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ABSTRACT

Keywords: o The acquisition of data from mobile phones have been a mainstay of criminal digital forensics for a
ggmmgn criteria number of years now. However, this forensic acquisition is getting more and more difficult with the
modae

increasing security level and complexity of mobile phones (and other embedded devices). In addition, it
is often difficult or impossible to get access to design specifications, documentation and source code. As a
result, the forensic acquisition methods are also increasing in complexity, requiring an ever deeper
understanding of the underlying technology and its security mechanisms. Forensic acquisition tech-
niques are turning to more offensive solutions to bypass security mechanisms, through security
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vulnerabilities.

Common Criteria mode is a security feature that increases the security level of Samsung devices, and
thus make forensic acquisition more difficult for law enforcement.

With no access to design documents or source code, we have reverse engineered how the Common
Criteria mode is actually implemented and protected by Samsung's secure bootloader. We present how
this security mode is enforced, security vulnerabilities therein, and how the discovered security vul-
nerabilities can be used to circumvent Common Criteria mode for further forensic acquisition.
© 2018 The Author(s). Published by Elsevier Ltd on behalf of DFRWS. This is an open access article under

the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Introduction

Digital forensics is the recovery and investigation of data found
in digital devices (Carrier, 2002). Garfinkel (2010) discusses the
difficulties that awaits digital forensics, what challenges exist in
today's tools, research and knowledge and how digital forensic
research should move forward to keep digital forensics a valid
method for the years to come. The prediction is that both the re-
covery, forensic acquisition, and investigation will become
increasingly harder as complexity and security mechanisms, like
encryption, grow in use. Faced with this ever increasing security of
Commercial of-the-shelf (COTS) products, law enforcement faces
an increasing challenge when it comes to the ability to do forensic
acquisition. Where before law enforcement could bypass security
mechanisms by e.g. accessing data at a lower level, like forensic de-
soldering (chip-off), to read content off data storage directly,
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today's, often mandatory, encryption of user data on mobile devices
invalidates such methods. The ability to read stored data on the
device's storage is simply not enough. Reading encrypted data has
little value without the corresponding encryption key(s). The
addition of security features like device-tied encryption keys,
supported by hardware and a TrustZone, gaining access to such
encryption keys is made even harder. This might then require law
enforcement to power on the device, in order to try to extract keys
or decrypted data through interaction with the security mecha-
nisms protecting the user data. This type of interaction often means
installing or modifying code on the device. Even though law
enforcement have legitimate cause for their “hacking”, this is ac-
tivity that in other contexts would be regarded malicious and
illegal, also known as an attack. Therefore, to protect against such
attacks, most mobile device vendors protect code running on the
devices, from the first code executed at power on and all the way
through to a full operating system, like Android, is up and running.
This is often referred to as a Secure Boot, and refers to the trust in
code executed on the device. This code should only be certified and
official code, made by the vendor, and properly signed to prove
authenticity.

1742-2876/© 2018 The Author(s). Published by Elsevier Ltd on behalf of DFRWS. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/
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Law enforcement always strives to acquire as much data as
possible to support any ongoing investigation. So bypassing such
complex security schemes, if possible, forces law enforcement to
invest in deeper knowledge and costly equipment to perform
advanced forensic acquisition, utilising such attacks.! Law
enforcement is then investing in the discovery and use of security
vulnerabilities, to bypass security mechanisms to acquire digital
evidence.

On the other hand, seen from a user and enterprise perspective,
with the growing use of these devices, both end users and enter-
prises are demanding more secure devices to help protect sensitive
data. The need to secure mobile devices, especially in an enterprise
context is important, as devices moving in and out of the enter-
prises network, unchallenged, introduces attractive attack vectors
for cyber criminals and cyber espionage.

Mobile Device Management (MDM) solutions can enable the
centralised control of devices that are used in the enterprise. En-
terprises can then monitor, control and administrate devices in a
systematic manner, across device vendors and service providers.
Samsung supports such solutions by offering a.o. a feature they
refer to as Common Criteria mode or simply CC mode (Samsung,
2017a). CC mode is a security feature designed to increase the de-
vice's protection against unauthorised access and can therefore
pose an additional challenge to law enforcement trying to acquire
data from devices with CC mode enabled. A major challenge is that
CC mode denies access to the device firmware update mechanism, a
common method used by law enforcement to gain access to data.

This paper presents the reverse engineering results of CC mode
and how discovered security vulnerabilities can be used to
circumvent CC mode for further forensic acquisition.

