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The reachable set estimation problem for discrete-time systems with delay-range-dependent and bounded disturbances is
investigated. A triple-summation term, the upper bound, and the lower bound of time-varying delay are introduced into the
Lyapunov function. In this case, an improved delay-range-dependent criterion is established for the addressed problem by
constructing the appropriate Lyapunov functional, which guarantees that the reachable set of discrete-time systems with time-
varying delay and bounded peak inputs is contained in the ellipsoid. It is worth mentioning that the initial value of the system does
not need to be zero.Then, the reachable set estimation problem for time-delay systems with polytopic uncertainties is investigated.
The effectiveness and the reduced conservatism of the derived results are demonstrated by an illustrative example.

1. Introduction

The problem of reachable set estimation has been an impor-
tant research area in control theory and has extensive appli-
cations in many areas, such as safety inspection of system
[1], peak-to-peak gain minimization [2], control systems
with actuator saturation [3, 4], parameter estimation [5],
and other areas. Because time delays cannot be avoided in
practical control systems and they cause undesirable dynamic
behaviors such as oscillation and instability [6–10], in this
context, it is natural to ask what about the reachable set of
systems with time delays.

The reachable set estimation problem for time-delay
systems has received considerable attention in recent years,
such as linear systems with state delays [11–19], linear systems
in the presence of both discrete anddistributed delays [20, 21],
and time-varying delay singular systems [22]. However, the
considered systems in literatures [11–22] are all continuous.
Discrete-time time-delay systems are an important class of
dynamic systems because most control engineering appli-
cation systems are digital implementation. Hence, control
design for discrete-time model directly is more convenient.
To the best of our knowledge, few efforts have been taken

to the reachable set estimation problem of discrete-time
systems. Very recently, the paper [23] addresses the problem
of reachable set bounding for linear discrete-time systems
that are subject to state delay and bounded disturbances.
A new idea of minimizing the projection distances of the
ellipsoids on each axis was proposed. The reachable set
estimation problem for discrete-time polytopic systems with
bounded disturbances and multiple constant delays has been
studied in [24]. It provides a new method to investigate the
problem of reachable set estimation. However, in [23, 24],
some useful terms were ignored in the Lyapunov function
and the derivation process. The ignorance terms may lead
to considerable conservativeness. In addition, the literatures
above [11–24] all suppose that the initial value of the system
is zero.This condition brings some constraints in the process
of estimating the bound of reachable set. Therefore, the
reachable set estimation problem for discrete-time time-
varying delays systems without restrictions on initial value
still remains open, which motivates the present study.

In this paper, we aim to study the reachable set bounding
for discrete-time linear systems with interval time-varying
delays and bounded disturbances. The main contributions
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of this paper lie in three aspects. Firstly, a new delay-range-
dependent analysis result is established for discrete-time
time-delay systems by retaining some useful terms and the
triple-summation term in the difference of the Lyapunov
function. The relationship among the time-varying delay, its
upper bound, and lower bound is considered. Secondly, the
initial value of the systemdoes not need to be zero. Finally, the
reachable set estimation problem for polytopic time-varying
systems is investigated. A numerical example is given to
illustrate the effectiveness of the obtained results.

2. System Description and Preliminaries

Consider the following discrete-time singular systems with
interval time-varying delay and disturbances:

𝑥 (𝑘 + 1) = 𝐴𝑥 (𝑘) + 𝐴𝑑𝑥 (𝑘 − 𝑑 (𝑘)) + 𝐵𝜔 (𝑘) ,
𝑥 (𝑘) = 𝜙 (𝑘) , 𝑘 ∈ [−𝑑2, 0] , (1)

where 𝑥(𝑘) is the state vector and 𝜙(𝑘) is the initial condition;𝑑(𝑘) is a time-varying delay satisfying 0 ≤ 𝑑1 ≤ 𝑑(𝑘) ≤𝑑2, where 𝑑1 and 𝑑2 are prescribed nonnegative integers
representing the lower and upper bounds of the time delay,
respectively. 𝐴,𝐴𝑑, and 𝐵 are known real constant matrices
of appropriate dimensions; 𝜔(𝑘) is the disturbance which
satisfies

