Initial Solution

enhanced by the local

hill climbing

1 1759.2 1719.0 2.3 0.021 0.032

2 4438.2 4414.9 0.5 0.100 0.235

3 3943.8 3890.3 1.4 0.038 0.100

4 2184.5 2171.8 0.6 0.025 0.044

5 1580.6 1546.6 2.2 0.012 0.023

6 2725.0 2698.1 1.0 0.021 0.041

Average: 1.3

Table 5.7. Solution improvement Due to the Local Hill Climbing Procedure

93

The evaluation function values in the local hill climbing column are averages over

all treatments for which RESCH=1, that is, averages over 2 treatments * 200 replicates =

400 values. Variations in the evaluation function and CPU time were calculated as

described in last section for the schedule generation algorithm.

Table 5.8 shows the results of the full factorial experiment. Only effects related to

P values less than 0.075 are reported. In problems 2, 4 and 5 no significant main effect

or interaction were determined.

Problem Significant main

effects and

interactions

P value Average Evaluation Function Value Computational time - single run (sec)

factor at

level 1

factor at

level 2

confidence interval

for differences

variation

(%)

factor at

level 1

factor at

level 2

variation

(%)
1 RESCH 0.021 1719.0 1736.9 (-33.1, -2.7) -1.0 0.032 0.022 31.2
3 RESCH 0.031 3890.3 3921.7 (-59.7, -3.1) -0.8 0.100 0.061 39.0
6 ARCTYPE

RESCH'ARCTYPE

0.070

0.054

2693.7 2716.6 (-47.6, 1.8) -0.9 0.036 0.033 8.3

Table 5.8. Experiment Results - Local Hill Climbing

The weak interaction between RESCH and ARCTYPE (P value of 0.059)

observed in problem 6 is graphically displayed below. As it occurred in only one case no

general conclusions can be made.

Interaction RESCH*ARCTYPE -
Problem 6

c.
0)
3 2740

o
ra

<0>
c

2720
2700

o 2680
> o 2660LU □ 2640

RESCH

Figure 5.2. Interaction RESCH*ARCTYPE - Local Hill Climbing

For each problem instance we also stored the set of factor levels that produced

the best results. A factor was set to its default level when its main effect was not

significant and the factor was not present in any significant interaction. The default levels

for RESCH and ARCTYPE are 1 and 1 respectively. When both RESCH and ARCTYPE

are adjusted to their default levels, the local hill climbing is said to be in its basic

94

configuration. For each problem instance the following arrangements of factor levels

provided the best results:

Problem 1 2 3 4 5 6

RESCH 1 1 1 1 1 1

ARCTYPE 1 1 1 1 1 1

Table 5.9. Arrangements of Factor .evels - Local Hill Climbing

Note that for all problems the basic and best configurations coincided for all

problems. From now on this basic configuration of the local hill climbing will be used in all

problems.

Some important conclusions may be drawn from the experimental analysis. The

local hill climbing procedure is more efficient in low constrained problems because the

representational scheme and the neighborhood structure do not directly take into account

resources other than machines. The availability of these resources is considered only as

constraints to be satisfied. The moves are performed by reversing arcs connecting

operations executed on the same machine. The local search procedure also worked

better in smaller problems. Allowing resources other than machines to change when

moves are implemented significantly enhanced the performance of the hill climbing

procedure in problems 1 and 3, but also required greater CPU time as shown in table 5.8.

No significant difference in performance between the methods for selecting the arc to be

reversed was observed. Only in problem 6 a P value of 0.07 suggests an improvement in

performance due to the bottleneck heuristic.

5.4. GENETIC ALGORITHM PARAMETERS

In this section values of parameters associated with the genetic algorithm are

determined. Specifically, we want to find out proper crossover and mutation rates,

population size and number of generations. Such parameter values will be used in the

entire system simulation carried out in next section. Only problem 1 was used in the

experiments, since these GA parameters are very robust. The GA used the active

solution generation strategy, and basic configurations were adopted in both schedule

generation and local hill climbing algorithms.

95

Crossover and mutation rate:

The basic crossover and mutation rates were determined through a factorial experiment

(with 10 replicates per treatment) in which the level of factors were the following:

basic crossover rate: 0.6 0.8 1.0

basic mutation rate: 0.01 0.03 0.05 0.12

Table 5.10. Factors Crossed in a Factorial Experiment to Select GA Parameter Values

Population size and number of generations were fixed at 100. As shown in the

ANOVA table below, the main effects of crossover and mutation were determined to be

significant at a level of significance of 0.01. Surprisingly, the interaction was not

significant, even for a level of 0.05. The values adopted to basic crossover rate and basic

mutation rate were 0.8 and 0.05 respectively.

Source Degrees of

freedom

Sum of

squares

Mean

square

F F0.05 F0.01

crossover 2 228.47 114.23 6.37 3.10 4.82

mutation 3 263.62 87.87 4.90 2.70 4.01

interaction 6 164.92 27.49 1.53 2.20 2.98

error 99 1775.13 17.93

Table 5.11. ANOVA Table - Genetic Algorithm Operators

The importance of route crossover and route mutation depend on the problem

under consideration. Some experiments showed that their effects can be disregarded in

problems with low level of alternative routes. For problems with medium to high level of

alternative routes, values of 0.6 for route crossover rate and 0.1 for mutation rate showed

to be appropriate.

Population size:

Larger population sizes avoid premature convergence and tend to produce better

solutions. However, there is a saturation of this tendency.

96

In order to determine a suitable population size and confirm the saturation effect

described above, our genetic algorithm was run with several population sizes. The

chart below shows the experimental results, where the best fitness (evaluation function

valued at each population size is an average over 20 runs of the genetic algorithm.

Effect of the population size in the GA performance

1320

1318

1316

8 1314

£ 1312 +

2 1310A
1306

1306

1304
0 50 100 150 200 250 300 350 400

population size •»—best fitness I

Figure 5.3. Effect of Population Size in the GA Performance

The number of generations was fixed at 100. Therefore, the number of trials is

the population size times 100. Crossover and mutation rates were the ones determined

earlier in this section.

Number of generations:

The termination criterion used in the GA algorithm proposed here is simply a fixed

number of generations. In order to determine the effect of the number of generations

in the genetic algorithm performance, 20 runs of the GA using 400 generations were

carried out. The chart below shows the results obtained. The fitness values are

averages over the 20 runs.

97

Effect of the number of generations in the GA performance

1750

1650

1600

i best individual
® 1550 + ;

population average

c Î450

1350 +4....

1250 ----------- i— :------ i----------- i----------------------- i— ■— -— i----------- i----------- 1

0 50 100 150 200 250 300 350 400

number of generations

Figure 5.4. Effect of Number of Generations in the GA Performance

Population size was fixed at 100, and, therefore, the number of trials is the

number of generations times 100. Crossover and mutation rates were set to the values

determined earlier.

Genetic Algorithm Basic Configuration:

Based on the experiments described in this section and considering computational time

also a performance measure, the following set of parameters was chosen to define the

“basic configuration” of the GA proposed:

basic crossover rate: 0.8

basic mutation rate: 0.05

route crossover rate: 0.6

» route mutation rate:

• population size:

0.1

100

number of generations : 100

98

Note that larger population sizes and number of generations can improve the

performance of the algorithm. Considering problem 1 as an example, the best fitness

obtained with a population size of 400 is only about 0.2% greater than the one achieved

by the basic configuration. Similarly, the use of 400 generations increases the average

GA performance by only 0.8%. However, the increase in computation time reaches

400%. Therefore, the use of larger number of generations and population sizes is

justified only in cases where enough computation time is available.

5.5. THE HYBRID GENETIC SYSTEM

This sections analyzes the performance of the entire system over the set of

problem instances already mentioned in previous sections.

The configuration options are now considered in aggregated levels. The influence

of the following factors in the overall system performance was studied in a full factorial

experiment:

Factor (symbol) Levels Description

Quality of initial 1 Initial solutions generated by the basic configuration

solutions (INIT) of the schedule generation algorithm.

2 Schedule generation algorithm in its best

configuration (with DISP=1) for each problem.

Hybridization level 1 Genetic algorithm hybridized with a local hill climbing

(CONFOP) procedure.

2 Pure GA

G A generation strategy 1 Active

(GACTNON) 2 Non delay

Table 5.12. Factors Crossed in a Factorial Experiment of the Entire Hybrid System

When I NIT is in level 2 a set of good initial solutions are produced, and when I NIT

is in level 1 a set of distant initial solutions are produced. That is, level one drives the

initial solutions to promising but small regions of the search space, while level 2 spread

the initial population of solutions in the whole search space.

99

We observed that SPT rule (DISP=2) always lead to a premature convergence of

the GA. To avoid this, we selected the best configuration of the schedule generation

algorithm for each problem with the requirement of DISP=1.

Each time reproduction occurs in the GA, a schedule generation algorithm is used

to create the new individual. As described in chapter 4, the crossover operator is

embedded in the schedule generation algorithm. The GACTNON factor analyzed here is

pertaining to the use of active or non delay generation strategy in the GA. The adoption

of an active or non delay strategy during the generation of the initial solutions is a

different issue. In the experiment the genetic algorithm and the local hill climbing were

set to their basic configurations. The number of replicates per treatment was fixed at ten.

At first, differences in fitness between the first and last generations are reported.

The following table shows the fitness of the best individual in the first and last generations

as well as the average population fitness in the first and last generations. The fitness

values in the table are averages over all treatments, that is averages over 8 treatments *

10 replicates = 80 values.

Problem Best individual Population Average Computational

Time - single run

(min.)

Generation Variation (%) Generation Variation (%)

first last first last

1 1460.5 1312.

9

10.1 1684.1 1338.1 20.5 3.5

2 3752.6 3493.

2

6.9 4286.0 3547.5 17.2 19.8

3 3387.8 3076.

2

9.2 3797.5 3113.8 18.0 9.6

4 1782.3 1624.

6

8.8 2096.0 1685.2 19.6 4.5

5 1285.8 1222.

6

4.9 1518.9 1241.2 18.3 1.8

6 2242.2 1932.

4

13:8 2624.4 2025.3 22.8 3.4

Table 5.13. Average System Performance

The following charts show the average behavior of the system through time:

100

Average System Performance -
Problem 1

1700

« 1550 --
(/>

c 1500 +

* * X X X X

--------Best
Individual

—X —Population
average

Generation number

Average System Performance ■
Problem 2

Generation number

Average System Performance -
Problem 3

------ Best
Individual

- X — Population
average

Generation number

Average System Performance -
Problem 4

------ Best
Individual

- X —Population
average

' * * * X x x ;

o o o o o oC\J TJ- <£> CO O

Generation number

Average System Performance -
Problem 5

1550

1500 :

1450

S 1400 +\
I 1350 fJ

1300

-----Best
Individual

—X —Population
average

1250- \^ * * X X X X X X
1200 } 'i' ! ! I

O O O O
CO CD a

Generation number

Average System Performance ■
Problem 6

------ Best
Individual

- X — Population
average

Generation number

Figure 5.5. Average System Performance through Time

101

The next table shows the significant main effects and interactions for each

problem and their respective P values. Only effects related to P values less than 0.075

are reported. Fitness variations due to changes in factor levels and the correspondent

confidence interval for these differences (level of significant of 0.05) are also displayed.

Note that when there is a significant interaction involving a factor, the variation is not due

to changing in the level of the factor alone. Computational times are also addressed.

Problem Significant main effects P value Fitness of the best individual in the last generation Computational time - single run (min)

and interactions factor at

level 1

factor at

level 2

confidence interval

for differences

variation

(%)

factor at

level 1

factor at

level 2

variation

(%)
1 GACTNON 0.000 1319.9 1305.9 (11.7, 16.3) 1.1 3.6 3.3 8.3

INIT 0.000 1309.2 1316.6 (-9.7, -5.1) -0.6 3.6 3.3 8.3
CONFOP

GACTNON'INIT

GACTNON'CONFOP

0.000

0.000

0.000

1307.6 1318.2 (-12.9, -8.3) -0.8 4.5 2.4 45.8

2 GACTNON 0.000 3510.4 3475.3 (23.9, 46.3) 1.0 19.9 19.7 1.0
INIT 0.059 3498.3 3487.4 (-0.3,22.1) 0.3 20.5 19.1 6.8

CONFOP

GACTNON'INIT

0.000

0.007

3473.8 3511.9 (-49.3, -26.9) -1.1 25.5 14.1 44.7

3 CONFOP 0.000 3057.3 3095.0 (-47.8, -27.6) -1.2 13.6 5.6 58.8

4 GACTNON 0.000 1648.2 1600.9 (39.1, 55.5) 2.9 4.6 4.4 4.3
INIT 0.000 1638.2 1611.0 (19.0, 35.4) 1.6 4.7 4.3 8.5

CONFOP

GACTNON'INIT

0.026

0.005

1619.8 1629.3 (-17.7, -1.3) -0.6 5.7 3.3 42.1

5 GACTNON 0.000 1215.1 1230.1 (8.1,21.9) -1.2 1.9 1.8 5.3

6 GACTNON 0.000 1950.8 1914.1 (26.3, 47.1) 1.9 3.5 3.2 8.6

Table 5.14. Experiment results - Hybrid Genetic System

Problems 1, 2 and 4 presented significant interactions between factors GACTNON

and INIT and problem 1 also presented a significant interaction between GACTNON and

CONFOP . These interactions are graphically described in figure 5.6, where “fitness”

concerns to the evaluation function value of the best solution in the last generation.

102

Charts in figure 5.7 show the differences in convergence properties due to

variations in the generation strategy adopted by the GA. The points plotted on the charts

are averages over all treatments that present the same level of GACTNON, that is, each

point on the charts is an average over 4 treatments * 10 replicates = 40 values. As the

factor GACTNON is encountered in several significant interactions, the differences in

behavior between the curves of GACTNON=1 and GACTNON=2 can not be attributed to

differences in GACTNON levels alone.

Similarly, the charts in figure 5.8 compare the evolution of the population fitness

when INIT=1 (initial solutions created by the basic configuration of the schedule

generation algorithm) and INIT=2 (initial population created by the schedule generation

algorithm in its best configuration, given that DISP=1) for all problems.

103

Effect of GACTNON - Prnhlftm 1

1700 sr4

Number of generations

- ♦ — best
individual
GACTNON=
1

-■ — best
individual
GACTNON=
2

population
average!
GACTNON=
1

-X — population
average
GACTNON=
2

Effect of GACTNON -

3800 X-

Number of generations

—♦— best
individual
GACTNON=
1

—■ — best
individual
GACTNON=
2

or- population
averagel
GACTNON=
1

..¥ r - population
average
GACTNON=
2

Effect Of GACTNON - Prnhlt>m ?

4300 x -------------------------------
4200 -\
4100 - \

'\
4000 - - \
3900 - . \

3800 j A
3700 -
3600 -

V e- /

3500 -
'îdnn 1 I 1 1 I 1 I 1 1

c
1 1 1 1 1 ! 1 1

5 O O O O C

Number of generations

- ♦ — best individual
GACTNON=
1

-■ — best individual
GACTNON=
2

- ..population
averagel
GACTNON=
1

-X — population
average
GACTNON=
2

Effect of GACTNON - P-

2100 X
2050
2000

Number of generations

-best
individual
GACTNON=
1

—■ — best
individual
GACTNON=
2

population
averagel
GACTNON=
1

—X— population
average
GACTNON=
2

Effect of GACTNON - Problem 5 Effect of GACTNON -

1550

1500

1450

S 1400

£ 1350 +

1300

1250 +

1200

X.

Î ? ppjjp
o o
CO CO

Number of generations

- ♦ — best
individual
GACTNON=
1

H*— best
individual
GACTNON=
2

population
averagel
GACTNON=
1

_X— population
average
GACTNON=
2

Number of generations

best
individual
GACTNON=
1

best
individual
GACTNON=
2

..s»,... population
averagel
GACTNON=
1

¥ i— population
average
GACTNON=
2

Figure 5.7. Effect of GACTNON - Hybrid Genetic System

104

Effect of INIT - Problem 1

-best
individual
INIT=1

-best
individual
INIT=2
population
averagel
INIT=1

Number of generations

~X— population
average
INIT=2

Effect of INIT - Problem 2

Number of generations

best
individual
INIT=1
best
individual
INIT=2
population
averagel
INIT=1
population
average
INIT=2

Effect of INIT - Problem 3 Effect of INIT - Problem 4

3950
3850
3750 £

n 3650
8 3550 f
•■§ 3450

o o o o
Tt CO CO o

Number of generations

-♦ — best
individual
INIT=1

■ — best
individual
INIT=2
population
averagel
INIT=1

-X — population
average
INIT=2

Number of generations

- ♦ — best
individual
INIT=1

-■ — best
individual
INIT=2
population
averagel
INIT=1

-X — population
average
1NIT=2

Effect of INIT - Problem 5 Effect of INIT - Problem 6

1600
1550 f
1500

« 1450
c 1400 4‘
2 1350

1300
1250
1200

..................
' 1 t- T I ' T4-H

o o o o
CM T f CO 00

Number of generations

best
individual
INIT=1
best
individual
INIT=2

* population
averagel
INIT=1
population
average
INIT=2

Number of generations

best
individual
INIT=1
best
individual
INIT=2
population
averagel
INIT=1

— population
average
INIT=2

Figure 5.8. Effect of INIT - Hybrid Genetic System

Finally, the charts comparing the pure GA and the GA hybridized with a local hill

climbing are plotted in figure 5.9.

105

Effect of CONFOP - Ft

1700 % -

ffyyyvf

Number of generations

-♦ — best
individual
CONFOP=
1

-■— best
individual
CONFOP=
2
population
averagel
CONFOP=
1

-X — population
average
CONFOP=
2

Effect of CONFOP - 1

Number of generations

- ♦ — best
individual
CONFOP=
1

-■ — best
individual
CONFOP=
2

population
averagel
CONFOP=
1

-X — population
average
CONFOP=
2

Effect of CONFOP

3850
3750 S

3650
$ 3550 - f !

Number of generations

-best
individual
CONFOP=
1
best
individual
CONFOP=
2

* population
averagel
CONFOP=
1

X— population
average
CONFOP=
2

Effect of CONFOP - 1

Number of generations

- ♦ — best
individual
CONFOP=
1

-■ — best
individual
CONFOP=
2
population
averagel
CONFOP=
1

-X— population
average
CONFOP=
2

Effect of CONFOP -

1550 rn
1500 4
1450

S 1400
I 1350

1300
1250
1200 I ■! I

o o o o
CM r f (D CO

Number of generations

♦ —best
individual
CONFOP=
1

9 — best
individual
CONFOP=
2
population
averagel
CONFOP=
1

population
average
CONFOP=
2

Effect of CONFOP - 1

2600 -f
2500

<o 2400 + ,
tn 'L
« 2300 ± £

Number of generations

-best
individual
CONFOP=
1

-best
individual
CONFOP=
2

population
averagel
CONFOP=
1

- population
average
CONFOP=
2

Figure 5.9. Effect of CONFOP - Hybrid Genetic System

Based on the tables and charts printed above a number of general conclusions

can be drawn.

106

The generation strategy adopted by the GA (GACTNON) showed significant main

effects in 5 out of 6 problems. Except for problem 5, the non delay strategy significantly

achieved better results than the active one.

The main effect of factor INIT (quality of initial solutions) was significant in only 3

problems (including problem 2 where the P value was 0.059). In problems 2 and 4 the

use of a better set of initial solutions (INIT=2) showed positive contributions to the system

performance, and in problem 1 the better set of initial solutions led to a premature

convergence of the GA, degrading the system performance. In all problems where INIT

was significant, its interaction with GACTNON was significant either. The interaction

charts suggested that the level of INIT is not important if the non delay generation

strategy is adopted by the GA. This arrangement, where INIT=1 or 2 and GACTNON=2,

seems to be the best for all problems.

The factor CONFOP (hybridization level) presented significant main effect in 4 out

of 6 problem instances. The hybridization of the GA with the local hill climbing enhanced

the system performance in all problems instances where CONFOP is significant. Even in

problem 4, which is characterized by high competition level for resources other than

machines, the hybridization significantly improved the system performance.

Nevertheless, this hybridization is time expensive, increasing the CPU time required by

about 47%.

The “Effect of GACTNON” charts showed a slightly sooner convergence of the

system when the GA is using a non delay generation strategy (GACTNON=2). However,

this convergence difference is not enough to make active generation a better strategy.

Non delay generation strategy presented an overwhelming superiority over the active

generation strategy in 5 out of 6 problems. Similarly the “Effect of INIT’ charts showed a

trend to a more premature convergence of the system when INIT=2. No significant

difference in convergence rate was observed between CONFOP=1 and CONFOP=2.

The problem size, the competition level for resources and the hybridization with

the local hill climbing procedure are crucial factors in the determination of the

computational time required.

107

5.6. REMARKS

The proposed system worked well in all problem instances, showing to be a

promising tool to solve real make to order job shop scheduling problems. The following

guidelines aid the proper use of the system.

The generation strategy in the GA must be always the non delay one. If the non

delay strategy is adopted by the GA the use or not of heuristics to improve the quality of

initial solutions is not significant. However, these heuristics must be adopted if CPU

time is scarce, once they lead the system to a premature convergence, and thus

allowing a smaller number of generations in the GA. The hybridization with a local hill

climbing procedure is always desirable unless there is not enough computational time.

An important question that has not been answered so far is if the proposed

scheduling system efficiently solves classical job shop scheduling problems. When all

real world constraints and alternatives described in chapter 4 are excluded from the

production environment the resulting problem is a classical JSSP. Let the input problem

be a classical JSSP. If the local hill climbing procedure is disabled then the scheduling

system presented in this thesis will be identical to the GA with Active Schedule

Constructive Crossover proposed by Park and Park (1995) to solve classical JSSPs.

Park’s genetic algorithm yielded outstanding results on five benchmark problems: ABZ6,

CAR4, LA22, MT10 and MT20. We used four Taillard’s benchmark problems to verify

the performance of the proposed model on classical job shop scheduling problems.

Taillard’s benchmarks are characterized by their large size. The best hybrid genetic

algorithm used so far to deal with these benchmarks is the GA3 proposed by Mattfeld

(1996). The results obtained by our GA are comparable (although slightly worse) to the

obtained by Mattfeld. These results are reported in Appendix D.

108

CHAPTER 6

CONCLUSIONS AND FURTHER RESEARCH

6.1. THESIS ORIGINALITY AND CONTRIBUTION

This work undertook the application of constructive heuristics, local search

procedures and genetic algorithms to real make-to-order job shop scheduling problems.

To our knowledge, the first local search and genetic based system able to

simultaneously consider all the features described in chapter 4 was implemented in this

thesis. The consideration of these features by the scheduling system is crucial in the

majority of real job shop production environments. At a micro level, the thesis is original

due to the following four basic contributions:

1. Efficient active and non-delay schedule generation algorithms that consider jobs with

bill of materials, alternative processing plans for parts and alternative resources for

operations, requirement of multiple resources to process an operation, resource

calendars, batch overlap, operation and job ready times, and sequence dependent

setups were developed. These constructive algorithms were used to generate initial

solutions in the hybrid scheduling system proposed here. Also, some heuristics (route

selection and minimum gap heuristics) were proposed to improve the performance of

the schedule generation algorithms.

2. The graph representation scheme (used so far in classical JSSPs) was extended to

support jobs with bill of materials, alternative resources (except machines) for

operations, requirement of multiple resources to process an operation, resource

calendars, batch overlap, operation and job ready times, and sequence dependent

setups. A neighborhood structure to be applied to the extended graph formulation was

created and validated. The proposed neighborhood also supports multiobjective

evaluation functions. Any local search strategy (e.g., simulated annealing and tabu

search) can be easily implemented using the extended graph, formulation and

neighborhood structure proposed. In the system proposed here only a local hill

climbing was implemented because the search diversification is provided by the GA.

109

3. A robust, complete and almost non-redundant genetic algorithm to solve real job shop

scheduling problems that directly consider in the search process all the real world

features (taken into account by the modified schedule generation algorithms) was

presented. The proposed GA also supports multiobjective evaluation functions.

4. The modified schedule generation algorithm, the local search procedure and the

genetic algorithm were hybridized to create a high performance scheduling system.

The system was shown to generate high quality solutions for scheduling problems

with large number of real world constraints and alternatives. The system efficiency

and efficacy was observed in several different problems, i.e., the system performed

well in problems of different sizes, different levels of competition for resources,

different availability of alternative routes, etc.

