
c© 2016 Zhenqi Huang

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Illinois Digital Environment for Access to Learning and Scholarship Repository

https://core.ac.uk/display/158318073?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

COMPOSITIONAL ANALYSIS OF NETWORKED CYBER-PHYSICAL
SYSTEMS: SAFETY AND PRIVACY

BY

ZHENQI HUANG

DISSERTATION

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Electrical and Computer Engineering

in the Graduate College of the
University of Illinois at Urbana-Champaign, 2016

Urbana, Illinois

Doctoral Committee:

Associate Professor Sayan Mitra, Chair

Professor Geir E. Dullerud

Professor Marta Z. Kwiatkowska, University of Oxford

Professor Nitin H. Vaidya

ABSTRACT

Cyber-physical systems (CPS) are now commonplace in power grids, man-

ufacturing, and embedded medical devices. Failures and attacks on these

systems have caused significant social, environmental and financial losses. In

this thesis, we develop techniques for proving invariance and privacy proper-

ties of cyber-physical systems that could aid the development of more robust

and reliable systems.

The thesis uses three different modeling formalisms capturing different as-

pects of CPS. Networked dynamical systems are used for modeling (possibly

time-delayed) interaction of ordinary differential equations, such as in power

system and biological networks. Labeled transition systems are used for mod-

eling discrete communications and updates, such as in sampled data-based

control systems. Finally, Markov chains are used for describing distributed

cyber-physical systems that rely on randomized algorithms for communica-

tion, such as in a crowd-sourced traffic monitoring and routing system. De-

spite the differences in these formalisms, any model of a CPS can be viewed

as a mapping from a parameter space (for example, the set of initial states) to

a space of behaviors (also called trajectories or executions). In each formal-

ism, we define a notion of sensitivity that captures the change in trajectories

as a function of the change in the parameters. We develop approaches for

approximating these sensitivity functions, which in turn are used for analysis

of invariance and privacy.

For proving invariance, we compute an over-approximation of reach set,

which is the set of states visited by any trajectory. We introduce a notion of

input-to-state (IS) discrepancy functions for components of large CPS, which

roughly captures the sensitivity of the component to its initial state and

input. We develop a method for constructing a reduced model of the entire

system using the IS discrepancy functions. Then, we show that the trajectory

of the reduced model over-approximates the sensitivity of the entire system

ii

with respect to the initial states. Using the above results we develop a sound

and relatively complete algorithm for compositional invariant verification.

In systems where distributed components take actions concurrently, there

is a combinatorial explosion in the number of different action sequences (or

traces). We develop a partial order reduction method for computing the reach

set for these systems. Our approach uses the observation that some action

pairs are approximately independent, such that executing these actions in any

order results in states that are close to each other. Hence a (large) set of

traces can be partitioned into a (small) set of equivalent classes, where equiv-

alent traces are derived through swapping approximately independent action

pairs. We quantify the sensitivity of the system with respect to swapping

approximately independent action pairs, which upper-bounds the distance

between executions with equivalent traces. Finally, we develop an algorithm

for precisely over-approximating the reach set of these systems that only

explore a reduced set of traces.

In many modern systems that allow users to share data, there exists a

tension between improving the global performance and compromising user

privacy. We propose a mechanism that guarantees ε-differential privacy for

the participants, where each participant adds noise to its private data before

sharing. The distributions of noise are specified by the sensitivity of the

trajectory of agents to the private data. We analyze the trade-off between

ε-differential privacy and performance, and show that the cost of differential

privacy scales quadratically to the privacy level.

The thesis illustrates that quantitative bounds on sensitivity can be used

for effective reachability analysis, partial order reduction, and in the design

of privacy preserving distributed cyber-physical systems.

iii

To my wife, parents and grandmother, for their endless love and support.

iv

ACKNOWLEDGMENTS

This thesis would not be possible without the help from many others. I am

truly fortunate to have had Prof. Sayan Mitra as my advisor. His patience,

motivation, and knowledge kept inspiring me in all phases of my research:

from identifying interesting topics, developing elegant solutions, to compos-

ing impressive presentations. Sayan is also a compassionate mentor who gave

me moral support during difficult times.

I would like to thank the rest of my thesis committee: Prof. Geir Dullerud,

Prof. Marta Kwiatkowska, and Prof. Nitin Vaidya for their insightful com-

ments and generous guidance over the years. They shared their expertise

in control theory, formal methods, distributed algorithms, and differential

privacy with me. Their sharp questions helped me refining results, fixing

mistakes, and identifying future directions.

I would like to thank Prof. Swarat Chudhuri, Prof. Marco Caccamo, Prof.

Aranya Chakrabortty, Prof. Saman Zonouz, and many others, for providing

advice and shaping my thought. My sincere thanks also goes to my academic

peers, including Chuchu Fan, Yu Wang, Stanley Bak, Taylor Johnson, Srid-

har Duggirala, Ritwika Ghosh, Hongxu Chen, Nicole Chan, Hussein Sibaie,

Fardin Abdi, Yixiao Lin, Jeremy Green, and Karthik Manamcheri. We are

good friends who are able to exchange ideas on and outside research.

I am grateful to my wife Iris, who truly understands me and literarily

takes care of me. Your love completes me and makes me a better person. I

am grateful to my mom, dad, and grandparents. They are always trying to

provide me the best education and encourage me when I am feeling down.

Finally, I would like to thank everyone else who has helped me.

v

TABLE OF CONTENTS

Chapter 1 INTRODUCTION . 1
1.1 Formalisms . 3
1.2 Sensitivity Analysis . 4
1.3 Invariant Verification with Input-to-State Discrepancy 5
1.4 Invariant Verification with Partial Order Reduction 6
1.5 Differential Privacy for Distributed Control Systems 7
1.6 Overview of the Thesis . 8

Chapter 2 PRELIMINARIES . 10
2.1 Set, Metrics and Functions . 10
2.2 Time and Variables . 11
2.3 Trajectories . 12
2.4 Measure and Product Measure 14

Chapter 3 VERIFYING INVARIANCE WITH INPUT-TO-STATE
DISCREPANCY . 15
3.1 Invariant Verification with IS Discrepancy Functions 16
3.2 Related Works . 18
3.3 Networked Dynamical System Models 19
3.4 Input-to-State Discrepancy . 24
3.5 Small Approximations from IS Discrepancy 27
3.6 Verification Algorithm . 39
3.7 Experimental Validation . 43
3.8 Summary . 46

Chapter 4 PARTIAL ORDER REDUCTION-BASED INVARI-
ANT VERIFICATION . 47
4.1 Enhance Partial Order Reduction with Metrics 47
4.2 Related Works . 50
4.3 Infinite State Transition Systems 51
4.4 Independent Actions and Close Executions 55
4.5 Interleaving Independent Actions 60
4.6 Generalization of Executions 65
4.7 Reach Set Over-Approximation 71
4.8 Case Studies . 74

vi

4.9 Summary . 78

Chapter 5 DIFFERENTIALLY PRIVATE DISTRIBUTED CON-
TROL . 79
5.1 Privacy-Performance Trade-Off in Distributed Control 79
5.2 Related Works . 81
5.3 Distributed Control System 83
5.4 Privacy and Cost in Distributed Control 88
5.5 Laplace Observations of Differential Privacy 90
5.6 Differentially Private Linear Distributed Control 94
5.7 Summary . 105

Chapter 6 CONCLUSION . 107
6.1 Summary of Contributions . 107
6.2 Future Directions . 109

REFERENCES . 112

vii

Chapter 1

INTRODUCTION

In modern engineering systems, computers interacting with physical pro-

cesses have become commonplace. Many of these cyber-physical systems

(CPS) consist of distributed components that send physical or cyber sig-

nals to each other through a network. It is natural to view these systems as

networks of nodes and edges, where the nodes stand for computing units and

the edges are communication channels (see Figure 1.1). The evolution of the

state of a node over time is influenced by the states of its neighboring nodes.