𝜔𝑇 (𝑘) 𝜔 (𝑘) ≤ 𝜔2, (2)

where 𝜔 is a real constant.
A reachable set for system (1) subject to bounded distur-

bance (2) is defined as

R𝑥 fl {𝑥 (𝑘) ∈ R𝑛 | 𝑥 (𝑘) , 𝜔 (𝑘) satisfy (1) and (2) , 𝑘
≥ 0} . (3)

For a matrix 𝑃 > 0, we define an ellipsoid 𝜀(𝑃, 1) bounding
the reachable set (3) as follows:

𝜀 (𝑃, 1) fl {𝑥 ∈ R𝑛 | 𝑥𝑇𝑃𝑥 ≤ 1} . (4)

Before moving on, we give some definitions and lemmas
which will be used in the proof of the main results.

Lemma 1. Let 𝑉(𝑥(𝑘)) be a positive-definite function:𝑉(𝑥(𝑘0)) ≤ 𝛽𝜔2/(1 − 𝛼), 𝑘0 > 0, 𝛼 ∈ (0, 1), and 𝛽 > 0. If
Δ𝑉 (𝑘) + (1 − 𝛼)𝑉 (𝑘) − 𝛽𝜔𝑇 (𝑘) 𝜔 (𝑘) ≤ 0, (5)

then 𝑉(𝑘) ≤ 𝛽𝜔2/(1 − 𝛼), ∀𝑘 ≥ 𝑘0.
Proof. By (2) and (5), we have

Δ𝑉 (𝑘) + (1 − 𝛼)𝑉 (𝑘) ≤ 𝛽𝜔2; (6)

that is

Δ(𝑉 (𝑘) − 𝛽𝜔21 − 𝛼) ≤ − (1 − 𝛼)(𝑉 (𝑘) − 𝛽𝜔21 − 𝛼) . (7)

Let 𝑈(𝑘) = 𝑉(𝑘) − 𝛽𝜔2/(1 − 𝛼). Then, (7) is equivalent toΔ𝑈(𝑘) ≤ −(1 − 𝛼)𝑈(𝑘). Furthermore,

𝑈 (𝑘) ≤ 𝛼𝑈 (𝑘 − 1) ≤ ⋅ ⋅ ⋅ ≤ 𝛼𝑘−𝑘0𝑈 (𝑘0) . (8)

Since𝛼 ∈ (0, 1),𝑈(𝑘0) ≤ 0, and𝑈(𝑘) = 𝑉(𝑘)−𝛽𝜔2/(1−𝛼),𝑉(𝑘) ≤ 𝛽𝜔2/(1 − 𝛼), 𝑘 ≥ 𝑘0.
In order to use Lemma 1 conveniently, Lemma 1 can be

rewritten as the following form by 𝛽 = (1 − 𝛼)/𝜔2.
Lemma 2. Let 𝑉(𝑥(𝑘)) be a positive-definite function:𝑉(𝑥(𝑘0)) ≤ 1, 𝑘0 > 0. If there exists a scalar 𝛼 ∈ (0, 1) such
that

𝑉 (𝑘 + 1) − 𝛼𝑉 (𝑘) − 1 − 𝛼𝜔2 𝜔𝑇 (𝑘) 𝜔 (𝑘) ≤ 0, (9)

then 𝑉(𝑘) ≤ 1, ∀𝑘 ≥ 𝑘0.
Remark 3. The reachable set estimation problem is investi-
gated in [11–23] under the condition that the initial values of
the system states are zero. However, the condition is removed
in Lemma 1. The reachable sets defined in (3) of system (1)
can be bounded if 𝑉(𝑥(𝑘0)) ≤ 𝛽𝜔2/(1 − 𝛼), 𝑘0 > 0. Let𝛽 = (1 − 𝛼)/𝜔2. Lemmas 1 and 2 reduce to (Lemma 2, [23])
and (Lemma 2, [24]), respectively. Therefore, Lemmas 1 and
2 provide more general results for the problem of reachable
set estimation.