Summarizing, we made possible high performance techniques (used so far to

solve classical JSSPs) to be applied to complex real JSSPs.

6.2. SOME MODELING REMARKS

There are other real world constraints that have not been directly considered by

the proposed system. The most important one is related to transportation times and

material handling devices. If transportation devices are always available (infinite material

handling capacity) only slight modifications in the overlap time equations are required to

take transportation times into account. Let tru be the time required to transport a minimum

transport batch of operation u (Ou) from the machine cell where operation u was

processed to the machine cell where suc(u) will be processed. The overlap time toy under

policy 1 is now calculated as follows:

a) tou = tsu + oCtopu + tru, if tsuc(u) > a^tops^u) + (n - ocy)*topu - tru

b) tO y = ty ' tsuc(u) + (Xy t O p suc(u), if tsuc(y) ^ CXu tOPsuC(Ll) (^ “ C^u) tO P y ■ tru

Equations for tou under overlap policy 2 can be obtained in the same manner.

110

When there are constraints about availability of transportation devices (finite

material handling capacity) the average time a transportation device takes to be available

after it has been requested must be added to trUl i.e., tru = transportation time of otu +

average time to the requested transportation device be available. This approach is only

reasonable for production environments where the ratios tru/tu are small.

Up to this point the dynamic nature of the shop has not been addressed. The

author advises the production environment to be rescheduled when the problem data

significantly change. That is, the system must run again with updated data if rush orders

arrive or non expected machine breakdowns, staff missing, changes in job specifications,

etc. occur during the schedule execution.

6.3. FURTHER RESEARCH

Extensions of this work are recommended in three different directions:

1. Improvement of system performance: Different representation schemes,

neighborhood structures, local search control strategies, genetic operators and

population management strategies may be proposed in order to achieve higher

performance. The hybridization of the GA with more complex local search strategies

like tabu search is also a promising research area.

2. Additional modeling capabilities: Other real world constraints can be included in the

scheduling system. For instance, buffer size limitations, operation waiting time

constraints, batch splitting and grouping, batch preemption, and constraints related to

availability of material handling devices are some important real world constraints not

considered by the system proposed. A robust rescheduling methodology able to

efficiently reschedule the job shop while keeping a high similarity with the previous

schedule would also be very useful to avoid the chaos that usually comes with the

rescheduling activity.

3. Multiobjective function design: The proposed system supports any multicriteria

regular performance measure. The design of the multiobjective function however is

beyond the scope of this work. How to determine the weight of each single criterion in

I l l

the multicriteria function and which criteria must be included are important questions

that arise in real production environments. Neural network and inductive learning

algorithms (e.g., C4.5 algorithm due to Quinlan, 1990) can be used to overcome this

problem. Given a set of features describing the system status (e.g., priorities of job

orders, expected mean machine loading rate) and a score for each single criterion

(provided by the PPC manager) the “smart” algorithm would yield the proper

multiobjective function to be used. The training phase would be “manager-specific.”

Finally the robustness of the system proposed must be confirmed in real

manufacturing enterprises.

112

REFERENCES

Aarts, E.H., Laarhoven, P.J.M., Lenstra, J.K., Ulder, N.L.J., "A computatioan study of

local search algorithms for job shop scheduling,” ORSA Journal on Computing,

vol.6, n.2, 118-125, 1994.

Adams, J., Balas, E. and Zawack, D., "The shifting bottleneck procedure for job shop

scheduling,” Management Science, vol. 34, n. 3, pp. 391-401,1988..

Adshead, N. S. and Price, D. H. R., “Adaptative scheduling: the use of dynamic due

dates to accomodate demand variance in a make-for-stock shop,” Int. J. Prod. Res.,

v. 26, n,7, pp. 1241-1258, 1988.

Ahiro, S. S., Isoda, K & Awane, H, "Input Scheduling and load balance control for a job

shop," Int. J. Prod. Res., vol.22, n.4, 597-605, 1984.

Ahmad, I. and Dhodhi, M. K., “Multiprocessor Scheduling Using a Problem-Space

Genetic Algorithm”, I EE Conference on Genetic Algorithms in Engineering Systems:

Innovations and Applications, pp.152-157,1995.

Alidaee, B., "Schelule of n jobs on two identical machines to minimize weighted mean

flow time,” Comp. ind. Engng, vol.24, n.1, pp. 53-55, 1993.

Amar, A. D. and Gupta, J. N. D., “Simulated Versus Real Life Data in Testing the

Efficiency of Schedulig Algorithms,” ME Transactions, pp. 16-25, March 1986.

Applegate, D and Cook, W., “A Computational Study of the Job-Shop Scheduling

Problem,” ORSA Journal on Computing, v.3, n.2, pp.149-156, 1991.

Askin, R. G. and Standridge, C. R., “Modeling and Analysis of Manufacturing Systems,”

John Wiley & Sons, New York, 1993.

113

Atabakhsh, H., “A survey of constraint based scheduling systems using an artificial

intelligence approach,” Artificial Intelligence in Engineering, v. 6, n. 2, pp. 58-73,

1991.

Aytug, H., Koehler, G. J. and Snowdon, J. L., "Genetic Learning of Dynamic Scheduling

within a Simulation Environment,” Computers Ops. Res., vol. 21, n. 8, pp. 909-925,

1994.

Baillet, P. and Cauvin, A., “Proposal of a model of behavior for reactive scheduling

systems,” IEEE Symposium on Emerging Technologies and Factory Automation,

v.1, pp.649-657, 1995.

Baker, K. R., "Introduction to Sequencing and Scheduling,” John Wiley and Sons, Inc.,

New York, 1974.

Baker, K. R., “Sequencing rules and due-date assignments in a job shop,” Management

Science, v. 30, n.9, pp.1093-1104, 1984.

Barnes, J. W. and Chambers, J. B., "Solving the Job Shop Scheduling Problem with

Tabu Search,” ME Transactions, vol. 27, pp. 257-263, 1995.

Barnes, J. W. and Laguna, M., "A tabu search experience in production scheduling,”

Annals of Operations Research, vol. 41, pp. 141-156, 1993.

Baxter, M. J., Tokhi, M. and Fleming, P. J., “Task-processor mapping for real-time

parallel systems using genetic algorithms with hardwared-in-the-loop,” IEE

Conference on Genetic Algorithms in Engineering Systems: Innovations and

Applications, pp.158-163, 1995.

Bean, J. C., "Genetic Algorithms and Random Keys for Sequencing and Optimization,”

ORSA Journal on Computing, vol. 6, n. 2 , pp. 154-160, 1994.

114

Beasley, J. E., “Lagrangian Relaxation,” edited by Colin R. Reeves, John Wiley and

Sons, Inc., New York, 1993.

Bector, C. R., Gupta, Y. P. and Gupta, M. C., “Determination of an optimal common due

date and optimal sequence in a single machine job shop,” Int. J. Prod. Res., v. 26, n.

4, pp. 613-628, 1988.

Bensana, E., Bel, G. and Dubois, D., “OPAL: A multi-knowledge-based system for

industrial job-shop scheduling,” Int. J. Prod. Res., v.26, n.5, pp.795-819,1988.

Benton, W. C., "Time-based and cost-based priorities for job shop scheduling,” Int. J.

Prod. Res., v.31, n.7, pp. 1507-1519, 1993.

Bertrand, J. W. M., “The effect of workload dependent due-dates on job shop

performance,” Management Science, vol.29, n.7, pp. 799-816,1983.

Bestwick, K. G. & Lockyer, P. F., "A pratical aprroach to production scheduling,” Int. J.

Prod. Res., vol.17, n.2, pp. 95-109, 1979

Biegel, J. E. and Davern, J. J., "Genetic Algorithm and Job Shop Scheduling,”

Computers Ind. Engng., vol. 19, n. 1-4, pp. 81-91, 1990.

Bierwirth, C., "A Generalized Permutation Approach to Job Shop Scheduling with

Genetic Algorithms,” site < http: // medusa.logistik.uni-bremen.de / Papers /

Arbeitsberichte.html >, 1994

Bierwirth, C., Kopfer, H., Mattfeld, D. C. and Rixen, I., “Genetic Algorithm based

Scheduling in a Dynamic Manufacturing Environment,” ftp site < http://

medusa.logistik.uni-bremen.de / Papers / Arbeitsberichte.html >, 1995.

Bierwirth, C., Mattfeld D. C. and Kopfer H., "On Permutation Representations for

Scheduling Problem,” ftp site <http://medusa.logistik.uni-

bremen.de/Papers/Arbeitsberichte.html>, 1996.

http://medusa.logistik.uni-%e2%80%a8bremen.de/Papers/Arbeitsberichte.html
http://medusa.logistik.uni-%e2%80%a8bremen.de/Papers/Arbeitsberichte.html

115

Blackstone, J. H., Phillips, D. and Hogg, G., “A state-of-the-art survey of dispatching

rules for manufacturing job shop operations,” Int. J. Prod. Res., v.20, n.1, pp. 27-45,

1982.

Blazewicz, J., Ecker, K. H., Schmidt, G and Weglarz, J., “Scheduling in Computer and

Manufacturing Systems,” Springer-Verlag, 1994.

Blazewicz, J. and Finke, G., "Scheduling with Resource Management in Manufacturing

Systems,” European Journal of Operational Research, vol. 76, n.1, pp. 1-14,1994.

Blume, C., "Planning and Optimization of Scheduling in Industrial Production by Genetic

Algorithms and Evolutionary Strategy,” Engineering Systems Design and Analysis,

vol. 5, pp. 427-433, ASME, 1994.

Brennan, L. and Gupta, S. M., ”A structured analysis of material requirements planning

systems under combined demand and supply uncertainty,” Int. J. Prod. Res., 1993.

Brucker, P., “Scheduling Algorithms,” Springer, Berlin, 1995.

Bruns, R., "Direct Chromosome Representation and Advanced Genetic Operators for

Production Scheduling,” Proceedings of the 5th. International Conference on

Genetic Algorithm, University of Illinois and Urbana-Chapaign,1993

Cândido, M., Bárcia, R, and Gauthier, F., “Uma revisão daprogramação da produção

em ambientes job shop com fabricação por pedidos,” Annals of XXVII SBPO,

Vitória, Nov. 1995.

Cândido, M., "Local Search Algorithms and the Make-to-Order Job Shop Scheduling

Problems,” working paper, University of South Florida, 1996.

Carlier, J. and Pinson, E., “An algorithm for solving the job shop problem,” Management

Science, v.35, n.2, pp.164-176, 1989

116

Carlier, J. and Pinson, E., “Adjustment of heads and tails for the job-shop problem,”

European Journal of Operational Research, v.78, pp.146-161, 1994.

Cattrysse, D., Salomon, M., Kuik, R. and Wassenhove, L. N. V., “A dual ascent and

column generation heuristic for the discrete lotsizing and scheduling problem with

setup times,” Management Science, v. 39, n. 4, April 1993.

Chang, C. Y. and Jeng, M. D., “Experimental Study of A Neural Model for Scheduling

Job Shops,” Proceedings of the IEEE International Conference on Systems, Man

and Cybernetics, v.1, pp. 536, 1995.

Cheng, C. and Smith, S. F., “A constraint-posting framework for scheduling under

complex constraits,” IEEE Symposium on Emerging Technologies and Factory

Automation, v.1, pp.269-280,1995.

Chen, C. L. P., “Time Lower Bound for manufacturing Aggregate Scheduling Problems,”

Proceedings of the 1991 IEEE International Conference on Robotics and

Automation, Sacramento - CA, pp. 830-835, 1991.

Chen, H., Chiu, C. and Proth, J., “A More efficient Lagrangian Relaxation Approach to

Job-Shop Scheduling Problems,” IEEE International Conference on Robotics and

Automation, pp.496-501, 1995.

Chen, T. and Hsia, T. S., “Job Shop Scheduling with Multiple Resources and an

Application to A Semiconductor Testing Facility,” Proceedings of 33rd. IEEE

Conference on Decision and control, pp.1564-1570, 1994.

Chiu, C. and Yih, Y., "Learning-based methodology for scheduling in distributed

manufacturing systems,” International Journal of Production Research, v.33, n.11,

pp. 3217-3232, 1995.

117

Crabtree, I. B., “Resource scheduling - comparing simulated annealing with constraint

propagation,” BT Technology J., v.13, n.1, pp.121127,1995.

Croce, F. D., Tadei, R. and Volta, G., "A Genetic Algorithm for the Job Shop Problem,”

Computers Ops. Res., vol. 22, n. 1, pp. 15-24,1995.

Czerwinski, C. S. and Luh, Peter B., “Scheduling Products with Bill of Materials Using

an Improved Lagrangian Relaxation Technique,” IEEE Transactions on Robotics and

Automation, v.10, n.2, pp. 99-111, 1994.

Daniels, R. L. & Chambers, R. J., "Multiobjective fow-shop scheduling,” Naval Research

Logistics, vol.37, pp 981-995, 1990.

De, P., Ghosh, J. B. and Wells, C. E., “Optimal due-date assignment and sequencing,”

European Journal of Operational Research, v.57, pp. 323-331,1992.

Dell'Amico, M. and Trubian, M., "Applying tabu search to the job-shop scheduling

problem,” Annals of Operations Research, v. 41, pp. 231-252, 1993.

Dobson, G. and Khosla, I "Simultaneous resource scheduling with batching to minimize

weighted flow times,” HE Transactions (Institute of Industrial Engineers), v. 27 n. 5,

pp. 587-598, 1995.

Doctor, S. R., Cavalier, T. M. and Egbelu, P. J., "Scheduling for machining and

assembly in a job-shop environment,” International Journal of Production Research

vol. 31, n. 6, pp. 1275-1297,1993.

Dorndorf, U. and Pesch, E., "Evolution Based Learning in a Job Shop Scheduling

Environment,” Computers Ops. Res., vol. 22, n. 1, pp. 25-40, 1995.

Dondeti, V.R. & Emmons, H., "Algorithms for preemptive scheduling of different classes

of processors to do jobs with fixed times,” European Journal of Operational

Research 70, 316-326, 1993.

118

Dorigo, M., Maniezzo, V. and Colorni, A., “Ant System: Optimization by a Colony of

Cooperating Agents,” IEEE Transactions on Systems, Man, and Cybernetics - Part

B: Cybernetics, v.26, n.1, pp. 29-41, 1996.

Drummond, M., "Scheduling Benchmarks and Related Resources," FTP site

<med @ ptolemy.arc.nasa.gov>, 1996.

Dueck, G. and Scheuer, T., "Threshold Acceptance: a General Pupose Optimization

Algorithm,” Journal of Computational Physics, vol. 90, pp. 161-175,1990.

Falkenauer, E. and Bouffouix, S., "A Genetic Algorithm for Job Shop,” Proceedings of

the 1991 IEEE International Conference on Robotics and Automation, pp. 824-829,

Apr. 1991.

Fang, H. L., Ross, P., Come, D., "A promising genetic algorithm approach to job-shop

scheduling, rescheduling, and open-shop scheduling problems,” Proceedings of the

5th. International Conference on Genetic Algorithm, University of Illinois and Urbana-

Chapaign, 1993.

Fogel, D. B., "An Introduction to Simulated Evolutionary Optimization,” IEEE Trans, on

Neural Networks, vol. 5, n. 1,1994.

Fox, M. S. and Smith, S. F., “ISIS - a knowledge-based system for factory scheduling,”

Expert Systems, v.1, n.1, pp. 25-49, 1984.

French, S., "Sequencing and Scheduling: An introduction to the Mathematics of the Job-

Shop,” Ellis Horwood Limited, England, 1982.

Gallone, J., Charpillet, F. and Alexandre, F., “Anytime Scheduling with Neural

Networks,” IEEE Symposium on Emerging Technologies and Factory Automation,

v.1, pp.509-520, 1995.

119

Garey, M. R. and Johnson, D. S., "Computers and Intractability: A Guide to the Theory

of NP-Completeness," W. H. Freeman, San Francisco, 1979.

Gascon, A. & Leachman, R. C., "A dynamic programming solution to the dynamic, multi

item, single-machine scheduling problem,” Operations Research, vol. 36, n.1, pp.

50-56, 1988.

Gauthier, F. A. O, “Programação da produção: uma abordagem utilizando algoritmos

genéticos,” doctoral thesis, UFSC - Brazil, 1993.

Ghosh, S., Melnyk, S. A. and Ragatz, G. L., “Tooling constraints and shop floor

scheduling: evaluating the impact of sequence dependency,” Int. J. Prod. Res., v.30,

n.6, pp. 1237-1253, 1992.

Ghosh, S. and Gaimon, C., “Production Scheduling in a Flexible Manufacturing System

with Setups,” HE Transactions, v.25, n.5, pp.21-35,1993.

Giffler, B. and Thompson, G. L., "Algorithms for solving production-scheduling

problems," Operations Research, v.8, n.4, pp. 487-503, 1960.

Gilkinson, J. C., Rabelo, L. C. and Bush, B. O., "A Real-World Scheduling Problem

Using Genetic Algorithms,” Computers Ind. Engng., vol. 29, n. 1-4, pp. 177-181,

1995.

Glover, F et al, "Tabu Search: An introduction, technical aspects and applications in

production and scheduling,” Annals of Operations Research, v.41, pp. 1-279, 1993.

Glover, F. and Laguna M., "Tabu Search,” Modern Heuristic Techniques for

Combinatorial Problems, edited by Colin R. Reeves, John Wiley and Sons, Inc., New

York, 1993.

Glover, F., Kelly, J. P. and Laguna, M., "Genetic Algorithms and Tabu Search: Hybrids

for Optimization,” Computers Ops Res., vol. 22, n. 1, pp. 111-134, 1995.

120

Goldberg, David E., "Genetic Algorithms in Search, Optimization, and Machine

Learning,” Addison-Wesley Publishing Company, 1989.

Goldratt, E. M., “Computerized shop floor scheduling,” Int. J. Prod. Res., v. 26, n. 3, pp.

443-455, 1988.

Gonzalez, B., Torres, M. and Moreno, J. A., "A Hybrid Genetic Algorithm Approach for

the No-Wait Flowshop Problem,” IEE Conference Publication n.14, pp. 59-64,1995.

Goyal, S.K., Sriskandarajah, C., "No-wait shop scheduling: computational complexity

and approximate algorithms,” OPSEARCH, vol.25, n.4, 220-244, 1988.

Graves, S. C., "A review of production scheduling,” Operations Research, vol. 29, n.4,

pp. 646-675, 1981.

Hamada, K., Baba, T., Sato, K. and Yufu, M., "Hybridizing a Genetic Algorithm with

Rule-Based Reasoning for Production Planning,” IEEE Expert, pp. 60-67, October

1995.

Hammer, P. L., “Annals of Operations Research: Production Planning and Scheduling,”

J.C. Baltzer AG Scientific Publishing Company, Bazel - Switzerland, 1990.

Han, W. and Dejax, P., "An Efficient Heuristic Based on Machine Workloads for

Flowshop scheduling Problem with Setup and Removal,” Laboratoire Economique,

Industriel et Social, Ecole Centrale, Paris, 1-17,1991.

Hastings, N. A. J., Marshall, P & Willis, R. J., "Schedule Based MRP: An integrated

approach to production scheduling and material requirements planning,” J. Op. Res.

Soc., vol.33, pp 1021-29, 1982.

He, Z., Yang, T. & Deal, D. E., "A multiple-pass heuristic rule for job shop scheduling

with due dates," Int. J. Prod. Res., 1993.

121

Herrmann, J. W., Lee, C. Y. and Hinchman, J., "Global Job Shop Scheduling with a

GA,” Production and Operations Management, vol. 4, n. 1, pp. 30-45, 1995.

Hertz, A. & Widmer, M. "A new heuristic method for the flow shop sequencing problem,

European Journal of Operational Research, vol. 41, pp. 186-193,1989.

Hoitomt, D. J. and Luh, P. B., ’’Scheduling the Dynamic Job Shop,” Proceeding of IEEE

Int. Conference on Robotics and Automation, v.3, pp. 71-76,1993.

Hoitomt, D. J., Luh, P. B. and Pattipati, K. R., ”A Practical Approach to Job-Shop

Scheduling Problems,” IEEE Transactions on Robotics and Automation, v.9, n.1, pp.

pp.1-13,1993.

Holsapple, C. W., Jacob, V. S., Pakath, R. and Zavery, S., "A Genetic-Based Hybrid

Scheduler for Generating Static Schedules in Flexible Manufacturing Contexts,”

IEEE Trans, on Systems, Man, and Cybernetics, vol. 23, n. 4, pp. 953-972,1993.

Homaifar, A., Qi, C. X. and Lai, S. H., "Constrair^e) Optimization Via Genetic

Algorithms,” Simulation, vol. 62, n. 4, pp. 242-254, 1994.

Hou, E. S. H. and Li, H. Y., "Task Scheduling for Flexible Manufacturing Systems

based on Genetic Algorithms,” IEEE , 397-402,1991.

Hou, E. S. H., Ansari, N. and Ren, H., "A Genetic Algorithm for Multiprocessor

Scheduling,” IEEE Trans, on Parallel and Distributed Systems, vol. 5, n. 2, 1994.

Ikkai, Y., Inoue, M., Ohkawa, T. and Komoda, N., “A learning method of scheduling

knowledge by genetic algorithm,” IEEE Symposium on Emerging Technologies and

Factory Automation, v.1, pp.641-648, 1995.

Itoh, K, Huang, D. & Enkawa, T., "Twofold look-ahead search for multi-criterion job shop

scheduling," Int. J. Prod. Res., 1993.

122

Jansen, K., “Scheduling with constrained processor allocation for interval orders,”

Computers Ops. Res., v.20, n.6, pp. 587-595, 1993.

Jeffcoat, D. E. and Bulfin, R. L., "Simulated Annealing for Resource-Constrained

Scheduling,” European Journal of Operational Research, vol. 70, n. 1, pp. 43-51,

1993.

Johnson, S. M., "Optimal Two and Three Stage Production Schedules with Setup Times

Included," Naval Research Logistics Quarterly, 1(1), 1954.

Kanet, J. J. and Adelsberger, H. H., “Expert Systems in Production Scheduling,”

European Journal of Operational Research, vol. 29, pp. 51-59, 1987.

Kannan, V. R. and Ghosh, S., “An evaluation of the interaction between dispatching

rules and truncation procedures in job-shop scheduling,” Int. J. Prod. Res., v.26, n.7,

pp.1141-1159, 1993.

Kaplan, A. C. & Unal, A. T., "A probalistic cost-based due date assignment model for job

shops,” Int. J. Prod. Res.,1993.

Karp, R. M., "Combinatorics, complexity and randomness," Comm, of the ACM, v. 29,

pp. 98-117, 1986.

Keer, R. M. and Ebsary, R. V., “Implementation of an expert system for production

scheduling,” European Journal of Operational Research, v.33, pp.17-29,1988.

Khuri, S., Bäck, T. and Heitkötter, J., “An evolutionary approach to combinatorial

optimization problems,” ACM Computer Science Conference: proceedings, pp.66-

73, 1994.

123

Kidwell, M. D. and Cook, D. J., “Genetic Algorithm for Dynamic Task Scheduling,” IEEE

13th Annual Int. Phoenix Conf. On Computers and Communications, pp.61-67,

1994.

Kim, G. H. and Lee, C. S. G., "An evolutionary approach to the job-shop scheduling

problem,” Proceedings IEEE Int. Conference on Robotics and Automations, pp. 501-

506, 1994.

Kim, G. H. and Lee, C.S.G., "Genetic Reinforcement Learning Approach to the Machine

Scheduling Problem,” Proceedings - IEEE International Conference on Robotics and

Automation, v.1, pp. 196-201,1995.

King, J.R. and Spachis, A.S.,"Scheduling: Bibliography and Review,” Int. Jnl. of Physical

Distribution and Material Management, vol. 10, n.3, pp.105-132,1980.

Kirkpatrick, S., Gelatt, C. D. and Vecchi, M. P., "Optimization by Simulated Annealing,”

Science, vol. 220, n. 4598, pp. 671-680, 1983.

Kolen, A. and Pesch, E., “Genetic local search in combinatorial optimization,” Discrete

Applied Mathematics, v.48, pp.273-284, 1994.

Krishna, K., Ganeshan, K. and Ram, D. J., "Distributed Simulated Annealing Algorithms

for Job Shop Scheduling,” IEEE Trans.on Systems, Man, and Cybernetics, vol. 25,

n. 7, 1995.

