

Vol.10 (2020) No. 3

ISSN: 2088-5334

A Novel Android Memory Forensics for Discovering Remnant Data
Gandeva Bayu Satryaa, Febrian Kurniawanb

a School of Applied Science, Telkom University, Bandung, 40257, Indonesia
E-mail:gbs@telkomuniversity.ac.id

b School of Computing, Telkom University, Bandung, 40257, Indonesia

E-mail: febrian911@gmail.com

Abstract—As recently updated on the vulnerability statistics shown in 2019, Android-driven smartphones, tablet PCs, and other
Android devices are vulnerable, whether from internal or external threats. Most users store sensitive data like emails, photos, cloud
storage access, and contact lists on Android smartphones. This information holds a growing-importance for the digital investigation
process of mobile devices, e.g., internal memory or random-access memory (RAM) forensics, or external memory or read-only
memory (ROM) forensics on Android smartphones. Internal memory retrieval is considered flawed and difficult by some researchers
as it alters the digital evidence in an intrusive way. On the other hand, external memory retrieval also called logical acquisition that
implies the image of logical storage items (e.g., files, database, directories, etc.) that locate on logical storage. This research provides a
novel methodology that focuses only on internal memory forensic in a forensically sound manner. This research also contributes two
algorithms, e.g., collect raw information (CRI) for parsing the raw data, and investigate raw information (IRI) for extracting the
digital evidence to be more readable. This research conducted with fourteenth events to be analyzed, and each event was captured by
SHA-1 as digital evidence. By using GDrive as the case study, the authors concluded that the proposed methodology could be used as
guidance by forensics analyst(s), cyberlaw practitioner(s), and expert witness(es) in the court.

Keywords— vulnerability; investigation; memory forensics; guidance; Android.

I. INTRODUCTION

Based on the latest update from the global status counter,
from July 2018 until July 2019, 76.03% of worldwide
mobile phone users are using the Android mobile operating
system, 22.04% are using iOS, and the other 1.93% are using
other mobile operating systems [1]. Android is a mobile
operating system developed by Google in 2005. The first
version was released in September 2008 and has been being
continuously upgraded since then. The current version,
which is Android 9 "Pie," was released in 2019. From this
statement, being Android users means that most people in
the world also rely on Google account, more specifically, the
Gmail account (Google term of service). Hence, much
confidential information nowadays is committed to the
Gmail account, including messages, chat, browsing histories,
GPS data, photos, even data in the cloud storage [2]. Under
the increasing number of Gmail accounts worldwide, the
number of smartphone cybercrimes is also escalating.
Cybercrime refers to criminal activity done by digital
technology [3],[4]. This has required an enormous demand
for Android forensics, and this research guides by opting for
the GDrive as a study case.

Android forensics that was introduced in some studies [5],
[6] had already been developed in various methodologies [7],
[8]. Android forensics is the successor of digital forensics [9],
[10]. The first two rules of digital forensics are handling the
original with the minimum and reporting any changes as
digital evidence. Android forensics for finding digital
evidence can be classified into two domains, which are
volatile memory forensics (RAM analysis) and non-volatile
memory forensics (internal storage analysis). To the best of
authors' knowledge, many researchers have discussed the
non-volatile memory forensics, but investigation about the
volatile memory forensics still has not been delivering a
complete direction. For example, the proposed methodology,
pseudocode(s) used during the examination, scenarios (study
cases) applied the guidance for the forensics analysts or
others.

Some studies in the last five years have provided valuable
insight into the pros and cons of each methodology. A
survey and analysis of extraction schemes are conducted
[11]. Artefacts in ROM memory analysis were produced in
Microsoft OneDrive [12]. A study fouces on improving the
speed of memory analysis and the access to non-volatile
memory [13]. Another study analyzed the malware
behaviour from memory and verify the results with three

1008

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by International Journal on Advanced Science, Engineering and Information Technology

https://core.ac.uk/display/325990748?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

different sandbox types [14]. Apart from that, other
approaches have presented a new methodology to analyze
firmware update protocols by using fuzz testing [15]. This
approach made it possible to find five unique methods of
acquiring data evidence from LG Android smartphones [15],
a lightweight live memory forensic framework based on
hardware virtualization [16], a Volatility plugin to automate
the extraction of data in virtual reality system [17].