Examples of such systems are abundant in automotive control systems,

embedded medical devices, and in building control systems. For instance,

a power network may be composed of nodes of generators, buses and loads.

The state of each node captures local quantities such as phase angle, voltage

and power consumption [1]. The evolution of these quantities is governed

by the power-flow equations. Another example is a distributed air-traffic

control system where each aircraft can be viewed as a node and the edges

model pairwise communication channels [2]. The states of an aircraft capture

its quantities such as position, velocity, attitude, which evolve according to

aerodynamic and flight control protocols. The design of these systems should

provide a high level of reliability as failures can cause huge financial, envi-

ronmental and social losses. An important research challenge is to develop

design and verification techniques for checking whether or not a given system

meets certain desirable requirements. The properties of CPS we study in this

thesis fall into the following broad categories.

Invariance. Invariance properties of the system are those that remain valid

all the time. Roughly, these properties capture the notion that nothing “bad”

can ever happen. For example, in the air traffic control system, aircraft

should never violate the minimum separation requirements [3]. In a smart

grid, the voltage should not exceed the design threshold [4]. Many safety

1

A1

ẋ1 = f1(x1,x2,x3)
A2

ẋ2 = f2(x2,x1,x3,x4)
A3

ẋ3 = f3(x3,x1,x2)
A4

ẋ4 = f4(x4,x2)

x1,x2

x2,x3

x1,x3

x2,x4

Figure 1.1: A network view of a cyber-physical system. The nodes are
computing or physical components. Each node Ai has a state xi that
evolves overtime governed by difference equations or ordinary differential
equations (ODE). An edge from node Ai to Aj indicates the state of xi
affects the dynamics of Aj and vice versa.

specifications of CPS are expressed as invariance properties.

Security & Privacy. Security and privacy cover a broad range of concerns

for CPS. Roughly, a secure and private system should be able to protect

information from unauthorized access, use, modification, inspection, record-

ing, and destruction. One well-known security incident is the Stuxnet worm,

which targeted industrial software used to control nuclear fuel processing

plants [5]. The worm ultimately sabotaged and destroyed an Iranian facility

by introducing malicious control inputs to actuators controlling uranium cen-

trifuges. Other threats include violation of access rights [6], denial of service

attacks [7], and de-anonymization [8]. In this thesis, we focus on privacy of

users participating in a distributed system such as the navigation applica-

tions provided by Google maps and Waze [9]. In these systems, users share

data (such as location) for better system-level performance (such as routing

delay), but at the risk of compromising their privacy. The system is private

if adversaries cannot infer the user’s private data with high confidence, even

with access to the communication of the system.

2

1.1 Formalisms

Cyber-physical systems can exhibit a broad range of behaviors due to the rich

interactions between computers and physical environments. Several mathe-

matical modeling frameworks for CPS have been proposed, such as hybrid

automata [10, 11, 12], hybrid Petri nets [13, 14], switched systems [15], differ-

ential dynamic logics [16], hybrid dynamical systems [17] and hybrid process

algebra [18]. In this thesis, we employ three formalisms that capture different

salient aspects of CPS.

Networked Dynamical System (NDS) is a formalism where each node

evolves according to ordinary differential equations (ODE) and an edge indi-

cates that the linked nodes communicate with each other. The communica-

tion between nodes may experience time delays. A trajectory (or execution)

of a networked dynamical system ξθ is the solution of the delayed differ-

ential equation with a given initial state θ. It is natural to model a large

class of CPS as networked dynamical systems such as power grid [19], swarm

robots [20], and embedded medical devices [21].

Labeled Transition System (LTS) is a standard state-machine model for

computer programs [22, 23, 24]. The nodes take actions to communicate with

each other and to update the local and shared states of the system. In our

formalism, the nodes may nondeterministically choose actions to be taken.

An execution of LTS ξτ is a sequence of states which are visited consecutively

by taking a sequence of actions τ .

Markov Chain (MC) is a formalism where each transition is chosen ac-

cording to a probability distribution. The Markov chain is a natural formal-

ism to capture stochasticity in CPS arising from diverse sources such as noise,

disturbance, stochastic dynamics and the coin-flip of algorithms. Specifically,

we use Markov chains to model a class of distributed control systems, where

participating agents cooperate to achieve local and global objectives.

3

1.2 Sensitivity Analysis

As mentioned in Section 1.1, we use different formalisms to capture salient

features of different classes of cyber-physical systems. Any model in one of

these formalisms can be viewed in the following abstract way. Roughly, a

model specifies a mapping from a parameter domain to a space of trajectories

(or executions). The parameter domain may correspond to a set of initial

states, design choices, external inputs, or user data. Let ξd(t) be a trajectory

that is specified by some parameter value d. Roughly, the sensitivity of the

system captures the change in the trajectories as a function of the change in

the parameter, that is |ξd(t)−ξd′(t)|. For models with linear dynamics which

have analytical solutions, sensitivity can be derived by directly comparing

trajectories. For systems with nonlinear dynamics where explicit solutions

are generally absent, sensitivity can be estimated by statistical testing [25]

or numerical simulation [26].

In this thesis, we develop techniques to prove invariance and privacy prop-

erties of CPS, which both rely on computing bounds on the sensitivity of

the models in question. We compute the bounds of sensitivity with respect

to different parameters, and use them in two ways. In invariant verifica-

tion, we compute the sensitivity with respect to initial states and action

sequences. Our verification techniques involve generalizing a single trajec-

tory to over-approximate a set of trajectories with similar initial states and

action sequences. The bounds on the sensitivity determines how much gener-

alization is provably sufficient. In contrast, for designing differentially private

distributed systems, we compute the sensitivity with respect to the sensitive

data of agents participating in the system. A differentially private mech-

anism ensures that adversaries with access to the messages in a network

cannot infer the private data of individuals, such as initial state or control

objectives, with high level of confidence. The design of a differentially private

mechanism relies on adding noise to obscure the difference in the individuals’

trajectories when any agent changes its private data. Hence, the distribution

of noise depends on the sensitivity of agents’ trajectory to the private data.

We will summarize these approaches in the remainder of this introduction.

4

1.3 Invariant Verification with Input-to-State

Discrepancy

The continuous evolution of states of CPS is usually modeled by ordinary

differential equations (ODE). A trajectory of the model is specified by its

initial state. Several recently developed approaches for invariant verification

of these systems with nonlinear ODEs combine numerical simulations with

static analysis to over-approximate the infinite number of behaviors of the

system [27, 28, 29, 30, 31]. The common idea of these approaches is as follows.