Laarhoven, P. J., Aarts, E. H. L. and Lenstra, J. K., "Job Shop Scheduling by Simulated

Annealing,” Operations Research, v. 40, n. 1, pp. 113-125, 1992.

Laborie, P. and Ghallab, M., “IxTeT: and Integrated Approach for Plan Generation and

Scheduling,” IEEE Symposium on Emerging Technologies and Factory Automation,

v.1, pp.486-495, 1995.

124

Lee,I., Sikora, R., Shaw, M.J., "Joint lot sizing and sequencing with genetic algorithms

for scheduling: evolving the chromosome structure,” Proceedings of the 5th.

International Conference on Genetic Algorithm, University of Illinois and Urbana-

Chapaign, 1993.

Lee, K. and Jung, M., “Flexible Process Sequencing Using Petri Net Theory,”

Computers ind. Engng., v.28, n.2, pp. 279-290,1995.

Lenstra, J. K. and Shmoys, D. B., “Computing Near-Optimal Schedules,” Scheduling

Theory and its Applications, Edited by P. Chrétienne, E. G. Coffman, J. K. Lenstra

and Z. Liu, John Wiley & Sons Ltd, 1995.

Leon, V. J., Wu, S. D. and Storer, R. H., “Robustness measures and robust scheduling

for job shops,” HE Transactions, v.26, n.5, pp.32-43,1994.

Leu, Y., Matheson, L. A. and Rees, L. P., “Assembly Line Balancing Using Genetic

Algorithms with Heuristic-Generated Initial Populations and Multiple Evaluation

Criteria,” Decision Sciences, v.25, n .4 ,1994.

Liao, D., Chang, S., Yen, S. and Chien, C., “Daily Scheduling for R&D Semiconductor

Fabrication,” IEEE Int. Conf. On Robotics and Automation proceedings, v.3, pp. 77-

82, 1993.

Lin, C. K. Y., Haley, K. B. and Sparks, C., "A comparative study of standard and

adaptive versions of threshold acceptance and simulated annealing algorithms in

three scheduling problems,” European Journal of Operational Research, vol. 83, pp.

330-346, 1995.

Lin, F.T., Kao, C.Y, Hsu, C.C., "Applying the genetic approach to simulated annealing in

solving some NP-Hard Problems,” IEEE transactions on systems, man, and

cybernetics, vol. 23, n. 6, 1752-1767, 1993.

125

Lo, Z. and Bavarian, B, “Scheduling with Neural Networks for Flexible Manufacturing

Systems,” Proceedings of the 1991 IEEE International Conference on Robotics and

Automation,” pp.818-823, 1991.

Lourenco, H. R .," Job shop scheduling: computational study of local search and large-

step optimization methods,” European Journal of Operational Research, v. 83, pp.

347-364, 1995.

Low, C., "Job Shop Scheduling Heuristics for Sequence Dependent Setups,” Computers

Ind. Engng., vol. 29, n. 1-4, pp. 279-283, 1995.

Luh,- P. B. and Hoitomt, D. J., “Scheduling of Manufacturing Systems Using the

lagrangian Relaxation Technique,” IEEE Transactions on Automation Control, v.38,

n.7, pp. 1066-1079, 1993.

Maccarthy, B.L. & Liu, J., "Adrressing the gap in scheduling research: a review of

optimization and heuristic methods in production scheduling,” Int. J. Prod. Res.,1993

Maqrini, H. El and Teghem, J., ’’Scheduling complex flexible job shop problems,”

Proceedings of IEEE International Workshop on Emerging Technologies and

Factory Automation, Paris, pp. 541-549, 1995

Matsuura, H., Tsubone, H. and Kanezashi, M., “Sequencing, dispatching, and switching

in a dynamic manufacturing environment,” Int. J. Prod. Res., 1993.

Mattfeld, D. C., "Evolutionary search and the Job Shop,” Physica-Verlag Heidelberg,

Germany, 1996.

Mattfeld, D. C. and Bierwirth, C., "A Search Space Analisys of the Job Shop Scheduling

Problem,” site < http: // medusa.logistik.uni-bremen.de / Papers /

Arbeitsberichte.html >, 1996.

126

McAreavey, D., Hoey, J. and Leonard, R., “Designing the closed loop elements of a

material requirements planning system in a low volume, make-to-order company

(with case study),” Int. J. Prod. Res., v.26, n.7, pp.1141-1159, 1988.

McCahon, C.S and Lee, E. S., “Fuzzy job sequencinc for a flow shop". European

Journal of Operational Research , v.62, pp.294-301, 1992.

Mckay, K. N., Safayeni, F. R., Buzacon, J. A., "Job-shop scheduling theory: What is

releant?,” Interfaces , 18: 4, pp 84-90,1988.

Meyer, J., ‘Towards effective decision support for production scheduling,” IEEE

Symposium on Emerging Technologies and Factory Automation, v.1, pp.523-532,

1995.

Moreno, A. A. & Ding, F. Y., "A constructive heuristic algorithm for concurrently selecting

and sequencing jobs in an FMS environment,” Int. J. Prod. Res., 1993.

Muller-Merbach, H., "Heuristics and their design: a servey,” European Journal of

Operational Research v.8, pp.1-23, 1981.

Musser, K. L., Dhingra, J. S. and Blankenship, G. L., "Optimization Based Job Shop

Scheduling,” IEEE Trans, on Automatic Control, vol. 38, n. 5, pp. 808-813,1993.

Nakamura, N. and Salvendy, G., "An experimental study of human decision-making in

computer-based scheduling of flexible manufacturing system,” Int. J. Prod. Res.,

vol.26, n.4, pp. 567-583, 1988.

Nakano, R., Davidor, Y. and Yamada, T., “Conventional Genetic Algorithm for Job Shop

Problems,” edited by Y. Davidor, 1994.

Nasr, N., “Scheduling of production systems with flexible routings,” ME 2nd. Industrial

Engineering Research Conference Proceedings, Los Angeles - CA, pp. 487-492,

1993.

127

Nordstrom, A-L. and Tufekci, S., “A Genetic Algorithm for the Talent Scheduling

Problem,” Computers Ops. Res., v.21, n.8, pp. 927-940, 1994.

Ozdamar, L. and Ulusoy, G., “A survey on the resource-constrained project scheduling

problem,” HE Transactions, v. 27, pp. 574-586,1995.

Park, L. J. and Park, C. H., "Genetic Algorithm for Job Shop Scheduling Problems

Based on Two Representational Schemes,” Eletronics Letters, vol. 31, n. 9, pp.

2051-2053, 1995.

Pape, C. L., “Three mechanisms for managing resource constraints in a library for

constraint-based scheduling,” IEEE Symposium on Emerging Technologies and

Factory Automation, v.1, pp.281-289, 1995.

Park, L. J. and Park, C. H., "Application of Genetic Algorithm to Job Shop Scheduling

Problems with Active Schedule Constructive Crossover,” Proceedings of IEEE

International Conference on Systems, Man and Cybernetics, v.1, pp.530-535, 1995.

Parker, R. G., “Deterministic Scheduling Theory,” Chapman & Hall, London, 1995.

Pinson, E., "The Job Shop Scheduling Problem: A Concise Survey and Some Recent

Developments," Scheduling Theory and its Applications Edited by P. Chretienne, E.

G. Coffman, J. K. Lenstra and Z. Liu, John Wiley and Sons Ltd, 1995.

Piramuthu, S., Raman, N. and Shaw M., "Learning-Based Scheduling in a Flexible

Manufacturing Flow Line,” IEEE Transactions on Engineering Management, v. 41, n.

2, pp. 172-182, 1994.

Poon, P. W. and Carter, J. N., “Genetic algorithm crossover operators for ordering

applications,” Computers Ops. Res., v. 22, n. 1, pp. 135-147, 1995.

128

Punnen, A. P. and Aneja, Y. P., “Categorized Assignment Scheduling: a Tabu Search

Approach,” J. Opl. Res. Soc., v.44, n.7, pp. 673-679, 1993.

Quaddus, M. A., "A Generalized Model of Optimal Due-Date Assignment by Linear

Programming,” J. Opl. Soc., vol 38, n. 4, pp 353-359, 1987.

Quinlan, J. R., "Decision trees and decision making," IEEE Trans. Syst., Man,

Cybernetics, vol. 20, pp. 339-346, 1990.

Rabelo, L., Yih, Y., Jones, A. and Tsai, J., “Intelligent Scheduling forFlexible

Manufacturing Systems,” Proceedings of IEEE Int. Conf. on Robotics and

Automation, v.3, pp. 810-815, 1993.

Rachamadugu, R., “Scheduling jobs with proportionate early/tardy penalties,” ME

Transactions, vol.27, pp. 679-682, 1995.

Raman, N. and Talbot, F. B., “The job shop tardiness problem: a decomposition

approach,” European Journal of Operational Research, vol. 69, pp. 187-199,1993.

Reeves, C. R., “Modern Heuristic Techniques for Combinatorial Problems,” John Wiley
& Sons, New York, 1993.

Reeves, C. R., “A Genetic Algorithm for Flowshop Sequencing,” Computers Ops. Res.,

v.22, n.1, pp.5-13, 1995.

Richard, P, Jacquet, N., Cavalier, C. and Proust, C., ’’Solving Scheduling problems

Using Petri Nets and Constraint Logic Programming,” IEEE Symposium on

Emerging Technologies and Factory Automation, v.1, pp.59-67, 1995.

Rodammer, F.A. & White, K.P., "A recent survey of production scheduling,” IEEE

transactions on systems, man, and cybernetics, vol. 18, n. 6, 841-851, 1988.

129

Rodolph, G., "Massively Parallel Simulated Annealing and Its Relation to Evolutionary

Algorithms,” The Massachusetts Institute of Tecnology - Evolutionary Computation
vol.1, n.4, pp.361-383, 1994.

Rubin, P. A. and Ragatz, G. L., "Scheduling in a Sequence Dependent Setup

Environment with Genetic Search,” Computers Ops. Res., vol. 22, n. 1, pp. 85-99,
1995.

Rudolph, G., “Massively Parallel Simulated Annealing and Its Relation to Evolutionary

Algorithms,” Evolutionary Computation, 1(4), pp. 361-383, 1994.

Sarin, S. C., Ahn, S. and Bishop, A. B., “An improved branching scheme for the branch

and bound procedure of scheduling n jobs on m parallel machines to minimize total

weighted flowtime,” Int. J. Prod. Res., vol. 26, n.7, pp. 1183-1191,1988.

Satake, T., Morikawa, K. and Nakamura, N., “Neural network approach for minimizing

the makespan of the general job-shop,” International Journal of Production

Economics, v.33, pp.67-74, 1994.

Schrape, L. & Baker, K. R., "Dynamic Programming Solution of Sequencing Problems

with Precedence Constraints,” Operational Research, vol. 26, n. 3, pp.444-450,
1978.

Sen, T. and Gupta, S. K., "Astate-of-art survey of static scheduling research involving

due dates,” The Int. Jl. of Mgmt. Sci., vol. 12, n.1, pp 63-76, 1984.

Serafini, P. and Speranza, M. G., “A decomposition approach for a resource constrained

scheduling problem,” European Journal of Operational Research, v.75, pp. 112-135,
1994.

Shen, C., Pao, Y. and Yip, P., “Scheduling Multiple Job problems with Guided

Evolutionary Simulated Annealing Approach,” Proceedings of the First IEEE

Conference on Evolutionary Computation, pp. 702-706, 1994.

130

Shmoys, D. B., Clifford, S. and Wein. J., “Improved Approximation Algorithms for Shop

Scheduling Problems,” SIAM J. COMPUT., v.23, n.3, pp. 617-632, 1994.

Schräge, L. and Baker, K. R., “Dynamic Programming Solution of Sequencing Problems

with Precedence Constraints,” Operations Research, v.26, n.3, pp. 444-449, 1978.

Shimoyashiro, S., Isoda, K. and Awane, H., “Input scheduling and load balance control

for a job shop,” Int. J. Prod. Res., v.22, n.4, pp.597-605,1984.

Sim, S. K., Yeo, K. T. and Lee, W. H., "An expert neural network system for dynamic job

shop scheduling,” Int. J. Prod. Res., 1994.

Smith, S. F., “OPIS: A Methodology and Architecture for Reactive Scheduling,”

Intelligent Scheduling, edited by M. Zweben and M. S. Fox, Morgan Kaufmann

Publishers, San Francisco - CA, 1994.

Sponsler, J.L., "Genetic algorithms applied to the scheduling of the hubble space

telescope,” Telematics, vol.6, n.3/4, pp. 181-190, 1989.

Stoppler, S. and Bierwirth, C„ “The Application of a Parallel Genetic Algorithm to the

n/m/P/Cmax Flowshop Problem,” < http: // medusa.logistik.uni-bremen.de / Papers /

Arbeitsberichte.html >, 1995.

Storer, R. H., Wu, S. D. and Vaccari, R., "New Search Spaces for Sequencing Problems

with Application to Job Shop Scheduling,” Management Science, vol. 38, n. 10, pp.
1495-1509, 1992.

Sule, D. R., “Industrial Scheduling,” PWS Publishing Company, Boston, 1997.

Sun, D., Batta, R. and Lin, L., "Effective job shop scheduling through active chain

manipulation,” Computers Ops. Res., v.22, n.2, pp.159-172, 1995.

131

Syswerda, G., "Schedule Optimization Using Genetic Algorithms,” Handbook of Genetic

Algoritthms, Van Nostrand Reinhold, New York, pp. 332-349,1991.

Taillard, E., “Benchmarks for basic scheduling problems,” European Journal of

Operational Research, v.64, pp. 278-285,1993.

Tang, C. S., “The impact of uncertainty on a production line,” Management Science,

v.36, n.12, pp. 1518-1531, 1990.

Tsang, E. P. K., “Scheduling techniques - a comparative study,” BT Technol. J., v.13,

n.1, pp. 16-28, 1995.

Uckum, S., Bagachi, S. and Kawamura, K., "Managing genetic search in job shop

scheduling,” IEEE Expert, vol.8, n.5, pp.15-24, 1993.

Vaca, O. C. L., "Um algoritmo evolutivo para a programação de projetos multi-modos

com nivelamento de recursos limitados,” doctoral thesis, UFSC, 1995

Venugopal, V. and Narendran, T. T., “A genetic Algorithm Approach to the Machine-

Component Grouping Problem with Multiple Objectives,” Computers ind. Engng.,

v.22, n.4, pp.469-480, 1992.

Wang, D., “Earliness/tardiness production planning approaches for manufacturing

systems,” Computers ind. Engng., v.28, n.3, pp. 425-436, 1995.

Werner, F., "On heuristic solution of the permutation flow shop problem by path

algorithms,” Computers Operations Research, vol. 10/7, pp.707-722, 1993.

White, K. P. and Rogers, R. V., "Job-shop scheduling: limits of the binary disjunctive

formulation,” Int. J. Prod. Res., v.28, n,12, pp. 2187-2200, 1990.

132

Whitley, D., "The traveling salesman and sequence schedule scheduling: quality

solutions using genetic edge recombination,” Handbook of Genetic Algoritthms, Van

Nostrand Reinhold, New York, pp. 350-372, 1991.

Widmer, M. and Hertz, A., “A new heuristic method for the flow shop sequencing

problem,” European Journal of Operational Research, v.41, pp. 186-193,1989.

Widmer, M., "Job Shop Scheduling with Tooling Constraints: a Tabu Search Approach,”

J. Opl. Res. Soc., vol. 42, n. 1, pp 75-82, 1991.

Wu, H.-H. and Li, R.-K., “A new rescheduling method for computer based scheduling

systems,” Int. J. Prod. Res., v.33, n.8, pp. 2097-2110,1995.

Wu, S. D., Storer, R. H. & Chang, P. C., "One-machine rescheduling heuristics with

efficiency and stability as criteria,” Computers Ops. Res., vol.20, n. 1, pp 1-14,1993

Xiong, H. H., ’’Scheduling flexible manufacturing systems based on timed Petri nets and

fuzzy dispatching rules,” IEEE Symposium on Emerging Technologies and Factory

Automation, v.1, pp.309-315, 1995.

Yamada, T. and Nakano, R., "Genetic algorithm with multi-step crossover for job shop

scheduling problems,” IEE Conference Publications n. 414, pp. 146-151, 1995.

Zweben, M. and Fox, M. S., “Intelligent Scheduling,” Morgan Kaufmann Publishers, San

Francisco - CA, 1994.

APPENDIX A

RANDOM PROBLEM GENERATOR PROGRAM

A random problem generator program was developed in order to obtain problem

instances that included the real world constraints considered by the system proposed in

this thesis. Given the probability distributions for some variables and values for some

parameters the program generates a job shop scheduling problem like the ones

described in appendix A. There is also an option to enter all the data from a specific

problem, but this is very time consuming. The random generator program was used to

create all the problem used in this thesis.

When the program requests the probability distribution of a variable the user

must choose among binomial, Poisson, normal, uniform or exponential distributions and

enter the distribution parameters (e.g., mean and variance for a normal distribution,

minimum and maximum for a uniform distribution, etc.). Using this distribution the

program randomly generates values to the variable. The inputs that must be provided by

the user to the program generator are described below:

1. Number of jobs

2. Probability distribution of “Number of parts per job"

3. Occurrence probability of job ready times

4. Probability distribution of “Job batch size"

5. Probability distribution of “Ratio of a part batch size over the batch size of its

succeeding part in the BOM”

6. Probability distribution of “Job ready time (given that it occurs)”

7. Probability distribution of “Number of parts preceding a part in a BOM”

8. Probability distribution of “Number of subprocess per part"

9. Probability distribution of “Number of routes per subprocess"

10. Probability distribution of “Number of operations per route"

11. Probability of occurrence of operation ready time

12. Probability distribution of “Operation ready time (given that it occurs)”

13. Probability distribution of “Ratio of part batch size over transport batch size"

134

14. Probability distribution of “Unit operation execution time"

15. Probability distribution of “Operation setup time"

16. Number of machines which execute sequence dependent setup operations

17. Number of machine cells performing no sequence dependent setup operations

18. Probability distribution of “Number of machines per machine cell"

19. Number of resource types other than machines

20. Probability distribution of “Time interval between two consecutive resource

scheduled breaks"

21. Probability distribution of “Resource break time duration"

22. Mean machine static loading rate, based on historical data

23. Increase in the machine load due to the absence of resources other than machines

24. Mean number of resource types (other than machine) used to execute an operation

25. Probability distribution of “Number of units of each resource type used to perform an

operation (given that the resource type is required)"

26. Probability distribution of “Probability of the number of units of a resource type

required at a time t be greater than the number of resources available"

27. Coefficient of variation of the percentage of operations that require a specific

resource type (other than machine)

28. Probability of an operation presents setup dependent of at least one other operation,

given that it is executed on sequence dependent setup machine

29. Given that an operation 'o' has sequence dependent setup, enter the probability of

other operation which is executed on the same machine modify the standard setup

time of 'o' if processed right before 'o'

30. Probability distribution of “Job due dates”

31. Overlap policy (1/2)

Inputs number 1 (number of jobs), 2 (probability distribution of “Number of parts

per job") and 7 (Probability distribution of “Number of parts preceding a part in a BOM”)

are used to create the BOMs of all jobs. A tree generation algorithm was implemented to

accomplish this task.

135

The probability distributions of “Job batch size" (item 4) and “Ratio of a part

batch size over the batch size of its succeeding part in the BOM” (item 5) are utilized to

determine the batch size for each part.

The probability distributions of “Number of subprocess per part” , “Number of

routes per subprocess“ and “Number of operations per route" are useful to define all

the alternative processing plans of each part, i.e., to define the sequence of

subprocesses for each part, the alternative routes per subprocess, and the sequence of

operations at each subprocess route.

Items 16, 17 and 18 determine the machinery in the manufacturing environment.

Notice that if a machine executes sequence dependent setup operations it is modeled

as an one-machine cell. Therefore identical machines are included in the same cell if

they execute no sequence dependent setup operation, and in separated ceils otherwise.

The number of machines that execute at least one sequence dependent setup

operation (item 16), the probability of an operation (executed on a sequence dependent

setup machine) to present setup dependent of at least one other operation (item 28),

and the probability of an operation (which is executed on the same machine of an

operation ‘o’ with sequence dependent setups) modify the standard setup time of 'o' if

processed right before 'o' (item 29) are used to define the set of operations with

sequence dependent setups. All these inputs are required because not all operations

processed on a sequence dependent setup machine present sequence dependent

setup times.

The number of units of each resource type (other than machine) in the

production environment, as well as the resource requirements for each operation are

jointly determined by inputs 22 through 27. By using these inputs the user can create

problems with different levels of competition for resources, and also different levels of

availability and utilization of each resource type.

The uses of the other inputs are quite obvious.

136

APPENDIX B

PROBLEM INSTANCES USED IN THE EXPERIMENTS

The six problem instances used in the experiments addressed in chapter 5 are

described here. They were generated by the random generator program described in

appendix A. The problems are proposed as benchmarks for real job-shop scheduling.

Problem 1: The bill of material (BOM) of each job is shown in figure A.1. A pair (i, j)

inside each box means (part i, number of units of part i required to produce one unit of

the final product).

Job 0: Job 1:

Job 2: Job 3:

Job 4:

Figure A.1. BOMs - Jobs from Problem 1

137

Table A.1 shows some job related data. Table A.2 describes the environment

capacity (availability of resources) and the resource scheduled breaks. Routing

information and operation related data, including resource requirements are described in

table A.3. The subset of operations with sequence dependent setup is reported in table

A.4.