Given those previous researches, the interest in the
volatile memory forensics of GDrive is evident since there is
no publicly known way of rigorous methodology with a
comprehensive and acceptable manner in cyberlaw. Based
on the initial research from Satrya and Shin that have done
thorough non-volatile memory forensics in GDrive, this
research enhances a new approach for volatile memory
forensics [8]. The research was conducted using two
scenarios, e.g., doing Android forensics with the investigator
and the victim's smartphone being in the same location and
being in different locations. In the victim's smartphone,
several scenarios were conducted by using GDrive storage,
i.e., signup, sign-in, signout, sharing, deleting, renaming,
new folder, new file. This research used two smartphones as
clients, Samsung A7 (2016) and Oppo A37F. This research
proposed a novel methodology focusing on volatile memory
forensics. The methodology has five phases, which are
preparation, determination, acquisition, analysis, and
presentation. The definition for each phase is explained in
the next section.

This research proposes another approach in Android
forensics, which is volatile memory forensics. To the best of
authors’ knowledge, there is still no published work
addressing the volatile memory forensics of GDrive on the
Android platform with comprehensive analysis and
acceptable manner in front of a court. The original
contributions of this research can be summarized as follows:

• providing a novel methodology in volatile memory
forensics with GDrive as a case study,

• proposing an algorithm for parsing raw data in volatile
memory to find the remnant data,

• analyzing fourteenth events that have been conducted
to retrieve digital evidence,

• presenting a report of volatile memory forensics that
can be used as a reference for investigators, cyberlaw
practitioners, and forensics analysts.

As for the rest of this research, Section II discusses related

works, research methodology, proposed framework, and the
study case. Section III thoroughly explains the memory
results and discussion summary. Section V summarizes the
conclusions and future work of this research.

II. MATERIAL AND METHOD

A. Literature Review

Nisioti et al. have introduced an instant messaging data
recovery method from the volatile memory of Android
smartphones [7]. The methodology was proved by using a
case study of four experiments that provided insights into the
data behaviour in memory. The experimental results showed
that copious data could be retrieved from the memory, even
after the device’s battery was removed for a short time. Even

though the authors have provided a methodology for data
retrieval, but the chronologies of each step have not been
addressed well.

Vella and Cilia examined the possibility of detecting
insecure inter-app communications inside memory dumps
[18]. The forensic analysis results revealed the possibility of
doing it across the various layers of Android’s architecture.
Android’s Binder implemented the Android inter-app
communication with support from Android shared memory.
Despite the framework provided by the authors, the Binder
still has many limitations. The current detector is valuable,
but it cannot identify specific targets of implicit intents while
the presence of multiple target apps.

Yang et al. developed an automated tool, called AMD,
that can acquire the entire content of the main memory from
Android smartphones and smartwatches [19]. The research
analyzed the firmware update protocols of the devices by
reverse-engineering the Android bootloader to develop
AMD. It also designed a method allowing access to the main
memory data through the firmware update protocols. The
results showed that AMD surmounted the usability
constraints of previous main memory acquisition approaches
and that the main memory data acquired from a smartphone
or smartwatch could be accurately used in forensic
investigations. Comparison to existing acquisition methods
showed that the proposed method could acquire main
memory data without a system restart, root privilege
escalation, custom kernel, and screen lock bypass. To the
best of authors’ knowledge, that AMD still needs to be
fetched and executed in firmware update mode. In the
evaluation of AMD, it was also stated that AMD was still
not identical by comparing it with LiME.

Ali-Gombe et al. have suggested a new memory forensics
technique called DroidScraper [20]. It recovers and
reconstructs in-memory runtime artefacts by relying on the
design of Android’s ART region-based memory allocation.
DroidScraper can extract running threads, enumerate objects
allocated in the heap region, and then decode objects based
on their class definitions. Albeit the workflow of
DroidScrapper provided by the authors, e.g., acquisition,
recovery, and reconstruction, there remains some constraint
on the experiments.

Feng et al. have proposed a method for data acquisition in
Android application memory which is called PASM [21]. It
can be applied to unprepared Android devices. PASM
utilizes system-level data migration function provided by
Android manufacturers to migrate and load the private
application data into an intermediate device which has been
pre-flashed with a custom kernel providing the function of
volatile memory forensics. It makes the private application
data are possible to be acquired from the volatile memory of
the intermediate device. However, PASM still has a
limitation, i.e., the target device supports system-level data
migration.