For a single initial state x, let ξx be the numerically computed trajectory from

x for a bounded time. Based on the continuous dependence of ξx on x, we

know that all the trajectories from neighboring initial states will be close to

ξx. With sensitivity analysis of the trajectories to the initial state, we get

quantitative bounds on the distance between neighboring trajectories. This

enables us to compute a tube around ξx, that contains all possible trajectories

from the neighborhood of x. By repeating this process for different initial

states, all reachable states from an initial set can be over-approximated and

the invariance properties can be verified.

Generalizing several of these properties, in [29] the authors introduced

the notion of discrepancy function as a continuous function (of the distance

between initial states and time) characterizing the convergence or divergence

rates of trajectories. It was shown that if a nonlinear, switched, or hybrid

system model is annotated with appropriate discrepancy function(s) then the

above approach of combining simulations and generalizations gives a sound

and relatively complete algorithm for verifying bounded time invariants.

A challenge for these methods is to come up with a discrepancy function,

which becomes increasingly difficult for larger models in which many compo-

nents interact [32, 30, 31]. In this thesis, we address this problem by propos-

ing a compositional approach for automatically computing discrepancy for

CPS. Consider a network A consisting of several interacting subsystems or

modules A1, . . . ,AN . Our solution has several parts. First, we introduce a

new type of input-to-state (IS) discrepancy function for the subsystems. An

IS discrepancy for Ai gives a bound on the distance between two trajectories

as a function of (a) their initial states and (b) the inputs they experience.

For any positive parameter δ > 0, using IS discrepancy of the modules we

syntactically construct a reduced N -dimensional reduced system M(δ). We

5

show that the trajectory of M(δ) upper-bounds the distance of trajectories

of A with initial states from a δ-ball. Moreover, by choosing appropriately

small δ, the over-approximation computed by the above method can be made

arbitrarily precise, modulo the precision of the numerical simulation.

Using the above results we develop an algorithm for bounded robust in-

variant verification for cyber-physical system models that iteratively refines

initial set partitions (Algorithm 3.1). We show that the algorithm is sound

and is guaranteed to terminate whenever the model is robustly safe or unsafe

with respect to a given unsafe set. With a prototype implementation of this

algorithm, we verify invariance properties for models with both linear and

nonlinear dynamics [31, 33, 30]. Among these case studies are challenging

pacemaker-heart models, where a pacemaker is regulating a group of cardiac

cells [31]. Our implementation verifies such network with up to 8 cells and

32 continuous variables in a couple minutes.

1.4 Invariant Verification with Partial Order Reduction

The discrete behaviors of CPS are naturally modeled as transitions. For

models with discrete transitions, an execution depends on the sequence of

transitions it experiences. Hence, computing reach sets involves checking all

possible transition sequences. In concurrent models, the transitions taken

by different nodes (or processes) can be executed in different orders, which

leads to a combinatorial explosion in the interleaving of possible transition

sequences. Checking all these transition sequences explicitly is potentially

very expensive. In Chapter 4, we use a discrete formalism of cyber-physical

systems, namely labeled transition systems, to develop a theory of approxi-

mate partial order reduction for cyber-physical systems.

Partial order reduction was introduced in the context of model checking

to reduce the number of executions that needed to be checked [34, 35]. It

exploits the observation that some actions (or labels) can be executed in

arbitrary order without affecting the result. Precisely, two actions a and b are

independent if the resulting state would be the same regardless of the order in

which a and b are executed. With the independence relation, any set of action

sequences can be partitioned into a reduced set of equivalence classes, where

equivalent action sequences can be made identical by swapping consecutive

6

independent actions. Many invariance properties have been shown to be

indifferent to equivalent action sequences. Hence, checking invariance for a

single execution suffices to infer it for all executions with equivalent action

sequences.

In the context of CPS, components often interact with a shared environ-

ment in the presence of noise and disturbances. Independent action pairs in

the conventional sense are rare, since those action pairs which lead to nearly

but not exactly identical states are ignored. Our work addresses this prob-

lem by connecting the existing partial order reduction methods with metrics.

First, we introduce the notion of ε-independent actions with a parameter ε

chosen by the user: two actions a and b are ε-independent if the resulting

states would be within ε distance regardless of the order in which they are

executed. Similar to the conventional POR techniques, the approximate in-

dependence relation defines an equivalence relation of action sequences. Ex-

ecutions that follow equivalent action sequences reach not exactly but nearly

the same final states. We present an algorithm to compute the upper bound

on the distance between these executions. With this result, from a single

execution, we can over-approximate the set of reachable states of executions

following a class of equivalent action sequences. In addition, we show that

by choosing small enough ε, the over-approximation can be made arbitrar-

ily precise. Our approach potentially leads to an exponential reduction in

complexity of the reach set over-approximation.

1.5 Differential Privacy for Distributed Control

Systems

In many CPS, data about the individual participating agents can help achieve

better system-level performance, but each individual’s private data must be

protected. Consider, for example, in a crowd-sourced traffic estimation and

routing application as provided by Google maps and Waze [36, 9, 37, 38]. By

explicitly exchanging information about their states, the agents could achieve

better performance (routing delay), but by sharing exact information about

their states they may give away too much information about their private

data, such as their initial position and desired path. Examples include peak

generation scheduling using consumption data obtained from smart electric

7

meters [39] and data aggregation for a sensor network [40, 41].

The sensitive data of agents in a cyber-physical system can be their initial

states, final states or desirable trajectories. For a sensitive data set D, ξD de-

notes the corresponding trajectory of an individual agent. Although sharing

the exact trajectory ξD throughout the network with other agents improves

overall performance, it may leak the sensitive data of agents. One common

approach for private state sharing is for each agent to add noise drawn from

some carefully chosen distribution before sending. The effectiveness of such

an approach can be measured by the concept of ε-differential privacy that

developed in the study of databases [42, 43, 44, 45] and later extended to

dynamical systems [46, 47]. Roughly, ε-differential privacy ensures that the

probability distribution of the observation does not change substantially with

the change in the sensitive data corresponding to one agent. To ensure a cer-

tain privacy level ε, the noise distribution must depend on the sensitivity of

the trajectory ξD on the sensitive data D.

When noise is introduced to the system, the quality of communication de-

teriorates, influencing the performance of the system. In this thesis, we study

the trade-off between ε-differential privacy and performance, in the context

of discrete-time cyber-physical systems. Here, we measure the performance

of the system with the mean square distance between the actual trajectory

of an agent to its desired trajectory. For the discrete-time linear distributed

control systems, we establish the trade-off between ε-differential privacy and

the performance of the system. Specifically, the cost of privacy, namely the

increase in the mean square error of the trajectories of an agent from its

preference, up to T messages for a system with N agents is O(T 3

Nε2
) for stable

systems and can also grow exponentially with T for unstable systems.

1.6 Overview of the Thesis

The techniques developed during the course of this PhD research have led to

three main contributions to the analysis of cyber-physical systems.

(i) In Chapter 3, we propose an algorithm for verifying invariance of net-

worked dynamical systems with communication delays. We introduce

a notion of input-to-state (IS) discrepancy functions for components of

8

networks and a method for constructing a reduced model M of a net-

worked dynamical system A using the IS discrepancy. Then, we show

that the trajectory of the reduced model M upper-bounds the distance

between trajectories of A with initial states close to each other. More-

over, the error can be made arbitrarily small modulo the precision of

numerical simulation. Using the above results we develop an algorithm

for bounded invariant verification of nonlinear networked dynamical

systems that iteratively refines initial set partitions. We show that the

algorithm is sound and complete for robust invariant verification.