The rest of the paper is organised as follows: Section “Related
work and contributions” discusses related work and how our
contribution relates. Section “Samsung secure boot model” in-
troduces the Samsung secure boot model. Section “Samsung CC
mode and SBOOT” describes the CC mode related parts of the
Samsung secure boot and how this relates to the secure execution
environment, TrustZone. Section “Unauthorised disabling of
CC model” discusses attacks on the CC mode. In section
“Conclusion” we discuss the implications of our findings and offer
our conclusions.

Related work and contributions

Recovering data from mobile devices can be achieved by reading
data from storage or from volatile memory (RAM). The two sources
of data differs in both how data is stored and how data can be
retrieved. Data in long term storage is often stored well structured
in file systems, as it has to be able to be read by different operating
systems, and other tools. Data structures in RAM are often less well
documented, and the formats more volatile, as it needs only survive
to the next restart of the device. RAM is repopulated each time the
device is restarted.

Nathan Scrivens et al. (Scrivens and Lin, 2017) summarised
many of the current options for forensic acquisition of storage on
Android mobile devices. According to Scrivens et al., the main op-
tions are chip-off, de-soldering storage for off-device reading, JTAG
(Joint Test Action Group) interface for in-circuit reading of storage,
rooting and exploitation solutions for recovering data by breaking
the security of the device, Android Debug Bridge (ADB) by utilising
device debug capabilities for forensic acquisition, and finally
backup solutions retrieving data through normal or rooted user

1 With the word “attacks”, in the context of this article, we mean: exploiting
vulnerabilities for forensic data acquisition purposes by law enforcement agencies.

access. These different methods have different requirements and
weaknesses. Chip-off requires physical access to underlying storage
media, and can not deal with the increasing use of encryption on
storage devices. JTAG is a interface often used during development
and testing of a device, and can be used to communicate directly
with the underlying storage media. However, the JTAG test pins can
be hard to find and access on different devices, and can also be
secured against unauthorised access, and also disabled by the
vendor before shipping. ADB is a powerful debug interface sup-
ported by Android, but it is not enabled by default on most Android
devices, nor does it give root access. Finally, backup applications are
rarely accessible to unauthenticated users and are often of limited
use for forensics.

Seung Jei Yang et al. (2015) demonstrated a different approach:
doing forensic acquisition of storage media through the misuse of
the device firmware update protocols. This will give access to the
underlying storage and the ability to dump its content. Unfortu-
nately this method will also be insufficient if the data stored is
encrypted.

Seung Jei Yang et al. (2017) recently demonstrated a different
use for the device firmware update protocols. Instead of acquiring
storage they have demonstrated how to acquire RAM through this
update protocol. This can again be used to acquire encryption keys
used to encrypt storage, in addition to save user data that resides in
RAM at the time of RAM acquisition.

Guido et al. (2016) demonstrated hawkeye, an agent to do rapid
acquisition of Android devices. Although their goal is to reduce the
amount of data needed to be transferred during the acquisition
process, this is an example of a forensic agent that needs to be
injected into the device to function as expected. This is done by
installing a custom boot image on the device to facilitate hawkeye
injection. Installing this custom image is done through the device
firmware update protocol and access to firmware update mecha-
nism is a requirement.

As we can see, access to a device's firmware update protocol can
be vital for successful forensic acquisition. Any functionality
denying this access is therefore limiting the possibilities for law
enforcement to acquire data from a given device. CC mode is pre-
venting law enforcement access to the firmware update mode on
Samsung devices. Our contribution is to analyse and circumvent CC
mode to gain access to the firmware update mode. For complete-
ness, we have also included the discussion of a MDM setting, also
affecting access to the firmware update mode.

Our reverse engineering of CC mode reveals security vulnera-
bilities in the design and implementation of these security mech-
anisms, and demonstrates how such security vulnerabilities can be
discovered and used in digital forensic acquisitions.

Our contribution shows that law enforcement trying to acquire
data from a device can disable CC mode and get access to firmware
update mode, thus removing the extra layer of security enforced by
CC mode. Disabling CC mode can then enable existing methods but
also increases the attack surface in general, increasing the possi-
bility to discover new vulnerabilities and methods.

CC mode and methodology

CC mode is built on top of the phone's Android security model
and hardware, to increase enterprise security. Samsung has made
available several guidance documents for Common Criteria evalu-
ation for many of their different phone models (Samsung, 2017c).

Samsung provides a wide range of management APIs to control
a Samsung device (Samsung, 2017b). These APIs can be used in 3rd
party MDM solutions. To further promote the use of CC mode in
MDM solutions, Samsung has made available a Common Criteria
mode APK (Samsung, 2017a). This Android application package
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(APK) is installed on the evaluated device and sets a number of
default policies and security settings. This APK is intended for
evaluators and IT adminis, to test the features of Samsung's CC
mode. Samsung provides a long list of compatible phones, e.g. the
Samsung Galaxy S6, with model name sM-G920F and the Samsung
Galaxy S7 Edge, with model name sM-G935F. It is unknown to the
authors what requirements are needed for a particular model to be
compatible, but for blocking the access to the firmware update
mode, the bootloader of compatible models must have code to
handle this blocking. It is the bootloader that implements the
firmware update mode.