B. Research Methodology

This research concerned with the previous researchers [5],
[9] that introduced a four-phase methodology for a digital
forensics investigation, i.e., identification, preservation,
analysis, and presentation. Identification is for knowing what
digital evidence presents, where it is stored, and how it is

1009

stored. Preservation is for counting and justifying any kind
of alteration to the data during the digital evidence
examination. The analysis is for interpreting the digital data
information so that it can be readable by other people. The
presentation is for representing the whole processes taken
during the investigation to become a final report that is
legally acceptable.

Researches in recent years, particularly focusing on
Android forensics methodology, have been broadening to
various aspects. To the best of authors' knowledge, Table I
shows the recent updates in the relevant studies about
Android memory forensics. Along with a comprehensive
survey methodology, this research proposed a novel Android
memory forensics for finding the remnant data in Gdrive
cloud storage.

C. Android Memory Forensics

As illustrated in Fig.1, a new methodology for Android
memory forensics is proposed. The method is developed
from [8] and consists of preparation, preservation, analysis,
and presentation. The proposed methodology supports three
algorithms, namely, optimal script to assist the dumping
process, Algorithm 1 for parsing the raw data, and
Algorithm 2 for extracting the digital evidence to be more
readable.

START

Define the Event

Display the relevant
Digital Evidences

END

Dump the Memory (RAM)

P
r
e
p
a
r
a
t
i
o
n

P
r
e
s
e
r
v
a
t
i
o
n

A
n
a
l
y
s
i
s

P
r
e
s
e
n
t
a
t
i
o
n

Record the hash value
(SHA1)

Gain Access to the
Smartphone

Collect raw information

Extract the information

Proposed
Algorithm (1)

Proposed
Algorithm (2)

Optimized Script
by Event

Fig. 1 Proposed Android memory forensics methodology.

The dump acquired from fry dump contains many dump

files with a “.data” format related to the app. The files are
large and still hard to read. In order to overcome this, the
algorithm takes each dump file and removes the bytes in hex
so the unprintable characters in ASCII or utf-8 encodings

were removed, and it reduces the file size significantly.
Algorithm 1 used a sequence for the hex were removed, so
the structure of the data inside the dump remained intact.
The object’s structure was readable in ASCII encoding as it
was used by the app while in the memory (space and line
structures remained intact). Google drive uses JSON to store
data in the memory, so the critical information must be read
in the same format as it is in the memory in case JSON
formatted its content is structured spaces and lines.

Algorithm 1. Collect raw information (CRI)
1:
2:
3:
4:
5:
6:
7:
8:
9:
10:
11

12

13

14

15

16

17

FUNCTION Collect()
f1 IMPORT “dump” as File
r1 All lines on f1
t1 Empty string
f2 Create new file in "parsed"

FOR i in r1 THEN

 t2 Empty String
 FOR x in i THEN

 Remove hex \0 to \x08 from x

 Remove hex \x0C to \x1f from x

 Remove hex \x7f to \xff from x
 t2 t2 + x
 ENDFOR

 Write t2 to t1
ENDFOR

Write t1 to f2
ENDFUNCTION

Considering plenty of files were produced, Algorithm 2

focuses on finding the right information out of many
processed files from Algorithm 1 in detail. The investigator
needs to specify what information needs to be found as
string input, and Algorithm 2 investigated all the processed
files. The processed files were listed as a memory address
and even the information is duplicated on another address.
However, the information were still be found by the
algorithm. Despite the vast amount of information to look
from, on which line the algorithm found the information
were recorded as the output for investigator so the
investigator recognized in detail where the information was
contained in the memory address and on what line.

Algorithm 2. Investigate raw information (IRI)
1:
2:
3:
4:
5:
6:
7:
8:
9:
10:
11
12
13
14
15
16
17
18

FUNCTION investigate()
found False
files Current Directory + "/parsed"
INPUT: String to be find
s1 INPUT
FOR i in files DO
 f1 IMPORT i as File
 r1 All lines on i
 count 0
 FOR x in r1 DO
 count count + 1
 IF s1 in x THEN
 found True
 OUTPUT
Notification
 ENDIF
 ENDFOR
ENDFOR
ENDFUNCTION

1010

TABLE I
COMPARISON TO RELATED STUDIES

Research Work
Memory Forensic Analyses

Method Experiment device Tool & Result

Vella and Cilia [18]
Unclear procedures about Android’s
Binder

System Image (Android 6.0
API level 23)

Android’s Binder implemented the
Android inter-app communication
with support from Android shared
memory

Nisioti et al. [7]
Providing a methodology for data
retrieval, but the chronologies of each
step have not been addressed well.