(ii) In Chapter 4, we develop a partial order reduction method for infi-

nite state labeled transition systems. We introduce the notion of ε-

independent actions such that executing these actions in any order re-

sults in states that are close to each other. Then we define ε-equivalent

action sequences that swap ε-independent action pairs. We present

an algorithm to over-approximate reach sets of executions that take

ε-equivalent action sequences. We are also able to show that the over-

approximation can be computed up to arbitrary precision.

(iii) In Chapter 5, we propose a noise-adding mechanism that guarantees ε-

differential privacy for discrete-time networked cyber-physical systems.

Each agent masks its data with Laplace noise before sharing it with

others for a better system-level control. The distributions of noise are

specified by the sensitivity of the trajectory of agents to the sensitive

data. We analyze the trade-off between ε-differential privacy and per-

formance for linear cyber-physical systems. We show that the cost of

ε-differential privacy is proportional to the cubic of time horizon and is

inversely proportional to the number of participants and the square of

the privacy level.

Reading this thesis. Chapters 3 to 5 are parallel but all rely on the basic

definitions of Chapter 2. Each technical chapter has specific related work

(Sections 3.2, 4.2 and 5.2) and model formalism (Sections 3.3, 4.3 and 5.3).

Therefore the three technical chapters can be read independently.

9

Chapter 2

PRELIMINARIES

Many networked cyber-physical systems (NCPS) exhibit both continuous and

discrete behaviors due to the complicated interactions between the comput-

ing units and the physical environment. In this thesis, we use several math-

ematical models with emphasis on different aspects of NCPS. In Chapter 3

we study networked dynamical systems, where the states evolve continuously

over a period of time governed by ordinary differential equations. In Chap-

ters 4 and 5, we introduce models of transition systems, where the states

change instantaneously due to discrete transitions. Despite their distinctive

syntaxes, these models share a common nature. Roughly, each of the models

has a parameter domain, whose precise definition may vary across contexts,

such as initial states, disturbances, action sequence, inputs, or control objec-

tives. Given the value of its parameters, a model specifies a trajectory. In

this chapter, we will introduce the notions used throughout the thesis.

2.1 Set, Metrics and Functions

For a natural number n ∈ N, [n] is the set of natural numbers {0, 1, . . . , n−1}.
For p ∈ [1,∞) ∪ {∞} and any x ∈ Rn, |x|p is the standard `p norm of x.

For a matrix A ∈ Rm×n, |A|p denotes the induced p norm of A, that is,

|A|p
∆
= sup
|x|p=1

|Ax|p. Without a subscript, |x| and |A| can be viewed as |x|p

and |A|p for arbitrary choice of the constant p ∈ [1,∞].

For a vector x ∈ Rn and r ≥ 0, Br(x)
∆
= {y ∈ Rn | |x − y| ≤ r} is an r-

neighborhood of x. For a set S ⊆ Rn, the expansion of S is Br(S)
∆
= ∪

x∈S
Br(x).

For any i ∈ [n], xi stands for the ith component of the vector x. For a

compact set S ⊆ Rn and a δ > 0, a δ-cover is a set of points C ⊆ S where

the δ-neighborhood of C covers S, that is Bδ(C) = ∪x∈CBδ(x) ⊇ S.

For any function f we denote the domain and the range of f by dom(f) and

10

range(f). For any function f and a subset set of its domain S ⊆ dom(f), we

write the restriction of f to S as f d S : S → range(f) such that (f d S)(x) =

f(x) for any x ∈ S. For a function f whose range is a set of functions, we

write f ↓ S such that for each x ∈ dom(f), f ↓ S(x) = f(x) d S.

For f, g : S → Rn with the same domain, we define f + g : S → Rn such

that (f+g)(x)
∆
= f(x)+g(x). Similarly, we define (f−g)(x)

∆
= f(x)+g(x) and

max{f, g}(x)
∆
= max{f(x), g(x)} similarly. For two functions f, g such that

dom(f) ⊇ range(g), the composition of f and g is f ◦g : dom(g)→ range(f)

such that f ◦ g(x) = f(g(x)). We write fg = f ◦ g for brevity. For any n ∈ N,

for any function f maps from a domain to itself, that is dom(f) ⊆ range(f),

we define its nested form fn as ff n−1 for n ≥ 1 and f 0 being the identity

mapping.

A function f : Rn → Rm is smooth if all its higher derivatives exist. It is

said to be Lipschitz if there exists L > 0 such that |f(x)− f(y)| ≤ L|x− y|
for all x, y ∈ Rn. A function f : R≥0 → R≥0 belongs to class K, denoted

f ∈ K, if f(0) = 0 and f is strictly increasing. A class K function f belongs

to class K∞ if f(x) → ∞ as x → ∞. A function f : R≥0 × R≥0 → R≥0

belongs to class KL if (i) for any y ∈ R≥0, f(x, y) belongs to class K with

respect to argument x, and (ii) for any x ∈ R≥0, f(x, y)→ 0 as y →∞.

2.2 Time and Variables

We will use the notations from the hybrid input/uutput automaton (HIOA)

framework for modeling networked cyber-physical systems [11, 12]. A time

domain is a set T ∈ {R≥0,N}, where R≥0 is the continuous time domain and

N is the discrete time domain. Fixed any time domain T, an element of the

time domain t ∈ T is a time point. A time interval K ⊆ T is a subset of the

time domain if for any time points t, t′ ∈ K, any time point lies between t

and t′ is also included in K. A time interval K is left-closed (right-closed) if

it contains a minimum element (maximum element).

A variable is a name used to identify state components of a system and

communication channels between components. Each variable v is associated

with a type, type(v), which is the set of values v can take. A valuation

for a set of variables V , maps each v ∈ V with a value in type(v). For a

set of variables V , Val(V) denotes the set of all possible valuations of V .

11

Valuations are denoted by v,x,x′, etc. A variable v is real-valued if Val(v) is

an uncountable set of real numbers. A variable v is finite-valued if Val(v) is

a finite set. For a valuation v of V , the restriction of v to a set of variables

X ⊆ V is denoted by v.X
∆
= v d X.

For a finite set of real-valued variables V with finite size |V | = n, a valu-

ation v can be viewed as a vector in Rn. Formally, an ordering of the set V

is a bijection O : V → [n] that specify each variable to an index. Fixing an

arbitrary ordering, a valuation v can be vectorized as a vector x ∈ Rn, such

that for any component i ∈ [n], xi is specified by the valuation of variable

with index i, that is xi = v(O−1(i)). We write vec(v) = x if the ordering is

clear from the context. Using any vectorization, we translate the metric on

Rn to the space Val(V), such that for any pair of valuations v,v′, the metric

|v−v′| ∆
= |vec(v)− vec(v′)|. For r ≥ 0, Br(v)

∆
= {v′ ∈ Val(V) | |v−v′| ≤ r}

is the closed neighborhood with radius r centered at v. The notions of con-

tinuity, differentiability, and integration are lifted to functions defined over

sets of valuations in the usual way. For a variable v, the dynamic type of v,

dtype(v), is a set of functions from left-closed intervals of its time domain

K ⊆ T to type(v). Roughly, the dynamic type of a variable specifies how its

value can change overtime.