Lemma 4 (see [24]). Give a positive integer ℎ ∈ Z+, a scalar𝛼 ∈ (0, 1), a vector function V(𝑘), 𝑘 ∈ Z, and a matrix 𝑍 > 0.
Then, the following inequalities hold:

(i) −∑−1𝑗=ℎ 𝛼−𝑗V𝑇(𝑘 + 𝑗)𝑍V(𝑘 + 𝑗) ≤ −𝛼̂[∑−1𝑗=ℎ V𝑇(𝑘 +𝑗)]𝑇𝑍[∑−1𝑗=ℎ V𝑇(𝑘 + 𝑗)], where 𝛼̂ = 𝛼ℎ(1 − 𝛼)/(1 − 𝛼ℎ).
(ii) −∑−1𝑙=−𝑑∑−1𝑗=ℎ 𝛼−𝑗V𝑇(𝑘 + 𝑗)𝑍V(𝑘 + 𝑗) ≤

−𝛼̃[∑−1𝑙=−𝑑∑−1𝑗=ℎ V𝑇(𝑘 + 𝑗)]𝑇𝑍[∑−1𝑙=−𝑑∑−1𝑗=ℎ V𝑇(𝑘 + 𝑗)],
where 𝛼̃ = 𝛼𝑑(1 − 𝛼)2/(1 − (𝑑 + 1)𝛼𝑑 + 𝑑𝛼𝑑+1).

The aim in this paper is to find the intersection of ellipsoids𝜀(𝑃, 1) to bound the reachable set defined as (3).Throughout in
this paper, 𝛼 ∈ (0, 1), 𝑑12 = 𝑑2 −𝑑1, 𝛼̂1 = 𝛼𝑑1(1 − 𝛼)/(1 − 𝛼𝑑1),𝛼̂2 = 𝛼𝑑12(1−𝛼)/(1−𝛼𝑑12), 𝛼̃1 = 𝛼𝑑1(1−𝛼)2/(1− (𝑑1 +1)𝛼𝑑1 +𝑑1𝛼𝑑1+1), and 𝛼̃2 = 𝛼𝑑12(1−𝛼)2/(1− (𝑑12 +1)𝛼𝑑12 +𝑑12𝛼𝑑12+1).
Then, the main results are given.

3. Reachable Set Estimation for
Nominal Systems

Theorem 5. Consider system (1) with the input satisfying (2).
If there exist matrices 𝑃 > 0, 𝑄1 > 0, 𝑄2 > 0, 𝑄3 > 0, 𝑍1 >0, 𝑍2 > 0, 𝑅1, and 𝑅2 and a scalar 𝛼 ∈ (0, 1) such that the
following LMI holds,

Ψ = [[[[
[

Φ11 Φ12𝑃 Φ13𝑊
⋆ −𝑃 0
⋆ ⋆ −𝑊

]]]]
]
< 0, (10)

where
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Φ11 =

[[[[[[[[[[[[[[[[
[

Δ 11 0 𝛼̂1𝑍1 0 𝛼̃1𝑑1𝑅1 𝛼̃2𝑑12𝑅2 0
⋆ 𝛼𝑑2𝑄3 0 0 0 0 0
⋆ ⋆ Δ 33 𝛼̂2𝑍2 0 0 0
⋆ ⋆ ⋆ −𝛼𝑑2𝑄2 − 𝛼̂2𝑍2 0 0 0
⋆ ⋆ ⋆ ⋆ −𝛼̃1𝑅1 0 0
⋆ ⋆ ⋆ ⋆ ⋆ −𝛼̃2𝑅2 0
⋆ ⋆ ⋆ ⋆ ⋆ ⋆ −1 − 𝛼𝜔2 𝐼

]]]]]]]]]]]]]]]]
]

,

Δ 11 = −𝛼𝑃 + 𝑄1 + 𝑄2 + 𝑄3 − 𝛼̂1𝑍1 − 𝑑21𝛼̃1𝑅1 − 𝑑212𝛼̃2𝑅2,
Δ 33 = −𝛼𝑑1𝑄1 − 𝛼̂1𝑍1 − 𝛼̂2𝑍2,
Φ12 = [𝐴 𝐴𝑑 0 0 0 0 𝐵]𝑇 ,
Φ13 = [𝐴 − 𝐼 𝐴𝑑 0 0 0 0 𝐵]𝑇 ,
𝑊 = 𝑑1𝑍1 + 𝑑12𝑍2 + 𝑑1 (1 + 𝑑1)2 𝑅1 + 𝑑12 (𝑑1 + 𝑑2 + 1)2 𝑅2,

