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ABSTRACT 

The focus of this paper is the demonstration that sparse experimental design is a useful 
strategy for developing Genetic Algorithms.  It is increasingly apparent from a number of 
reports and papers within a variety of different problem domains that the ‘best’ structure 
for a GA may be dependent upon the application.  The GA structure is defined as both the 
types of operators and the parameters settings used during operation.  The differences 
observed may be linked to the nature of the problem, the type of fitness function, or the 
depth or breadth of the problem under investigation.  This paper demonstrates that 
advanced experimental design may be adopted to increase the understanding of the 
relationships between the GA structure and the problem domain, facilitating the selection 
of improved structures with a minimum of effort. 

1 INTRODUCTION 

An increasing amount of research has identified that the structure for a GA may be 
dependent upon the nature of the optimisation problem. Todd [22] investigated the use of 
several non-heuristic crossover and mutation operators within a GA applied to the 
travelling salesman problem. The purpose of the investigation was to find a good 
combinatorial operator for both crossover and mutation. Fourteen different crossover 
operators and five different mutation operators were explored within a series of 
experiments containing every combination of the two types of operators for problems 
containing 10, 20, 50, 100 and 200 cities. The crossover and mutation operators were 
evaluated whilst keeping the possibility of crossover and mutation at 0.8 and 0.01 
throughout. Todd concluded that the enhanced edge recombination crossover and the 
adjacent two city mutation operators performed best under these test conditions. Todd also 
observed that the GA had difficulties solving problems involving a large number of cities, 
generating solutions which had good short local subtours linked together with long edges. 
Todd finally suggested that domain specific knowledge in the form of heuristics might be 
useful within the solution of these types of problems. 
Todd and Sen [23] used a multi-criteria GA to determine the optimum loading sequence 
for a containership. Within this particular application, the authors used a multi-point 
crossover operator selecting mates contained only within the chromosome’s niche. The 
operator was observed to produce infeasible sequences and a repair routine incorporating 
knowledge of the problem domain was incorporated. The authors also discovered that 
simple mutation operators did not provide sufficient diversity, converging early to non-
optimal solutions, and subsequently utilised a heuristic mutation operator containing a 
number of rules that are used in the practice of containership loading. 



Simpson et al. [19] demonstrated the use of a GA for calibrating friction factors within a 
piping network. Two different coding schemes were used: a discrete coding, and, a 
continuous coding which included new crossover and mutation operators. A mutation rate 
of zero was used throughout their experiments since it was previously discovered that the 
mutation rate had little effectiveness on the GA search within this particular application – 
Simpson & Goldberg [18]. The authors concluded that the discrete coding produced a 
more efficient search than the continuous representation, probably due to the significantly 
smaller search space. 
Pongcharoen et al. [14] utilised experimental design to identify the appropriate values for 
the probabilities of crossover and mutation, the populations size and the number of 
generations. A full factorial experiment was created with five replications and from the 
results it was discovered that the number of generations and population size were both 
significant factors. The authors also concluded that high levels of mutation probability 
resulted in lower penalties, whilst crossover probability was discovered not to be 
statistically significant. 
It is apparent from the work reviewed here that discrepancies exits with respect to the 
selection of the most appropriate structure for the GA. These discrepancies are most 
probably due to differences within the problem domain, indicating that the GA should be 
tailored to the problem to achieve efficient operation. Section 2 describes the GA used 
within this investigation, whilst Section 3 discusses the application of sparse experimental 
design for the selection of the most appropriate GA structure. Conclusions are drawn 
within Section 4. 