Example 2.1 (Variables). NCPS involves interaction between computing

systems and physical environment, hence models of these systems may have

variables with different static and dynamic types. In this thesis, we study

both real-valued and finite-valued variables evolving in both continuous and

discrete time domains. The real-valued continuous-time variables are useful

for modeling the evolution of physical quantities such as temperature, volt-

age, velocity, etc. On the other hand, variables of software usually update

in a discrete fashion. These variables can either be real-valued, such as the

measurements of physical quantities, or be finite-valued, such as timers.

2.3 Trajectories

Consider a set of variables V where each variable v ∈ V has an identical

time domain time(v) = T. A trajectory for a set of variables V describes

the evolution of the values of the variables over a time interval. Precisely,

a trajectory ξ of V is a function ξ : K → Val(V), where K is a left-closed

12

Figure 2.1: Example of trajectories of continuous-time variables. ξ1 in red
is a trajectory of real-valued continuous-time variables. ξ2 in blue is a
trajectory of finite-valued continuous-time variable.

interval of T with left endpoint equal to 0. For a subset of variables S ∈ V ,

ξ ↓ S : dom(ξ)→ Val(S) is a projection of the trajectory on variables S. We

say that a trajectory ξ is finite if dom(ξ) is upper bounded, closed if dom(ξ)

is (finite) right-closed. If ξ is finite, its limit time is the supremum of dom(ξ),

denoted as ξ. ltime. We write the first state as ξ. fstate = ξ(0). Also if ξ is

closed, we write the last state as ξ. lstate = ξ(ξ. ltime). For any d ∈ T and

any trajectory ξ, a trajectory ξ′ is the d-delayed trajectory of ξ if ξ′(t) = ξ(0)

for any t ≤ d, and ξ′(t) = ξ(t− d) for t− d ∈ dom(ξ). For brevity, we write

ξ′(t) = ξ(t− d) for all t ∈ dom(ξ′).

Example 2.2 (Trajectories). As we discussed in Example 2.1, we consider

four kinds of variables in this thesis. The variables associated with discrete-

time domain N update in steps. Trajectories of these variables can be seen

as sequences of valuations ξ = x0,x1, . . . ,xT . In contrast, continuos-time

variables evolve continuously in time. We present example trajectories of

continuous-time variables in Figure 2.1. ξ1 is a trajectory of a real-valued

continuous-time variable, which is piecewise continuous. In contrast, a tra-

jectory of a finite-valued continuous-time variable, ξ2, is piecewise constant.

13

2.4 Measure and Product Measure

In Chapter 5, we will discuss privacy of CPS based on a probabilistic model.

The formulation and analysis of this problem involves measure theory. For

a set S, a σ-algebra on S is a collection of subsets F ⊆ 2S, such that (i)

F contains the empty set ∅ ∈ F , (ii) F is closed under complement and

countable union. The pair 〈S,F〉 is a measurable space. Any element A ∈ F
in the σ-algebra is a measurable set. A function µ : F → R≥0 is a measure

on the measurable space 〈S,F〉 if (i) the measure of empty set is 0, i.e.

µ(∅) = 0, and (ii) µ is countably additive, such that for any collections

{Ai}∞i=0 of pairwise disjoint sets in F , µ(∪∞i=0Ai) =
∑∞

i=0 µ(Ai). A measure

µ is a probability measure if µ(S) = 1. For a pair of measurable space

〈S,F〉 and 〈T,G〉, a function f : S → T is measurable if the pre-image of

any measurable set G ∈ G is measurable. That is, for any G ∈ G, the set

f−1(G) = {x ∈ S | f(x) ∈ G} is in F .

For a pair of measurable spaces M1 = 〈S1,F1〉 and M2 = 〈S2,F2〉, M =

M1 ×M2 = 〈S,F〉 is the product measurable space if (i) S = S1 × S2 is the

Cartesian product, and (ii) F is the complement and countable union closure

of F1×F2. Suppose measurable spaces M1 and M2 are respectively equipped

with measures µ1 and µ2. The product measure µ1 × µ2 is a measure on the

space M1×M2, where for any A ∈ F , µ1×µ2(A) =
∫
S2
µ1(A(y))dµ2(y) with

A(y) = {x ∈ S1 | (x, y) ∈ A}. We write µn as the product of n number of µ.

14

Chapter 3

VERIFYING INVARIANCE WITH
INPUT-TO-STATE DISCREPANCY

Cyber-physical systems (CPS) are becoming commonplace in safety-critical

applications. Many of these CPSs have geographically or computationally

distributed components, and the communication between components may

experience delays, which arise from transmission, processing, and buffering.

In this chapter, we model these distributed cyber-physical systems (DCPS)

as networked dynamical systems, where the states of the nodes evolve contin-

uously as solutions of ordinary differential equations (ODEs). To aid in the

design and development of such systems, we present algorithmic technique to

verify invariance for networked dynamical systems in this chapter. A stan-

dard method for invariant verification involves computing the set of states

visited by the trajectories (also called the reach set) of the system and check-

ing whether the reach set satisfies the invariance. The problem of computing

reach sets for a dynamical system is challenging because the initial set of

these systems can be uncountable. Hence the number of trajectories is also

uncountable, which makes explicit examination of all trajectories intractable.

Recently, several research groups developed simulation-based approaches

to attain reach set over-approximation and invariant verification of dynam-

ical systems [27, 28, 29, 30, 31, 48]. Roughly, a simulation-based algorithm

computes the reach set of a dynamical system following several steps, as

illustrated in Figure 3.1. First, the algorithm computes a finite cover of

the initial set, each with a representative initial state. Then, for each cover

S, the trajectory from the representative initial state θ is numerically sim-

ulated, namely ξθ. Based on the continuous dependence of trajectories to

initial state, we know that all trajectories starting from the neighborhood of

θ are close to ξθ. With sensitivity analysis of the trajectories to the initial

state, we get quantitative bounds on the distance between trajectories from

the cover S and ξθ. This enables us to compute a tube around ξθ, that con-

tains all trajectories from the cover S. Repeating this process for all covers,

15

Figure 3.1: Simulation-based reach set over-approximation.

we can over-approximate the reach set of the dynamical system.

The precision or the conservativeness of this bound impacts the quality of

the over-approximation. Ttherefore, the performance of verification with the

above strategy. For example, the Lipschitz constant of the dynamic func-

tion f gives a bound on the distance between the neighboring trajectories

that grows exponentially with time. Although checking Lipschitz continuity

is generally undecidable, for certain classes of functions Lipschitz constants

can be inferred from elementary functions [49]. Stronger notions like sensi-

tivity [27], incremental Lyapunov functions [50], and contraction metrics [51]

are used to obtain more practically useful bounds. In [29, 52], the authors

generalized the above notions to a concept of discrepancy functions, which

upper-bound the distance between trajectories using the distance between

their initial states.

3.1 Invariant Verification with IS Discrepancy

Functions

Central to simulation-based verification methods are the techniques for com-

puting discrepancy functions (or for that matter, sensitivity, contraction

metrics and incremental Lyapunov functions). However, there is no gen-

eral method for finding discrepancy functions statically from the syntactic

description of a dynamical system. One typically assumes a template poly-

16

nomial for the candidate function and then solves an optimization problem

to find the coefficients. Recently in [48], the authors presented an on-the-fly

approach for computing a version of locally valid discrepancy function, which

only uses Lipschitz constants and Jacobian matrices.