(11)

then the reachable set of system (1) is contained in the ellipsoid𝜀(𝑃, 1).
Proof. Define 𝜂(𝑘) = 𝑥(𝑘 + 1) − 𝑥(𝑘). Then, we construct the
following Lyapunov functional:

𝑉 (𝑘) = 𝑥𝑇 (𝑘) 𝑃𝑥 (𝑘) + 𝑘−1∑
𝑠=𝑘−𝑑1

𝛼𝑘−𝑠−1𝑥𝑇 (𝑠) 𝑄1𝑥 (𝑠)

+ 𝑘−1∑
𝑠=𝑘−𝑑2

𝛼𝑘−𝑠−1𝑥𝑇 (𝑠) 𝑄2𝑥 (𝑠)

+ 𝑘−1∑
𝑠=𝑘−𝑑(𝑘)

𝛼𝑘−𝑠−1𝑥𝑇 (𝑠) 𝑄3𝑥 (𝑠)

+ −1∑
𝑗=−𝑑1

𝑘−1∑
𝑠=𝑘+𝑗

𝛼𝑘−𝑠−1𝜂𝑇 (𝑠) 𝑍1𝜂 (𝑠) + 𝑑12

⋅ −𝑑1−1∑
𝑗=−𝑑2

𝑘−1∑
𝑠=𝑘+𝑗

𝛼𝑘−𝑠−1𝜂𝑇 (𝑠) 𝑍2𝜂 (𝑠)

+ −1∑
𝑙=−𝑑1

−1∑
𝑗=𝑙

𝑘−1∑
𝑠=𝑘+𝑗

𝛼𝑘−𝑠−1𝜂𝑇 (𝑠) 𝑅1𝜂 (𝑠) + 𝑑12

⋅ −𝑑1−1∑
𝑙=−𝑑2

−1∑
𝑗=𝑙

𝑘−1∑
𝑠=𝑘+𝑗

𝛼𝑘−𝑠−1𝜂𝑇 (𝑠) 𝑅2𝜂 (𝑠) .

(12)

In the following, we will prove that 𝑉(𝑥(𝑘)) ≤ 1 under the
condition in (10).

It is not difficult to obtain that

𝐽 = 𝑉 (𝑘 + 1) − 𝛼𝑉 (𝑘) − 1 − 𝛼𝜔2 𝜔𝑇 (𝑘) 𝜔 (𝑘)
= 𝑥𝑇 (𝑘 + 1) 𝑃𝑥 (𝑘 + 1) − 𝛼𝑥𝑇 (𝑘) 𝑃𝑥 (𝑘)
− 1 − 𝛼𝜔2 𝜔𝑇 (𝑘) 𝜔 (𝑘) +

𝑘∑
𝑠=𝑘+1−𝑑1

𝛼𝑘−𝑠𝑥𝑇 (𝑠) 𝑄1𝑥 (𝑠)

− 𝑘−1∑
𝑠=𝑘−𝑑1

𝛼𝑘−𝑠𝑥𝑇 (𝑠) 𝑄1𝑥 (𝑠)

+ 𝑘∑
𝑠=𝑘+1−𝑑2

𝛼𝑘−𝑠𝑥𝑇 (𝑠) 𝑄2𝑥 (𝑠)

− 𝑘−1∑
𝑠=𝑘−𝑑2

𝛼𝑘−𝑠𝑥𝑇 (𝑠) 𝑄2𝑥 (𝑠)

+ 𝑘∑
𝑠=𝑘+1−𝑑(𝑘)

𝛼𝑘−𝑠𝑥𝑇 (𝑠) 𝑄3𝑥 (𝑠)

− 𝑘−1∑
𝑠=𝑘−𝑑(𝑘)

𝛼𝑘−𝑠𝑥𝑇 (𝑠) 𝑄3𝑥 (𝑠)

+ −1∑
𝑗=−𝑑1

𝑘∑
𝑠=𝑘+1+𝑗

𝛼𝑘−𝑠𝜂𝑇 (𝑠) 𝑍1𝜂 (𝑠)
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− −1∑
𝑗=−𝑑1