Samsung Galaxy III (GT-
I9300)

By using LiME, the methodology
was proved by using a case study
of four experiments that provided
insights into the data behavior in
memory.

Yang et al. [19]

acquiring the main memory data
through a firmware update command
in firmware update mode without
kernel replacement, without device
restart, and without root privilege

SHV-E210S, SHV-E210K,
SHV-E330S, SHV-E330K,
SM-N900S, SM-N9005,
LGF180S, LG-F180L, LG-
F240S, LG-F240K, LG-E960,
SM-V700.

Acquisition using AMD and
analysis using LiME, a tool for
acquiring main memory data from
smart devices which can easily be
deployed in forensic investigations

Ali-Gombe et al. [20]
Unclear procedures for conducting
the DroidScrapper memory analyses.

Dalvik Virtual Machine (from
Android 5.0 and beyond)

Using DroidScrapper for showing
acquisition, runtime data structure
recovery and object recovery and
reconstruction modules.

Feng et al. [21]
Providing only the framework of
proposed method (PASM) and still
has a limitation.

Samsung Galaxy S7 (G9300)
and Samsung Galaxy S8
(G9500)

By using PASM, makes the
application private data are
possible to be acquired from the
volatile memory of the
intermediate device.

Proposed
Preparation, determination,
acquisition, analysis, and
presentation

Android devices: Samsung
Galaxy A7 (2016) 3GB RAM
and Nexus 5 2GB RAM

By using Fridump for finding
remnant data related to the client’s
activities focusing on Volatile
Memory

D. Study Cases

Initially, there are two Gmail accounts, i.e., first account
or cariduitayo12@gmail.com and second account or
cariduitayo13@gmail.com. This test was carried out using
three types of scenarios, namely:

• logging in using the first account on the first
smartphone test,

• logging in using a second account on the first
smartphone after the first account was logged out,

• logging in using the first account and second account
on the first smartphone simultaneously.

During the process, every change in the scenarios or
events was carried out by recording the hash value using
SHA-128 and then using the factory reset. For the validity of
the tests in this research, the three scenarios above were
repeated on the second smartphone using the same proposed
method. It was expected that identical digital evidence could
be generated.

The tools used in this research were: Python 3.7.3 to
perform scripting and analyzing, Frida-server 12.6.5 should
be switched on to gain access to Android memory level.
Fridump v0.1 to perform dumping of the memory contents.
Nano 4.2 to do a quick examination of the raw data. Magisk
manager v18.1 to gain rooted access. This research opted
for Google Drive v2.19.192.05.35 as the study case. By
following the rules of digital forensics practice, the two
devices used as experimental objects in this research were
put through a rooting process. The first tests were conducted

on Samsung A7-2016 SM-A710L (Android 7.0) for the
remnant data that was leftover. The second test was carried
out on OPPO A37f (Android 5.1.1) for the validation of the
whole processes in Samsung A7-2016.

III. RESULT AND DISCUSSION

A. Memory Forensics Analysis

1) Dealing with the first account

In the first scenario, three events were carried out, namely
login, logout, and logout with a restart. The first event, login,
was carried out using the first account on Samsung A7-2016.
Fig. 2 shows the activities of the user after logging in, with
the condition in which the smartphone was still switched on.
By using Algorithm 1 and 2, the digital evidence that can be
obtained are user information, i.e., Gmail account, name,
created date, modified data.

The moment after the first account has been logged out,
the first smartphone (Samsung A7-2016) was dumped by fry
dump to get information related to what happened after the
account was logged out. The initial dump automatically
dumped all addresses of the memory-related to it by
specifying the Google Drive application’s name
(com.google.android.apps.docs) on the fry dump. The result
of this phase was that the 1st account information still exists
on the memory, as shown in Fig. 3.