However, both the static and the on-the-fly methods for computing discrep-

ancy functions face several challenges in verifying networked dynamical sys-

tems. First, finding these discrepancy functions becomes increasingly difficult

for larger networked dynamical systems in which many components interact.

For example, the standard static approaches assume a template polynomial

and solve for the coefficients. However the number of coefficients to solve can

grow exponentially with the number of variables [32]. Same problem exists

in the on-the-fly approach [48], which requires computing eigenvalues of Ja-

cobian matrices. In practice, eigenvalues becomes harder to compute as the

dimension of Jacobian increases. Second, none of the techniques we discussed

above can be directly applied to networks with signal delays, while delays

are pervasive due to message passing, buffering and computation. Last, in

designing networked dynamical systems, one often encounters networks that

have the same components but are interconnected in different topologies.

The existing methods can merely compute discrepancy functions for these

homogenous networks independently without utilizing their similarities.

In this chapter, we address these challenges by introducing a new com-

positional method for bounding distance between trajectories from initial

states that are close to each other. We propose the notion of input-to-state

discrepancy function (IS discrepancy function) for the components of the net-

work. Consider a networked dynamical system A composed with N nodes

{Ai}i∈[N]. Roughly, an IS discrepancy function (Definition 3.4) for a compo-

nent Ai gives a bound on the distance between two trajectories of Ai as a

function of (a) their initial states and (b) the inputs they experience.

Using IS discrepancy of the modules we syntactically construct a reduced

N -dimensional dynamical system M(δ), where the parameter δ defines the

initial state of M . If the interconnections in the original network A has de-

lays then so do the interconnections in the reduced network. We show that

M(δ) has a unique trajectory µ, which gives the discrepancy of the original

network A. Precisely, µ upper-bounds the distance between any pair of tra-

jectories ξx and ξ′x of network A, where the initial states x and x′ are within

δ distance (Theorem 3.7). Thus, by simulating A and (the smaller) M(δ)

17

we can compute the bounded-time reach set over-approximations of A. We

also show that by choosing appropriately small δ’s the over-approximations

computed by the above method can be made arbitrarily precise; modulo the

precision of the numerical simulations (Theorem 3.10).

Using the above results we develop an algorithm for bounded safety ver-

ification of nonlinear dynamical systems that iteratively refines initial set

partitions (Algorithm 3.1). We show that the algorithm is sound and is

guaranteed to terminate whenever the model is robustly safe or unsafe with

respect to a given unsafe set. Our experiments with a prototype implementa-

tion of the algorithm show that the approach achieves best performance when

verifying networks of stable modules with light inter-modular couplings.

The rest of this chapter is arranged as follows. First in Section 3.2 we

discuss related works. In Section 3.3, we formally introduce the model of

networked dynamical systems. We present the definition of the IS discrep-

ancy function in Section 3.4 and the construction of a reduced model with

IS discrepancy functions in Section 3.5. We develop an algorithm to com-

pute reach set over-approximation with the reduced model in Section 3.6.

The algorithm is then applied to verify invariance for linear and nonlinear

networked dynamical system models in Section 3.7.

3.2 Related Works

Invariant verification of cyber-physical systems has been actively studied in

the past two decades [53, 54, 11]. A most commonly used approach for verify-

ing invariance is through computing reach sets. Since the problem of comput-

ing precise reach sets of dynamical system is in general undecidable [55], many

researchers shift to techniques for over-approximating reach sets. Reach sets

of a nonlinear system can be over-approximated using abstractions, which

are interpretations of the original system with more behaviors and simpler

dynamics [56, 57, 58]. Examples of these abstractions include discrete tran-

sition systems [57] and multi-affine systems [56]. If an abstraction satisfies

the invariant, so does the original model. However, one cannot conclude the

inverse if the abstraction violates the invariant. To resolve that, counter-

example-guided abstraction refinement (CEGAR) procedure [58] is adopted

to construct finer abstractions. Although this technique has been successful

18

in many invariant verification case studies, it suffers from the curse of dimen-

sionality as constructing abstractions often involves state space partitioning.

Simulation-based verification techniques over-approximate the reach set of

dynamical and hybrid systems using numerically simulated behaviors [59, 27,

29]. Finitely many simulations alone cannot prove the invariance property.

With sensitivity analysis, a single trajectory can embody trajectories with

neighboring initial states [27, 60]. This idea is then generalized to the notion

of discrepancy between trajectories, which enables a sound and relatively

complete invariant verification algorithm [29, 52, 48].

In [48], the authors developed an on-the-fly approach for computing a

local version of discrepancy that uses only the Lipschitz constants and stati-

cally computed Jacobian matrices. The approach requires estimating upper

bounds on the eigenvalue of the symbolically computed Jacobian of the whole

system. However, in this chapter, we focus on a compositional approach for

computing discrepancy function for networked systems. Our approach can

be combined with the on-the-fly computation for computing a local version

of IS discrepancy that uses only the Lipschitz constants and the Jacobian

matrices of the modules [61].

There has been recent work on verification of delayed differential equations

(see, for example, [62] and the references therein). The algorithm in [62] it-

eratively computes validated simulations of delayed differential equations as

sequences of Taylor over-approximations of time intervals, and verifies safety

property using SMT solvers. Part of its technique can be used in our ap-

proach as a mean for computing validated numerical simulations for delayed

differential equations. Our approach, in addition, involves systematically

generating numerical simulations to refine reach sets and dynamically rea-

soning about sensitivity of interconnecting networks.

3.3 Networked Dynamical System Models

Networked dynamical systems are built-up by composing smaller component

models. In this section, we define component models and the composition

operation. The composition operation we use can model the communication

delay between components.

19

3.3.1 Dynamical System Modules

The dynamical system module is the building block for networked dynamical

systems. A dynamical system module is specified by a collection of ordinary

differential equations (ODEs), possibly with inputs, and a set of initial states.

For reducing notational overhead, we identify output variables with state

variables in this chapter but our results can be extended to systems where

outputs are distinct in a straightforward manner.

Definition 3.1. A dynamical module A is a tuple 〈X,U,Θ, f〉 where

(i) X is a set of variables called the state variables; valuations of X are

called states;

(ii) U is a set of variables called the input variables that are distinct from

the state variables;

(iii) Θ ⊆ Val(X) is a compact set of initial states;

(iv) f : R≥0×Val(X)×Val(U)→ Val(X) is called the dynamic mapping. In

addition, f is continuous in the first argument and Lipschitz continuous

with respect to the other two arguments.

As we discussed in Chapter 2, valuations of the state variables x ∈ Val(X)

and the input variables u ∈ Val(U) can be seen respectively as vectors in R|X|

and R|U |. The space of input signal (U) is the set of all continuous trajectories

of the input variables U . Fixing any input signal η ∈ U and any initial state

θ ∈ Θ, a trajectory of A is uniquely specified of A is ξθ,η : R≥0 → Val(X)

such that (i) ξ(0) = θ, and (ii) for any t ∈ R≥0, the derivative of ξ satisfies

the differential equation

ξ̇(t) = f(t, ξ(t), η(t)). (3.1)

As in Equation (3.1), we will suppress the subscripts of ξ when the depen-

dence on the initial state and the input trajectory are clear from context.

