625 research outputs found

    A Novel Android Memory Forensics for Discovering Remnant Data

    Get PDF
    As recently updated on the vulnerability statistics shown in 2019, Android-driven smartphones, tablet PCs, and other Android devices are vulnerable, whether from internal or external threats. Most users store sensitive data like emails, photos, cloud storage access, and contact lists on Android smartphones. This information holds a growing-importance for the digital investigation process of mobile devices, e.g., internal memory or random-access memory (RAM) forensics, or external memory or read-only memory (ROM) forensics on Android smartphones. Internal memory retrieval is considered flawed and difficult by some researchers as it alters the digital evidence in an intrusive way. On the other hand, external memory retrieval also called logical acquisition that implies the image of logical storage items (e.g., files, database, directories, etc.) that locate on logical storage. This research provides a novel methodology that focuses only on internal memory forensic in a forensically sound manner. This research also contributes two algorithms, e.g., collect raw information (CRI) for parsing the raw data, and investigate raw information (IRI) for extracting the digital evidence to be more readable. This research conducted with fourteenth events to be analyzed, and each event was captured by SHA-1 as digital evidence. By using GDrive as the case study, the authors concluded that the proposed methodology could be used as guidance by forensics analyst(s), cyberlaw practitioner(s), and expert witness(es) in the court

    An Investigative Study on Android Verified Boot Process

    Get PDF

    Forensics Acquisition — Analysis and Circumvention of Samsung Secure Boot enforced Common Criteria Mode

    Get PDF
    Forensics Acquisition — Analysis and Circumvention of Samsung Secure Boot enforced Common Criteria ModepublishedVersio

    Addressing Insider Threats from Smart Devices

    Get PDF
    Smart devices have unique security challenges and are becoming increasingly common. They have been used in the past to launch cyber attacks such as the Mirai attack. This work is focused on solving the threats posed to and by smart devices inside a network. The size of the problem is quantified; the initial compromise is prevented where possible, and compromised devices are identified. To gain insight into the size of the problem, campus Domain Name System (DNS) measurements were taken that allow for wireless traffic to be separated from wired traffic. Two-thirds of the DNS traffic measured came from wireless hosts, implying that mobile devices are playing a bigger role in networks. Also, port scans and service discovery protocols were used to identify Internet of Things (IoT) devices on the campus network and follow-up work was done to assess the state of the IoT devices. Motivated by these findings, three solutions were developed. To handle the scenario when compromised mobile devices are connected to the network, a new strategy for steppingstone detection was developed with both an application layer and a transport layer solution. The proposed solution is effective even when the mobile device cellular connection is used. Also, malicious or vulnerable applications make it through the mobile app store vetting process. A user space tool was developed that identifies apps contacting malicious domains in real time and collects data for research purposes. Malicious app behavior can then be identified on the user’s device, catching malicious apps that were overlooked by software vetting. Last, the variety of IoT device types and manufacturers makes the job of keeping them secure difficult. A generic framework was developed to lighten the management burden of securing IoT devices, serve as a middle box to secure legacy devices, and also use DNS queries as a way to identify misbehaving devices

    Security and Privacy for IoT Ecosystems

    Get PDF
    Smart devices have become an integral part of our everyday life. In contrast to smartphones and laptops, Internet of Things (IoT) devices are typically managed by the vendor. They allow little or no user-driven customization. Users need to use and trust IoT devices as they are, including the ecosystems involved in the processing and sharing of personal data. Ensuring that an IoT device does not leak private data is imperative. This thesis analyzes security practices in popular IoT ecosystems across several price segments. Our results show a gap between real-world implementations and state-of-the-art security measures. The process of responsible disclosure with the vendors revealed further practical challenges. Do they want to support backward compatibility with the same app and infrastructure over multiple IoT device generations? To which extent can they trust their supply chains in rolling out keys? Mature vendors have a budget for security and are aware of its demands. Despite this goodwill, developers sometimes fail at securing the concrete implementations in those complex ecosystems. Our analysis of real-world products reveals the actual efforts made by vendors to secure their products. Our responsible disclosure processes and publications of design recommendations not only increase security in existing products but also help connected ecosystem manufacturers to develop secure products. Moreover, we enable users to take control of their connected devices with firmware binary patching. If a vendor decides to no longer offer cloud services, bootstrapping a vendor-independent ecosystem is the only way to revive bricked devices. Binary patching is not only useful in the IoT context but also opens up these devices as research platforms. We are the first to publish tools for Bluetooth firmware and lower-layer analysis and uncover a security issue in Broadcom chips affecting hundreds of millions of devices manufactured by Apple, Samsung, Google, and more. Although we informed Broadcom and customers of their technologies of the weaknesses identified, some of these devices no longer receive official updates. For these, our binary patching framework is capable of building vendor-independent patches and retrofit security. Connected device vendors depend on standards; they rarely implement lower-layer communication schemes from scratch. Standards enable communication between devices of different vendors, which is crucial in many IoT setups. Secure standards help making products secure by design and, thus, need to be analyzed as early as possible. One possibility to integrate security into a lower-layer standard is Physical-Layer Security (PLS). PLS establishes security on the Physical Layer (PHY) of wireless transmissions. With new wireless technologies emerging, physical properties change. We analyze how suitable PLS techniques are in the domain of mmWave and Visible Light Communication (VLC). Despite VLC being commonly believed to be very secure due to its limited range, we show that using VLC instead for PLS is less secure than using it with Radio Frequency (RF) communication. The work in this thesis is applied to mature products as well as upcoming standards. We consider security for the whole product life cycle to make connected devices and IoT ecosystems more secure in the long term