The policy and settings set by the CC mode APK is the basis for
the testing done in this paper. When we refer to CC mode, we refer
to settings set by the CC mode APK. Our main test device was a
Samsung Galaxy S7 Edge (SM-G935F) running firmware version
G935FXXS1DQGA_G935FNEE1DQF3_NEE.

One crucial feature of CC mode is the ability to only allow
Firmware Over the Air (FOTA) firmware updates. This is to protect
against an attacker with physical access to the device, trying to
install unauthorised firmware on the device. Updating firmware in
this way on Samsung devices is done through what is called ODIN
mode. CC mode will both block ODIN mode and any attempt to boot
an unofficial boot image already stored on the device.

Other features of Samsung CC mode and Common Criteria in
general will not be discussed further as these features does not
influence the blocking of ODIN mode.

Samsung devices come in different hardware configurations,
where system-on-a-chip (SoC) implementations from Qualcomm
(e.g. Snapdragon) and Samsung (Exynos) are the most common.
Although the phone models share the same name, like Samsung
Galaxy S7, they are very different in e.g. hardware components and
bootloader code. In this paper we only focus on Samsung devices
based on the Exynos SoC variants. Examples of devices with Exynos
SoCs are Samsung Galaxy S6 (models sM-G920F/SM-G925F) and
Samsung Galaxy S7 (models SM-G930F/SM-G935F).

Access to ODIN mode is enforced by the Samsung bootloader.
The bootloader is part of the secure start-up of the device and is
native code responsible for starting the device. On the studied
models with the Exynos SoC, the bootloader responsible for ODIN
mode is often referred to as SBOOT. SBOOT is built from Samsung
proprietary code, and documentation and source code are not
publicly available. We have analysed how the secure bootloader
knows that CC mode is enabled and how this is used to limit access
to certain features. We have also analysed the security of the
storage of this CC mode configuration, as well as how SBOOT can
change the configuration or simply disable CC mode. This leaves
SBOOT not only responsible for enforcing the configuration, but
also changing the setting.

Both design and implementation details of many security features
are generally not available, and hence many such features may be left
unexplored by the research community. To be able to analyse the
enforcement of CC mode and how ODIN mode is blocked, we reverse
engineered SBOOT with both static and dynamic analysis techniques.
With access to the firmware for our test device, we reverse engi-
neered the binary SBOOT code. Most of the static reverse engineering
effort was done using the tool IDA Pro from Hex-Rays (Ilfak Guilfanov,
2017). We also developed our own exploit based on the SBOOT
vulnerability disclosed in a security blog by Nitay Artenstein (2017).
We used this exploit as a tool to perform more dynamic analysis of
how CC mode is enforced and used to protect against unauthorised
firmware updates. Our exploit is fully developed using the Python

2 G935FXXS1DQGA_G935FNEE1DQF3_NEE.zip SHA-1:67CA63BCAF53C9D48~

ASD5DF43A8F5E56544081AC.

scripting language, with the aid of the Keystone assembler frame-
work (Keystone team, 2017) for creating binary ARM code to be
executed as part of the exploitation. Our goal was to be able to evade
or disable CC mode, to get access to ODIN mode.

Samsung secure boot model

The code that is implementing ODIN mode, and thereby flashing
firmware on Samsung devices, is located in the bootloader of
Samsung devices. Therefore the bootloader must be able to turn off
access to ODIN mode when CC mode is enabled on the device, in
order for CC mode to disable firmware updates, e.g. designed to
sidestep centralised control. To better understand how this mech-
anism works, some background on the Samsung secure boot model,
applicable for devices using the Exynos SoC, follows.

To maintain security and trust in code running on devices,
Samsung utilises a secure boot model (Samsung, 2017d), where all
code running from power on until a complete Android system is
running, is signed. This includes the integrity of the TrustZone and
the baseband processor, that handles most of the radio functions.
The security of bootloaders is therefore crucial for the integrity of
the device. Nilo Redini et al. (2017) explored vulnerabilities in both
design and implementation of bootloaders for a range of devices,
and emphasised on the importance of a secure boot by demon-
strating several attacks. A simplified boot model used by Samsung
Exynos devices is show in Fig. 1. This shows how execution is
started at the BootROM and carries on through the boot process
through to the Android kernel.