Job batch size due date ready time

0 6 515 0

1 11 456 0

2 12 443 0

3 9 475 0

‘ 4 14 574 0

Table A.1. Job Related Dada - Problem 1

138

Resource class Resource (typelunit) Scheduled breaks (start timelduration)

Machines (010) (335156) (1781122)

(110) (506154) (1630136)

(210) (105311)

(310) (90511)

(311) (612114) (1986116)

(4I0) (52811) (1499118)

(5I0) (291136) (171716)

(511) (93612)

(5I2) (223130) (1663136)

(5I3) (1181178)

Other resources (6I0) (673130)

(611) (1269114)

(6I2) (113136) (1539166)

(6I3) (311134) (1545148)

(7I0) (48012) (160211)

(711) (426150) (1616126)

(7I2) (767116)

(7I3) (1238146)

(8I0) (955132)

(811) (403134) (1597114)

(9I0) (281158) (1359132)

(911) (842140)

(1010) (714130)

(1011) (1156148)

(1012) (866140)

(1013) (771136)

(1110) (12411) (1185150)

(1111) (905154)

(1112) (12712) (1379128)

(1113) (1041120)

(1210) (244116) (1380136)

139

(1211) (378124) (1682126)

(1212) (59148) (1237148)

(1213) (14911) (1400150)

(1310) (57211) (1713124)

(1311) (510126) (1686118)

(1312) (964114)

(1313) (18116) (1557146)

Table A.2. Resource Related Data - Problem 1

y A £ >_____________ b _______i j
Part Sub

process

Route Operation Minimum

transport

batch

Setup

time

Unit

executio

n time

Operation

ready

time

Machine

type

required

Other resources

required

(typelquantity)

0 0 0 0 4 6 2 0 2 (811)

0 0 0 1 5 6 3 0 3 (611)

0 0 0 2 3 7 1 0 2 (611) (711) (1311)

0 1 1 3 6 3 2 0 3 (8I2)

0 1 1 4 3 3 4 0 5

1 2 2 5 4 3 1 0 5 (1011)
1 2 2 6 3 10 3 0 0

1 3 3 7 3 4 3 0 1 (9I2)

1 3 4 8 10 6 1 0 4

1 3 4 9 9 4 1 0 5

1 3 4 10 3 6 2 0 2 (1011) (1212)

2 4 5 11 4 6 3 0 4 (1311)

2 4 5 12 5 6 3 0 5 (7I2) (1011) (1311)

2 4 6 13 5 3 1 0 5 (7I1)(10I1)

2 4 6 14 2 5 2 0 1

3 5 7 15 2 4 2 0 0 (811)

3 5 7 16 5 8 1 0 3 (711) (811) (1011)

(1111)

3 5 8 17 2 5 5 0 0 (811) (1011)

3 5 8 18 3 6 1 0 4

3 6 9 19 2 5 4 0 5 (711) (1011)
3 6 10 20 3 6 3 0 2 (711)

3 6 10 21 2 6 4 0 3 (6I2) (1111) (1211)

4 7 11 22 2 7 4 0 3

4 7 11 23 8 5 2 0 5

4 7 12 24 3 4 4 0 1 (611) (711) (1111)

4 7 12 25 4 3 5 0 4 (711)

4 8 13 26 4 9 4 98 2 (711) (1011)

4 8 14 27 8 6 1 0 3 (1011) (1311)

141

4 9 15 28 2 4 1 0 4 (1311)

4 9 16 29 7 6 4 0 1

4 9 16 30 6 4 2 0 3 (611)

4 10 17 31 5 5 5 0 2 (811) (1011)

4 10 17 32 4 4 1 0 3

4 10 17 33 4 4 5 0 0 (1011)
5 11 18 34 11 2 2 0 4 (6I2) (911)

5 12 19 35 5 8 1 0 3 (1111) (1211)
5 12 19 36 8 3 4 0 5 (6I2) (711)

5 12 20 37 5 4 5 0 5 (611)
5 13 21 38 10 2 5 0 2 (1111)
5 13 21 39 7 3 4 0 4

6 14 22 40 4 8 5 0 5 (611) (1011)
6 14 22 41 3 4 2 0 0

6 14 22 42 5 4 1 0 3 (711) (1111)

6 15 23 43 2 3 3 0 2

6 15 23 44 3 8 3 0 4

6 15 23 45 5 6 3 0 2

6 15 24 46 2 1 3 0 5

6 15 24 47 9 8 5 0 4 (711) (1111)

6 15 24 48 2 5 1 0 1

6 16 25 49 3 2 1 0 4 (1212) (1311)
7 17 26 50 7 2 4 0 1 (611)
7 18 27 51 10 7 4 0 4 (1311)
7 18 28 52 6 8 6 0 4

7 18 28 53 10 5 1 0 3 (7I1)(10I1)
7 19 29 54 9 1 5 0 2 (811) (1311)
7 19 29 55 5 5 3 0 5 (7I1)(10I1)

7 19 29 56 3 3 5 0 2

8 20 30 57 3 8 2 0 5 (7I1)(10I1)

8 20 30 58 8 4 3 0 2 (611)

8 20 31 59 6 6 1 0 2 (711) (1011)

142

8 20 31 60 3 6 3 0 5 (711) (1211)
8 21 32 61 5 6 5 0 3 (1011)
8 21 32 62 3 7 5 0 4
8 21 33 63 4 5 2 0 4 (711)
9 22 34 64 8 8 2 0 2 (611) (8I2)
9 22 35 65 2 5 4 0 3 (1111)
9 22 35 66 2 6 5 0 2 (711)
9 22 35 67 3 6 3 0 3 (1111) (1211)
9 23 36 68 3 5 4 0 0 (1311)
9 23 36 69 3 3 5 0 4
9 24 37 70 3 6 1 0 2 (1011) (1312)
10 25 38 71 4 6 2 0 5 (611)
10 25 38 72 3 7 2 0 2 (911) (1111)
10 26 39 73 3 5 3 0 3 (711)
10 26 39 74 6 7 2 0 5
10 27 40 75 6 7 3 0 3 (1011) (1311)
10 27 40 76 3 7 2 0 0 (1211)
10 27 41 77 3 3 4 0 3 (711) (1011)
10 27 41 78 4 5 1 0 2 (711)
11 28 42 79 2 8 2 0 4 (1311)
11 28 42 80 2 6 5 0 0
11 28 42 81 3 1 2 0 3 (1011)
11 28 43 82 5 5 2 0 4 (1011)
11 28 43 83 3 8 3 0 0 (611)
11 29 44 84 3 6 1 0 1 (1311)
12 30 45 85 7 1 3 0 5 (611)
12 31 46 86 4 6 2 0 3
12 31 46 87 12 5 1 0 2 (611)
12 31 47 88 5 3 1 0 2 (611) (1211)
12 32 48 89 8 8 5 0 3 (6I2) (711)
12 32 48 90 7 9 2 0 5
12 32 49 91 4 4 1 0 1 (611)

143

12 32 49 92 10 7 2 0 4 (1011) (1211)

13 33 50 93 5 2 1 0 3

13 33 50 94 5 10 2 0 2 (1011)

13 33 50 95 3 4 6 0 5 (1011) (1211)

13 34 51 96 3 9 4 0 4 (8I2)

13 34 51 97 5 6 4 0 3 (611)

13 35
í

52 98 5 5 2 0 1 (711) (8I1) (912)

(1011) (1111)

13 35 52 99 4 4 1 0 4 (1311)
13 36 53 100 5 7 4 0 1

13 36 53 101 2 3 4 0 5 (7I2)

14 37 54 102 4 3 3 0 5 (6I2) (711) (811)

(1011) (1111)

14 38 55 103 5 2 6 0 3

14 38 55 104 14 5 5 0 5

14 38 56 105 4 8 2 0 3 (1111)

14 38 56 106 10 3 4 0 5

14 39 57 107 7 6 2 0 2 (811) (1111)

14 40 58 108 6 3 3 0 5 (711) (1111) (1311)

14 40 58 109 3 3 5 0 1

14 41 59 110 6 5 1 0 0

14 41 59 111 9 5 1 0 4

14 41 59 112 5 6 2 0 1 (1111).

14 41 60 113 6 3 5 0 0

14 41 60 114 11 6 1 0 2 (711)

14 41 60 115 7 3 1 0 5

15 42 61 116 13 4 3 0 1 (1111)

15 42 61 117 23 4 1 0 5 (1111)

15 42 62 118 9 6 2 0 4

15 43 63 119 9 8 2 0 3 (611)

15 43 63 120 26 5 1 0 1 (6I2) (1311)

15 43 64 121 10 5 1 0 3 (1111)

\

144

15 44 65 122 6 1 1 0 5 (611) (711) (1311)

16 45 66 123 3 3 3 0 2 (1212)
16 46 67 124 3 6 2 0 0

16 46 67 125 7 4 1 0 3 (1012)
16 46 67 126 12 . 7 1 0 1 (1111)
17 47 68 127 5 9 1 0 2 (811) (1011) (1111)
17 47 68 128 4 4 6 0 5 (711) (811) (1311)
17 48 69 129 4 7 3 0 2

17 48 69 130 3 5 5 0 5

17 48 69 131 5 3 2 0 2 (1011) (1111)

(1211)
17 49 70 132 5 5 2 0 4

17 49 70 133 3 7 4 0 2 (611) (1011)
17 50 71 134 5 5 3 0 3 (1111)
17 50 71 135 7 3 1 0 4 (7I2) (1011) (1211)

Table A.3. Routing Structure and Operation Related Data - Problem 1

145

Operation Setup times (preceding operation I setup)

6 (1517) (1715) (3315) (4115) (6816) (7618) (8016) (11015) (12419)

14 (2414) (4811) (50I3) (9113) (9816) (10016) (10914) (11214) (11614)

15 (619) (1713) (6815) (7617) (11015) (12413)

17 (617) (15110) (33I4) (4114) (6813) (7616) (8016) (12413)

24 (1417) (2915) (4817) (5017) (9110) (9813) (11217) (11617)

29 (1414) (4815) (5017) (9815) (10014) (10915) (11215) (11619) (12013)

33 (616) (1715) (4115) (6816) (7616) (8013) (11017) (12412)

41 (617) (1712) (3316) (6818) (7615) (8012) (11017) (12416)

48 (1412) (2414) (5014) (9112) (9816) (10914) (11218) (11614) (12011)

50 (24I4) (29I7) (48I4) (98I5) (10016) (10915) (11615) (12014)

68 (616) (1516) (1710) (3317) (4113) (7613) (8013) (11017) (12418)

76 (614) (1513) (1713) (3314) (4113) (6815) (8015) (11012) (12413)

80 (615) (1513) (1715) (4118) (6817) (11013)

91 (1417) (2412) (2917) (5013) (9816) (11616) (12016)

98 (1414) (2414) (2914) (4816) (5012) (9113) (10013) (10918) (11217) (11617)

100 (1416) (2412) (2916) (4813) (5014) (9115) (10915) (11614) (12015)

109 (1415) (2415) (4816) (5017) (9115) (9810) (100110) (11215) (11612) (12015)

110 (618) (1713) (3316) (4114) (6816) (7613) (8014) (12418)

112 (1414) (2412) (2914) (4818) (5013) (10913) (11618) (12012)

116 (2416) (2913) (48110) (50I5) (98I2) (10013) (10917) (11213) (12012)

120 (1416) (2417) (2912) (4818) (5017) (9119) (9816) (10014) (10916) (11214) (11617)

124 (1713) (4115) (6814) (8014) (11019)

Table A.4. Operations with Sequence Dependent Setup Times - Problem 1

146

Problem 2: Similarly figure A.2 and tables A.5, A.6, A.7 and A.8 describe problem 2.

Job 0: Job 1:

Job 6: Job 7:

136

Job 8: Job 9:

Figure A.2. BOMs - Jobs from Problem 2

Job batch size due date ready time

0 13 1120 0

1 11 1768 0

' 2 10 2632 0

3 8 940 0

4 10 1804 0

5 13 2812 0

6 9 1156 0

7 11 1732 0

8 9 1876 0

9 10 2956 0

Table A.5. Job Related Dada - Problem 2

137

Resource class Resource (typelunit) Scheduled breaks (start timelduration)

Machines (010) (1667127)

(110) (1235130) (4235131)

(210) (2499117)

(310) (166125) (3071127)

(311) (1823132)

(4I0) (832137) (3779129)

(411) (2981134)

(5I0) (1032114) (4316130)

(6I0) (2074127)

(611) (1310142) (4562120)

(6I2) (2590140)

(7I0) (1680141)

(711) (2881110)

(7I2) (56131) (3147129)

(8I0) (2278119)

(811) (887I43) (4080113)

(8I2) (2970I38)

(9I0) (2331143)

(911) (1654124)

(9I2) (1174132) (3996122)

(1010) (2399145)

(1011) (1082124) (3806139)

Other resources (1110) (179130) (3629120)

(1111) (2079127)

(1112) (297140) (2827125)

(1113) (2266123)

(1210) (928127) (3775126)

(1211) (2576128)

(1212) (932139) (3371137)

(1213) (1363145) (4828138)

(1310) (589122) (397111)

138

(1311) (2764I23)

(1312) (106118) (3124118)

(1313) (27I42) (3639I29)

(1410) (27I32) (3209I35)

(1411) (1779131)

(1510) (857114) (4591113)

(1511) (2622I37)

(1610) (2479I24)

(1611) (1987136)

(1612) (668140) (4278124)

(1613) (1426129)

(1710) (2889151)

(1711) (186119) (3355I20)

(1712) (2245I29)

(1713) (551128) (3729I35)

(1810) (2772I28)

(1811) (1294133) (462711)

(1910) (886113) (4199119)

(1911) (278151) (3599I22)

(1912) (2587I43)

(1913) (759I7) (3736141)

(2010) (642118) (4020I37)

(2011) (673I34) (3707I22)

(20I2) (1134119) (4003I39)

(20I3) (686117) (3763I25)

(2110) (2348I34)

(2111) (1166121) (4127121)

(2112) (867I26) (4103126)

(2113) (1048125) (3953135)

(2210) (1908127)

(2211) (1815112)

(22I2) (2309I27)

139

(2213) (2035129)

(2310) (2234I39)

(2311) (0I34) (3574112)

(23I2) (2403I49)

(23I3) (34911) (3230I48)

(24I0) (781128) (3209I25)

(2411) (2346144)

(25I0) (364113) (3707I27)

(2511) (204I30) (2694113)

(25I2) (2203I28)

(25I3) (2496I36)

(26I0) (2260I27)

(2611) (2939I23)

(27I0) (441148) (3609129)

(2711) (2228116)

(27I2) (2399119)

(27I3) (168139) (3297135)

(28I0) (195317)

(2811) (2013129)

(29I0) (1705139)

(2911) (1565140)

(30I0) (2184121)

(3011) (941129) (4330I39)

Table A.6. Resource Related Data - Problem 2

140

Part Sub

process

Route Operation Minimum

transport

batch

Setup

time

Unit

execution

time

Operation

ready time

Machine

type

required

Other resources

required

(typelquantity)
0 0 0 0 16 7 1 0 6
0 0 0 1 27 7 4 0 9
0 0 0 2 21 3 4 0 7 (1911) (2211)
0 0 0 3 16 1 4 0 8
0 0 0 4 46 4 1 0 10 (2011) (2111)
0 0 0 5 48 4 3 0 8
0 1 1 6 27 7 2 0 10 (1711) (2211)
0 1 1 7 21 7 1 0 2
0 1 2 8 16 6 1 0 1 (1611)
0 1 2 9 42 5 3 0 4
0 1 2 10 14 9 1 0 5 (2511)
0 2 3 11 20 4 1 0 4 (2211)
0 2 3 12 12 6 1 0 5
0 2 3 13 13 6 2 0 9 (1611)
1 3 4 14 19 5 1 0 10 (1111) (1811) (2411)
1 3 4 15 16 7 3 0 6 (1711)
1 4 5 16 15 3 3 0 8 (1911)
1 4 5 17 34 7 3 0 5 (1711) (2511)
1 4 5 18 12 6 3 0 3
1 4 5 19 11 8 5 0 6 (2711)
1 4 5 20 17 4 2 0 8
1 4 6 21 23 4 3 0 0
1 4 6 22 17 5 1 0 10 (2211)
1 5 7 23 11 5 1 0 7 (1311) (2111)
1 5 7 24 21 3 1 0 10
1 5 8 25 11 7 1 0 6 (2811)
1 5 8 26 12 3 1 0 7 (1111) (2511)
2 6 9 27 6 7 4 0 6
2 6 9 28 6 3 4 0 4 (1311) (1611) (2311)
2 6 9 29 26 5 3 0 8 (1312)
2 6 9 30 12 7 1 0 6 (1111)
2 7 10 31 20 6 4 0 9 (2011) (2511)
2 7 10 32 9 3 1 0 7 (1811) (2711)
2 7 10 33 21 7 5 0 10 (2511)
2 7 10 34 7 5 2 0 9
2 7 10 35 20 8 1 0 7
2 8 11 36 6 4 5 0 10
2 8 11 37 10 6 1 0 4
2 8 11 38 24 8 1 0 5 (2311)
2 8 11 39 8 4 1 0 9 (2111)
2 8 11 40 11 3 2 0 6 (1611)
2 8 11 41 13 4 4 0 3
2 9 12 42 19 4 4 0 7 (2411)
2 9 12 43 10 4 2 0 2

141

2 9 12 44 12 4 3 0 0 (1612) (1811)
2 10 13 45 6 3 4 0 4
2 10 13 46 15 4 2 0 9 (1311) (2511)
2 10 14 47 6 0 2 0 9 (1711) (2011)
2 10 14 48 7 3 4 0 2 (2011) (2211)
2 10 14 49 9 5 2 0 1
2 10 14 50 9 5 3 0 3
3 11 15 51 3 5 2 0 3
3 11 15 52 10 7 4 13 10 (1911)
3 11 16 53 9 3 1 0 7
3 12 17 54 3 3 1 0 5 (1711)
3 12 17 55 4 7 2 0 7 (3011)
3 12 17 56 6 2 1 0 4 (1911) (2911)
3 13 18 57 3 2 3 0 1 (1612) (2011)
3 13 18 58 3 1 1 0 3
3 13 18 59 7 8 1 0 4 (1611) (2211)
3 13 18 60 4 5 1 0 6 (2711)
3 13 18 61 3 6 2 0 9 (2211)
3 14 19 62 4 3 1 0 0
3 14 19 63 7 6 3 0 3
3 14 19 64 8 3 4 0 6 (2311)
3 14 19 65 6 0 1 0 0 (1611) (2811)
3 14 19 66 12 2 3 0 4
3 14 20 67 4 6 2 0 8 (2111) (2911)
3 15 21 68 4 7 3 0 10
3 15 21 69 3 7 6 0 4 (1611)
3 15 21 70 10 5 3 0 5 (1612) (2511)
3 15 22 71 3 5 3 0 1 (1611)
3 15 22 72 4 3 2 0 10
4 16 23 73 8 5 2 0 7 (1611)
4 16 23 74 6 6 4 0 10 (2011) (2111) (2211)

(2911)
4 16 23 75 3 3 5 0 1 (2011) (2211) (2711)
4 17 24 76 6 5 3 0 7 (1611) (2511)
4 17 24 77 3 2 3 0 8 (1711) (2211) (2711)
4. 17 24 78 3 8 2 0 2 (1611) (1911) (2011)
4 17 24 79 6 6 1 0 3
4 17 25 80 6 6 6 0 8
4 17 25 81 5 6 4 0 9 (1611) (1911)
4 17 25 82 7 5 5 0 10
4 17 25 83 5 3 4 0 9 (2011) (2511)
4 17 25 84 4 5 4 0 10 (1711)
4 18 26 85 13 7 4 0 6 (1611)
4 18 26 86 3 7 1 0 10 (2111)
4 18 26 87 5 7 1 0 . 5 (1111) (1311)
4 18 26 88 4 4 1 0 0 (20I2)
4 18 26 89 3 7 3 0 5
4 19 27 90 9 4 2 0 6 (2211) (2911)

142

4 19 27 91 4 4 3 0 3 (1511) (2111)
4 19 27 92 9 5 3 0 10 (1611) (1711) (1911)

(2311)
4 19 28 93 6 2 1 0 10 (1611)
4 19 28 94 4 4 4 0 8
4 20 29 95 8 5 5 0 7 (2211)
4 20 29 96 10 2 2 0 5 (1211)
4 20 29 97 5 3 4 0 10 (1211) (1511)
4 20 30 98 4 4 3 0 7 (1711) (2111)
4 20 30 99 4 4 3 0 2
4 20 30 100 4 8 4 0 10 (1611)
4 20 30 101 6 6 5 0 5 (2511)
4 20 30 102 4 4 2 0 3
4 20 30 103 3 6 4 0 10 (2011)
5 21 31 104 7 2 2 0 7 (2211)
5 21 31 105 4 3 1 0 3
5 21 31 106 3 7 2 0 . 6 (1611) (2111) (2211)
5 21 31 107 3 2 4 0 4
5 21 31 108 4 7 5 0 5 (1211) (2211)
5 21 32 109 6 4 4 0 7 (1311)
5 21 32 110 3 8 3 0 10 (1611)
5 21 32 111 4 6 4 0 4 (23I2)
5 21 32 112 3 7 3 0 7
5 21 32 113 3 3 1 0 4
5 22 33 114 3 6 4 0 8 (1211) (1611) (2711)
5 22 33 115 5 3 4 0 4
5 22 33 116 8 0 2 0 5 (1611)
5 22 33 117 9 3 3 0 10 (1612)
6 23 34 118 20 6 4 0 10 (1711) (2211) (2511)
6 23 34 119 6 6 2 0 6 (2111) (23I2)
6 23 35 120 7 5 3 0 5
6 23 35 121 12 1 3 0 10 (22I2)
6 23 35 122 10 7 2 0 3
6 23 35 123 11 6 2 0 8 (1612) (1711) (2211)
6 24 36 124 6 7 3 0 10 (2211)
6 24 36 125 6 5 4 0 7 (1611) (2511)
6 24 36 126 9 0 3 0 10 (2211) (2311)
6 24 36 127 7 3 3 0 8
6 25 37 128 6 4 1 0 9 (2611)
6 25 37 129 6 4 1 0 3
6 25 37 130 5 7 3 0 10 (1211) (2211)
6 25 37 131 5 4 3 0 ,8
6 25 37 132 5 10 1 0 7 (2511)
6 26 38 133 14 4 1 0 9 (2111)
7 27 39 134 10 6 2 0 4 (1211) (1311)
7 28 40 135 5 5 4 0 7
7 28 40 136 6 7 1 0 10
7 28 40 137 6 3 2 0 3

143

7 28 40 138 18 5 6 0 9
7 28 40 139 8 3 4 V 0 8 (2611)
7 28 40 140 8 9 1 0 2
7 28 41 141 11 6 2 0 9 (2211)
7 28 41 142 11 6 3 0 3 (2112)
7 28 41 143 5 5 3 0 8 (1611)
8 29 42 144 3 1 3 0 7 (2111)
8 29 42 145 6 5 3 0 10 (1211) (2611)
8 30 43 146 3 4 1 0 8
8 30 43 147 3 5 4 0 7 (20I2) (2311) (2511)
8 30 43 148 3 4 2 0 10 (1111)
8 30 43 149 4 6 4 0 8
8 30 43 150 5 5 1 0 7 (2111)
8 30 44 151 7 6 5 0 6 (2211)
8 30 44 152 8 6 1 0 0
8 30 44 153 3 7 3 0 7 (2011) (2211)
8 31 45 154 4 6 2 0 5 (1611)
8 31 45 155 3 4 3 0 8
8 31 45 156 4 4 3 0 4 (2011)
8 32 46 157 4 8 1 0 9
8 32 46 158 2 3 4 0 10 \
8 32 46 159 3 6 4 0 4 (25I2)
8 32 46 160 3 9 1 0 6
8 32 46 161 3 6 4 0 10 (1111) (2011)
8 32 46 162 3 6 3 0 1
9 33 47 163 3 2 1 0 0
9 33 47 164 3 4 1 0 7
9 33 47 165 3 7 4 0 4 (1611)
9 33 47 166 3 6 3 0 8
9 33 47 167 9 6 3 0 1
9 34 48 168 2 1 2 0 6 (1312)
9 34 48 169 2 7 2 0 5 (1111) (22I2)
9 34 48 170 2 6 3 0 10 (2011) (2911)
9 34 48 171 3 6 3 0 9 (1211)
9 35 49 172 2 6 4 0 0 (1612) (2011)
9 35 49 173 4 7 2 0 8
9 35 49 174 4 5 2 0 9 (1711)
9 35 49 175 3 4 2 0 4 (2111) (2511)
9 35 49 176 4 9 2 0 3
10 36 50 177 4 4 3 0 4
10 36 50 178 3 5 1 0 9
10 37 51 179 10 8 2 0 5 (2611)
10 37 51 180 10 0 2 0 8
10 37 51 181 3 9 4 0 10 (1111) (2111)
10 38 52 182 8 5 1 0 3
10 38 52 183 3 4 2 0 2 (2511)
10 38 52 184 10 8 4 0 6 (1611) (1911) (2111)

(2911)

144

10 38 52 185 5 4 2 0 3
10 38 52 186 9 4 3 36 7 (1512)
10 39 53 187 2 4 3 0 8
10 39 53 188 2 5 3 0 3
10 39 53 189 3 5 5 0 7 (1911)
10 39 53 190 5 6 4 0 5
11 40 54 191 4 7 4 0 10 (1311)
11 40 54 192 7 4 1 0 2 (2211)
11 40 54 193 3 8 2 0 0 (1911)
11 40 54 194 9 5 3 0 9 (1211) (2511)
11 41 55 195 2 6 4 0 3
11 41 55 196 3 7 4 0 9 (2111) (2511)
11 41 55 197 6 7 1 0 7 (2011)
11 41 55 198 4 5 2 0 8 (1111) (1611) (2411)
11 41 55 199 2 7 3 0 0 (2011)
12 42 56 200 5 6 1 0 5
12 42 56 201 10 3 1 0 2
12 42 56 202 4 7 2 0 5
12 42 56 203 5 2 3 0 9
12 42 56 204 14 3 1 0 6
12 43 57 205 5 3 3 0 9 (22I2)
12 43 57 206 7 4 2 0 5
12 43 57 207 5 7 4 0 10
12 43 57 208 7 7 5 0 8
12 43 57 209 12 4 1 0 9 ■
13 44 58 210 3 0 1 0 7 (2011)
13 44 58 211 4 6 4 0 5
13 44 58 212 2 6 3 0 2
13 44 58 213 2 4 1 0 8
13 45 59 214 4 5 5 0 10 (2511)
13 45 59 215 3 1 1 0 8 (20I2)
13 45 59 216 8 3 3 0 2 (2011) (2311)
13 45 59 217 8 4 3 0 9 (1111)
14 46 60 218 4 7 1 0 8
14 46 60 219 3 6 4 0 5
14 46 60 220 2 7 1 0 9
14 46 60 221 3 7 2 0 1
14 46 60 222 2 7 1 0 2
14 46 61 223 2 9 3 0 3
14 47 62 224 4 3 1 0 8 (22I2) (2511)
14 47 62 225 4 3 1 0 4 (1111)
14 47 62 226 2 3 4 0 9 (1711) (2011)
14 47 62 227 3 6 2 0 1 (2011)
14 48 63 228 2 8 2 0 6
14 48 63 229 2 6 2 0 5
14 48 63 230 4 3 3 0 10 (1111) (25I2)
14 48 63 231 3 4 3 0 3 (2711)
14 48 63 232 3 2 1 0 9