𝑘−1∑
𝑠=𝑘+𝑗

𝛼𝑘−𝑠𝜂𝑇 (𝑠) 𝑍1𝜂 (𝑠)

+ −𝑑1−1∑
𝑗=−𝑑2

𝑘∑
𝑠=𝑘+1+𝑗

𝛼𝑘−𝑠𝜂𝑇 (𝑠) 𝑍2𝜂 (𝑠)

− −𝑑1−1∑
𝑗=−𝑑2

𝑘−1∑
𝑠=𝑘+𝑗

𝛼𝑘−𝑠𝜂𝑇 (𝑠) 𝑍2𝜂 (𝑠)

+ −1∑
𝑙=−𝑑1

−1∑
𝑗=𝑙

𝑘∑
𝑠=𝑘+1+𝑗

𝛼𝑘−𝑠𝜂𝑇 (𝑠) 𝑅1𝜂 (𝑠)

− −1∑
𝑙=−𝑑1

−1∑
𝑗=𝑙

𝑘−1∑
𝑠=𝑘+𝑗

𝛼𝑘−𝑠𝜂𝑇 (𝑠) 𝑅1𝜂 (𝑠)

+ −𝑑1−1∑
𝑗=−𝑑2

−1∑
𝑗=𝑙

𝑘∑
𝑠=𝑘+1+𝑗

𝛼𝑘−𝑠𝜂𝑇 (𝑠) 𝑅2𝜂 (𝑠)

− −𝑑1−1∑
𝑗=−𝑑2

−1∑
𝑗=𝑙

𝑘−1∑
𝑠=𝑘+𝑗

𝛼𝑘−𝑠𝜂𝑇 (𝑠) 𝑅2𝜂 (𝑠)
= 𝑥𝑇 (𝑘 + 1) 𝐸𝑇𝑃𝐸𝑥 (𝑘 + 1) + 𝜂𝑇 (𝑘)𝑊𝜂 (𝑘)
− 1 − 𝛼𝜔2 𝜔𝑇 (𝑘) 𝜔 (𝑘)
+ 𝑥𝑇 (𝑘) (−𝛼𝑃 + 𝑄1 + 𝑄2 + 𝑄3) 𝑥 (𝑘)
− 𝛼𝑑1𝑥𝑇 (𝑘 − 𝑑1) 𝑄1𝑥 (𝑘 − 𝑑1)
− 𝛼𝑑2𝑥𝑇 (𝑘 − 𝑑2) 𝑄2𝑥 (𝑘 − 𝑑2)
− 𝛼𝑑(𝑘)𝑥𝑇 (𝑘 − 𝑑 (𝑘)) 𝑄3𝑥 (𝑘 − 𝑑 (𝑘))
− −1∑
𝑗=−𝑑1

𝛼−𝑗𝜂𝑇 (𝑘 + 𝑗)𝑍1𝜂 (𝑘 + 𝑗)

− −𝑑1−1∑
𝑗=−𝑑2

𝛼−𝑗𝜂𝑇 (𝑘 + 𝑗)𝑍2𝜂 (𝑘 + 𝑗)

− −1∑
𝑙=−𝑑1

−1∑
𝑗=𝑙

𝛼−𝑗𝜂𝑇 (𝑘 + 𝑗) 𝑅1𝜂 (𝑘 + 𝑗)

− −𝑑1−1∑
𝑙=−𝑑2

−1∑
𝑗=𝑙

𝛼−𝑗𝜂𝑇 (𝑘 + 𝑗) 𝑅2𝜂 (𝑘 + 𝑗) .
(13)

Applying Lemma 4, then

𝐽 ≤ 𝑥𝑇 (𝑘 + 1) 𝑃𝑥 (𝑘 + 1) + 𝜂𝑇 (𝑘)𝑊𝜂 (𝑘) − 1 − 𝛼𝜔2
⋅ 𝜔𝑇 (𝑘) 𝜔 (𝑘) + 𝑥𝑇 (𝑘) (−𝛼𝑃 + 𝑄1 + 𝑄2 + 𝑄3) 𝑥 (𝑘)