After the logout has been carried out and the device has
been restarted, the event was to examine the data inside the
memory to find out whether data related to the already

1011

logged out account were still can be traced or not. Fig. 4
showed the results of the examination, which was the
information related to the account have still existed. This
was done to prove either the memory volatility does matter
or not in this case or application (e.g., Gdrive). It turned out
that the memory was still stored with information from the
previously loaded data. Following the preservation phase,
the hash values (see Appendix A) were taken from the three
events.

Fig. 2 Digital evidence for first account login activity.

Fig. 3 Digital evidence for first account logout activity.

Fig. 4 Digital evidence for first account logout activity in 0xcb700000
memory address.

2) Dealing with file operations

For the second scenario, six events were carried out,
namely file upload, file download, file share, file share
(revoke), new file, delete the file. The hash values were
taken per event and attached in Appendix A. Fig. 4 shows a
file-sharing event where the first account shares files to the
second account. Based on the digital evidence, both accounts
can be seen along with the shared files. In this scenario, we
discussed two file operations as a representative, and further
complete analyses are provided in Table II that is presented
in the next section.

Fig. 5 Digital evidence for first account uploading activity

The first account has uploaded a file named

forensic_evidence.txt. By using Algorithm 2, it
helpedthe investigator to find the uploaded file, created file,
modified date, and last viewed by expressing the input
related to the targeted information. From the in-depth
analysis, digital evidence related to the uploaded file were
remained in the smartphone (see Fig. 5). The other digital
evidence for that uploaded file that was in the directory or
the link can also be used as references in the investigation.

Initiating this event, the "Sample Sheet" file had been
created in the GDrive of the first account. This event
addressed the deleted file in the Gdrive account. As can be
seen in Fig. 6, it showed that information, e.g., title, version,
created date, modified date, last viewed can still be acquired
from deleted files. Other important evidence related to file
location was alternate link and default open link that also can
be referred to as digital evidence. However, recovering the
deleted file still needs to be investigated in further research.

Fig. 6 Digital evidence for first account deleted file activity

1012

TABLE II
EXPERIMENT RESULTS FOR FINDING REMNANT DATA

Event Found Result Information Found
After Login (first
account)

Yes Found Details of the Account First Logged in of first account

After Logout (first
account)

Yes Details of the Account still can be found Logged out from first account

After Logout then
Reboot

Yes Found Email address (no details found) Reboot after Logging out from first account (then dump)

Create File (Sheet) Yes Found File details Created a Sheet file (named "Sample Sheet") and Dump

Update File Yes Second account listed as the Last Modifier
File (Secondary Sheet) updated by second account on
another device, and dump

Delete File Yes
Deleted file (Sample Sheet) Information still
exists along with the details

Deleted a file (Sample Sheet) and dump

File Upload Yes
Uploaded file details found with Date
Information and Uploader Information

Uploaded a file (forensic_evidence.txt) to first account

File Download Yes
The downloaded files information still exists
along with its download path on the phone

Downloaded a file and dump

File Share (first
account)

Yes
Permission Details found, Share Date found,
User and Uploader Information found

First account shared a file (forensic_evidence-1.txt) with
second account

File Share Revoked
(second account)

Yes
No readable Permission Details Information,
Account and file info found

First account revoked access file of second account

File Share Revoked
(Reboot)

Yes
There is no readable Permission Details
Information, Account and file info found

First account revoked access file of second account then
reboot

Logout after Upload Yes
The information of Files and Account still
exist

Logged out from first account after uploading a file
(forensic_evidence.txt)

Switch After Upload Yes
The first account and its file information
exist

- Logged in with multiple accounts (first account and
second account)
- Uploaded a file to first account (forensic_evidence.txt)
- Switched to second account, and dump

Switch After Upload
(Reboot)

Yes
The first account and its files information
exist but scrambled

- Logged in with Multiple Accounts (first account and
second account)
- Uploaded a file to first account (forensic_evidence.txt)
- Switched to second account
-Reboot
-Opened Gdrive (Gdrive would open last switched
account by default)

3) Dealing with multiple accounts

In the third scenario, the first account and second account
simultaneously logged in on the first smartphone. Firstly,
user-a logged in without logging out, then user-b also logged
in without logging out. Secondly, there were two events in
this scenario, i.e. files sharing from first account to second
account without rebooting and with rebooting. Because the
Gdrive supports logging in using multiple accounts, this test
was conducted to find out the digital evidence left behind
when that happens.

Fig. 7 Digital evidence for the first account and the second account is
logging in at the same smartphone.