2 GENETIC ALGORITHM STRUCTURE 

Within this research, the general procedure for Genetic Algorithms developed by 
Goldberg [8] has been modified such that infeasible schedules may be repaired using an 
approach based upon precedence adjustments. The objective of the GA is to minimise the 
penalties due to the early supply of components and assemblies and the late delivery of 
final products, whilst simultaneously considering capacity utilisation. This ensures 
timeliness and appropriateness within the coordination of component manufacture and 
assembly operations. The algorithm is illustrated within Figure 1. 
The gene is encoded using an alphanumeric string containing two parts. The first part 
represents the operation number and the second represents the part code. Process times, 
date due and assembly relationships may be obtained from the part code. 
The genes are then randomly combined to produce a population of chromosomes or 
candidate solutions.  The chromosome is consequently divided into n sub-chromosomes 
which represent the sequence of activities for the n resources – see Figure 2. 
The fitness function then evaluates each chromosome with respect to the total sum of 
earliness and tardiness costs. The probability of survival, and the number of replicates of a 
chromosome, is determined based upon its fitness using standard roulette wheel 
techniques – Goldberg [8]. Those chromosomes not selected using the roulette wheel are 
removed from the population. 
Two chromosomes are then selected at random from the population and based upon the 
likelihood of the crossover probability have a crossover operator performed on them to 
produce two new permutations containing genetic material from the original 
chromosomes. Those chromosomes that do not have the crossover operator performed 
upon them are carried through. 
 



check and reorder
components

Solution
Space

Chromosome

Chromosome

Chromosome

:
:

Parent 1

Parent 2
+ ==>

Offspring 1

Offspring 2

Parent 3 ==> Offspring 3

Mutation Operation

Crossover Operation

Genetic  OperationPopulation

Fitness Measure

Offspring 1

Offspring 2

Offspring 3

Fitness
Testing

random

encode

decoding

selection

 next generation

Repair Process

Start

Terminate?

Stop

no
yes

Chromosome

Roulette
Wheel

chromosome
selection

check and reorder
operations

identify and avoid
deadlock

check capacity
and adjust timing

randomly

combine

genes

 

Figure 1. A general structure of Genetic Algorithms developed for production 
scheduling. 

Similarly the mutation operator has a mutation probability likelihood to produce random 
changes within a randomly selected chromosome. Those chromosomes that do not have 
the mutation operator performed upon them are carried through. 
Both the crossover and mutations operators when applied to chromosomes representing 
sequences of activities within a scheduling problem may, however, produce an impossible 
routing or assembly sequence since the operators are probabilistic and contain no domain-
specific knowledge about the scheduling problem. 
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Figure 2. Sub-chromosome representation of resource sequence 

Infeasible schedules are rectified using a four-stage repair process: 
• Impossible routings are identified and converted into feasible sequences by reordering 

the operations. 
• Ensuring that all components and sub-assemblies are correctly sequenced prior to their 

subsequent assembly by checking and reordering the precedence. 
• Ensuring that all timing constraints are satisfied regarding the completion of previous 

operations. This may introduce a delay between operations. 
• Identifying and avoiding deadlock through the cyclical dependencies of operations and 

resources. 
Table 1 lists eleven crossover operators, whilst Table 2 lists eight different mutation 
operators. The operators indicated with one tick are implemented within the GA 
scheduling program, whilst those marked with two ticks are investigated within the 



experimental programme described within this paper. A full description of these and other 
operators is given by Pongcharoen et al. [13]. 
 

Initial Description Reference BCGA 
CX Cycling crossover Oliver et al. [12] 99 

EERX Enhanced edge recombination 
crossover 

Starkweather et al. [20] 99 

MPX Maximal preservation crossover Mühlenbein et al. [10] 99 
1PX One point crossover Murata & Ishibuchi [11] 99 
OX Order crossover Davis [2] 99 
PBX Position based crossover Syswerda [21] 99 
PMX Partial matching crossover Goldberg & Lingle [7] 99 
LOX Linear order crossover Falkenauer et al. [5] 9 
2PEX Two point end crossover Murata [11] 9 
2PCX Two points centre crossover Murata [11] 99 
DX Diagonal (three parent) crossover Eiben et al. [4] 9 

Table 1. Crossover operations 

 
Initial Description Reference BCGA 
2OAS Two operations adjacent swap Murata [11] 99 
3OAS Three operations adjacent swap Murata [11] 99 
2ORS Two operations random swap Murata [11] 99 
3ORS Three operations random swap Murata [11] 99 