    A new model for forensic data extraction from encrypted mobile devices

    Get PDF
    In modern criminal investigations, mobile devices are seized at every type of crime scene, and the data on those devices often becomes critical evidence in the case. Various mobile forensic techniques have been established and evaluated through research in order to extract possible evidence data from devices over the decades. However, as mobile devices become essential tools for daily life, security and privacy concerns grow, and modern smartphone vendors have implemented multiple types of security protection measures - such as encryption - to guard against unauthorized access to the data on their products. This trend makes forensic acquisition harder than before, and data extraction from those devices for criminal investigation is becoming a more challenging task. Today, mobile forensic research focuses on identifying more invasive techniques, such as bypassing security features, and breaking into target smartphones by exploiting their vulnerabilities. In this paper, we explain the increased encryption and security protection measures in modern mobile devices and their impact on traditional forensic data extraction techniques for law enforcement purposes. We demonstrate that in order to overcome encryption challenges, new mobile forensic methods rely on bypassing the security features and exploiting system vulnerabilities. A new model for forensic acquisition is proposed. The model is supported by a legal framework focused on the usability of digital evidence obtained through vulnerability exploitation

    An inertial motion capture framework for constructing body sensor networks

    Get PDF
    Motion capture is the process of measuring and subsequently reconstructing the movement of an animated object or being in virtual space. Virtual reconstructions of human motion play an important role in numerous application areas such as animation, medical science, ergonomics, etc. While optical motion capture systems are the industry standard, inertial body sensor networks are becoming viable alternatives due to portability, practicality and cost. This thesis presents an innovative inertial motion capture framework for constructing body sensor networks through software environments, smartphones and web technologies. The first component of the framework is a unique inertial motion capture software environment aimed at providing an improved experimentation environment, accompanied by programming scaffolding and a driver development kit, for users interested in studying or engineering body sensor networks. The software environment provides a bespoke 3D engine for kinematic motion visualisations and a set of tools for hardware integration. The software environment is used to develop the hardware behind a prototype motion capture suit focused on low-power consumption and hardware-centricity. Additional inertial measurement units, which are available commercially, are also integrated to demonstrate the functionality the software environment while providing the framework with additional sources for motion data. The smartphone is the most ubiquitous computing technology and its worldwide uptake has prompted many advances in wearable inertial sensing technologies. Smartphones contain gyroscopes, accelerometers and magnetometers, a combination of sensors that is commonly found in inertial measurement units. This thesis presents a mobile application that investigates whether the smartphone is capable of inertial motion capture by constructing a novel omnidirectional body sensor network. This thesis proposes a novel use for web technologies through the development of the Motion Cloud, a repository and gateway for inertial data. Web technologies have the potential to replace motion capture file formats with online repositories and to set a new standard for how motion data is stored. From a single inertial measurement unit to a more complex body sensor network, the proposed architecture is extendable and facilitates the integration of any inertial hardware configuration. The Motion Cloud’s data can be accessed through an application-programming interface or through a web portal that provides users with the functionality for visualising and exporting the motion data

    Innovative intelligent sensors to objectively understand exercise interventions for older adults

    Get PDF
    The population of most western countries is ageing and, therefore, the ageing issue now matters more than ever. According to the reports of the United Nations in 2017, there were a total of 15.8 million (26.9%) people over 60 years of age in the United Kindom, and the numbers are projected to reach 23.5 million (31.5%) by 2050. Spending on medical treatment and healthcare for older adults accounts for two-fifths of the UK National Health Service (NHS) budget. Keeping older people healthy is a challenge. In general, exercise is believed to benefit both mental and physical health. Specifically, resistance band exercises are proven by many studies that they have potentially positive effects on both mental and physical health. However, treatment using resistance band exercise is usually done in unmonitored environments, such as at home or in a rehabilitation centre; therefore, the exercise cannot be measured and/or quantified accurately. Despite many years of research, the true effectiveness of resistance band exercises remains unclear. [Continues.]</div
    • …
    corecore