145

14 49 64 233 4 6 1 0 1 (2711) (2911)
14 49 64 234 3 6 6 0 7
14 49 64 235 3 7 3 0 5 (2112)
14 49 64 236 2 6 3 0 10
14 49 64 237 6 4 3 0 6 (2911)
14 50 65 238 2 7 2 0 4
14 50 65 239 2 5 3 0 3
14 50 65 240 2 3 3 0 9
15 51 66 241 14 4 4 0 5
15 51 66 242 3 5 3 0 3 (1611)
15 51 66 243 7 4 1 0 5 (1411)
15 51 66 244 10 6 2 0 8
16 52 67 245 3 3 4 0 5 (1711) (2011) (25I2)

(2911)
16 52 67 246 6 4 1 0 7 (29I2)
16 52 67 247 8 6 1 0 2
16 ' 52 67 248 5 2 2 0 8 (1211) (2511)
16 53 68 249 5 3 3 0 3 (2511)
16 53 68 250 2 7 4 0 5 (1611)
16 53 68 251 7 3 6 0 7 (1911)
16 53 68 252 3 3 3 0 8 (20I2) (2511)
16 53 68 253 6 2 3 0 10
17 54 69 254 4 1 2 0 7 (2211)
17 55 70 255 2 5 1 0 3 (1611) (2311)
17 55 70 256 2 5 4 0 8 (2211)
17 56 71 257 5 6 2 0 4 (2011) (2511)
17 56 71 258 2 3 4 0 3 (1911) (2411)
17 56 71 259 2 5 1 0 10 (1111) (1711) (2211)
17 56 71 260 2 7 3 0 3 (2511)
17 56 71 261 5 5 3 0 1 (1611)
17 56 71 262 2 8 2 0 8 (1911) (2011)
17 56 72 263 5 5 2 0 5 (2011)
17 57 73 264 3 8 1 0 6
17 57 73 265 6 5 5 0 2
17 57 74 266 5 4 3 0 6 (2211)
17 57 74 267 7 1 4 0 8
17 57 74 268 4 3 1 0 2
17 57 74 269 2 6 2 0 5
18 58 75 270 16 4 2 0 5 (1211)
18 58 75 271 9 3 3 0 10 (2211) (25I2)
18 59 76 272 8 4 2 0 5
18 59 76 273 15 7 1 0 1 (2911)
18 59 76 274 11 5 2 0 9
18 59 76 275 20 6 1 0 10 (1611) (2111)
18 59 76 276 7 4 2 0 7
18 59 76 277 5 4 2 0 10
19 60 77 278 13 9 1 0 9 (2011) (2511)
19 60 77 279 6 7 2 0 6 (1311) (2011) (2111)

61
61
61
62
62
63
63
63
64
65
65
66
66
66
66
66
66
66
66
66
66
66
67
67
67
67
67
67
67
68
68
68
68
69
69
69
69
70
70
70
70
70
70
70

77 280
77 281
77 282 17
77 283 19
78 284
78 285
78 286
79 287 10
79 288
80 289
80 290
80 291
81 292 19
82 293 12
82 294
83 295
83 296
83 297
83 298
83 299
84 300
84 301
84 302 10
84 303
84 304
84 305
85 306
85 307
85 308
85 309 10
85 310
85 311 10
86 312
87 313
87 314
87 315
87 316
88 317
88 318 11
88 319
88 320
89 321
89 322
89 323 11
90 324
90 325
90 326
90 327

147

22 70 90 328 9 6 4 0 3 (1611) (2211)
22 71 91 329 5 6 1 0 10 (2011) (2211)
22 72 92 330 12 0 3 0 4 (1711)
22 72 92 331 3 6 4 0 9
22 72 92 332 9 5 1 0 10 (1611) (2011) (2511)

(2711)
22 72 92 333 11 3 3 0 2 (1611) (20I2)
22 72 92 334 6 9 2 0 4
22 72 92 335 4 4 1 0 9
23 73 93 336 4 8 1 0 3
23 73 93 337 11 6 2 0 5
23 73 93 338 6 4 4 0 3 (2511)
24 74 94 339 15 6 4 0 10 (1411) (1711) (2011)

(2911)
24 74 94 340 12 6 3 0 6
24 74 94 341 27 4 6 0 3
24 • 74 94 342 28 4 2 0 8 (1711)
24 74 94 343 15 6 5 0 4 (2111)
25 75 95 344 5 6 1 0 1 (2911)
25 75 96 345 7 4 3 0 0 (1611)
25 75 96 346 4 5 4 0 7
25 75 96 347 4 8 1 0 5 (1111) (1311)
25 75 96 348 5 7 . 5 0 3 (2011)
25 76 97 349 4 4 2 0 4 (2711)
25 76 97 350 7 4 4 0 3
25 77 98 351 4 6 5 0 6
25 77 98 352 6 5 3 0 7
25 77 98 353 4 6 1 0 2 (2211)
26 78 99 354 3 3 3 0 8 (2311)
27 79 100 355 3 3 1 0 4 (1111) (1911) (2711)
27 79 100 356 5 6 2 0 1 (2711)
27 79 100 357 2 6 3 0 7 (1611)
27 79 100 358 2 7 2 0 8 (1611)
28 80 101 359 7 3 1 0 1
28 80 101 360 2 7 3 0 8
28 80 101 361 3 8 3 0 4
28 80 101 362 4 1 4 0 0 (20I2) (2211)
28 80 101 363 2 1 3 0 5
29 81 102 364 3 7 3 0 8 (1611) (2711)
29 81 102 365 4 8 3 0 7
29 81 102 366 6 7 3 0 8 (2111) (2511)
29 81 102 367 3 8 2 0 6 (2211)
29 82 103 368 2 4 2 0 10
29 82 103 369 2 6 4 0 9 (1211) (2211)
29 82 103 370 4 6 1 0 3
29 82 103 371 3 6 2 0 8
29 83 104 372 6 1 3 0 9 (1611) (2211)
29 83 104 373 3 2 1 0 4 (2011)

148

29 83 104 374 3 6 1 0 5 (1511) (1711)
29 83 104 375 5 5 2 0 8 (1111) (22I2)
30 84 105 376 12 6 3 0 6 (1911) (2111) (2811)
30 84 105 377 8 7 1 0 4 (2111) (2911)
30 84 105 378 6 3 1 0 5 (2011) (2211)
30 84 106 379 5 5 3 0 1 (1311) (1711) (2011)

(2311)
30 84 106 380 6 4 3 0 7
30 84 106 381 4 5 4 0 5 (2011)
30 84 106 382 5 3 3 0 9 (1611)
30 84 106 383 11 10 2 0 10
30 84 106 384 5 9 3 0 6 (1311) (1611) (2111)

(2511)
30 85 107 - 385 8 4 3 0 7
30 85 107 386 4 6 2 0 1
30 85 107 387 12 6 2 0 3
30 • 85 107 388 5 2 4 0 0
30 85 108 389 9 4 1 0 8
30 85 108 390 8 5 2 0 3 (2011)
30 85 108 391 13 5 4 0 10
30 86 109 392 4 8 4 0 4
30 86 109 393 5 2 2 0 6 (1111) (3011)
30 86 109 394 6 2 4 0 4 (1611)
30 86 109 395 5 5 1 0 8 (20I2)
30 86 109 396 8 4 3 0 3 (22I2)
30 86 110 397 7 5 1 0 6
30 86 110 398 5 4 5 0 9 (1611) (1811)
30 86 110 399 8 6 3 0 7 (1211) (1711) (2311)
30 86 110 400 7 6 4 0 6 (2211)
30 87 111 401 5 4 3 0 4 (2011)
30 87 111 402 5 6 2 0 5 (2211)
30 87 111 403 6 3 5 0 8 (2211) (2511)
30 87 112 404 5 1 4 0 4 (2011)
30 87 112 405 6 4 1 0 8 (2111)
30 87 112 406 4 4 3 0 3 (2111)
30 87 112 407 7 5 1 0 1 (1711) (2111)
31 88 113 408 2 6 1 0 1
31 88 113 409 9 4 1 0 7 (2311)
31 88 113 410 2 5 1 0 3 (2211)
31 89 114 411 3 5 4 0 7 (1311)
31 89 114 412 4 4 2 0 1
31 89 114 413 8 5 3 0 4 (2511)
31 90 115 414 6 0 4 0 9
31 90 115 415 8 4 2 0 6 (2211)
31 90 115 416 3 4 1 0 5 (2811)
31 90 115 417 5 6 5 0 0
31 90 115 418 3 5 2 0 2 (22I2)
31 90 115 419 3 4 2 0 10 (1112) (1611)

149

31 91 116 420 3 9 3 0 3 (1911)
31 91 116 421 2 8 3 0 7 (1911)
31 91 116 422 2 9 1 0 5
31 91 116 423 2 4 3 0 4 (1611)
31 91 116 424 5 3 3 0 6 (1611) (2211) (2511)
31 91 117 425 5 4 5 0 3
31 91 117 426 2 9 4 0 9
31 91 117 427 6 7 2 0 8 (2011) (22I2) (2511)
31 92 118 428 3 7 1 0 7
31 92 118 429 2 6 1 0 5
31 92 118 430 4 5 2 0 4 (1611)
31 92 118 431 4 7 4 0 8 (2911)
31 92 118 432 2 7 1 0 6
31 92 119 433 3 6 4 0 10 (1711)
31 92 119 434 4 6 2 0 7
31 92 119 435 2 8 4 0 10 (1111)
31 92 119 436 2 8 4 0 5 (2311)
32 93 120 437 6 6 1 0 7
32 93 120 438 5 6 1 0 9 (1311) (2011)
32 93 120 439 4 7 3 0 6 (2211) (2511)
32 94 121 440 6 4 2 0 3 (2011) (3011)
32 94 121 441 5 7 1 0 9
32 94 122 442 4 8 4 0 3 (1311) (20I2) (2311)
32 94 122 443 13 4 4 0 4
32 95 123 444 6 6 4 0 3 (1611)
32 95 123 445 6 7 2 0 5
32 95 123 446 6 6 3 0 2 (2511)
32 95 124 447 5 6 1 0 6 (1611) (2011) (2111)
32 96 125 448 7 7 4 0 10
32 96 125 449 4 4 3 0 7
33 97 126 450 3 5 2 0 3
33 97 126 451 2 6 3 0 8 (1311) (1811) (2211)
33 98 127 452 4 5 4 0 7 (1611)
33 98 127 453 2 8 3 0 3
33 98 127 454 3 4 1 0 4
33 98 127 455 2 3 3 0 5 (2011) (2811)
33 99 128 456 2 1 3 0 10 (1211)
33 99 128 457 7 7 3 0 8 (1611) (2011)
33 99 128 458 3 6 3 0 5
33 99 128 459 8 5 1 29 10 (1211) (1611)
33 99 128 460 5 8 1 0 8
33 99 129 461 3 3 1 0 4 (20I2) (25I2)
33 99 129 462 2 7 3 0 9 (1311) (1911) (2011)
33 99 129 463 5 5 4 0 3
33 99 129 464 3 10 4 0 8 (2011) (2511)
33 99 129 465 4 7 4 0 7 (1311)
33 99 129 466 2 9 1 0 4 (1211) (1611)
33 100 130 467 3 4 5 0 6 (22I2)

150

34 101 131 468 4 4 2 0 3
35 102 132 469 4 7 3 0 7 (2011) (2211)
35 102 132 470 5 4 3 0 10
35 102 132 471 4 0 4 0 3 (1611) (2111) (2511)
35 103 133 472 5 8 2 0 7
35 103 133 473 6 2 3 0 6 (2011) (3011)
35 103 133 474 5 5 5 0 3
35 103 133 475 2 6 3 0 8
35 103 133 476 3 8 3 0 0 (2511) (2811)
35 104 134 477 2 4 6 0 6
35 104 134 478 2 9 4 0 9
35 104 134 479 2 7 4 0 4 (1711) (2911)
35 104 134 480 3 4 3 0 1
35 104 134 481 3 1 3 0 8
35 105 135 482 2 6 5 0 5
35 106 136 483 3 8 4 0 1 (22I2)
35 106 136 484 4 5 4 0 6 (1911)
35 106 136 485 2 6 5 0 4 (1611)
36 107 137 486 7 4 4 0 10 (2011)
36 107 137 487 6 1 3 0 6
36 107 137 488 7 3 3 0 3
36 107 138 489 5 7 2 0 6
36 108 139 490 5 4 1 0 9 (2211)
36 108 139 491 4 6 4 0 8
36 108 139 492 6 8 3 0 10 (2111)
36 108 139 493 4 3 2 0 5 (1411)
36 108 139 494 5 8 1 0 10 (1211)
36 108 139 495 8 2 2 0 8 (22I2) (2511)
36 109 140 496 5 1 2 0 7 (1511) (2011)
36 109 140 497 6 5 1 0 4 (2211)
36 109 140 498 7 3 1 0 5 (1611) (2511)
36 109 140 499 4 5 5 0 0 (2011)
37 110 141 500 4 4 4 0 9
37 110 141 501 7 9 4 0 3 (1911)
37 110 141 502 3 4 3 0 8 (1711)
37 111 142 503 4 8 3 0 3 (1611) (2311) (2711)
37 111 142 504 3 3 3 0 0
37 111 142 505 4 6 2 0 6
37 111 142 506 2 3 3 0 3
37 111 142 507 3 6 2 0 6 (1711)
37 111 142 508 3 6 1 0 7

Ta ble A.7. Routing Structure anc Opera tion Related Data - Problem 2

151

Operation Setup times (preceding operation I setup)

7 (43I4) (78I4) (14012) (19216) (20114) (21215) (22212) (26514) (30214) (33311) (353I6) (41816)

21 (6213) (6515) (8815) (16313) (17213) (19316) (19915) (30112) (30415) (31713) (36215) (38818)

(41712) (47615) (49915)

43 (4815) (7813) (9913) (14018) (19216) (20117) (22213) (26510) (30219) (33313) (41816) (44616)

48 (715) (7815) (14017) (19217) (20117) (21214) (22215) (30214) (33317) (35315) (41815) (44616)

57 (7113) (7517) (16217) (22719) (23316) (261110) (273I5) (303I5) (356I9) (379I7) (407I7) (41217)

62 (2112) (6514) (8814) (15216) (16311) (17216) (19916) (30116) (30414) (31718) (36217) (38817)

(41716) (47615) (49915)

65 (2115) (6213) (8814) (15218) (16318) (19314) (19915) (30417) (31714) (36216) (38816) (41718)

(47616) (49916)

71 (5714) (7513) (16214) (22712) (26118) (27313) (30013) (34414) (35612) (35914) (40714) (40816)

(41216)

75 (5714) (7116) (16212) (16716) (22118) (22715) (23316) (27312) (34415) (35615) (35916) (37914)

(40716) (40816) (41218)

78 (714) (4315) (4814) (9914) (21217) (22215) (26515) (30213) (33313) (41814)

88 (6217) (6513) (16315) (17215) (19318) (19913) (30417) (31715) (36215) (38817) (41716) (47612)

(49916)

99 (713) (4317) (4813) (7812) (14018) (20115) (21217) (22215) (26517) (30217) (33316) (35318)

(41815) (44616)

140 (4316) (4816) (7816) (9913) (19212) (20115) (30216) (33312) (35314) (41818) (44614)

152 (2118) (6215) (6513) (16312) (17212) (19313) (19911) (30115) (30414) (31717) (36215) (38815)

(47614) (49912)

162 (5718) (7115) (75I5) (22113) (227I5) (233I4) (26114) (273I3) (300I5) (303I5) (344I3) (356I2)

(379I5) (41215)

163 (21110) (62I4) (65I4) (88I5) (15215) (17214) (19315) (19919) (30114) (30416) (31715) (36213)

(38816) (47617) (49918)

167 (7119) (7515) (16212) (22115) (23311) (300I8) (303I3) (356I3) (359I3) (379I5) (40711) (408I4)

(41214)

172 (2112) (6215) (8812) (15211) (16312) (19312) (19918) (30115) (30411) (31717) (36217) (47617)

(49917)

192 (717) (4316) (7813) (9917) (14015) (20113) (22218) (26513) (30216) (33310) (35313) (41813)

(44613)

152

193 (2114) (6216) (16314) (17216) (19911) (30115) (31712) (36215) (38814) (41719) (47612) (49914)

199 (2114) (6215) (6514) (8814) (15214) (16316) (17214) (19315) (30114) (30413) (31714) (36216)

(41715) (47615) (49914)

201 (714) (7811) (99I6) (14011) (21217) (22215) (26518) (30216) (35314) (41815) (44612)

212 (713) (4315) (4813) (7817) (9912) (14018) (19215) (20111) (222I5) (302I8) (333I4) (41814)

221 (5714) (7118) (7512) (16213) (16710) (22714) (23313) (26115) (30015) (34416) (35618) (37915)

(40716) (40814) (41214)

222 (716) (4316) (4816) (7813) (9915) (14013) (19215) (20119) (21216) (26515) (30213) (35316) (44613)

227 (5713) (7114) (7511) (16217) (16715) (23317) (26112) (30018) (30314) (34410) (35612) (35914)

(37915) (40817)

233 (5712) (7115) (16214) (16717) (22110) (22718) (26114) (30015) (30318) (34415) (40717) (40813)

(41217)

261 (5718) (7117) (7517) (16713) (22114) (22714) (23316) (27311) (300I6) (303I6) (359I2) (379I4)

(408I6) (41217)

265 (714) (4314) (4817) (7817) (9914) (14016) (19211) (20114) (22214) (33316) (35317) (41819) (44616)

273 (5716) (7113) (7516) (16215) (22112) (22713) (26114) (30016) (30316) (35615) (35914) (40714)

(40815) (41215)

300 (5717) (7115) (7512) (16218) (22119) (22715) (26112) (30318) (35615) (35915) (37915) (40715)

(41215)

301 (2110) (6215) (8814) (15215) (17214) (19313) (19919) (304110) (31713) (36217) (38817) (41717)

(49914)

302 (718) (4314) (4816) (7813) (9918) (14014) (21218) (26513) (33315) (35315) (41814) (44615)

303 (5713) (7116) (7514) (16212) (16713) (22716) (23316) (27316) (30017) (34414) (356110) (359I6)

(40718) (408I7) (41217)

304 (62110) (65I3) (88I4) (15215) (16314) (17215) (19317) (19915) (30114) (31718) (36217) (38815)

(49915)

317 (2115) (6219) (6513) (8818) (15219) (16316) (19917) (30117) (30416) (36217) (38816) (41715)

(47615) (49919)

333 (716) (4317) (4815) (14016) (19214) (20115) (21210) (22215) (30216) (35316) (41812) (44611)

344 (7117) (7518) (16714) (22115) (22713) (23315) (26114) (27317) (30013) (30318) (35614) (35912)

(37917) (40712) (40813) (41218)

353 (4319) (4812) (7814) (9914) (14017) (19214) (201110) (21215) (26513) (30217) (41815) (44612)

356 (5717) (7117) (7515) (16218) (22114) (22715) (23315) (26117) (27318) (30015) (30313) (35918)

153

(379I4) (407I5) (408I5) (41215)

359 (7114) (7514) (16214) (22715) (23312) (26111) (273I5) (300I2) (356I2) (407I5) (408I2) (41211)

362 (2113) (6215) (6514) (8815) (15215) (16312) (19316) (19913) (30116) (30414) (38814) (41714)

(47614) (49913)

379 (5717) (7112) (16214) (16717) (22113) (22713) (23313) (26118) (27316) (30017) (30313) (34418)

(35918) (40716) (41213)

388 (2115) (6517) (8817) (15214) (16314) (17216) (19313) (30416) (31718) (47616) (49915)

407 (5717) (7114) (16213) (22117) (22718) (26113) (30012) (30313) (34416) (35618) (35912) (37914)

408 (5715) (7114) (7515) (16217) (16710) (22714) (23319) (26119) (30013) (30319) (34413) (356110)

(359I4) (379I7) (407I4)

412 (57I7) (7117) (7510) (16216) (22118) (23313) (26110) (27316) (30018) (30313) (35615) (35918)

(37910)

417 (2113) (6218) (6510) (8815) (15214) (16315) (17217) (19311) (19917) (30417) (31714) (36217)

(38815) (47619) (49917)

418 (714) (4816) (7814) (9914) (14014) (19216) (20116) (21217) (22216) (26516) (30218) (33313)

(35317) (44614)

446 (715) (4314) (4811) (78I4) (99I8) (14017) (19214) (20115) (21214) (222110) (265I8) (302I5)

(333I3) (353I3) (41814)

476 (6214) (6516) (8814) (16315) (17214) (19317) (30117) (30416) (31716) (36212) (49914)

499 (2116) (6219) (6513) (8816) (15214) (19912) (30413) (31714) (36216) (41714) (47617)

Table A.8. Operations with Sequence Dependent Setup Times - Problem 2

Problem 3: The following set of tables and figures specify problem 3.