In both events for this scenario, the two accounts were

logged in in the same smartphone by using two events, i.e.,
multiple accounts without restart and multiple accounts with

a restart. By continuing the previous scenario (uploaded file),
a sample file has been given as verification that the file was
uploaded by the first account. After some time, the Gdrive
second account was logging in without logging out the first
account. This scenario gave two kinds of results, i.e.,
multiple accounts without a restart (as shown in Fig. 7), and
multiple accounts with a restart (as depicted in Fig. 8). From
those two events, the investigator can still extract prominent
digital evidence.

Fig. 8 Digital evidence for the first account, and the second account is
logging in at the same smartphone after the restart.

B. Discussion for Presentation

The memory data structures acquired in this research were
all resumed based on the events that have been conducted as

1013

can be seen in Table II. This played an important role in
locating the proper information and results. For instance,
translating raw data memory from bytes to ASCII (American
Standard Code for Information Interchange) that contain
critical information for the investigator yielded an enormous
amount of potential memory addresses. The proposed
methodology can be used as guidance for the investigator to
find the digital evidence related to Gdrive cloud storage.

To the best of authors’ knowledge, technological
limitation of fry dump might not meet all the expectations of
the investigator related to Gdrive cloud storage, e.g.,
recovery of deleted files, password of the users, or some
missing after rebooted. On the other hand, it is also possible
to support the anti-forensics because of the incomplete
information retrieved from the memory data structure. Even
though this research has provided fourteen events (as digital
evidence), many further features or incoming versions of
Gdrive cloud storage applications need to be evaluated.

IV. CONCLUSIONS

Based on the three scenarios consist of fourteenth events
that have been conducted, a novel methodology for Android
memory forensics has been proposed, and the conclusion of
this research was drawn. This paper presented two
algorithms for supporting the analysis phase. Those
algorithms were justified as guidance during the
investigation processes. Furthermore, the experiment results
have provided essential digital evidence to support the
investigator and to provide knowledge for cyberlaw
practitioner(s) about Android memory forensic, especially
on the cloud storage client. Consequently, it is important in
the future to develop Android memory forensics
methodology by using the network connection with the
victim's smartphone being a different place from where the
investigator(s) is.

ACKNOWLEDGMENT

This research was a collaboration between School of
Applied Science and School of Computing, Telkom
University. This research was also funded by PPM, Telkom
University.

REFERENCES
[1] Statcounter. (2019) Mobile Operating System Market Share

Worldwide. [Online]. Available: http://gs.statcounter.com/os-market-
share/mobile/worldwide.

[2] Google Drive. (2019) Google Drive Terms of Service. [Online].
Available: https://www.google.com/drive/terms-of-service/.

[3] Holt, Thomas J., Adam M. Bossler, and Kathryn C. Seigfried-Spellar.
Cybercrime and digital forensics: An introduction. Routledge, 2017.

[4] Caviglione, Luca, Steffen Wendzel, and Wojciech Mazurczyk. "The
future of digital forensics: Challenges and the road ahead," IEEE
Security & Privacy, vol. 15, issue 6, pp. 12-17, 2017.

[5] Ogazi-Onyemaechi, Bernard Chukwuemeka, Ali Dehghantanha, and
K-KR Choo. "Performance of android forensics data recovery tools,"
Contemporary Digital Forensic Investigations of Cloud and Mobile
Applications, Syngress, pp. 91-110, 2017.

[6] Lin, Xiaodong. "Android Forensics." Introductory Computer
Forensics. Springer, Cham, pp. 335-371, 2018.

[7] Nisioti, Antonia, et al. "You can run but you cannot hide from
memory: Extracting IM evidence of Android apps," 2017 IEEE
Symposium on Computers and Communications (ISCC). IEEE, 2017.

[8] Satrya, Gandeva Bayu, and Soo Young Shin. "Proposed Method for
Mobile Forensics Investigation Analysis of Remnant Data on Google
Drive Client," Journal of Internet Technology, vol. 19, issue 6, pp.
1741-1751, 2018.

[9] McKemmish, Rodney. What is forensic computing? Canberra:
Australian Institute of Criminology, 1999.

[10] Årnes, André, ed. Digital forensics. John Wiley & Sons, 2017.
[11] Scrivens, Nathan, and Xiaodong Lin. "Android digital forensics: data,

extraction and analysis." Proceedings of the ACM Turing 50th
Celebration Conference, China, 2017, pp. 1-10.

