168 research outputs found

    Reachable Set Estimation for Discrete-Time Systems with Interval Time-Varying Delays and Bounded Disturbances

    Get PDF
    The reachable set estimation problem for discrete-time systems with delay-range-dependent and bounded disturbances is investigated. A triple-summation term, the upper bound, and the lower bound of time-varying delay are introduced into the Lyapunov function. In this case, an improved delay-range-dependent criterion is established for the addressed problem by constructing the appropriate Lyapunov functional, which guarantees that the reachable set of discrete-time systems with time-varying delay and bounded peak inputs is contained in the ellipsoid. It is worth mentioning that the initial value of the system does not need to be zero. Then, the reachable set estimation problem for time-delay systems with polytopic uncertainties is investigated. The effectiveness and the reduced conservatism of the derived results are demonstrated by an illustrative example

    Distributed estimation techniques forcyber-physical systems

    Get PDF
    Nowadays, with the increasing use of wireless networks, embedded devices and agents with processing and sensing capabilities, the development of distributed estimation techniques has become vital to monitor important variables of the system that are not directly available. Numerous distributed estimation techniques have been proposed in the literature according to the model of the system, noises and disturbances. One of the main objectives of this thesis is to search all those works that deal with distributed estimation techniques applied to cyber-physical systems, system of systems and heterogeneous systems, through using systematic review methodology. Even though systematic reviews are not the common way to survey a topic in the control community, they provide a rigorous, robust and objective formula that should not be ignored. The presented systematic review incorporates and adapts the guidelines recommended in other disciplines to the field of automation and control and presents a brief description of the different phases that constitute a systematic review. Undertaking the systematic review many gaps were discovered: it deserves to be remarked that some estimators are not applied to cyber-physical systems, such as sliding mode observers or set-membership observers. Subsequently, one of these particular techniques was chosen, set-membership estimator, to develop new applications for cyber-physical systems. This introduces the other objectives of the thesis, i.e. to present two novel formulations of distributed set-membership estimators. Both estimators use a multi-hop decomposition, so the dynamics of the system is rewritten to present a cascaded implementation of the distributed set-membership observer, decoupling the influence of the non-observable modes to the observable ones. So each agent must find a different set for each sub-space, instead of a unique set for all the states. Two different approaches have been used to address the same problem, that is, to design a guaranteed distributed estimation method for linear full-coupled systems affected by bounded disturbances, to be implemented in a set of distributed agents that need to communicate and collaborate to achieve this goal

    Compositional analysis of networked cyber-physical systems: safety and privacy

    Get PDF
    Cyber-physical systems (CPS) are now commonplace in power grids, manufacturing, and embedded medical devices. Failures and attacks on these systems have caused signiļ¬cant social, environmental and ļ¬nancial losses. In this thesis, we develop techniques for proving invariance and privacy properties of cyber-physical systems that could aid the development of more robust and reliable systems. The thesis uses three diļ¬€erent modeling formalisms capturing diļ¬€erent aspects of CPS. Networked dynamical systems are used for modeling (possibly time-delayed) interaction of ordinary diļ¬€erential equations, such as in power system and biological networks. Labeled transition systems are used for modeling discrete communications and updates, such as in sampled data-based control systems. Finally, Markov chains are used for describing distributed cyber-physical systems that rely on randomized algorithms for communication, such as in a crowd-sourced traļ¬ƒc monitoring and routing system. Despite the diļ¬€erences in these formalisms, any model of a CPS can be viewed as a mapping from a parameter space (for example, the set of initial states) to a space of behaviors (also called trajectories or executions). In each formalism, we deļ¬ne a notion of sensitivity that captures the change in trajectories as a function of the change in the parameters. We develop approaches for approximating these sensitivity functions, which in turn are used for analysis of invariance and privacy. For proving invariance, we compute an over-approximation of reach set, which is the set of states visited by any trajectory. We introduce a notion of input-to-state (IS) discrepancy functions for components of large CPS, which roughly captures the sensitivity of the component to its initial state and input. We develop a method for constructing a reduced model of the entire system using the IS discrepancy functions. Then, we show that the trajectory of the reduced model over-approximates the sensitivity of the entire system with respect to the initial states. Using the above results we develop a sound and relatively complete algorithm for compositional invariant veriļ¬cation. In systems where distributed components take actions concurrently, there is a combinatorial explosion in the number of diļ¬€erent action sequences (or traces). We develop a partial order reduction method for computing the reach set for these systems. Our approach uses the observation that some action pairs are approximately independent, such that executing these actions in any order results in states that are close to each other. Hence a (large) set of traces can be partitioned into a (small) set of equivalent classes, where equivalent traces are derived through swapping approximately independent action pairs. We quantify the sensitivity of the system with respect to swapping approximately independent action pairs, which upper-bounds the distance between executions with equivalent traces. Finally, we develop an algorithm for precisely over-approximating the reach set of these systems that only explore a reduced set of traces. In many modern systems that allow users to share data, there exists a tension between improving the global performance and compromising user privacy. We propose a mechanism that guarantees Īµ-diļ¬€erential privacy for the participants, where each participant adds noise to its private data before sharing. The distributions of noise are speciļ¬ed by the sensitivity of the trajectory of agents to the private data. We analyze the trade-oļ¬€ between Īµ-diļ¬€erential privacy and performance, and show that the cost of diļ¬€erential privacy scales quadratically to the privacy level. The thesis illustrates that quantitative bounds on sensitivity can be used for eļ¬€ective reachability analysis, partial order reduction, and in the design of privacy preserving distributed cyber-physical systems

    DESIGN AND VERIFICATION OF AUTONOMOUS SYSTEMS IN THE PRESENCE OF UNCERTAINTIES

    Get PDF
    Autonomous Systems offer hope towards moving away from mechanized, unsafe, manual, often inefficient practices. The last decade has seen several small, but important, steps towards making this dream into reality. These advancements have helped us to achieve limited autonomy in several places, such as, driving, factory floors, surgeries, wearables, and home assistants, etc. Nevertheless, autonomous systems are required to operate in a wide range of environments with uncertainties (viz., sensor errors, timing errors, dynamic nature of the environment, etc.). Such environmental uncertainties, even when present in small amounts, can have drastic impact on the safety of the systemā€”thus hampering the goal of achieving higher degree of autonomy, especially in safety critical domains. To this end, the dissertation shall discuss formaltechniques that are able to verify and design autonomous systems for safety, even under the presence of such uncertainties, allowing for their trustworthy deployment in the real world. Specifically, the dissertation shall discuss monitoring techniques for autonomous systems from available (noisy) logs, and safety-verification techniques of autonomous system controllers under timing uncertainties. Secondly, using heterogeneous learning-based cloud computing models that can balance uncertainty in output and computation cost, the dissertation will present techniques for designing safe and performance-optimal autonomous systems.Doctor of Philosoph
    • ā€¦
    corecore