− 𝛼𝑑1𝑥𝑇 (𝑘 − 𝑑1) 𝑄1𝑥 (𝑘 − 𝑑1) − 𝛼𝑑2𝑥𝑇 (𝑘 − 𝑑2)
⋅ 𝑄2𝑥 (𝑘 − 𝑑2) − 𝛼𝑑2𝑥𝑇 (𝑘 − 𝑑 (𝑘)) 𝑄3𝑥 (𝑘 − 𝑑 (𝑘))
− 𝛼̂1 [𝑥 (𝑘) − 𝑥 (𝑘 − 𝑑1)]𝑇𝑍1 [𝑥 (𝑘) − 𝑥 (𝑘 − 𝑑1)]
− 𝛼̂2 [𝑥 (𝑘 − 𝑑1) − 𝑥 (𝑘 − 𝑑2)]𝑇
⋅ 𝑍2 [𝑥 (𝑘 − 𝑑1) − 𝑥 (𝑘 − 𝑑2)]
− 𝛼̃1 [𝑑1𝑥 (𝑘) − −1∑

𝑙=−𝑑1

𝑥 (𝑘 + 𝑙)]𝑇

⋅ 𝑅1 [𝑑1𝑥 (𝑘) −
−1∑
𝑙=−𝑑1

𝑥 (𝑘 + 𝑙)]

− 𝛼̃2 [𝑑12𝑥 (𝑘) − −𝑑1−1∑
𝑙=−𝑑2

𝑥 (𝑘 + 𝑙)]𝑇

⋅ 𝑅2 [[
𝑑12𝑥 (𝑘) −

−𝑑1−1∑
𝑙=−𝑑2

𝑥 (𝑘 + 𝑙)]
]
= 𝜉𝑇 (𝑘)

⋅ (Φ11 + Φ12𝑃Φ𝑇12 + Φ13𝑊Φ𝑇13) 𝜉 (𝑘) ,
(14)

where 𝜉(𝑘) = [𝑥𝑇(𝑘) 𝑥𝑇(𝑘 − 𝑑(𝑘)) 𝑥𝑇(𝑘 − 𝑑1) 𝑥𝑇(𝑘 −𝑑2) ∑𝑑1𝑠=1 𝑥𝑇(𝑘 − 𝑠) ∑𝑑2
𝑠=𝑑1+1

𝑥𝑇(𝑘 − 𝑠) 𝜔𝑇(𝑘)]𝑇.
Applying the Schur complement, (10) is equivalent toΦ11 + Φ12𝑃Φ𝑇12 + Φ13𝑊Φ𝑇13 < 0. This, together with (14),

ensures that 𝐽 ≤ 𝜉𝑇(𝑘)Ψ𝜉(𝑘) < 0.Then, by using Lemma 2, we
have that𝑉(𝑥(𝑡)) ≤ 1. Based on (19), we obtain 𝑥𝑇(𝑘)𝑃𝑥(𝑘) ≤1. This means that the state trajectories of system (1) starting
from the origin are bounded within the ellipsoid 𝜀(𝑃, 1).
Remark 6. Under the assumptions that the initial conditions
of the systems are zero and state trajectories start from the
origin, the reachable set bounding problems are investigated
in [23, 24]. The assumptions are removed in Theorem 5. In
this case, the methods in [23, 24] are invalid when the initial
conditions 𝜙(𝑘) ̸= 0. Therefore, our results are more general.

By usingTheorem 5, a corollary can be obtained directly.

Corollary 7. Consider the system in (1) with 𝑑(𝑘) = 𝑑. If there
exist matrices 𝑃 > 0, 𝑄1 > 0, 𝑄2 > 0, 𝑄3 > 0, 𝑍 > 0, and 𝑅
and a scalar 𝛼 ∈ (0, 1) such that the following LMI holds,

Ψ = [[[[
[

Φ11 Φ12𝑃 Φ13𝑊
⋆ −𝑃 0
⋆ ⋆ −𝑊

]]]]
]
< 0, (15)
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where

Φ11 =

[[[[[[[[[[[[[
[

Δ 11 0 −𝛼̂1𝑍 𝛼̃1𝑑𝑅 0
⋆ 𝛼𝑑2𝑄3 0 0 0
⋆ ⋆ Δ 33 0 0
⋆ ⋆ ⋆ −𝛼̃1𝑅 0
⋆ ⋆ ⋆ ⋆ −1 − 𝛼𝜔2 𝐼

]]]]]]]]]]]]]
]