Safety verification problems commonly involve computing the set of trajec-

tories up to some bounded time T > 0. The (global) Lipschitz assumption of

the dynamic mapping f and the piecewise continuity of η guarantee that the

differential Equation (3.1) admits a unique global solution for interval [0, T]

with any time bound T > 0 and any initial state θ ∈ Val(X). In case the

20

trajectories of the system are confined to an invariant set S ⊆ Val(X), the

results in this chapter would hold for a locally Lipschitz continuous f with

L as the Lipschitz constant over S.

A module A without inputs (U = ∅) is said to be closed; otherwise, A is

open. The set of all trajectories of A with respect to a set of initial states

Θ′ ⊆ Θ and a set of input signals U ′ ⊆ U is denoted by T raj(A,Θ′,U ′). We

will drop the argument U ′ for closed modules. The components of modules

A and Ai are denoted by XA, UA,ΘA, fA and Xi, Ui,Θi, fi, respectively.

Example 3.1 (FHN). The FitzHugh-Nagumo (FHN) model [63] is a generic

model for excitable media and can be applied to cardiac cells. The model

has two state variables X = {x, v}, where x models the membrane voltage

of a cardiac cell and v is an internal variable. Initially, the variables x, v take

values in the ranges [1.4, 1.6] and [0, 0.2], respectively. The input variables

for an FHN model are U = {u1, u2, u3}, where u1 and u2 model the voltages

of two neighboring cells and u3 models the input pulse form a pacemaker.

The dynamic of the model is:

ẋ = −x3 + 1.1x2 − 0.12x− v + 0.01u1 + 0.01u2 + u3

v̇ = 0.005x− 0.01v.
(3.2)

Next, for a closed module A we define reachable states and safety. A state

x ∈ Val(X) is T -reachable if there exists a trajectory ξ ∈ T raj(A,Θ) and a

time t ≤ T such that the trajectory ξ(t) = x. The set of T -reachable states

is denoted by ReachA(Θ, [0, T])
∆
= {ξ(t) | t ≤ T, ξ ∈ T raj(A,Θ)}.

Definition 3.2. For ε ≥ 0 and time T ≥ 0, and an open unsafe set Unsafe ⊆
Val(X), A is ε-robustly safe up to T if Bε(ReachA(Θ, [0, T])) ∩ Unsafe = ∅.
If there exists some ε > 0 for which this condition holds, then A is robustly

safe up to T with respect to Unsafe.

3.3.2 Networked Dynamical Systems with Delays

Formally, the composition operation takes a collection of modules and defines

a new dynamical system by plugging-in or identifying the input variables of

one subsystem with state variables of another. The resulting system may still

have input variables that are not identified with any of the state variables.

21

A collection of dynamical modules A = {Ai}i∈[N] are compatible if they do

not share any of the state variables. That is, for any i, j ∈ [N], Xi ∩Xj = ∅.
This condition merely prevents any unforeseen identification of states and

inputs. The collection is closed if ∪i∈[N]Ui ⊆ ∪i∈[N]Xi; that is, as a whole,

the network has no free input variable. In this chapter, we will develop

compositional techniques for analyzing closed networks.

In general, when the output signals from one module are plugged into the

input of another module, the latter may receive these inputs with some delay.

Delays arise from transmission, processing, and buffering. In this chapter,

we assume that all the signals from one module to another are identically

delayed. The signals from the first module to a third module may be delayed

by a different amount from the delay experience by the second module. This

is a reasonable assumption when the delays are dominated by module-level

effects as opposed to the individual variable-related effects.

For a collection of N modules {Ai}i∈[N], a delay matrix d ∈ R≥0
N×N gives

for each ordered pair (i, j) a non-negative time-delay constant d(i, j). All the

input signal from module Ai to module Aj experience the identical delay of

d(i, j). Now that we have defined dynamical modules and the delay matrix

for interconnecting them, we proceed to defining dynamic networks with

delays.

Definition 3.3. For a compatible and closed collection of dynamical modules

{Ai}i∈[N], and a delay matrix d ∈ R≥0
N×N , a networked dynamical system,

denoted by A = ‖d{Ai}i∈[N], is the tuple 〈X,Θ, T 〉, where

(i) X = ∪i∈[N]Xi,

(ii) Θ = {θ ∈ Val(X) | θ d Xi ∈ Θi, for each i}, and

(iii) T is a set of trajectories of A such that ξ ∈ T if and only if for each

i ∈ [N], t ∈ R≥0,

ξ̇i(t) = fi(t, ξi(t), ηi(t)), (3.3)

where ξi = ξ ↓ Xi and for each input variable u ∈ Ui ∩Xj from j to i,

ηi(t) d u = ξj(t− d(i, j)) d u.

It can shown that any initial state θ ∈ Θ uniquely specifies a trajectory of

A. We refer readers to [64] for a general discussion on the existence and

uniqueness of solutions to delayed differential equations. Here we sketch the

22

argument. Recall from Section 2.3 that, for any i, j ∈ [N] and any time

t < d(i, j), we defined the time delay trajectory as ξj(t−d(i, j)) = ξj(0). For

a networked dynamical system A defined above, let dM = maxi,j d(i, j) be

the maximum delay and C = C([−dM , 0],R|X|) be the space of continuous

functions from [−dM , 0] to R|X|. Let Hξ,dM ,t ∈ C be the history of trajectory

ξ of length dM such that Hξ,dM ,t(s) = ξ(t + s), for all s ∈ [−dM , 0]. The

trajectories of the network defined in Equation (3.3) are solutions of the

delayed differential equation ξ̇(t) = f(t,Hξ,dM ,t) with f : R× C → R|X| such

that f is an aggregate of all the N Equations (3.3). Since each fi is continuous

in t and Lipschitz in the other arguments, we can check that f is continuous in

t and Lipschitz in Hξ,dM ,t.
1 From Theorems 2.1 and 2.2 in [64], for any initial

state θ ∈ Θ, a networked dynamical system A has a unique trajectory ξ.

With the set of trajectories T raj(A,Θ) as defined above, the set of bounded

time reachable states ReachA(Θ, [0, T]) of the closed networked dynamical

system A is defined analogously to that of closed dynamical modules.

�̇�# = 𝑓#(𝑥#,𝑣#,𝑢##,𝑢#*,𝑢#+)
�̇�# = 𝑓* 𝑥#,𝑣# 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

�̇�* = 𝑓#(𝑥*,𝑣*,𝑢*#,𝑢**,0)
�̇�* = 𝑓* 𝑥*,𝑣* 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

�̇�+ = 𝑓#(𝑥+,𝑣+,𝑢+#,𝑢+*,0)
�̇�+ = 𝑓* 𝑥+,𝑣+ 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

𝑢## 𝑡 = 𝑥* 𝑡 − 𝑑#,*
𝑢*# 𝑡 = 𝑥#(𝑡 − 𝑑*,#)

𝑢#* 𝑡 = 𝑥+ 𝑡 − 𝑑#,+
𝑢+# 𝑡 = 𝑥#(𝑡 − 𝑑+,#)

𝑢** 𝑡 = 𝑥+ 𝑡 − 𝑑*,+
𝑢+* 𝑡 = 𝑥*(𝑡 − 𝑑+,*)

𝑠𝑡𝑖𝑚(𝑡) = 5
1, 𝑡 ∈ [0,1)
0, 𝑡 ∈ [1,400]

𝑠𝑡𝑖𝑚 𝑡 − 400 , otherwise

𝑢#+ 𝑡 = 𝑠𝑡𝑖𝑚(𝑡)

(a) Network topology and dynamics, where cell 1 is
stimulated by the pacemaker and influences other cells.