IM Inverse mutation Goldberg [7] 99 
SOM Shift operation mutation Murata [11] 99 
CIM Centre Inverse mutation Tralle [24] 99 

E2ORS Enhanced two operations random swap Tralle [24] 99 

Table 2. Mutation operations 

3 APPLICATION OF DESIGNED EXPERIMENTS 

3.1 Screening experiment 

A sequential experimental strategy was adopted to identify the genetic operators and 
parameters that produce results with minimum total cost. The factors considered in the 
screening experiment were: the combination of population size and number of generations 
(P/G); the probabilities of crossover (%C) and mutation (%M), and, the crossover (COP) 
and mutation operators (MOP). An L4 fractional factorial design embedded within an 8 
level Latin Square was used for the screening experiment. The total number of possible 
combinations of factors at each level in this case is 82%23 = 512. A full factorial 
experiment of all these would take approximately 1280 hours to complete at 2.5 hours per 
run. However the screening experiment involved only a sub-set of 32 of the possible 512 
runs, replicated using two random seeds, which took less than 80 hours in total. This is a 
saving of about 1200 hours, being approximately 94% of the potential spend. 
 



Crossover operators Mutation 
operators CX EERX MPX 1PX OX PBX PMX 2PCX 

2OAS A     D C B 
3OAS B A     D C 
2ORS C B A     D 
3ORS D C B A     

IM  D C B A    
SOM   D C B A   

E2ORS    D C B A  
CIM     D C B A 

 
Parameter settings  Coded parameter settings 

Combine P/G %C %M  Combine P/G %C %M 
A 60/20 0.9 0.18  A 1 1 1 
B 60/20 0.3 0.02  B 1 -1 -1 
C 20/60 0.3 0.18  C -1 -1 1 
D 20/60 0.9 0.02  D -1 1 -1 

Table 3. Screening stage design 

3.2 Screening experiment results 

The screening results were analysed using the general linear model form of ANOVA 
which is one of the most effective methods for analysing a balanced combination of 
categorical and non-categorical factors – Draper and Smith [3]. The analysis of variance 
for the two replicates within the screening experiment is shown within Table 4 which 
includes the estimates of the main effects as well as the two-way interactions between the 
random seed and the probability of probability of mutation, crossover and the P/G 
combination. The seed interaction was investigated because it is a potential nuisance 
factor, and it can be seen that there may be a difference between seeds with respect to the 
effect of P/G. Sexton et al. [17] advised not to ignore p values of less than 0.2 in screening 
experiments with lower power, however, many screening experiments consider effects 
with much bigger p values than this as potentially significant – Box and Liu [1]. 
 

Source DF SS MS F P 
P/G (%C-%M) 1 243.48 243.48 7.06 0.011 
%C (P/G-%M) 1 195.78 195.78 5.68 0.022 
%M (P/G-%C) 1 21.39 21.39 0.62 0.435 

COP 7 232.58 33.23 0.96 0.470 
MOP 7 164.23 23.46 0.68 0.688 
Seed 1 4.96 4.96 0.14 0.706 

Seed * %M 1 55.66 55.66 1.61 0.211 
Seed * %C 1 43.82 43.82 1.27 0.266 
Seed * P/G 1 76.15 76.15 2.21 0.145 

Error 42 1448.25 34.48   
Total 63 2486.30    

Table 4. Analysis of variance for screening experiment 



 
Table 4 also indicates that the population/generation (P/G) combination and the 
probability of crossover, or the interaction (P/G*%M) with which it is confounded, is 
significant.  Earlier work, Pongcharoen et al. [15],[16], suggested that the P/G*%M 
interaction was likely to be active.  All the two factor interactions are confounded with the 
main effects in this design, and hence cannot be estimated separately. 
Standard ANOVA assumes that there is common residual variance across the design 
space. The possibility of the effect of some apparent non-homogeneity of variance was 
investigated via the application of a logarithmic transform to the response, a procedure 
described by Grove and Davis [9].  Fears that this may be a problem proved unfounded. 
 