Samsung provides a generic description of their platform se-
curity (Samsung, 2017d). This describes that the signature chain is
rooted in the Samsung Secure Boot Key, SSBK, used to sign Samsung
approved executable boot components. The public part of this key
is stored in the phone's hardware at manufacture and will not
change during the device lifetime. This is used by the BootROM
when the device powers on. As seen in Fig. 1, the BootROM makes
sure all executable code fetched from storage during boot is signed
by Samsung. Booting a device with this model starts with the pri-
mary bootloader, loaded from Read-Only Memory (ROM). This
primary bootloader loads the next bootloaders, Boot loader 1 (BL1)
and Boot Loader 2 (BL2) from storage, e.g. flash, to RAM, checks
the signature and advances execution to BL1. BL1 will carry out
its tasks, often related to hardware initialisation, and advance

BootROM
TrustZone BL1
SBOOT
BL2
Android
kernel

Fig. 1. Overview of the Samsung Secure Boot model from BootROM to an Android
kernel.
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execution to BL2. BL2 is a more complex bootloader, with larger
code base, which in turn loads and checks the signature of the
Android kernel before advancing execution to it. As a final stage, the
Android kernel boots and loads the full operating system which
enables all the device's features.

If all these bootloader stages maintain the signed integrity from
the SSBK key, Samsung refers to this as secure boot. Note that
Samsung distinguishes this from trusted boot, which also includes
Rollback Protection (RP), preventing the “downgrading” of any
executable code to official, but vulnerable, older versions of the
bootloaders or Android OS.

Note that Samsung does not forbid installing unofficial Android
kernels, not signed by Samsung. This is however considered
tampering with the device, and consequently a one-time pro-
grammable tamper fuse (eFuse) will be set. This fuse cannot be
unset and the device is from here on marked as “Warranty void”.
This fuse is often referred to as the KNOX Warranty Bit (Kanonov
and Wool, 2016) and is a Samsung proprietary way of marking
the device as having been tampered with. Samsung can prevent the
installation of such unofficial Android kernels if Factory Reset Pro-
tection (FRP) is set on the device. FRP is a setting that is enabled e.g.
if the user adds a Google account to the system. FRP will prevent the
installation of unofficial firmware updates, but will not deny access
to ODIN mode.

In this paper we will refer to BL1 and BL2 as SBOOT. SBOOT is the
first code loaded from writable storage and can therefore be
upgraded as part of what is often referred to as firmware upgrades.
Firmware upgrades for Samsung devices are often big archives that
can upgrade different parts of the Samsung code environment, like
the Android OS, the baseband processor or the SBOOT bootloaders.
Any upgrade to the SBOOT will be included in a file called sboot.bin,
so in order to analyse executable code belonging to SBOOT, we need
to analyse the shoot.bin file. As seen from Fig. 1, SBOOT is a crucial
part of the Samsung Secure Boot model.

Kanonov et al. (Kanonov and Wool, 2016) have analysed and
found weaknesses in the security of the Samsung KNOX secure
containers, and also described the Secure Boot process, related to
the security of KNOX containers. They also discuss other important
security features, like runtime protections, named TIMA, and e.g.
it's use in attestation of a device. Device attestation is to test the
authenticity and integrity of the security measures and policies.

SBOOT is responsible for a range of tasks before it loads and
executes the Android kernel. These tasks are part of the Secure/
Trusted boot and includes loading TrustZone dedicated applica-
tions, also known as trustlets. A trustlet is a small and dedicated
application created to solve a specific, often sensitive task, like
digital rights management (DRM). Trustlets run in the TrustZone.

The TrustZone is a separate execution environment, supported
by the hardware, that divides each processor core into two separate
“worlds”. Often we refer to these different execution environments
as the normal world and the secure world; the TrustZone. SBOOT is
not part of the TrustZone and is running in normal world. When
SBOOT is done executing its needed boot routines, it will load and
execute the Android kernel. The Android kernel also runs in the
same normal world. The TrustZone does not influence the enforcing
of CC mode during boot and are therefore left out of further dis-
cussions in this paper.

Looking into the different steps performed by SBOOT, we can
analyse the interaction with the CC mode configuration and how
this is enforced. This will be explained in the next section.

Samsung CC mode and SBOOT

The Samsung Common Criteria Administrator Guidance, section
43.2.2 (Samsung, 2017), states that to place the device in the

evaluated configuration, CC mode must be enabled on the phone.
This mode will, once enabled, enforce FIPS-validated crypto, disable
USB connectivity in recovery mode and only allow Firmware Over
the Air (FOTA) updates to the system. The Samsung Common
Criteria mode APK (Samsung, 2017a) will enable CC mode on any
supported model, for testing purposes. We will only focus on the
parts of CC mode that affects SBOOT. The CC mode setting that af-
fects SBOOT is either on or off.