,

Δ 11 = −𝛼𝑃 + 𝑄3 − 𝛼̂1𝑍 − 𝑑21𝛼̃1𝑅,
Δ 33 = −𝛼𝑑𝑄1 − 𝛼̂1𝑍,
Φ12 = [𝐴 𝐴𝑑 0 0 𝐵]𝑇 ,
Φ13 = [𝐴 − 𝐼 𝐴𝑑 0 0 𝐵]𝑇 ,
𝑊 = 𝑑𝑍 + 𝑑 (1 + 𝑑)2 𝑅,

(16)

then the reachable set of system (1) with 𝑑(𝑘) = 𝑑 is contained
in the ellipsoid 𝜀(𝑃, 1).

4. Reachable Set Estimation for
Uncertain Systems

If there exist polytopic uncertainties in system matrices 𝐴,𝐴𝑑, and 𝐵, that is,
Λ = [𝐴 𝐴𝑑 𝐵] , (17)

Λ = 𝑁∑
𝑖=1

𝜆𝑖Λ 𝑖, 𝜆𝑖 > 0,
𝑁∑
𝑖=1

𝜆𝑖 = 1,
(18)

where𝑁 is the number of polytope vertices and the𝑁 vertices
of the polytopic are described by Λ 𝑖 = [𝐴 𝑖 𝐴𝑑𝑖 𝐵𝑖] (𝑖 =1, 2, . . . , 𝑁), it is easy to extendTheorem 5 in such a case.

Theorem 8. Consider the system in (1) with polytopic uncer-
tainties (17) and (18). If there exist matrices 𝑃 > 0, 𝑄1 >0, 𝑄2 > 0, 𝑄3 > 0, 𝑍1 > 0, 𝑍2 > 0, 𝑅1, and 𝑅2 and a scalar𝛼 ∈ (0, 1) such that the following LMI holds,

Ψ = [[
[
Φ11 Φ12𝑃 Φ13𝑊⋆ −𝑃 0
⋆ ⋆ −𝑊

]]
]
< 0, (19)

where

Φ11 =

[[[[[[[[[[[[[[[[[[[[[
[

Δ 11 0 𝛼̂1𝑍1 0 𝛼̃1𝑑1𝑅1 𝛼̃2𝑑12𝑅2 0
⋆ 𝛼𝑑2𝑄3 0 0 0 0 0
⋆ ⋆ Δ 33 𝛼̂2𝑍2 0 0 0
⋆ ⋆ ⋆ −𝛼𝑑2𝑄2 − 𝛼̂2𝑍2 0 0 0
⋆ ⋆ ⋆ ⋆ −𝛼̃1𝑅1 0 0
⋆ ⋆ ⋆ ⋆ ⋆ −𝛼̃2𝑅2 0
⋆ ⋆ ⋆ ⋆ ⋆ ⋆ −1 − 𝛼𝜔2 𝐼

]]]]]]]]]]]]]]]]]]]]]
]

,

Δ 11 = −𝛼𝑃 + 𝑄1 + 𝑄2 + 𝑄3 − 𝛼̂1𝑍1 − 𝑑21𝛼̃1𝑅1 − 𝑑212𝛼̃2𝑅2,
Δ 33 = −𝛼𝑑1𝑄1 − 𝛼̂1𝑍1 − 𝛼̂2𝑍2,
Φ12 = [𝐴 𝑖 𝐴𝑑𝑖 0 0 0 0 𝐵𝑖]𝑇 ,
Φ13 = [𝐴 𝑖 − 𝐼 𝐴𝑑𝑖 0 0 0 0 𝐵𝑖]𝑇 ,
𝑊 = 𝑑1𝑍1 + 𝑑12𝑍2 + 𝑑1 (1 + 𝑑1)2 𝑅1 + 𝑑12 (𝑑1 + 𝑑2 + 1)2 𝑅2,

(20)
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then, for any time-varying delay 𝑑(𝑘) satisfying (2), the
reachable sets of system (1) with polytopic uncertainties (17) can
be bounded by the ellipsoid 𝜀(𝑃, 1).
Corollary 9. Consider the system in (1) with polytopic uncer-
tainties (17) and 𝑑(𝑘) = 𝑑. If there exist matrices 𝑃 > 0, 𝑄1 >0, 𝑄2 > 0, 𝑄3 > 0, 𝑍 > 0, 𝑅 and a scalar 𝛼 ∈ (0, 1) such that
the following LMI holds,