Job 0: Job 1:

Job 2:

Job 4:

(14,1)

Job 6:

Job 3:

Job 5:

Figure A.3. BOMs - Jobs from Problem 3

155

Job batch size due date ready time

0 10 1192 0

1 10 2596 0

2 9 1948 0

3 11 2992 0

4 11 1984 0

5 10 2452 0

6 12 3532 0

Table A.9. Job Related Dada - Problem 2

Resource class Resource (typelunit) Scheduled breaks (start timelduration)

Machines (0I0) (912118) (2830I35)

(110) (312129) (2121117)

(210) (326I28) (2334121)

(211) (388131) (2379I45)

(2I2) (405142) (2607I40)

(2I3) (1044137) (2801123)

(3I0) (21116) (1817139)

(4I0) (266146) (2152142)

(411) (1843115)

(4I2) (1217119)

(5I0) (1195122)

(511) (1525132)

(5I2) (1901124)

(6I0) (823133) (3056130)

(7I0) (196112) (2328I35)

(711) (1049140) (3149139)

Other resources (8I0) (342134) (2456128)

(811) (530130) (2340141)

(8I2) (1159140)

(8I3) (0124) (2044133)

*

(910) (1916126)

(911) (418139) (2297126)

(9I2) (862139) (2501118)

(913) (808143) (2851122)

(1010) (365I20) (2525130)

(1011) (1171125)

(1012) (963132) (3155119)

(1013) (1824127)

(1110) (1293140)

(1111) (526117) (2243I24)

(1210) (1555127)

(1211) (1431140)

(1212) (2037122)

(1213) (1373127)

(1310) (340123) (2243129)

(1311) (873125) (3198121)

(1312) (525144) (2429116)

(1313) (828112) (2880I32)

(1410) (733I27) (2580I37)

(1411) (998I45) (2683I23)

(1412) (1654140)

(1413) (1128138) (2946122)

(1510) (1810114)

(1511) (1224138)

(1512) (505116) (2361133)

(1513) (745121) (2786I38)

(1610) (1352134)

(1611) (2093134)

(1612) (1365135)

(1613) (73120) (2033138)

(1710) (1905129)

(1711) (1043127) (2870136)

(1712) (946I35) (2701116)

(1713) (1509129)

(1810) (1656147)

(1811) (539112) (2411121)

(1910) (1155144)

(1911) (1104142) (3286140)

(1912) (1302123)

(1913) (1693134)

(2010) (300118) (2298I37)

(2011) (84118) (1742128)

(20I2) (19110) (2209I33)

(2013) (601115) (2436I54)

(2110) (42141) (2303112)

(2111) (1260128)

(2112) (1411145)

(2113) (443121) (2424121)

(22I0) (1128116) (3304I26)

(2211) (1862141)

Table A.10. Resource Relaled Data - Problem 3

158

Part Sub

process

Route Operation Minimum

transport

batch

Setup

time

Unit

execution

time

Operation

ready time

Machine

type

required

Other resources

required

(typelquantity)

0 0 0 0 5 6 3 0 7

0 1 1 1 5 6 3 0 4 (1911)

0 1 1 2 4 6 3 0 3 (1711)

0 1 2 3 10 8 2 0 5 (1011)

0 1 2 4 11 5 1 0 7

0 1 2 5 6 4 1 0 3 (911) (1212)

0 2 3 6 6 3 4 0 7 (1011) (1311)

0 2 3 7 16 3 2 0 3

0 2 3 8 19 4 2 0 5 (811) (1311) (1411)

0 2 3 9 5 4 4 0 7 (2111) (2211)

1 3 4 10 15 6 4 0 3 (911)

1 3 4 11 4 6 3 0 2 (1911)

1 3 4 12 6 4 4 0 1

1 3 4 13 5 5 5 0 2 (2011)

1 3 4 14 7 7 3 0 5 (911) (2111)

1 4 5 15 20 3 3 0 7 (811)

1 4 5 16 6 5 6 0 6 (1511) (2111)

1 4 6 17 4 5 2 0 3 (2011)

1 5 7 18 4 3 4 0 7 (1011)

1 5 7 19 6 7 1 0 4

1 5 7 20 6 3 2 0 2

1 5 7 21 7 8 6 0 7

1 6 8 22 5 6 1 0 2 (1611)

1 6 8 23 7 8 1 0 0 (2111)

1 6 8 24 6 2 2 0 1 (1911) (2111)

1 6 8 25 17 7 6 0 0

1 6 8 26 20 5 2 0 4 (1411)

1 6 9 27 20 5 3 0 2

1 6 9 28 5 4 3 0 4 (1212)

159

1 7 10 29 19 4 3 0 6 (1911)

2 8 11 30 4 4 6 0 3 (811)

2 8 11 31 4 5 6 0 5

2 8 11 32 2 4 1 0 0

2 8 11 33 6 8 1 0 5 (1211) (1311) (211.1)

2 9 12 34 3 2 2 0 0 (1211) (2011)

2 9 13 35 4 6 4 0 1 (811) (2011)

2 9 13 36 2 7 2 0 0 (1911)

2 9 13 37 3 8 1 0 2 (1411) (2011)

2 10 14 38 3 2 3 0 4 (1311)

2 10 14 39 10 1 4 0 5 (911) (1211)

2 10 14 40 3 3 1 0 7 (911) (2112) (2211)

3 11 15 41 5 5 4 0 2 (1411) (1611) (1811)

3 11 15 42 10 5 1 0 5 (1411) (1911)

3 11 16 43 7 4 1 0 5

3 11 16 44 13 6 2 0 4

3 11 16 45 9 4 1 0 7 (1511) (2111)

3 11 16 46 5 5 4 0 5

3 12 17 47 9 5 3 0 4

3 12 18 48 5 5 5 0 4 (911) (1311)

3 12 18 49 5 5 1 0 7

3 12 18 50 9 3 3 0 5 (1412) (1911)

3 12 18 51 7 4 4 0 4

3 12 18 52 7 6 1 0 5 (1511) (2011) (2111)

3 13 19 53 13 5 4 0 2 (911) (1211) (1911)

(2111) (2211)

3 13 19 54 4 4 2 0 5 (1411)

3 14 20 55 5 3 1 0 3 (1611) (2111) (2211)

3 14 20 56 4 5 1 0 5

3 14 20 57 5 9 4 0 1 (1011) (1311)

3 14 20 58 7 8 3 0 6

3 14 21 59 11 3 5 0 6 (1011) (1311) (1411)

160

3 14 21 60 11 4 2 0 2 (1511) (1911)

3 14 21 61 19 2 4 0 5 (1611) (2011)

3 15 22 62 5 1 3 0 7 (1411)

3 15 22 63 8 3 3 0 6 (1211) (2211)

3 15 23 64 5 5 3 0 2 (1911)

3 15 23 65 9 5 2 0 1 (1711) (1911) (2112)

3 15 23 66 5 5 4 0 6

4 16 24 67 3 5 2 0 2 (811) (1411) (2011)

4 16 24 68 4 6 2 0 4 (2011) (2111)

4 16 25 69 4 1 3 0 0

4 16 25 70 4 4 1 0 3

4 16 25 71 6 5 3 0 5

4 17 26 72 6 4 4 0 6 (1211) (1611)

4 17 26 73 2 3 6 0 0 (911) (2111)

4 17 27 74 7 4 5 0 7 (811)

4 17 27 75 8 5 1 0 6

4 17 27 76 7 6 1 0 2 (1612) (1911)

4 17 27 77 2 6 4 0 6

4 18 28 78 4 3 2 0 5 (911)

4 18 28 79 4 7 2 0 4 (1911)

4 19 29 80 3 4 1 0 3 (1311)

4 19 29 81 3 5 2 0 6 (811)

4 19 29 82 2 4 4 0 2

4 19 30 83 2 6 1 0 6

4 19 30 84 4 4 2 0 2 (1011)

4 19 30 85 4 5 5 0 7 (911)

5 20 31 86 4 10 1 0 6 (1211) (2011)

5 20 31 87 9 4 3 0 2 (811) (1311)

5 20 32 88 10 3 2 0 0 (911)

5 20 32 89 20 1 2 0 2 (1911)

5 20 32 90 9 3 5 0 7 (1511)

5 21 33 91 11 5 5 0 4 (911) (1411) (2111)

161

5 21 33 92 7 4 1 0 7 (911) (1411) (1911)

5 21 33 93 4 0 5 0 3 (1211)

6 22 34 94 7 9 1 0 3

6 22 34 95 7 7 1 0 6 (1311) (1411) (2111)

6 22 34 96 4 7 2 0 1

6 23 35 97 5 4 1 0 4

6 23 36 98 7 9 2 0 2 (1511)

6 23 36 99 5 2 4 0 4 (1012) (1311)

6 23 36 100 6 9 2 0 7

6 23 36 101 6 1 1 0 5

6 24 37 102 8 6 1 0 6 (1311) (2111)

6 24 37 103 4 4 2 0 3

6 24 37 104 6 6 5 0 2 (1211) (2011)

6 25 38 105 6 4 1 0 4 (1511) (1911)

6 25 38 106 4 0 3 0 7 (1012) (2111)

6 25 38 107 6 4 5 0 3 (811)

6 25 39 108 6 7 4 0 4

6 25 39 109 10 6 3 0 2 (1611) (2111)

6 25 39 110 19 6 2 0 6 (1511)

6 25 39 111 4 4 2 0 2 (1511)

6 26 40 112 18 4 5 0 6 (911) (1511)

6 26 40 113 7 3 4 0 1 (1011)

6 26 40 114 10 4 3 0 4

6 26 40 115 8 4 3 0 7 (1311) (2111)

6 26 40 116 7 4 2 0 4 (1911)

7 27 41 117 5 8 1 0 6

7 27 41 118 9 4 4 0 1 (811) (1011) (1311)

7 28 42 119 6 4 1 0 3 (911)

7 28 42 120 4 6 3 0 2 (1211)

7 28 42 121 3 3 4 0 3 (1412) (1511)

7 28 42 122 5 7 5 0 6

7 28 42 123 6 4 4 0 3

162

7 29 43 124 3 4 1 0 2

7 30 44 125 5 6 1 0 7 (1411)

7 30 44 126 2 3 1 0 4 (1011) (2011)

7 30 44 127 4 8 5 0 6 (1311) (2011)

7 30 44 128 7 7 1 0 7 (811) (1411)

7 30 44 129 5 5 3 0 2 (1111)

8 31 45 130 3 5 3 0 7 (1911)

8 31 45 131 4 9 3 0 2

8 31 45 132 3 5 1 0 6 (1011) (1311) (1911)

8 31 46 133 4 5 4 0 2 (1211) (2211)

8 31 46 134 4 7 1 0 1

8 31 46 135 6 6 4 0 5 (1611) (1911)

9 32 47 136 6 5 3 0 7 (1911) (2111)

9 32 47 137 5 6 1 0 0

9 33 48 138 4 6 4 0 6 (1411) (2011)

9 33 48 139 2 5 4 0 7

9 33 48 140 7 7 4 0 1

9 33 48 141 3 5 4 0 6 (1412)

9 33 49 142 7 4 3 0 3

9 33 49 143 3 6 1 0 2 (1011)

9 33 49 144 8 7 4 0 3 (1511)

9 33 49 145 3 4 3 0 7 (1612)

9 34 50 146 4 5 5 0 4

9 34 50 147 2 2 3 0 7 (1311)

9 34 51 148 2 2 4 0 1 (1211)

10 35 52 149 5 2 1 0 2 (2111)

10 35 52 150 2 5 1 0 0 (911)

10 35 52 151 2 8 3 0 1 (1912)

10 36 53 152 7 6 4 0 6

10 36 53 153 6 2 2 0 7

10 37 54 154 5 8 5 0 2 (911) (1311)

10 37 54 155 3 3 2 0 3 (1311) (2011)

163

10 37 54 156 2 5 2 0 1 (1011)

10 38 55 157 7 9 4 0 6 (1212) (1511) (2011)

10 38 55 158 3 5 1 0 2 (1612)

11 39 56 159 5 9 3 0 2

11 39 56 160 6 4 3 0 1 (1511)

11 39 56 161 7 4 3 0 3

11 39 57 162 5 5 2 0 7 (811) (1311)

11 40 58 163 12 4 3 0 4 (1611) (2111)

11 40 58 164 6 4 1 0 7 (1911) (2011)

11 40 58 165 4 6 4 0 2

11 40 58 166 5 7 1 0 3

11 41 59 167 11 3 4 0 5 (2111)

11 41 59 168 9 7 6 0 6 (1411)

11 41 59 169 14 9 3 0 7 (1911)

11 41 59 170 8 5 2 0 2 (2011)

12 42 60 171 7 2 1 0 7 (1011)

13 43 61 172 2 2 3 0 3 (2111)

13 43 61 173 4 10 5 0 7 (2011)

13 43 61 174 4 0 1 0 4 (2011)

13 43 61 175 4 6 1 0 2

13 43 61 176 3 2 1 0 5 (1411)

13 43 62 177 3 6 2 89 6 (811) (1311) (1811)

13 43 62 178 2 7 1 0 4 (1511) (2111)

13 43 62 179 4 4 4 0 7 (1712)

13 43 62 180 4 4 1 0 4 (1911)

14 44 63 181 4 9 4 0 2

14 44 63 182 7 4 3 0 6 (1011) (1612)

14 44 63 183 3 7 2 0 5 (811) (1211)

14 44 63 184 6 3 4 0 3 (1011) (1411) (2011)

14 44 63 185 3 3 2 0 6 (1611)

14 45 64 186 11 8 1 0 7 (911)

14 45 64 187 8 7 4 0 6 (1311) (2111)

164

14 45 64 188 2 8 5 0 3

14 45 64 189 3 6 1 0 5 (811) (1711)

14 45 64 190 7 2 4 0 0 (1611)

14 46 65 191 7 2 1 0 2 (1411)

14 46 65 192 7 5 2 0 5 (2111)

15 47 66 193 5 4 4 0 2

15 47 66 194 15 5 3 0 0

15 47 66 195 9 4 3 0 5

15 48 67 196 4 6 4 0 3

15 49 68 197 4 6 4 0 6

15 49 68 198 6 4 5 0 5 (811) (1911)

15 49 69 199 6 3 1 0 6

15 49 69 200 4 6 4 0 4 (1012) (1611)

15 49 69 201 6 6 2 0 6 (911)

15 50 70 202 5 4 5 0 7 (1611) (2111)

15 50 70 203 6 5 1 0 5

15 50 70 204 8 3 3 0 7

15 50 70 205 13 3 3 0 6 (2011)

15 50 70 206 9 7 1 0 4 (1012)

16 51 71 207 14 0 5 0 6 (2011)

16 51 71 208 8 9 2 0 0

16 51 71 209 15 8 2 0 4 (2111)

16 51 72 210 22 6 1 0 6

16 51 72 211 12 5 3 0 2

16 51 72 212 21 7 2 0 6 (1212) (1611)

16 51 72 213 9 6 1 0 7 (1911)

16 51 72 214 10 3 3 0 6 (1611) (1911) (2211)

16 52 73 215 23 6 4 0 2 (811) (2111)

16 52 73 216 15 4 3 0 7

16 52 73 217 23 7 2 0 2 (811) (911) (1511)

17 53 74 218 5 5 5 0 3 (1611) (2111)

17 53 74 219 17 3 5 0 5 (811) (2111)

165

17 53 74 220 6 3 4 0 2 (1011) (1511) (1911)

17 53 74 221 17 6 6 0 6 (20I2) (2111)

17 54 75 222 10 4 4 0 0 (1811)

17 54 75 223 10 7 1 0 2

17 54 75 224 8 5 4 0 0 (2111)

17 55 76 225 5 4 1 0 1 (811)

17 55 76 226 4 6 4 0 3 (1411) (2111)

17 55 76 227 19 8 3 0 2

17 55 76 228 19 3 1 0 5 (811) (1911)

18 56 77 229 8 10 3 0 4

18 56 77 230 14 5 1 0 7 (811)

18 56 77 231 4 4 4 0 0 (1312) (1411)

18 57 78 232 5 6 5 0 4 (1311)

18 57 78 233 5 10 1 0 2 (1611) (1911)

18 57 79 234 7 4 6 0 4 (1511) (2111)

18 57 79 235 7 4 4 0 3 (1311) (1411) (1911)

19 58 80 236 4 5 1 0 4 (1611) (2111)

19 58 80 237 5 5 4 0 5 (1411) (20I2) (2112)

19 58 80 238 4 3 2 0 6 (1911)

19 58 80 239 2 5 2 0 4 (1511)

19 59 81 240 3 6 3 0 2 (2111)

19 59 81 241 8 5 5 0 5 (20I2)

19 59 82 242 10 10 3 0 3

19 59 82 243 2 4 5 0 2 (1311)

19 59 82 244 2 2 6 0 4 (2011)

19 59 82 245 6 4 1 0 3 (1211) (1311) (1611)

(2011)

20 60 83 246 3 3 4 0 3 (9I2) (1611)

20 60 83 247 9 6 3 0 4 (811) (1011) (2111)

21 61 84 248 9 4 4 0 6 (911) (1411)

21 61 84 249 3 8 4 0 4 (9I2) (1411) (1912)

21 61 84 250 2 1 2 0 5 (1912) (2011)

61

"62

"62

"63

"63

"63

"63

"63

"64

"64

64

65

65

65

66

66

66

67

67

67

67

"68

"68

"68

68

"68

68

"69

"69

"69

~69

"69

166

84

"85"

" 86"

"87"

"87"

"87"

W

251

252

253

254

255

256

257

11

(1311)

(1511)

(1511)

(1311)

(Ï3 ÏÏ)

(1411) (1911)

87 258 (1011) (1611) (2111)

88 259 0 (911) (2011)

88 260 (811)

88 261 (1311) (1611)

89 262

89 263

90 264 (1412) (1511) (1611)

91 265 11 (1911)

91 266 (911)

91 267 10 0 (1411) (2011)

92 268 (1411)

92 269 (20I2)

92 270 (911) (1411)

92 271 0 (1011)

93 272 (911) (2011)

93 273 (1211) (1611) (1912)

93 274 0 (1011) (1211) (2111)

93 275 0

94 276 (1011) (2011)

94 277 (1411)

95

"95"

"95"

"95"

"95"

278

279

280

281

282

10

(1611) (2111)

(Ï5ÏÏ)

(ïëïïj
(Ï2ÏÏ)

(Ï 6 Î Ï }

167

24 69 96 283 3 3 3 0 4 (911) (1411) (2011)

24 69 96 284 6 7 3 0 6

24 69 96 285 12 3 3 0 7

24 70 97 286 3 3 2 0 2 (1011)

24 70 97 287 7 8 2 0 6 (1211) (1511) (2011)

24 70 97 288 3 7 1 0 4

24 70 97 289 3 6 3 0 5

24 71 98 290 3 2 4 0 4 (1411) (2111)

24 71 98 291 5 4 2 0 1 (1611)

24 72 99 292 4 6 3 0 6 (2111)

24 72 99 293 5 4 4 0 3 (811)

Table A.11. Routing Structure and Operation Related Data - Problem 3

168

Operation Setup times (preceding operation I setup)

12 (24I6) (11816) (14018) (15116) (22516)

23 (3416) (3614) (6917) (7313) (8815) (13715) (15015) (19015) (19416) (20817) (22214) (22416) (23116)

(26816) (271 !5)

24 (11816) (13415) (14015) (15618) (22517) (26616)

34 (2313) (3614) (6913) (7314) (8816) (13711) (15015) (19016) (19414) (20814) (22215) (22415) (26813)

(27116)

36 (69I8) (73I8) (88I4) (13716) (15011) (19016) (19418) (20813) (22413) (26812) (27113)

65 (1214) (2414) (11813) (13414) (14014) (15617) (22514) (26614)

69 (2317) (3416) (3612) (7310) (13718) (20815) (22218) (22415) (23114) (27114)

73 (2315) (13717) (19014) (19415) (22216) (26815) (27119)

88 (2319) (3416) (3614) (7315) (13716) (15014) (19417) (20811) (222I6) (23117) (26814)

118 (2417) (6515) (13417) (14017) (15117) (22513) (26615)

134 (1213) (2414) (6515) (11816) (14014) (15116) (22514) (26618)

137 (2319) (3413) (3617) (7315) (8814) (15014) (19013) (19417) (20813) (22219) (23114) (26813) (27114)

140 (1215) (2414) (11818) (13414) (15613)

150 (2317) (3413) (3613) (6912) (7313) (8819) (19413) (20814) (22216) (224110) (23113) (26818) (27114)

151 (1213) (6516) (11819) (14015) (26617)

156 (1216) (2416) (6513) (13416) (14017) (15118) (22511) (26611)

190 (34I3) (36I3) (73I4) (88I9) (13716) (15016) (19418) (20819) (22214) (22416) (23118) (26814)

194 (3418) (3613) (6917) (7316) (8816) (13713) (15012) (19016) (20812) (22217) (23117) (268110) (27117)

208 (3416) (3614) (6912) (7314) (8810) (13713) (19015) (19415) (22412) (23115) (26813) (27117)

222 (2317) (3416) (6916) (7316) (8813) (13715) (19016) (19418) (20815) (22415) (23117) (26818) (27115)

224 (2312) (3413) (6914) (7313) (8816) (13714) (15016) (19018) (22218) (23113) (26817) (27112)

225 (1215) (2418) (6517) (11815) (14017) (15113) (26611)

231 (23I5) (36I8) (73I6) (88I8) (13715) (15015) (19015) (19412) (20817) (26815) (27113)

266 (1218) (2416) (65110) (11814) (14016) (15118) (15614) (22519)

268 (2310) (3412) (3613) (6914) (7318) (8812) (13717) (15018) (19019) (19414) (20814) (22415) (23113)

(27113)

271 (23I0) (34I3) (36I4) (73I4) (13716) (15014) (19018) (19413) (20816) (22416) (23116)

Table A. 12. Operations with Sequence Dependent Setup Times - Problem 3

Problem 4: Problem 4 is defined as follows.

Job 0: Job 1:

Job 4:

Figure A.4. BOMs - Jobs from Problem 4

Job batch size due date ready time

0 10 1008 0

1 13 480 0

2 11 672 0

3 4 1728 80

4 12 1152 0

170

Table A.13. Job Related Dada - Problem 4

Resource class Resource (typelunit) Scheduled breaks (start timelduration)

Machines (0I0) (813124)

(110) (83125) (1356137)

(210) (488110) (1866113)

(211) (491127) (1838133)

(3I0) (442132) (1398148)

(311) (56123) (1351154)

(3I2) (403132) (1611126)

(4I0) (55133) (1276129)

(411) (428137) (1917126)

(4I2) (327125) (1456136)

(5I0) (1221130)

(511) (722136) (2054129)

Other resources (6I0) (1152127)

(7I0) (118142) (1336135)

(711) (558138) (1832146)

(7I2) (513144) (1817136)

(7I3) (0140) (1144127)

(8I0) (371132) (1531114)

(811) (265I26) (1419123)

(8I2) (682130) (2032118)

(8I3) (1016133)

(9I0) (847125)

(911) (839128)

(9I2) (820112)

(9I3) (699115) (1902129)

(1010) (673143) (1940142)

(1011) (428137) (1749143)

(1012) (1012126)

(1013) (829123)

171

(1110) (13140) (1409134)

(1210) (731139) (1802123)

(1211) (192132) (1340133)

(1212) (1140135)

(1213) (148118) (1450126)

(1310) (688125) (2105129)

(1311) (191118) (1661132)

(1312) (1239135)

(1313) (741134) (2059I28)

Table A.14. Resource Related Data - Problem 4

']

172

Part Sub

process

Route Operation Minimum

transport

batch

Setup

time

Unit

execution

time

Operation

ready time

Machine

type

required

Other resources

required

(typelquantity)

0 0 0 0 7 5 3 0 2 (1011)

0 1 1 1 2 5 4 0 4 (911) (1011) (1211)

0 1 1 2 3 6 4 0 5

0 2 2 3 8 5 3 0 2

0 2 2 4 4 4 3 0 3 (811) (1011)

0 2 2 5 4 4 3 0 1 (911) (1211) (1311)

0 3 3 6 5 5 1 0 5 (811) (1011) (1212)

0 3 3 7 3 4 6 0 4

0 3 4 8 2 5 3 0 2 (711) (1012) (1311)

0 4 5 9 7 6 1 0 3 (811) (1011) (1311)

0 4 5 10 6 6 2 0 2 (811) (1011)

1 5 6 11 7 3 1 0 5 (1011)

1 5 6 12 2 3 2 0 3 (1011) (1311)

1 5 6 13 3 6 4 0 4 (711)

1 6 7 14 4 4 3 0 2

1 6 7 15 3 2 3 0 5 (811)

1 7 8 16 3 5 3 0 4 (1011)

1 7 8 17 2 6 3 0 5 (711)

1 8 9 18 8 5 1 0 2 (711)

1 8 9 19 2 5 3 0 3 (1011)

1 8 10 20 5 4 4 0 2 (911) (1012) (1211)

2 9 11 21 2 5 2 0 5 (1011) (1311)

3 10 12 22 4 3 1 0 4 (711) (811) (911)

(1011)

3 10 13 23 4 4 1 0 3 (811)

3 10 13 24 6 5 5 0 2 (1011) (1211) (1311)

3 10 13 25 8 4 1 0 3 (911) (1011) (1311)

3 11 14 26 8 5 1 0 5 (1011) (1211) (1311)

3 11 14 27 3 7 4 0 3 (9I2) (1211)

11
TT

T2

12
T 2

T 2

Tä

Tä

TT

TT

TT

TT

TT

TT

T~5

Ts

Ts

Ts

Ts

T ?