After installing the APK and enabling CC mode, we can start to
investigate how this affects SBOOT and how SBOOT enforces the
blocking of ODIN mode. There are two ways of updating the firm-
ware on our test devices; over-the-air through FOTA or with
physical access through ODIN. Blocking ODIN mode is a crucial part
of CC mode, since we'll see later that if we are given access to ODIN
mode we can simply disable CC mode altogether. It is expected to
be more difficult for an attacker to install unauthorised firmware
updates through FOTA, as this is an online feature with secure
communication to Samsung firmware servers.

With a combination of static reverse engineering of SBOOT and
dynamic reverse engineering using an SBOOT exploit, we have
analysed how SBOOT is affected by enabling CC mode, how this
setting is stored, and how to attack it to disable CC mode. Our
analysis shows that the CC mode setting is stored in flash, on a data
partition called PARAM.

The PARAM partition

An Android device's storage is divided into several logical par-
titions, where system and userdata are the most important ones.
The first contains the Android operating system files (OS) and the
latter contains most of the user data. Another partition, the PARAM
partition, is a rather small logical partition that contains a few JPG
pictures used by SBOOT, e.g. the Samsung Galaxy boot logo dis-
played when the device is powered on. In addition, there is a file,
adv-env.img (See Table 1), that a.o0. contains parameters submitted
to the Android kernel when SBOOT passes the execution to the
Android kernel after SBOOT has loaded and checked the signature
of the Android kernel. The PARAM partition is upgraded through
firmware updates, with updates in the file param.bin, which is part
of the firmware archives.

PARAM is however also storage for some other important set-
tings. Our analysis show that in the last few 512-byte blocks of the
PARAM partition, Samsung stores important settings like CC mode,

Table 1
SBOOT environment variables, stored in adv-env.img.

Index Name Example setting
0 REBOOT_MODE 0

1 SWITCH_SEL 3

2 DEBUG_LEVEL 18505

3 SUD_MODE 0

4 DN_ERROR 0

5 CHECKSUM 3

6 ODIN_DOWNLOAD 1

7 SALES_CODE 0

8 SECURITY_MODE 1526595585

9 NORMAL_BOOT 0

10 CP_DEBUG_LEVEL 22015

11 USERBOOT_MODE 0

12 DIAG_MODE 0

13 CHARGING_MODE 48

14 INT_RSVD14 0

15 LCD_RES 1

16 CMDLINE console = ram loglevel = 4
17 BARCODE_INFO (null)

18 KEEP_LOG (null)
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MDM settings, the current system status (“Samsung Official” or
“Custom”) and flags named AFW and UCS. The way SBOOT address
these settings, is to count backwards in number of 512-blocks from
the end of the PARAM partition. See Fig. 2.

To access the CC mode setting on our primary test device, SBOOT
references the block PARTITIONSIZEinBLOCKs (PARAM)_-_4 in
the PARAM partition. This is a static offset in the SBOOT code, but
can change with different versions of the SBOOT binary. The CC
mode configuration is 64 bytes of encrypted data stored at the start
of the referenced block. These 64 bytes are read and decrypted with
a function we calls_cc_decrypt.’ As the function S_cc_decrypt
only takes two arguments; the input buffer with the 64 encrypted
CC mode bytes, and a zero-initialised output buffer to receive the
decrypted content, we assume the key material needed for the
decryption is contained in, or retrieved by, the function itself.
Looking closer at the s_cC_decrypt, we can see it uses a whitebox
AES Cipher, where the AES key is not exposed during encryption or
decryption (Chow et al.,, 2003). This means that the function
S_CC_decrypt can decrypt the CC mode data without exposing
the key in static code or dynamic runtime analysis. The function is a
decryption oracle. SBOOT also contains the corresponding
S_CC_encrypt, though our analysis does not find this function
to be called by the SBOOT binary. As it turns out, a native Android
library, /system/1ib64/1libSecurityManagerNative.so
matches the two WAES encrypt/decrypt oracles, discovered also by
André Moulu (2016). Since SBOOT does not seem to call
S_CC_encrypt, this leads us to think that the CC mode configu-
ration is only written by the Android environment and not by the
SBOOT bootloader. SBOOT simply queries the configuration. Given
these WAES oracles, we can freely read and write the CC config
from both the SBOOT and the Android environment, if we control
execution. This will also be the case if we have other means of write
access to the PARAM partition.