Crossover 
Operators 

Mean 
£k 

Standard 
Deviation 

Mutation 
Operators 

Mean 
£k 

Standard 
Deviation 

EERX 103.2 2.28 2OAS 104.6 2.28 
CX 104.5 2.28 IM 105.4 2.28 

PBX 105.3 2.28 CIM 105.4 2.28 
1PX 107.0 2.28 SOM 105.9 2.28 
PMX 107.3 2.28 2ORS 106.1 2.28 
MPX 107.6 2.28 E2ORS 107.7 2.28 
OX 108.6 2.28 3ORS 108.0 2.28 

2PCX 109.6 2.28 3OAS 110.0 2.28 

Table 5. Relative performance of crossover and mutation operators 

 
The result of the analysis of variance for the screening experiment did not find the effect 
of different crossover and mutation operators to be statistically significant. However, 
Table 5 shows that there are differences in the results obtained with different operators 
which are of practical significance. It can be seen that the enhanced edge recombination 
crossover (EERX) algorithm had the lowest mean penalty costs, whilst the two point 
centre crossover (2PCX) had the highest mean. Similarly, the two operation adjacent swap 
(2OAS) mutation operator produced the ‘best’  mean result, whilst the three operation 
adjacent swap (3OAS) produced the ‘worst’ . These differences could be established as 
truly significant if greater statistical power were applied by running more trials.  This can 
also be established by picking the ‘best’  and ‘worst’  for further investigation. 

3.3 Second stage experiment 

A second experiment was designed to further explore the relative performance of some of 
the genetic operators. The experimental design for the second stage was a 25 1

IV
− design, 

which included the same levels of population/generation combination and probabilities of 
crossover and mutation used in the screening experiment. However, only the highest and 
lowest scoring crossover and mutation operators from the screening stage were 
considered. Note that in the first two (of four) replications of this L16 design only 14 of the 
16 combinations were additional runs, as the other two had already been completed during 
the screening stage. 

3.4 Second stage results 

The analysis of variance for the factors and/or their two factor interactions that were found 
to be statistically significant is displayed within Table 6. The probability of mutation is 



seen to be important since, results being achieved with higher probabilities, thus 
confirming the earlier findings from Pongcharoen et al. [15],[16]. Note that the screening 
experiment previously found the probability of mutation to be statistically insignificant. 
The crossover probability is not statistically significant within the range considered, 
confirming the findings of earlier studies, and it is now clear that the screening stage 
results may be due to the effect of the confounding. It is apparent that the significance of 
factors may be affected by either the specific GA application, or by the operators used. 
The difference in performance between the chosen crossover and mutation operators is 
established as statistically significant in the second stage experiment. All the other factors 
are either significant on their own, or in conjunction with other factors (as interactions). 
Both the effect of different seeds and crossover operator needs to be considered when 
setting an optimum level for the probability of crossover and choice of P/G level 
respectively. These tests are more conclusive than the screening experiment partly because 
there are fewer factor levels considered and as a result there is greater power to distinguish 
between the effect of changed factor settings in relation to the number of tests. 
 

Source DF SS MS F P 
%M 1 101.01 101.01 7.36 0.009 
%C 1 27.38 27.38 1.99 0.164 

MOP 1 116.42 116.42 8.84 0.005 
COP 1 138.58 138.58 10.09 0.003 
P/G 1 0.63 0.63 0.05 0.832 
Seed 3 54.14 18.05 1.31 0.280 

COP * P/G 1 56.91 56.91 4.14 0.047 
Seed * %C 3 107.51 35.84 2.61 0.061 

Error 51 700.30 13.73   
Total 63 1302.88    

Table 6. Analysis of variance for the investigation of the significance of genetic 
operations 

In practice, additional replicates were run until the statistical power was sufficient to 
identify the statistical significance of the genetic operators. After two replicates, only the 
mutation operators had still not been established as statistically significant. Again a ln(y) 
data transformation was considered due to the possibility of non-homogenous variance, 
but was found to have no effect on results. Both histograms of residuals and probability 
plots produced satisfactory results. The relative performances of the crossover and 
mutation operators are shown in Table 7. 
 