[12] Gandeva Bayu Satrya, A. Ahmad Nasrullah, and Soo Young Shin.
“Identifying artefact on Microsoft OneDrive client to support
Android forensics”, International Journal of Electronic Security and
Digital Forensics, vol 9, issue 3, 269-291, 2017.

[13] Sylve, Joseph T. "Towards real-time volatile memory forensics:
frameworks, methods, and analysis." Dissertation Thesis. University
of New Orleans, 2017.

[14] C. Tien, J. Liao, S. Chang and S. Kuo, "Memory forensics using
virtual machine introspection for Malware analysis," 2017 IEEE
Conference on Dependable and Secure Computing, Taipei, 2017, pp.
518-519.

[15] Park, Juhyun, Yun-Hwan Jang, and Yongsu Park. "New flash
memory acquisition methods based on firmware update protocols for
LG Android smartphones," Digital Investigation, vol. 25, pp. 42-54,
2018.

[16] Cheng, Yingxin, et al. "A lightweight live memory forensic approach
based on hardware virtualization," Information Sciences, vol. 379, pp.
23-41, 2017.

[17] Casey, Peter, et al. "Inception: Virtual Space in Memory Space in
Real Space–Memory Forensics of Immersive Virtual Reality with the
HTC Vive," Digital Investigation, vol. 29, pp. S13-S21, 2019.

[18] Vella, Mark, and Rachel Cilia. "Memory Forensics of Insecure
Android Inter-app Communications." ICISSP, Porto, 2017, pp.481-
486.

[19] Yang, Seung Jei, et al. "Live acquisition of main memory data from
Android smartphones and smartwatches," Digital Investigation, vol.
23, pp. 50-62, 2017.

[20] Ali-Gombe, Aisha, et al. "DroidScraper: A Tool for Android In-
Memory Object Recovery and Reconstruction." 22nd International
Symposium on Research in Attacks, Intrusions and Defenses (RAID).
Beijing, 2019, pp. 547-559.

[21] P. Feng, Q. Li, P. Zhang and Z. Chen, "Private Data Acquisition
Method Based on System-Level Data Migration and Volatile
Memory Forensics for Android Applications," in IEEE Access, vol. 7,
pp. 16695-16703, 2019.

1014

APPENDIX A
DETAILS OF ACQUISITION DUMPING MEMORY HASH VALUES

Scenario Event Acquisitioned File
Name SHA-1 Hash Value (128 bits)

1 (Single Account)
Primary: First account

After Login (First account) 0xb7e00000.data 151801bdbc658feeee64ac539ffda39df4d3c0dd
After Logout (First account) 0xb7c80000.data 0f8dc18cd30195cbc1b8188e05c16aa5c74df363
After Logout then Reboot 0xcb700000. data 4a72b21210f2e4cf827e1daabe697e09b21a893b

2 (File Operation)
Primary: First account
Secondary: Second
account

Create File (Sheet) 0x12d21000. data 4023e24c92af78979b517b2c27d409b5d74d4790
Update File 0xc0e00000. data 26aa57d01b7ac628a3d706f1f6a5448b9e353cee
Delete File 0xd0100000. data 4b124b393e775d21bcb1ee273837567736f9c6b3
File Upload 0x12d28000. data 4375fcfcb886ee56f2aeb6332f200647a31a940c
File Download 0xc1e00000. data 83e7beed4ef142022c61f58219a4bf35fee51e9b
File Share (First account) 0xc2000000. data 3ad5b75722a776333c7a46eb680ef3665053bc66
File Share Revoked (Second
account)

0xc1780000. data f337dcbb68481a873876fa4dcb3143518a72a14d

File Share Revoked
(Reboot)

0xca080000. data 64e5f346c55ac871e262cb66d773929056202870

Logout after Upload 0xc9c80000. data bc7d5c5229d70f7ebbefb685e4d76838c803ac99
3 (Multiple Account)
Both users are logging
in

Switch After Upload 0xc8b00000. data 2f75ccfc9a944c2738793ed6ee0dc5be253dded7
Switch After Upload
(Reboot)

0xc6b00000. data 4ab5b1ac40d83dd5cf623fdcf5f29667746177ef

1015