The decrypted CC mode data contains the magic characters
timg in bytes 0—3 and the characters Nocc (ccon read little-
endian) or Froc (COFF read little-endian) in bytes 4—7, signalling
CC mode on or off respectively.

The CC mode setting is read early in SBOOT's execution and a
global flag variable is set to signal the CC mode configuration. This
flag can be queried through a function we call sS_cCc_MODE_issSet,
which returns true if CC mode is enabled.

Another setting assumed to be important for MDM managed
devices, is the MDM set ting. This setting is not set by the Samsung
CC mode APK. However, we assume that MDM solutions use this
setting actively, and we therefore include this setting and its effect
on CC mode in our analysis. The MDM setting is stored in block
PARTITIONSIZEinBLOCKs (PARAM)_-_3 in the PARAM partition.
It is an unencrypted setting in the first 32 bytes in the corre-
sponding block. These bytes are read in during boot, as with CC
mode, and sets a global variable corresponding to the MDM setting
in PARAM. The MDM global variable can have three different values,
where 1 and 2 seems to mean that MDM is in use.

The following pseudo code describes the different byte values in
the MDM block and the corresponding MDM setting:

The MDM setting is set to 1 if block [30] = = 2 && block
[31] = =6 && block [3] = =8 && block [7] = =38.

The MDM setting is set to 2 if block [30] = = 2 && block
[31] = = 6 && block [3] ! = 8 && block [7] = = 8.

The MDM setting is set to 3 if block [30] = = 2 && block
[31] = =6 && block [3] = =8 && block [7] ! = 8.

3 All functions named by the authors are prefixed with s_. Function names
comes from educated guesses made from error message strings referenced inside
functions.

] Block 0
PARAM
(.jpg, adv-env.img,..)
CC mode Block n-4
MDM setting Block n-3
Block n-1

Fig. 2. PARAM partition.

So if the global MDM variable in SBOOT is set to 1 or 2, MDM mode
is considered enabled and this will also affect how SBOOT permits
access to ODIN mode.

SBOOT enforcing CC mode

S_CC_MODE_isSet is called at three different locations in
SBOOT; when the phone is trying to enter ODIN mode, when the
phone tries to boot a kernel with no or invalid signature, and when
the SBOOT sends status variables to the TrustZone. It's the first of
these three that is crucial for denying access to ODIN mode.

The decision of when during the boot process to check for CC
mode is crucial for the success of denying access to ODIN mode. As
the bootloader is responsible for initialising the device as well as
firmware updates to the system, it must also check for potential
errors. These checks for errors are intermingled with security
related checks, such as checking for CC mode. This intermingling
makes the security checks vulnerable to changes in the execution
path caused by errors, as specific errors can make the execution
path change, such that certain security checks never takes place.
Our analysis shows that this situation can arise for CC mode. Fig. 3
shows the pseudo code for the function responsible for enabling
ODIN mode, S_boot_enter_download _mode. The function
S_boot_enter_download_mode is called from various locations
in the SBOOT boot process. It will check if it should go to ODIN
mode. If so, it will call a function, S_USB_mode_enter, which will
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S_boot_enter_download mode (int reason){

:
2 if (reason == 1) {

3 S_draw_image(”warning_L.jpg”);

4 if (S_user_cancel()){

5 S_reboot_device ();

6 }

7 else {

8 S_draw_image(”download L.jpg”);

° }

0}

11 else {

12 if (reason = 6) {

13 S_draw_image(”download_error_L.jpg”);
14 S_USB_mode_enter (0);

15 }

16 S_draw_image(”download. L.jpg”);

17 if (reason = 3) {

18 // SUD mode ..

19 }

20 if (reason != 4) {

21 goto error();

22 }

23}

24 S

25 if (S.CC MODE._sSet()) {

26 S_screen_print(

27 "DOVWNLOAD _I S BLOCKED . BY .CC_MODE” ) ;
28 S_sleep (1000);

29 S_power_off_device ();

}
31 S_USB_mode_enter(0);
32 }

Fig. 3. Simplified pseudo code of S_boot_enter_download_mode.

apply the configuration to the device and switch to ODIN mode.
S_USB_mode_enter can be called with one parameter, where
0 means ODIN/download mode.

S_boot_enter_download_mode itself receives one param-
eter, reason (Fig. 3, line 1), which indicates the reason for entering
ODIN mode. The function acts accordingly based on the value of this
parameter. The pseudo code shows that S_USB_mode_enter is
called from two different locations. The call in line 31 is only
reached if the call to the function s_cC_MODE_isSet in line 25
returns false. If S_CC_MODE_isSet returns true, SBOOT will
print “DOWNLOAD IS BLOCKED BY CC MODE” to the device screen
and eventually power off the device. The other call to S_USB_mo-
de_enter is found at line 14, and this call is not preceded by a call
to S_CC_MODE_isSet, meaning this call seems to ignore if any CC
mode is set. So if S_boot_enter_download_mode is called with
parameter 6, the device will enter ODIN mode, even if CC mode is
set. Backtracking callers to S_boot_enter_download_mode
identifies the situation in where this happens.