Crossover and mutation operators Mean Standard 
deviation 

Enhanced Edge Recombination Crossover (EERX) 105.5 0.692 
Two Points Centre Crossover (2PCX) 108.4 0.692 

Two Operations Adjacent Swap (2OAS) 105.4 0.692 
Three Operations Adjacent Swap (3OAS) 108.5 0.692 

Table 7. Relative performance of crossover and mutation operators 

The best results were obtained with the enhanced edge recombination crossover (EERX) 
and the two point adjacent swap (2OAS) mutation operator confirming both results 



obtained by Todd [22] and from within the screening experiment. The standard deviation 
was reduced from 2.28 to 0.692, which was due to improved statistical power. 
Table 8 shows the coefficients from the best regression model with operators coded as ±1. 
The interaction COP*P/G has a negative value. EERX was coded as –1 and the result 
indicates that a low value of P/G should be chosen to get the best result with this operator. 
 

Predictor Coefficient Standard 
deviation 

P value 

Constant 106.975 0.485 0.000 
COP +1.4715 0.485 0.004 
MOP -1.5615 0.485 0.002 
%M -1.2563 0.485 0.012 

COP * P/G -0.9430 0.485 0.057 

Table 8. Regression analysis 

The interactions between the factors are shown in Figure 3. EERX produces slightly better 
results than 2PCX for a high value of P/G, however with a low value of P/G, the 
difference is more pronounced. 
This information can be used to determine the optimum combination of the Genetic 
Algorithm operators and parameters. The levels of the factors which lead to the lowest 
penalty costs are: crossover operator EERX and mutation operator 2OAS, a low setting of 
P/G, a high probability of mutation and, based upon screening experiment findings, a low 
probability of crossover. A test with more statistical power might find that the probability 
of crossover is significant. 
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Figure 3. Interaction diagram for P/G combination and crossover operator 

The population-generation and probability factors identified are the best over the range of 
operators tested. It also seems that several of the operators will perform well at these 
settings. However the model suggests that even better results may be obtained with a 
higher mutation probability than 0.18. 
The findings differ from the earlier work with regards to the setting of P/G. In 
Pongcharoen et al. [15],[16] the best setting was a high P/G combination but in that work 
the operators 1PX and IM were used. In another study (Garzon et al. [6]) both the 
probability of mutation and crossover were found to be statistically significant. This is all 
further evidence that the importance of particular factors may be case, application or 
fitness function specific. 
 



4 CONCLUSIONS 

The performance of the Genetic Algorithm scheduling tool is influenced by a large 
number of factors. The investigation of these requires an efficient experimental design to 
enable the work to be performed within a reasonable time. A screening experiment was 
performed in which a fractional factorial was embedded within a half Latin Square. This is 
a novel experimental design. At this stage it was found that the population/generation 
(P/G) combination and the probability of crossover were statistically significant. Although 
the operators used were not statistically significant, differences in performance were 
obtained which were of practical importance. 
The second stage experiment used a half-fraction design with a reduced number of GA 
operators. This increased the statistical power of the tests. It showed that the choice of 
operators was statistically significant. It also revealed interactions between the 
population/generation combination and the crossover operator used. The low level of P/G 
combination produced the best results when used with the Enhanced Edge Recombination 
crossover operator. 
The use of experimental design has been very effective in minimising the amount of time 
and computational resources required.  It has also enabled the discovery of good GA 
structures in the face of complex interactions that otherwise may have remained hidden. 
The indication of interactions between factors and the variety of different findings 
emerging from previous work suggests that appropriate GA operators and parameters may 
be case dependent. The use of efficient experimental designs to establish the best operators 
and parameters for particular applications appears to be a good strategy. 
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