TJ

T7

T7

T7

Ts

Ts

T9

Tä

20

173

15 28 0 (811) (911)

15 29 11 0 (1011) (1211)

16 30 10 0 (7I2)

16 31 (911)

16 32 (711) (12(1)

17 33

18 34 0

18 35 (1011)

19 36 (1011)

19 37 12 (811) (1011)

19 38

20 39 (911) (1011)

20 40 (911) (1311)

20 41 (911) (1211)

21 42 0 (1211)

21 43 10 0 (711) (811) (1011)

22 44 (1011)

22 45 0 (811) (1011) (1312)

22 46 0 (811) (1211)

23 47 (811) (1311)

24 48 0

25 49 (811)

25 50 (811) (1311)

25 51 (611) (1011) (1211)

26 52 (8I2)

26 53

27 54

27 55 (611) (1011)

28 56 14 (1011)

28 57 (811) (1311)

29 58 0 (811) (1011)

29 59 (611) (811) (1011)

174

7 21 30 60 10 4 1 0 3 (1011)

7 21 30 61 2 6 3 0 5 (811) (1011) (1211)

(1312)

7 21 31 62 4 4 1 96 2 (711)

7 21 31 63 4 5 4 0 0 (1011) (1211)

7 21 31 64 3 6 3 0 2 (811) (1011)

7 22 32 65 2 6 3 0 1 (811) (911) (1011)

(1211)

7 22 32 66 4 5 1 0 5 (1311)

8 23 33 67 6 4 2 0 1

8 24 34 68 2 6 4 0 2 (811) (1011) (1311)

8 24 34 69 7 4 5 0 0 (1211) (1311)

8 24 34 70 5 5 1 0 2 (811)

8 24 35 71 2 4 3 0 5 (811)

8 24 35 72 2 5 3 0 4 (911) (1311)

9 25 36 73 6 7 2 0 0 (711) (1012)

9 25 36 74 2 4 2 0 5

9 26 37 75 4 6 4 0 2 (811) (1011) (1211)

9 26 37 76 5 6 5 0 4 (911) (1011)

9 27 38 77 9 5 1 0 1 (811) (1211)

9 ' 28 39 78 3 4 4 0 4

9 28 39 79 2 6 4 0 3 (811)

9 28 39 80 3 3 4 0 4 (911)

9 28 40 81 2 5 1 0 5 (1011) (1211) (1311)

9 28 40 82 4 6 2 0 3

9 28 40 83 2 6 3 0 1 (7I2)

10 29 41 84 7 4 1 0 5 (811)

10 29 41 85 7 6 4 0 4 (1311)

10 29 41 86 3 6 3 0 3 (811) (1011) (1311)

10 30 42 87 3 7 3 0 5 (1211)

10 30 42 88 3 5 3 0 3 (811) (1011)

10 30 42 89 11 4 4 0 5 (1311)

175

10 31 43 90 7 6 3 0 3 (911) (1011)

10 31 43 91 3 6 1 0 0 (711) (911)

10 31 44 92 7 4 3 0 4 (711) (811)

10 31 44 93 7 7 1 0 5

10 32 45 94 3 5 1 0 3 (911) (1011)

10 32 45 95 2 5 3 0 5 (1311)

10 32 45 96 3 5 4 0 3 (811) (1011)

11 33 46 97 1 5 2 0 5 (7I2) (811)

11 33 46 98 1 6 2 0 4 (1211) (1311)

11 34 47 99 1 5 3 0 5 (1011) (1311)

11 34 47 100 1 5 3 0 4 (811) (1211)

12 35 48 101 3 5 4 0 5 (611)

12 36 49 102 2 5 2 0 2 (811) (1011)

12 36 49 103 4 5 5 0 3 (1211)

13 37 50 104 2 6 4 0 2 (811) (911) (1011)

13 37 50 105 1 4 1 0 4 (1211)

13 37 50 106 1 5 3 0 5

13 38 51 107 1 5 2 0 3 (711) (811) (9I2)

(1011)

13 38 52 108 3 6 1 0 3 (911) (1211) (1311)

13 39 53 109 1 6 1 0 5

13 39 53 110 3 4 3 0 4 (811) (1012)

13 39 53 111 1 5 2 0 0 (811) (911)

13 40 54 112 1 3 3 0 3 (811) (1011)

13 40 54 113 3 5 4 0 4 (1012) (1211)

13 40 54 114 1 5 3 0 5 (811) (1311)

14 41 55 115 10 5 1 0 3 (711) (811) (1011)

14 41 55 116 18 5 4 0 2 (711) (1011)

14 41 56 117 5 5 2 0 3 (811) (1011) (1211)

14 41 56 118 19 4 1 55 0 (811) (1011) (1311)

14 42 57 119 6 5 1 0 1 (811)

14 42 57 120 7 4 3 0 4 (1011)

176

14 43 58 121 5 6 1 0 3 (811) (911) (1011)

(1211)

14 44 59 122 9 4 3 0 5 (811) (1011)

14 44 59 123 6 5 1 0 2 (1011)

14 44 59 124 8 4 1 0 4 (1212) (1311)

15 45 60 125 26 5 3 0 4 (711) (811) (1011)

(1311)

15 45 60 126 29 5 3 0 5 (1011) (1212) (1311)

15 45 60 127 35 6 2 0 4 (811) (911) (1011)

15 45 61 128 18 4 3 0 4 (1311)

15 45 61 129 28 5 3 0 1 (811) (911)

15 45 61 130 11 7 2 0 2 (1211) (1311)

15 46 62 131 11 5 1 0 5 (1011)

15 46 62 132 14 5 2 0 2 (711) (9I2) (1011)

15 46 63 133 14 3 4 0 5 (711) (811) (1311)

15 46 63 134 19 5 1 0 4 (811) (1011) (1311)

15 47 64 135 26 5 1 0 3 (1311)

15 47 64 136 31 6 2 0 2 (811) (1211)

16 48 65 137 6 5 1 0 4 (911) (1011) (1211)

16 48 65 138 6 7 3 0 3 (911)

16 49 66 139 5 5 1 0 4 (811) (911) (1211)

(1311)

16 49 66 140 10 6 4 0 2 (911)

16 50 67 141 13 7 1 0 5 (811) (1011) (1211)

(1311)

16 50 67 142 7 6 2 0 4 (1211)

16 51 68 143 6 3 3 0 5

16 51 68 144 5 5 1 0 2 (1011)

17 52 69 145 5 4 1 28 3 (911) (1011)

17 52 69 146 13 5 4 0 5 (1211)

17 52 69 147 11 5 1 0 4 (1011) (1311)

17 52 70 148 17 5 2 0 3 (8I2) (911) (1211)

177

17 52 70 149 5 4 1 0 5 (811) (1011)

17 53 71 150 6 4 4 0 3 (811) (1211)

17 53 71 151 6 5 1 0 4 (711)

17 53 71 152 8 5 4 0 1 (811) (1011)

17 53 72 153 5 3 5 0 3 (8I2) (1011) (1211)

17 54 73 154 12 6 4 0 0 (1212)

17 54 73 155 20 6 3 0 2 (811)

17 54 73 156 9 5 3 0 3 (811) (1011)

17 54 74 157 14 3 1 0 4 (1011) (1211) (1311)

17 54 74 158 5 4 1 0 0 (911) (1011)

17 55 75 159 6 6 3 0 4 (911) (1011)

17 55 75 160 11 5 1 0 3 (811) (1211) (1311)

17 55 75 161 8 4 3 0 5 (911) (1011)

17 56 76 162 5 4 2 0 3

17 56 76 163 14 5 3 0 4 (9I2)

17 56 77 164 14 5 2 0 2 (8I2) (911) (1012)

(1211)

17 56 77 165 21 6 4 0 3 (1011)

17 56 77 166 5 6 6 0 5 (1211) (1311)

18 57 78 167 6 6 4 0 3 (911) (1011) (1311)

18 58 79 168 4 6 4 0 5 (811) (1011) (1211)

18 58 79 169 3 5 2 0 3 (711)

18 58 80 170 3 6 3 0 4 (911) (1011) (1212)

18 58 80 171 5 5 1 0 3

18 58 80 172 5 3 1 0 5 (711) (811) (1011)

(1211)

18 59 81 173 3 5 2 0 2 (1011)

18 60 82 174 6 6 3 0 3 (811)

Table A. 15. Routing Structure and Operation Related Data - Problem 4

178

Operation Setup times (preceding operation I setup)

5 (42I5) (65I5) (67I5) (77I6) (83I5) (11915)

35 (514) (4216) (6513) (6714) (7713) (8314) (11916) (12913) (15214)

42 (514) (3514) (6716) (7716) (8314) (11914) (12914)

45 (5514) (6917) (11115) (15415)

55 (4515) (6915) (11115)

65 (517) (3515) (4215) (6715) (7714) (8315) (11917) (15214)

67 (515) (3516) (4217) (6516) (7717) (8315) (11917) (15215)

69 (4515) (5515) (11115) (15416)

77 (513) (3513) (4216) (6514) (6716) (8316) (11916) (12916) (15213)

83 (3515) (4217) (6515) (6714) (7714) (11914) (15215)

111 (4513) (5516) (6916) (15414)

119 (517) (3514) (4213) (6517) (6717) (8316) (12914) (15214)

129 (514) (3516) (4217) (6717) (7716) (8314) (11913) (15217)

152 (514) (3516) (4214) (6516) (6714) (7716) (8317) (12917)

154 (4517) (5514) (11114)

Table A.16. Operations with Sequence Dependent Setup Times - Problem 4

Problem 5: Figure A.5 and tables A. 17 - A.20 describe problem 5.

Job 0: Job 1 :

(0 , 1) (1,1)

Job 2: Job 3:

Job 4:

(8 ,2)

Figure A.5. BOMs - Jobs from Problem 5

Job batch size due date ready time

0 13 912 0

1 6 1536 0

2 6 1968 0

3 10 1616 85

4 14 512 0

Table A.17. Job Re ated Dada - Problem 5

180

Resource class Resource (typelunit) Scheduled breaks (start timelduration)

Machines (010) (304I47) (155117)

(110) (737142)

(210) (519126) (1649138)

(211) (629154)

(2I2) (929136)

(3I0) (1088130)

(311) (636142)

(4I0) (26141) (1351143)

(411) (265144) (1557132)

(4I2) (552138) (1694147)

(4I3) (104137) (1233145)

(5I0) (1047127)

(511) (1458122)

Other resources (6I0) (92121) (1325137)

(611) (1164133)

(7I0) (1084143)

(711) (966126)

(8I0) (53127) (1400131)

(811) (99I36) (1263126)

(8I2) (793113)

(8I3) (59I27) (1394138)

(9I0) (882121)

(911) (186125) (1483143)

(9I2) (1166127)

(9I3) (26130) (1196121)

(1010) (606I38)

(1011) (996I36)

(1012) (554I30) (1604126)

(1013) (680132)

(1110) (575135) (1618132)

(1111) (887110)

181

(1112) (408141) (1709133)

(1113) (768141)

(1210) (27I25) (1084140)

(1211) (594110)

(1310) (557I36) (1805128)

(1311) (43127) (1234116)

(1312) (1070119)

(1313) (752I33)

Table A.18. Resource Related Data - Problem 5

182

Part Sub

process

Route Operation Minimum

transport

batch

Setup

time

Unit

executio

n time

Operation

ready

time

Machine

type

required

Other resources

required

(typelquantity)

0 0 0 0 5 4 1 0 5

0 0 0 1 4 5 5 0 2

0 0 0 2 9 6 3 0 4

0 1 1 3 8 3 5 0 3 (1111)

0 1 1 4 9 7 3 0 0

0 1 2 5 3 6 1 0 5

0 1 2 6 5 5 4 0 2

1 2 3 7 3 4 1 0 5 (1011)

1 2 3 8 4 6 3 0 2

1 3 4 9 3 7 1 0 5

1 3 4 10 1 4 3 0 1

1 3 5 11 3 3 4 0 4 (1111)

1 3 5 12 1 7 4 64 5

1 3 5 13 3 4 2 0 4

1 4 6 14 4 2 1 0 5 (1011)

1 4 7 15 2 5 2 0 5

1 5 8 16 2 6 1 0 1

1 5 8 17 1 2 2 0 3

2 6 9 18 2 5 1 0 3 (1011)

2 6 9 19 2 10 2 0 1 (911)

2 7 10 20 2 4 3 0 3

2 7 10 21 5 2 3 0 5 (911) (1011)

2 7 11 22 2 3 3 0 4

3 8 12 23 5 4 2 0 4

3 8 12 24 4 3 2 0 5 (911)

3 9 13 25 6 7 4 0 4 (911)

3 9 13 26 8 9 3 0 3

3 9 13 27 3 5 1 0 4

3 10 14 28 12 6 4 0 5 (1211)

183

3 10 14 29 2 4 3 0 3

3 10 14 30 3 0 4 0 2 (1111)

4 11 15 31 2 7 2 0 4

4 11 15 32 3 7 2 0 5

4 12 16 33 4 8 4 0 2

5 13 17 34 5 4 4 0 3

5 14 18 35 1 7 2 0 1 (911)

5 15 19 36 2 3 3 0 4

5 15 19 37 2 4 3 68 3 (911)

5 15 19 38 2 5 4 0 5

5 15 20 39 2 6 4 0 4

5 15 20 40 2 6 1 0 3 (1011) (1111)

5 16 21 41 4 5 3 0 1

5 16 21 42 2 7 1 0 2 (911)

5 16 21 43 2 4 4 0 3 (1311)

5 16 22 44 3 3 1 0 2

5 16 22 45 2 7 3 0 3 (1011)

5 16 22 46 3 2 2 0 4 (811) (1211)

6 17 23 47 14 5 6 0 3 (911)

6 17 23 48 7 9 3 0 5

6 17 23 49 4 6 3 0 0

6 18 24 50 4 7 5 0 5 (911)

6 18 24 51 8 6 1 0 3 (1111)

6 18 25 52 5 5 4 0 4

6 18 25 53 8 7 5 0 5 (911)

6 18 25 54 4 5 3 33 1 (911)

6 19 26 55 5 4 1 0 5

6 19 26 56 10 3 2 0 3 (711)

6 19 26 57 5 3 6 0 4

6 20 27 58 4 3 3 0 5 (1311)

6 21 28 59 6 1 3 0 4

7 22 29 60 7 7 4 0 5 (611)

184

7 22 29 61 5 2 1 0 4

7 22 29 62 9 9 4 0 5 (1111)

7 23 30 63 19 5 6 0 1

7 23 30 64 10 4 2 0 2

7 23 30 65 6 4 1 0 4

7 24 31 66 10 5 1 0 5 (911)

7 25 32 67 8 4 4 0 2

7 25 32 68 4 7 2 0 0

7 25 32 69 5 2 1 0 5 (1111) (1211)

8 26 33 70 5 9 3 0 3

8 26 33 71 10 0 1 0 5

8 26 34 72 6 7 4 0 5

8 27 35 73 13 4 4 33 4

8 27 35 74 12 3 3 0 2

8 28 36 75 5 8 2 0 1 (811)

8 28 36 76 4 8 1 0 4

9 29 37 77 4 0 4 0 3

9 30 38 78 4 4 1 0 2

9 30 38 79 4 6 1 0 3

10 31 39 80 6 4 2 0 3 (1011) (1211)

10 31 39 81 23 3 1 0 2 (911)

10 32 40 82 9 6 2 0 3

10 32 40 83 8 1 1 0 2

10 32 41 84 13 1 4 0 4 (811)

10 32 41 85 9 4 1 87 5

10 32 41 86 17 6 4 0 3

10 33 42 87 9 4 2 0 4 (911)

10 33 42 88 18 4 3 0 3 (811)

11 34 43 89 3 4 4 0 5

11 34 43 90 6 5 3 0 2

11 34 44 91 5 4 1 0 0

11 34 44 92 4 8 3 0 5 (1311)

185

11 34 44 93 4 6 3 0 3

11 35 45 94 5 7 3 0 4

11 35 45 95 7 5 4 0 5 (1211)

11 35 45 96 13 6 4 0 2

11 35 46 97 5 7 2 0 4

11 35 46 98 11 3 3 0 2 (1011)

11 35 46 99 9 5 3 0 4

11 36 47 100 4 0 2 0 1

11 36 47 101 4 5 2 0 4 (911)

11 36 48 102 7 4 2 0 5 (911)

11 37 49 103 11 8 5 0 3

11 37 50 104 6 4 2 0 1 (1311)

11 37 50 105 6 6 2 0 4 (711)

11 38 51 106 5 5 6 0 2

11 38 51 107 6 5 1 0 4 (1311)

11 38 51 108 13 6 5 0 1

12 39 52 109 6 2 4 0 2

12 39 52 110 4 5 2 0 4

12 39 53 111 9 3 5 0 4 (1311)

12 39 53 112 7 8 2 0 2

12 39 53 113 4 5 3 0 3

12 40 54 114 3 1 3 0 5

12 41 55 115 5 8 4 0 2 (711) (911) (1211)

12 41 55 116 3 2 3 0 5 (811) (1211)

13 42 56 117 7 6 3 0 0 (1011)

13 42 56 118 3 5 3 0 2

13 42 56 119 6 5 4 0 5

13 42 57 120 3 2 5 0 5

13 43 58 121 6 8 5 0 3

14 44 59 122 5 7 3 0 4

14 44 59 123 11 4 5 0 2

14 45 60 124 4 5 1 0 0

186

14 45 60 125 4 6 5 0 1

14 46 61 126 12 1 1 0 2

14 46 61 127 6 5 1 0 4 (1311)

14 46 62 128 4 6 4 0 4

14 46 62 129 3 6 1 0 5

14 46 62 130 9 8 3 0 2

14 47 63 131 3 4 5 0 3 (911) (1111)

14 47 63 132 9 7 4 0 4

14 47 63 133 4 2 3 0 1

Table A.19. Routing Structure and Operation Related Data - Problem 5

187

Operation Setup times (preceding operation I setup)

4 (49I3) (68I8) (9118)

16 (4110) (6317) (7514) (10018) (10817) (12514) (13314)

19 (1614) (4119) (6317) (7510) (10016) (10816) (12517)

41 (1618) (19I6) (63I6) (75I8) (100I4) (108I7) (125I0) (133I6)

49 (68I7) (9110) (11710) (12414)

63 (4116) (7516) (10012) (10817) (12514) (13317)

68 (418) (4914) (9113) (11710) (12416)

75 (1613) (1917) (4114) (6316) (10016) (10816) (12515)

91 (415) (4913) (11717)

100 (1916) (6317) (7516) (10813) (12514) (13317)

108 (1617) (1914) (6314) (10017) (12513) (13312)

117 (412) (6812) (9117) (12413)

124 (4916) (6816) (11718)

125 (1615) (1917) (4117) (6317) (7517) (10014) (13311)

133 (1616) (1915) (4114) (6315) (7518) (10816) (12513)

Table A.20. Operations with Sequence Dependent Setup Times - Problem 6

Problem 6: Finally problem 6 is described next.

Job 0: Job 1:

Job 2: Job 3:

Figure A.6. BOMs - Jobs from Problem 6

Job batch size due date ready time

0 10 992 0

1 9 1808 0

2 10 720 0

3 10 800 0

4 12 944 0

Table A.21. Job Re ated Dada - Problem 6

189

Resource class Resource (typelunit) Scheduled breaks (start timelduration)

Machines (010) (746134) (2505130)

(110) (1297130)

(210) (821131) (2442113)

(310) (512130) (1982120)

(410) (726138) (2279119)

(411) (383I29) (2092I36)

(5I0) (1182134)

(511) (549121) (2040I45)

(6I0) (900131) (2566131)

(7I0) (906I26)

(711) (570131) (1891132)

(8I0) (1139117)

(811) (143123) (1801123)

(8I2) (0116) (1441124)

Other resources (9I0) (557124) (2156131)

(911) (287I35) (1927154)

(9I2) (1159126)

(9I3) (1046132)

(1010) (92117) (1429136)

(1011) (588128) (2221147)

(1012) (1351147)

(1013) (325124) (1579127)

(1110) (193132) (1815134)

(1111) (94111)

(1210) (995115)

(1211) (17148) (1445124)

(1212) (651145) (2076133)

(1213) (731136) (2357I33)

(1310) (191128) (1644130)

(1311) (658134) (2312126)

(1312) (498128) (2011139)

(1313) (168122) (1825132)

(1410) (1542145)

(1411) (518133) (2411141)

(1510) (973I33)

(1511) (977I7)

(1512) (192126) (1643119)

(1513) (1051135)

(1610) (499119) (2003I24)

(1611) (546I36) (2307I35)

(1612) (1221112)

. (1613) (540I23) (1913121)

(1710) (798I37) (2185140)

(1711) (507134) (2191130)

(1712) (0140) (185517)

(1713) (92121) (1613125)

(1810) (347132) (1579142)

(1811) (551130) (2126120)

Table A.22. Resource Relaled Data - Problem 6

191

Part Sub

process

Route Operation Minimum

transport

batch

Setup

time

Unit

executio

n time

Operation

ready

time

Machine

type

required

Other resources

required

(typelquantity)

0 0 0 0 5 7 4 0 3 (1012)

0 0 0 1 7 1 1 0 6 (1211)

0 0 0 2 7 4 1 65 2 (911) (1712)

0 0 1 3 10 7 2 0 5 (1611)

0 0 1 4 10 5 4 0 7 (1011)

0 0 2 5 5 5 2 0 5 (911) (1611) (1711)

0 0 2 6 10 5 1 0 2 (911) (1011) (1611)

0 0 2 7 4 7 5 0 3 (9I2)

0 0 2 8 9 6 5 0 5 (911) (1211)

0 0 2 9 4 4 2 0 7

0 1 3 10 5 4 1 0 4 (1011)

0 1 3 11 7 5 3 0 6

0 1 3 12 6 5 1 o - 3 (1011) (1211)

0 1 3 13 14 4 3 0 6 (1011)

0 1 3 14 12 4 3 0 7 (1011) (1211)

0 2 4 15 7 6 3 0 5 (1511)

0 2 4 16 17 7 2 0 6

0 2 4 17 7 4 3 0 4 (1212)

0 2 4 18 5 4 2 0 7 (1511)

0 2 5 19 7 6 5 0 8 (1011)

0 2 5 20 4 9 1 0 4 (1011) (1611)

0 2 5 21 8 4 2 0 6 (911) (1011) (1511)

(1611) (1711)

0 2 6 22 7 5 1 0 8 (1511)

0 2 6 23 5 4 4 0 3

0 2 6 24 4 5 6 0 4 (1211) (1311)

0 2 6 25 6 4 2 0 5 (911) (1011) (1511)

0 2 6 26 5 2 1 0 8 (1711)

0 2 7 27 11 5 4 0 3 (1711) (1811)

192

0 2 7 28 5 3 3 0 2 (1511)

0 2 7 29 17 5 2 0 3 (1211)

0 2 7 30 4 3 1 0 5 (911) (1011)
0 3 8 31 10 5 1 0 0 (911)

0 3 8 32 10 3 4 0 7 (911) (1011)
0 4 9 33 8 6 1 0 3 (911)
0 4 9 34 4 7 4 0 5 (1011)

0 4 9 35 7 7 4 0 4 (1511)

0 4 9 36 6 5 2 0 2 (1511)

0 4 10 37 5 2 5 0 8

0 4 10 38 7 4 2 0 3

0 4 10 39 7 0 4 0 5 (911) (1611)

0 4 10 40 5 9 2 0 6 (1011) (1711)

0 4 10 41 5 4 2 0 2 (1011) (1611) (1712)

0 4 11 42 6 3 3 0 0 (1011) (1311)

0 4 11 43 12 4 5 0 8 (911)

0 4 11 44 4 8 5 0 7 (1011)

1 5 12 45 6 6 2 0 6

1 5 12 46 6 6 2 0 8

1 5 12 47 4 3 1 0 7 (911) (1411) (1711)

1 5 12 48 12 5 2 0 4 (1511)

1 5 12 49 6 6 1 0 3 (1711)

1 5 13 50 5 6 4 0 4 (1011) (1611)

1 5 13 51 5 5 2 0 6 (1511) (1711)

1 5 13 52 12 4 3 0 7 (1711)

1 5 14 53 6 5 4 0 8 (911) (1011)

1 5 14 54 5 6 2 0 5

1 5 14 55 10 7 4 0 2 (9I2) (1011) (1711)

1 5 14 56 7 5 5 0 4

1 5 15 57 18 6 3 0 0 (1511)

1 5 15 58 5 5 1 0 3

1 5 15 59 6 7 4 0 4 (1011) (1211)

193

1 5 15 60 8 7 3 0 1

1 6 16 61 7 3 3 0 8

1 6 16 62 9 2 4 0 4 (1212)

2 7 17 63 8 6 1 0 3 (1011) (1511) (1711)

2 7 17 64 2 10 4 0 0 (1611)

2 7 17 65 2 3 1 0 6 (1011) (1311)

2 8 18 66 3 4 3 0 5 (911)

2 8 18 67 3 2 4 0 6 (1711)

2 8 18 68 4 8 1 0 8

2 9 19 69 6 4 3 0 3 (911) (1611)

2 9 19 70 5 9 1 0 6 (1612) (1811)

2 9 19 71 3 4 2 0 5

2 9 19 72 2 2 3 0 4 (1211) (1312) (1511)

2 9 20 73 6 7 3 0 5 (911)

2 9 20 74 3 5 2 0 0 (911) (1611)

2 9 20 75 4 6 3 0 1 (911) (1011) (1511)

2 9 20 76 2 2 1 0 4 (911)

2 9 20 77 9 5 3 0 8 (1011) (1311) (1512)

2 9 21 78 2 2 1 0 6 (1011) (1211)

2 9 21 79 3 2 3 0 3 (1711)

2 9 21 80 2 6 1 0 8 (911) (1511)

2 10 22 81 3 7 3 0 2 (1611)

2 10 22 82 2 5 4 0 6 (911) (1312) (1611)

2 10 23 83 3 4 3 0 5 (1012) (1111) (1711)

2 10 23 84 5 4 2 0 7 (1111) (1611)