SBOOT has a table of environment variables, stored in the adv-
env.img file of the PARAM partition. These values are listed in
Table 1. These values are ways of influencing the execution of
SBOOT and since they are stored in PARAM, they survive a device
reboot. As already mentioned, some of these are also passed on as
parameters to the Android kernel, but the discussion of these are
outside the scope of this article.

One example is the REBOOT_MODE, signalling SBOOT which boot
mode to use, where normal boot (0), ODIN/download mode (1),
upload mode (2) and recovery mode (4) are example settings. See
Table 2 for a full listing of values for REBOOT_MODE.

Many of these environment variables are checked during boot,
and one of them is interesting with respect to CC mode; DN_ERROR.

Table 2
REBOOT_MODE variable values.

Name Value

REBOOT_MODE_NONE
REBOOT_MODE_DOWNLOAD
REBOOT_MODE_UPLOAD
REBOOT_MODE_CHARGING
REBOOT_MODE_RECOVERY
REBOOT_MODE_FOTA
REBOOT_MODE_FOTA_BL
REBOOT_MODE_SECURE
REBOOT_MODE_FWUP
REBOOT_MODE_EM_FUSE

—_ ONOUhA WN=O

o

During normal boot, SBOOT calls a rather complex function, we call
S_boot_set_boot_mode, that decides which boot mode to
choose for the device. This is based on numerous checks on hard-
ware, battery state, environment variables and so on. During these
tests there's a call to a function, S_s5p_check_download, which
will return a value different from 0 if it should go to ODIN/down-
load mode and returns O if it should not go to download mode.
Taking the path in which s_boot_set_boot_mode returns 0, no
ODIN/download mode, takes us to a call to a function we call
S_env_get, called with the integer value of DN_ERROR from
Table 1. This call returns the integer value of the environment
variable DN_ERROR. If this is set, there is a call to the already dis-
cussed function S_boot_enter_ download_mode, with the
parameter value of 6. As we have already analysed s_boot_-
enter_download_mode and located a bypass of the CC mode
check if the input parameter is equal to 6, we now have a way to
bypass the CC mode check. We can simply set the environment
value DN_ERROR to a non-zero value and reboot the device. The
device will enter ODIN mode, even if CC mode is enabled. This
seems to us like an emergency ODIN mode, where the bootloader is
requiring a firmware update as the result of a failed firmware up-
date. Fig. 4 shows the screen shown on a Galaxy S7 Edge
(sM-G935F) when in this mode.

MDM mode

We include a discussion on the MDM mode for completeness as
this setting is expected to be used by some MDM solutions that
supports Samsung Exynos devices. MDM mode also affects how
SBOOT prevents access to ODIN mode. SBOOT access this setting
through a function we call s_MDpM_MODE_ isSet. This function will
return true (1) if the global MDM variable is either 1 or 2. It does not
seem to make a distinction between the two. SBOOT calls this
function from three different functions; when in ODIN mode, when

Fig. 4. Emergency ODIN/download mode.
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booting, and for providing the MDM setting to the TrustZone. In
ODIN mode SBOOT is checking for MDM mode and will prevent
firmware upgrade to any partition other than the SBOOT (“BOOT-
LOADER?”) itself, if MDM mode is set. So we can see that while CC
mode prevents access to ODIN mode itself, MDM mode will be
checked in ODIN mode as well.

SBOOT also checks for MDM mode during boot. These checks
are done before the CC mode check done in S_boot_-
enter_download_mode, already discussed in Section “Samsung
CC mode and SBOOT” Checks are done inside the function called
s5p_check_download, where the SBOOT decides if it should call
S_boot_enter_download_mode. Note that the call to
s5p_check_download is done before the check for the environ-
ment variable DN_ERROR is done, which is only checked if
s5p_check_download returns a non-zero value, meaning no
ODIN mode. We have already seen in Section “Samsung CC mode
and SBOOT” that setting the environment variable DN_ERROR to a
non-zero value will put the device in an emergency ODIN mode.
This will then be the same situation even if MDM mode is set. One
important difference is that ODIN mode with MDM mode set will
only allow firmware updates of the SBOOT partition.

As MDM mode is an unencrypted setting stored in the PARAM
partition, any erasing or overwriting of the MDM setting block will
reset and disable the MDM setting on the device, and therefore not
prevent access to ODIN mode anymore.