Ψ

=

[[[[[[[[[[[[[[[
[

Δ 11 0 −𝛼̂1𝑍 𝛼̃𝑑1𝑅 0 𝐴 𝑖𝑃 (𝐴 𝑖 − 𝐼)𝑊
⋆ 𝛼𝑑2𝑄3 0 0 0 𝐴𝑑𝑖𝑃 𝐴𝑑𝑖𝑊⋆ ⋆ Δ 33 0 0 0 0
⋆ ⋆ ⋆ −𝛼̃𝑅 0 0 0
⋆ ⋆ ⋆ ⋆ −1 − 𝛼𝜔2 𝐼 𝐵𝑖𝑃 𝐵𝑖𝑊⋆ ⋆ ⋆ ⋆ ⋆ −𝑃 0
⋆ ⋆ ⋆ ⋆ ⋆ ⋆ −𝑊

]]]]]]]]]]]]]]]
]

< 0,

(21)

where

Δ 11 = −𝑃 + 𝑄3 − 𝛼̂1𝑍 − 𝑑21𝛼̃1𝑅,
Δ 33 = −𝛼𝑑1𝑄1 − 𝛼̂1𝑍,
𝑊 = 𝑑1𝑍 + 𝑑1 (1 + 𝑑1)2 𝑅,

(22)

then the reachable sets of system (1) can be bounded by the
ellipsoid 𝜀(𝑃, 1).
Remark 10. To find the “smallest” bound for the reachable
set, one may propose a simple optimisation problem.That is,
maximise 𝛿 subject to 𝛿𝐼 ≤ 𝑃, which can be transformed to
the following optimisation problem:

minimize 𝛿̂ (𝛿̂ = 𝛿−1)
subject to (a) [𝛿𝐼 𝐼

𝐼 𝑃̂] ≥ 0
(b)Equations: (10) or (19) .

(23)

5. Numerical Example

Example 1. Consider discrete-time time-varying delay sys-
tem (1) with

𝐴 = [0.21 −0.01
−0.9 0.1 ] ,

𝐴𝑑 = [−0.02 0.01
−0.2 −0.01] ,

𝐵 = [ 0.10.15]

(24)

Table 1: Different values of 𝛿 and 𝑃 by choosing different 𝛼.
𝛼 𝛿 in Theorem 5 𝑃 𝛿 in [23, 24]

0.4 0.4014 [
[
27.5819 −1.1019
−1.1019 1.4983 ]]

—

0.6 0.1560 [
[
35.1870 −4.3501
−4.3501 4.5431 ]]

—

0.8 0.2206 [
[
20.3993 −3.7143
−3.7143 3.4333 ]]

—

0 0.5−0.5

x1

−1

−0.5

0

0.5

1

x
2

a = 0.8

a = 0.6

a = 0.4

x

Figure 1: The reachable sets and ellipsoidal bounds.

and 𝜔(𝑘) = sin(7𝑘). Let 𝑑1 = 2 and 𝑑2 = 4. Assume the initial
state is 𝜙(𝑡) = [−0.1 0.15]𝑇. Since the initial condition is not
zero, themethods in paper [23, 24] are invalid. By solving LMI
(10) ofTheorem 5, the values 𝛿 for different 𝛼 by LMI toolbox
are given in Table 1. Meanwhile, corresponding ellipsoidal
bounds of the reachable sets are depicted in Figure 1. It shows
that the reachable set of system (1) can be bounded by the
obtained ellipsoid 𝜀(𝑃, 1).
6. Conclusions

In this paper, the problem of reachable set estimation for
discrete-time systems with interval time-varying delays and
bounded disturbances has been investigated. By introduc-
ing triple-summation terms, a novel Lyapunov function
is constructed. Then, a delay-range-dependent criterion is
established and the initial condition of discrete-time time-
varying delay system is not required to be zero. Based on
this result, the reachable set estimation problem for polytopic
time-varying systems is investigated. The effectiveness of
the obtained results has been verified through a numerical
example.
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