3 11 24 85 6 7 3 0 7

3 11 24 86 9 5 4 0 8 (911) (1011) (1212)

(1611)

3 11 25 87 6 5 4 0 6

3 11 25 88 5 4 4 0 0 (1011)

3 11 25 89 11 1 4 0 2 (1011)

3 12 26 90 10 2 5 0 7 (1011)

194

3 12 26 91 9 7 1 0 4 (911)

3 12 27 92 11 5 4 0 3 (1011)

3 12 27 93 26 7 4 0 7 (1211)

3 12 27 94 8 7 3 0 4 (1511)

3 12 27 95 6 6 1 0 6

3 12 28 96 7 4 4 0 6 (911) (1211)

3 12 28 97 20 5 3 0 4 (1611)

3 12 28 98 7 5 4 0 8 (911)

3 12 28 99 15 8 1 0 6

3 12 28 100 6 9 4 0 1 (911)

3 13 29 101 12 6 4 0 8 (1511) (1611)

3 13 29 102 27 7 4 0 6 (911) (1711)

3 13 29 103 24 5 1 0 5 (911) (1811)

3 13 30 104 8 6 4 0 7 (1011) (1511) (1811)

3 13 30 105 18 5 1 0 1

3 13 30 106 6 6 3 0 2 (1711)

3 13 31 107 6 6 2 0 5

4 14 32 108 4 6 1 0 1 (1612) (1711)

4 14 32 109 6 7 2 0 3

4 14 32 110 5 7 1 0 6

4 14 33 111 5 5 1 0 1 (911)

4 14 33 112 8 6 4 0 7 (1011)

4 15 34 113 10 8 3 0 0

4 15 34 114 4 6 5 0 2 (911) (1011) (1311)

4 15 34 115 4 6 3 0 8 (1011)

4 15 34 116 4 3 3 0 2

4 15 35 117 15 6 2 0 1 (911) (1711)

4 15 35 118 7 8 1 0 7 (1811)

4 15 '35 119 4 6 3 0 6 (1011) (1612)

5 16 36 120 9 6 4 0 8 (911) (1411)

5 16 37 121 2 7 1 0 7 (1511)

5 16 38 122 3 5 3 0 0 (1011)

195

5 16 38 123 4 5 3 0 8 (911)

5 17 39 124 2 6 1 0 5 (1011)

5 17 39 125 4 5 1 0 3 (1511)

5 17 39 126 3 3 3 0 8 (1011)

5 17 39 127 3 7 4 0 5 (911) (1011) (1112)

(1511)

5 17 40 128 2 5 2 0 5 (911) (1711)

5 17 40 129 2 0 3 0 8

5 17 40 130 2 7 3 0 4

5 18 41 131 3 8 2 0 6 (1311)

5 18 41 132 2 4 4 0 8 (911)

5 18 41 133 5 6 1 0 5 (9I2)

5 18 41 134 7 4 2 0 2 (1011)

5 19 42 135 5 6 1 0 4 (911)

5 19 42 136 4 6 3 „ 0 8 (911) (1011)

5 19 42 137 6 5 6 0 0 (911)

5 19 42 138 6 8 3 0 2

5 19 43 139 3 3 1 0 8

5 19 43 140 2 2 3 0 3 (1011)

5 20 44 141 3 3 2 0 4 (911) (1011)

5 20 44 142 8 3 3 0 8 (911) (1011)

5 20 44 143 2 2 6 0 5 (1611)

5 20 44 144 2 5 1 0 8

5 20 44 145 3 3 3 0 4 (1011)

5 20 45 146 7 8 4 0 7 (911) (1711)

5 20 45 147 9 6 1 0 2 (911) (1011) (1511)

5 20 45 148 2 5 3 0 1 (1011)

5 20 45 149 3 3 2 0 6

5 20 45 150 3 7 1 0 8 (911) (1011) (1611)

6 21 46 151 2 9 3 0 7 (1411) (1511) (1611)

6 21 47 152 6 8 3 0 4 (1711)

6 21 47 153 5 5 3 0 0

196

6 21 47 154 3 8 4 0 8 (911)

6 21 48 155 3 3 4 0 6 (1211)

6 21 48 156 3 4 4 0 7 (911) (1011) (1211)

6 22 49 157 5 6 3 0 2 (911)

6 22 49 158 2 4 3 0 5

6 22 49 159 3 1 3 0 6 (1112) (1711)

6 22 49 160 7 5 1 0 7

6 22 50 161 5 7 1 0 3 (911) (1011)

6 22 50 162 2 6 3 0 4 (911) (1011)

6 22 50 163 10 6 1 76 5 (911) (1011)

6 22 50 164 3 2 5 0 7

6 22 50 165 5 5 3 0 8

7 23 51 166 5 4 4 0 2 (911) (1612)

7 23 51 167 5 9 2 0 0

7 23 51 168 10 9 3 0 7 (911)

7 23 52 169 8 3 2 0 7

7 23 52 170 6 6 1 0 0 (911) (1511)

7 23 52 171 16 6 4 0 4 (1311)

7 23 52 172 6 3 1 0 6 (1611)

7 23 52 173 4 5 2 0 8 (1211)

8 24 53 174 5 0 4 0 6

8 24 53 175 4 6 4 0 8

8 24 53 176 7 5 5 0 4 (1311)

8 25 54 177 5 6 4 0 5 (1011) (1511)

8 25 55 178 6 0 1 0 6 (1011)

8 25 56 179 18 5 2 0 6 (1011) (1311)

8 26 57 180 8 2 2 0 3 (1011) (1511)

8 26 57 181 17 6 2 0 1 (1011) (1211)

8 26 57 182 8 3 3 0 4 (1011) (1711)

8 26 57 183 11 1 4 0 7 (9I2) (1011) (1711)

9 27 58 184 8 6 .4 0 4

9 27 59 185 10 3 1 0 4 (1411) (1811)

197

9 27 59 186 14 4 2 0 5

9 27 59 187 7 4 1 0 3 (1011)

9 27 60 188 9 4 3 0 4

9 27 61 189 8 6 3 0 1

9 27 61 190 16 9 3 0 2

9 27 61 191 15 5 3 0 8 (1011)

9 28 62 192 6 7 4 0 7 (911) (1011)

9 28 62 193 4 6 1 0 8 (1611)

9 28 62 194 19 4 2 0 3 (911) (1011) (1611)

(1711)

9 28 62 195 5 5 1 0 4 (1711)

9 28 63 196 5 4 1 0 7 (1011)

9 28 63 197 8 4 3 0 6 (1011) (1611)

9 28 63 198 17 3 4 0 4 (1011)

9 29 64 199 11 5 1 0 6 (1712)

9 29 64 200 9 5 4 0 5 (1011) (1611)

9 29 64 201 4 8 4 0 6

9 30 65 202 7 5 1 0 5 (1611)

9 30 65 203 7 8 1 0 0

10 31 66 204 11 3 5 0 8 (911) (1511) (1611)

10 31 66 205 6 7 4 0 5 (1111) (1611)

10 31 66 206 4 9 1 0 6 (1611) (1711)

10 31 66 207 11 6 3 0 4 (1711)

10 32 67 208 6 4 3 0 7 (911)

10 32 67 209 11 8 4 0 2

10 32 68 210 8 2 2 0 3 (1511) (1711)

10 32 68 211 17 5 3 0 0 (1011)

10 32 68 212 7 4 3 0 5 (1011)

10 32 68 213 7 3 1 0 6 (911)

10 33 69 214 5 5 5 0 5

10 33 69 215 12 8 5 0 7

10 33 69 216 5 5 2 0 3 (911)

198

10 33 70 217 4 6 3 0 1 (1011) (1311)

10 33 70 218 16 8 1 0 3 (911) (1711) (1812)

10 33 70 219 5 7 4 0 7 (1211)

10 33 70 220 6 6 4 0 2 (1611)

10 33 70 221 6 6 2 0 1

10 33 71 222 7 4 2 0 3

10 33 71 223 7 8 3 0 4

10 33 71 224 8 7 1 0 2

10 34 72 225 5 4 3 0 5 (1011)

10 34 72 226 7 7 2 0 8 (911)

10 34 73 227 8 8 4 0 7 (1011)

10 34 74 228 8 3 4 0 8 (911)

10 34 74 229 8 0 1 0 3 (911)

11 35 75 230 5 3 4 0 4 (911) (1011) (1311)

11 35 75 231 5 5 3 0 5 (1012) (1511)

11 35 75 232 4 5 1 0 8

11 35 75 233 3 6 4 0 2 (1111) (1611)

11 35 76 234 8 5 4 0 4 (1011) (1311) (1711)

11 35 76 235 3 8 3 0 6 (911) (1011) (1111)

(1212)

11 35 76 236 7 2 3 0 4 (911)

11 35 76 237 5 6 4 0 7 (1011)

11 36 77 238 5 4 1 0 6 (1011) (1311) (1611)

11 36 77 239 2 6 4 0 4 (911) (1011)

11 36 77 240 6 4 4 0 0

11 36 77 241 2 10 1 0 3 (1011)

11 36 77 242 3 4 1 0 6 (1611)

11 37 78 243 3 5 3 0 7 (1011) (1511)

11 37 78 244 3 8 4 0 4 (1511)

11 37 78 245 4 3 4 0 3 (911)

11 37 79 246 4 6 2 0 7 (911) (1011) (1511)

11 37 79 247 2 10 2 0 3 (1011)

199

11 37 80 248 5 4 1 0 3

11 37 80 249 6 4 1 0 7

11 37 80 250 3 7 1 0 8

11 37 80 251 3 5 1 0 6

11 38 81 252 2 6 1 0 7 (1512)

11 38 81 253 4 5 6 0 5 (1711)

11 38 81 254 2 7 3 0 8 (1011)

11 39 82 255 8 6 3 0 5 (1511)

11 39 82 256 4 6 2 0 4 (911)

11 39 82 257 6 6 4 0 8 (911) (1012) (1311)

11 39 83 258 3 8 2 0 0 (1211)

11 39 83 259 4 7 3 0 2 (911) (1011) (1611)

11 39 83 260 9 0 1 0 5 (1511)

12 40 84 261 5 3 1 0 5 (1611) (1811)

12 40 84 262 15 6 2 0 8 (1511) (1611)

12 40 84 263 5 1 1 0 1 (911) (1011)

12 41 85 264 11 8 1 0 3

12 42 86 265 7 3 4 0 7 (911) (1211)

12 42 86 266 5 6 1 0 6 (1011) (1611)

12 42 86 267 6 4 3 0 4

12 42 87 268 6 5 1 0 4

12 42 87 269 9 4 3 0 1 (911) (1011)

12 42 87 270 5 5 2 0 6 (911) (1011)

12 42 87 271 7 7 3 0 7 (1311)

12 43 88 272 22 6 1 0 6

12 43 88 273 16 6 2 0 3

12 43 88 274 5 1 3 0 8 (1011)
12 43 89 275 16 6 3 0 3 (1011) (1211)

12 43 89 276 10 4 4 0 4 (1711)

12 43 90 277 7 5 3 0 3

12 43 90 278 24 3 3 0 6 (911) (1012)

12 43 90 279 11 6 4 0 7 (1212)

200

12 44 91 280 5 4 4 0 6 (1011)

12 44 91 281 5 6 3 0 1 (1211)

13 45 92 282 5 4 4 0 8 (911)

13 45 92 283 6 2 4 0 4 (1011)

14 46 93 284 5 7 4 0 7 (1311)

14 46 93 285 3 4 3 0 3 (1011)

14 46 93 286 4 7 1 0 0

14 47 94 287 3 4 5 0 4 (1011)

14 47 94 288 4 6 2 0 8 (1011)

14 47 94 289 4 5 5 0 7

14 47 94 290 4 9 1 0 8 (1212)

14 47 95 291 4 9 2 0 2 (1011) (1411)

14 47 95 292 5 5 4 0 7

14 48 96 293 3 8 4 0 5

14 48 96 294 10 3 2 0 0 (1011)

14 48 96 295 3 4 4 0 3 (911) (1011)

14 48 97 296 2 4 1 0 6 (1011) (1211) (1511)

14 48 97 297 5 7 1 0 0 (1512) (1611)

14 48 97 298 5 4 5 0 5

14 48 97 299 5 8 6 0 0 (9I2) (1011) (1611)

Table A.23. Routing Structure and Operation Related Data - Problem 6

201

Operation Setup times (preceding operation I setup)

2 (6I5) (28I7) (36I5) (4116) (5516) (8118) (10613) (11616) (13815) (14712) (15713)

(16616) (19015) (20916) (22016) (22417) (23318) (29115)

6 (218) (2817) (3619) (4116) (5518) (8116) (8914) (10617) (11611) (13814) (14713)

(15718) (19014) (20916) (29116)

28 (216) (618) (3616) (4115) (5514) (8116) (8916) (10615) (11614) (13815) (14715)

(15715) (16617) (19017) (20915) (22017) (22415) (23318) (25915)

36 (213) (616) (2813) (5516) (8114) (10618) (11614) (13816) (14718) (15712) (16619)

(19016) (20917) (22014) (22412) (23313) (25916) (29112)

41 (215) (617) (2816) (3615) (5515) (8117) (8915) (11615) (13818) (15715) (19017)

(20916) (22017) (22415) (23312) (29113)

42 (57110) (64I9) (74I5) (12219) (13718) (20314) (21116) (25812) (28617) (29716)

(29914)

55 (215) (615) (2815) (3615) (4118) (8118) (10618) (11610) (15715) (16614) (19015)

(20913) (22016) (22412) (23315) (25913) (29116)

57 (42I7) (64I4) (74I5) (12213) (13717) (16715) (21115) (24015) (28615) (29715)

60 (7516) (10013) (10518) (10815) (11113) (11715) (14813) (18116) (18916) (26915)

(28114)

64 (42I5) (74I4) (12213) (13717) (16715) (21116) (24014) (25814) (28614) (29716)

(29919)

74 (4214) (5714) (6416) (12213) (13714) (16716) (21113) (24012) (28616) (29714)

(29916)

75 (6013) (10512) (10817) (11117) (11715) (14814) (18115) (18914) (26914) (28117)

81 (2110) (6I3) (28I3) (4116) (5518) (8916) (10615) (11611) (13815) (15716) (16614)

(19018) (20916) (220110) (224I4) (233I8) (29114)

89 (215) (612) (2818) (3612) (4118) (5516) (8115) (10617) (11616) (14718) (16617)

(20917) (22416) (23315) (25914) (29113)

100 (60110) (75I6) (10514) (11116) (11714) (18916) (26914) (28118)

105 (7514) (100I4) (108I2) (11119) (117I3) (148I7) (18116) (269I3) (28113)

106 (2I9) (28I4) (36I8) (4115) (5513) (8915) (11613) (13812) (14715) (15713) (20918)

(22014) (22414) (25915) (29115)

108 (6013) (10013) (10517) (11114) (11714) (18117) (18911) (269I0)

111 (60I7) (75I3) (10016) (10517) (10814) (11716) (14813) (18117) (18913) (26912)

202

(28116)

116 (214) (28I6) (36I2) (4116) (8117) (8917) (10615) (14717) (15717) (16619) (20916)

(22014) (22415) (29116)

117 (60I4) (75I4) (100110) (10515) (10814) (111110) (14812) (18114) (18912) (26914)

(28113)

122 (57I9) (64I6) (13714) (16716) (20318) (24016) (28618) (29714) (29916)

137 (4213) (5717) (12214) (16717) (20314) (25812) (28618) (29719) (29910)

138 (217) (619) (2816) (3615) (4117) (5516) (8115) (10610) (11614) (15713) (19016)

(20912) (22012) (22417) (23319) (25917) (29113)

147 (218) (6I4) (4114) (5518) (8112) (10617) (11614) (13814) (16615) (19015) (20913)

(22015) (22413) (23312) (25915) (29117)

148 (60I7) (75I8) (10014) (10514) (11117) (11714) (18114) (18916) (26916) (28116)

157 (215) (610) (3614) (5512) (8117) (8910) (10614) (11615) (13815) (14713) (16615)

(20917) (22015) (23310) (259110) (29115)

166 (615) (2813) (3616) (4117) (5517) (8111) (89I5) (10618) (11619) (13816) (22015)

(22419) (23316) (25916) (29115)

167 (42I5) (64I6) (74I0) (12213) (13717) (20313) (21114) (25814) (28614) (29916)

181 (6019) (10015) (10517) (10810) (11114) (11718) (148110) (18915) (28113)

189 (6012) (10014) (10515) (108110) (11713) (14812) (28115)

190 (216) (617) (3611) (4117) (5517) (8116) (10615) (11614) (13817) (14713) (15714)

(16618) (20915) (22416) (23315) (25914) (29112)

203 (4216) (6414) (7412) (12217) (13715) (16717) (21114) (25817) (28617) (29716)

(29917)

209 (214) (2811) (4114) (5517) (8116) (8916) (10617) (11613) (13817) (14716) (16615)

(19015) (22415) (23310) (25913) (29115)

211 (4216) (5717) (6417) (7416) (12212) (16714) (20319) (24017) (25813) (29716)

220 (618) (2813) (3617) (4112) (8112) (8911) (10613) (11618) (13813) (14713) (16614)

(19013) (20919) (22414) (23311) (259I5) (29117)

224 (215) (613) (2815) (3616) (4115) (8115) (8919) (10616) (11614) (13815) (14714)

(15716) (16615) (19016) (20913) (22016) (23318) (25914) (29113)

233 (614) (2815) (4115) (8115) (10614) (11614) (13817) (14715) (15714) (16615)

(19015) (22417) (25913) (29119)

240 (4218) (5715) (6410) (7417) (12212) (13717) (16719) (20316) (21115) (25815)

203

(286I2) (297I3) (299I3)

258 (42I6) (64I6) (74I6) (13715) (21115) (24015) (29912)

259 (614) (2813) (5513) (8118) (8915) (11614) (14714) (15714) (16618) (19014) (22013)

(22416) (23316) (29116)

269 (60I8) (75I8) (100I5) (105I7) (108I0) (11115) (117I6) (148I5) (18119) (28115)

281 (60I3) (75I4) (10013) (10515) (11115) (11713) (18117) (26915)

286 (4214) (5715) (6414) (7415) (12214) (13715) (16715) (20316) (24015) (25813)

(29715) (29913)

291 (216) (615) (3610) (5513) (8118) (10613) (11613) (13818) (14712) (15715) (16617)

(19014) (20912) (22414) (23312) (25915)

297 (4216) (5716) (6416) (12213) (13716) (16714) (20318) (21116) (24016) (25810)

(28614) (29914)

299 (4212) (5714) (6415) (7415) (12216) (13716) (16714) (20316) (21116) (24014)

(25817) (28613) (29716)

Table A.24. Operations with Sequence Dependent Setup Times - Problem 6

204

APPENDIX C

COMPUTATIONAL STRUCTURE OF THE HYBRID SCHEDULING SYSTEM

The hybrid scheduling system was implemented in C language. An overview of the

computational system structure is shown in the following diagram:

Legend: I ! basic source files Q data files

auxiliary source files — ► data flow

FIGURE C.1. System Structure Diagram

The main function that controls and integrates the entire system is located in file

Principa. Functions in Gerap are responsible for randomly reading, generating, or loading

a scheduling problem. The modified schedule generation algorithms, the local hill climbing

and the genetic algorithm are implemented respectively in SGA, Hill_cli and GA. The

other source files contain functions that are used by the basic system modules. The data

files (binary and text) store problem and solution data.

The user must select among loading an existing problem from disk, entering a

new problem through the keyboard, or using the random problem generator described in

appendix B (interface 1 in the diagram). These functions are implemented in Gerap. After

the selection the user must provide the problem data or the inputs requested by the

problem generator. Inp and Prob are a set of binary and text files that store problem

instances like the ones described in appendix A. Funcaux2 contains some functions

called by the problem generator (e.g., functions that randomly generate values from a

probability distribution).

Once the problem is defined (and loaded), the user chooses the system

configuration (interface 2 in the diagram). Precisely the user determines the following

parameters:

1. Basic system configuration:

• only the schedule generation algorithm

• schedule generation algorithm followed by a local hill climbing

• schedule generation algorithm followed by a genetic algorithm hybridized

with a local hill climbing

• schedule generation algorithm followed by a pure genetic algorithm

2. Schedule generation algorithm:

• active or non-delay

• route selection method: random selection or route selection heuristic

• parameter 'a' in the route selection heuristic (if it is selected)

• dispatching procedure: randomly or SPT rule

• resource selection method: randomly or minimum gap heuristic

• generation mode: complete or simplified

206

3. Local hill climbing:

• method for selecting the arc to be reversed: random choice or bottleneck

heuristic

• resources are allowed or not allowed to change when a move is performed

4. GA parameters:

• population size

• number of generations

• basic crossover rate

• basic mutation rate

• route crossover rate

• route mutation rate

• decoding strategy: active or non-delay

5. Coefficients a-, and B of the multiobjective evaluation function F = a^mean

completion time + a2.mean tardiness + a3.makespan + a4.maximum tardiness

+ a5.maximum lateness + a6.maximum flow time + B

Note that any other multiobjective function can be easily implemented. But as

described in chapter 4, most regular measures are equivalent to one of the single criteria

included in function F.

According to the basic system configuration chosen by the user the main function

calls the proper sequence of functions that run the schedule generation algorithm (in file

SGA), the local hill climbing (in Hill_cli) and the genetic algorithm (in GA).

The decoding procedure used by the GA is the modified schedule generation

algorithm. The GA can also be hybridized with the local hill climbing procedure. Therefore

there exist data flows between GA and SGA, and between GA and Hill_cli (see diagram

C.1).

The final solution is stored in the output files Gan (Gantt chart) and Sol (numerical

data) with the help of functions located in file Gantchar. Gantt charts were used to aid the

207

verification of the proposed models, i.e., the consistency of the solutions provided by the

hybrid scheduling system were verified using Gantt charts.

The auxiliary file Funcauxl carries some functions called by almost all the basic

files, like functions that return the successor or predecessor of an operation, subprocess

or part, functions that calculate overlap times and earliest start times, etc. Functions that

manipulate setup information (e.g., update setup times after a neighborhood move) are

implemented in file Setupdep. Functions concerning to scheduled breaks of resources are

implemented in Mainten. The route selection heuristic is stored in file Heuroute. Some GA

related function and some Hill climbing related functions are implemented in files Aux_GA

(e.g., selection procedure) and Obj_chai (e.g., determination of the active chains). The

total number of code lines of the system reaches 9189.

APPENDIX D
PERFORMANCE OF THE HYBRID SCHEDULING SYSTEM ON CLASSICAL JOB

SHOP SCHEDULING PROBLEMS

The performance of the proposed model on for Taillard’s benchmarks is

descrHW hefe. AH the- thfefr modules ̂of the. hyfemd system (the- modified schedule

generation algorithm, the local hill climbing and the genetic algorithm) were set to their

basic configurations.

For each probterfr thirty= runs- were cafried out Table D:t compares the

performance of the proposed system with the performance of the hybrid genetic

algorithm GA3 proposed by Mattfeid. Notice that GAS haŝ yielded the-best solutions for

Taillard’s benchmarks among all the GA reported in the literature. The number of runs

performed!^ Mattfeld’s GA3 for each problem wa^aiso thirty. The popuiation size and

number of generation were fixed at 100 (the same used in our system).

: Problem

(n° jobs x n° machines)

Rfigf cnl> itinnUwwv OviUllwl 1

Mattfeld’s GA3

BestSoiution

Proposed Model

Difference (%)

taGT(T5x15) 1Z4T 1299 4.0

tsrt-1 (20x15) 1411 145& 3 2r

ta42 (20x20) 17.2a 1736- Q J

ta13 (30x15) 1813 1902 4.7

Table D.1. System Performance on Taillard’s Job Shop Problems.

Figure D.1 shows-the behavior of the hybrid system over generations for each

of these classical job shop scheduling problems. Only the best among the thirty runs is

plotted.

209

System Performance - ta01

-Best
solution

- Population
average

Generation Number

System Performance - ta21

-Best
solution

- Population
average

Generation Number

System Performance - ta11

2000

1900

c 1800
<0

S 1700

1600

1400

-Best
solution

- Population
average

Generation Number

System Performance - ta31

2500

2300
c
a. 2200

I 2100
s

2000

1900

1800

-Best
solution

- Population
average

Generation Number

Figure D.1. Performance of the Hybrid System on Taillard’s Benchmarks