Unauthorised disabling of CC mode

Based on our analysis of SBOOT, and the way the bootloader
enforces CC mode to prevent ODIN/download mode, we have found
three different attacks to disable CC mode.* All attacks have been
verified through successful tests on our test device. We will also
discuss the effect of an optional MDM setting, although this was not
enabled by the Samsung CC mode APK.

Modifying the PARAM partition

As discussed in section “The PARAM partition”, we can modify
the CC mode setting if we have write access to the PARAM partition.
This can be either by physical access to the underlying flash storage,
or through ODIN/download mode. Given PARAM write access, we
can simply change the CC mode setting and encrypt the setting
with the WAES encryption oracles from either SBOOT, or /system/
1ib64/libSecurityManagerNative.so. We can also simply
overwrite the CC mode data bytes with zero bytes, with the same
effect. So simply flashing a stock param.bin from a corresponding
firmware upgrade archive will disable CC mode.

If MDM mode is also present, flashing a stock PARAM through
ODIN mode is denied. This is not the case with physical access to
the underlying flash storage, as overwriting the MDM setting block
will disable MDM mode.

SBOOT exploitation

Since the bootloader is responsible for reading and enforcing
the CC mode setting in the PARAM partition, any attack on the
execution flow of SBOOT will have the potential to bypass CC
mode and enable ODIN/download mode. Based on a vulnerability
discovered by Nitay Artenstein (2017), we have developed a fully
functional exploit to make SBOOT ignore the CC mode settings.
One way of doing this is to patch the code flow of SBOOT to call

4 We have not considered if or how any commercial forensic tools support
bypassing CC mode.

S_boot_enter_download_mode with the parameter 6 and
then overwrite the PARAM partition in the same way as detailed
in section “Modifying the PARAM partition” Another way could
be to patch the s_cc_MODE_isSet function to always return
false by either patching the return code to 0 or by changing the
global variable it references to 0. This way we can bypass the
blocking of booting unofficial and unsigned kernels, and the CC
mode enabled setting is not reported to TrustZone before booting
the kernel, in effect disabling CC mode on the booted Android
system.

If MDM mode is also activated, this can also be bypassed
simply by setting the global SBOOT MDM mode setting to
0, resulting in the function s_MDM_MODE_isSet always returning
false. This is expected, as any arbitrary changes to the SBOOT code
and execution flow will leave all security checks done by SBOOT
ineffective.

Setting DN_ERROR

We have seen the effect of setting the DN_ERROR environment
variable to a non-zero value in section “SBOOT.enforcing CC
mode” This has been tested through a console interface pro-
vided by SBOOT. This console can be reached with the aid of a
custom USB connector and a simple RS232-to-USB serial con-
verter (Nitay Artenstein, 2017). After entering the SBOOT console,
one can simply type set env DN_ERROR 2 followed by a save env
and reset. This will try to reboot the device with a normal boot,
but the non-zero DN_ERROR environment variable will force the
device into an emergency ODIN/download mode. From here we
can modify the PARAM partition like in section “Modifying the
PARAM partition”.

If MDM mode is also active, the device will still enter ODIN
mode. However, since the MDM mode is also checked by ODIN
mode when flashing firmware, only changes to the bootloader,
SBOOT, are allowed. This will prevent this attack.

Conclusion

In this paper we have successfully demonstrated how to
disable Common Criteria (CC) mode on selected Samsung devices.
The effect of disabling the CC mode increases the device's attack
surface and can further be used in forensic acquisition. This will
open up the device for misuse of the firmware update protocol for
direct storage or RAM acquisition, in addition to both signed and
unsigned firmware updates through ODIN/download mode,
depending on the Factory Reset Protection and Rollback Protection
settings on the device. If one uses the SBOOT exploit attack from
section “SBOOT exploitation” we can easily avoid both of these
defences as well. This is because these security settings are also
enforced by the SBOOT bootloader and can therefore easily be
changed/disabled.

We have found and tested the effect of several weaknesses in
the enforcing of CC mode on our tested device. Using exploits to
attack SBOOT will break the chain-of-trust anchored in the boot
process. This will break the trust in all code running in the same
normal world on the application processor on this device. With
such a powerful attack we can replace or adapt to most of the se-
curity features of SBOOT. This is not unexpected, but emphasises
the need for a secure bootloader and chain-of-trust.

As future work we suggest testing these attacks on actual MDM
solutions utilising the Samsung CC mode feature and/or the MDM
setting. The effect on a MDM solution after disabling CC mode by
changing or erasing the CC mode setting and/or the MDM setting in
the PARAM partition has not been tested and could lead to other
attack scenarios of forensic interest.
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