(b) A trajectory of cell 1.

(c) A trajectory of cell 3,
with d(1, 3) = 100.

(d) A trajectory of cell 3,
with d(1, 3) = 150.

Figure 3.2: A networked dynamical system with three cells and a
pacemaker and its sample trajectories.

Example 3.2 (Pacemaker-Heart Model). We consider a network of car-

diac cellsA1,A2,A3 stimulated by a pacemaker, as illustrated in Figure 3.2(a).

The cardiac cells follow the FHN model presented in Example 3.1. The net-

work is defined by associating input of each cell Ai to the state of another Aj
with a non-negative delay di,j. The pacemaker is modeled as a rectangular

1The norm on the space C is the L∞ norm defined as |H| = supt∈[−dM ,0] |H(t)|.

23

wave generator with period 450 and duty cycle 2. We simulate the network

by assigning the delays d(1, 2) = d(2, 1) = 70, d(2, 3) = d(3, 2) = 40 and

d(3, 1) = 100 with two different delay values of d(1, 3). A trajectory of cell 1

with d(1, 3) = 100 is plotted in Figure 3.2(b). Two trajectories of cell 3 with

d(1, 3) = 100 and d(1, 3) = 150 are plotted in (c) and (d), respectively. Not

only the trajectory of cell 3 is shifted in time due to different delay value,

but the shape of the trajectories also changes due to the combined inputs

from cells 1 and 2.

3.4 Input-to-State Discrepancy

In this section, we introduce the notion of input-to-state (IS) discrepancy

functions for dynamical system modules and present three approaches for

finding them. In Section 3.5, we will use IS discrepancy to develop the

approaches for computing over-approximations of reachable states.

3.4.1 IS Discrepancy and Witnesses

Roughly, input-to-state discrepancy (IS discrepancy) of a module A bounds

the distance between two trajectories of A in terms of different initial states

and different inputs.

Definition 3.4. For a dynamical module A = 〈X,U,Θ, f〉, a continuous

function V : Val(X)2 → R≥0 is an input-to-state discrepancy function if

(i) ∃ class-K functions α, α such that for any x,x′ ∈ Val(X), α(|x−x′|) ≤
V (x,x′) ≤ α(|x− x′|), and

(ii) ∃β : R≥0 × R≥0 → R≥0 of class-K in the first argument and a class-K
function γ such that for any pair of initial states θ, θ′ ∈ Θ, and pair of

input trajectories η, η′ ∈ T raj(U), and t ∈ R≥0,

V (ξ(t), ξ′(t)) ≤ β(|θ − θ′|, t) +

∫ t

0

γ(|η(s)− η′(s)|)ds, (3.4)

where ξ = T raj(A, θ, η) and ξ′ = T raj(A, θ′, η′).

(α, α, β, γ) are called the witnesses of the IS discrepancy function.

24

The norm | · | is the standard p-norm with p ∈ [1,∞] chosen by the user.

In the rest of the chapter, we make a technical assumption that α−1 and γ

are Lipschitz, and β(·, ·) has a Lipschitz continuous derivative in the second

argument. These assumptions enable us to construct a reduced model with

well-defined trajectories in Section 3.5.1. The discrepancy function (and its

witnesses) bounds the maximum distance between two trajectories in terms of

the `2 distance between their input signals and their initial states. This type

of discrepancy function is motivated by the notion of incremental integral

input-to-state stability of dynamical modules [65], except that we do not

require that for any x ∈ R≥0 that β(x, t) in Equation (3.4) converges to 0 as

t→∞. We assume that the witnesses (α, α, β, γ) are Lipschitz continuous.

3.4.2 Finding IS Discrepancy

In what follows, we describe three well-known methods for obtaining input-

to-state stability proofs and here we note that they can be used to find IS

discrepancy functions.

Lipschitz Dynamics. For any dynamical module A with Lipschitz con-

tinuous dynamic mapping f and for any bounded time, we can find an IS

discrepancy function ofA for that time bound. This version of IS discrepancy

will be sufficient for bounded safety proofs. We note that the problem of com-

puting Lipschitz constant for a function is generally undecidable. However,

for many elementary functions such as trigonometric functions and polyno-

mial functions, the Lipschitz constant can be computed for any compact

set [49]. There are also some heuristics to estimate Lipschitz constant for

general functions [66].

Proposition 3.1. Suppose the dynamic mapping f of module A is Lipschitz

in both arguments with Lipschitz constant L. For any time bound T > 0,

V (x,x′)
∆
= |x−x′| is a discrepancy function with witnesses (α, α, β, γ) where

α(|x−x′|) = α(|x−x′|) = |x−x′|, β(|θ−θ′|, t) = eLt|θ−θ′| and γ(|u−u′|) =

LeLT |u− u′|.

Stable Linear Dynamics. Suppose A has dynamic mapping f(x,u) =

Cx + Du, where C is a n × n matrix and D is a n × m matrix. If C is

25

asymptotically stable, then its input-free trajectories converge exponentially

and we can get an IS dependency function with exponentially convergent

witness β.

Proposition 3.2. For linear module A with dynamic mapping f(x,u) =

Cx + Du with asymptotically stable matrix C, there exists λ > 0, such that

V (x,x′) = |x−x′| is a discrepancy function with witnesses (α, α, β, γ) where

α(|x−x′|) = α(|x−x′|) = |x−x′|, β(|θ−θ′|, t) = e−λt|θ−θ′| and γ(|u−u′|) =

|D||u− u′|.

The positive constant λ can be computed by solving Lyapunov equa-

tion [67].

Incremental Integral ISS Dynamics. The notion of incremental inte-

gral input-to-state stability (incremental integral ISS) of dynamical mod-

ules [65] is a generalization of the standard notion of input-to-state stabil-

ity [68, 69, 50]. A Lyapunov-like theorem of proving incremental integral ISS

as well as a converse Lyapunov theorem are presented in [65]. Given a proof

of an incremental integral ISS property of a module, we automatically get its

IS discrepancy function (with witnesses).

Definition 3.5. A dynamical module A is called incremental-integral-input-

to-state stable (δiISS) if there exists a class-K∞ function α, a class-KL func-

tion β and a class-K function γ such that, for any initial states θ, θ′ ∈ ΘA,

for any input signal η, η′ ∈ UA and any t > 0,

α(|ξ(t)− ξ′(t)|) ≤ β(|θ − θ′|, t) +

∫ t

0

γ(|η(s)− η′(s)|)ds, (3.5)

where ξ = T raj(A, θ, η) and ξ′ = T raj(A, θ′, η′).

Proposition 3.3. Given an incremental integral ISS module A with (α, β, γ)

as in Definition 3.5, then V (x,x′) = α(|x − x′|) is a discrepancy function

with witnesses (α, α, β, γ) where α(|x− x′|) = α(|x− x′|) = α(|x− x′|), and

β, γ given above.

Proposition 3.1 establishes an IS discrepancy function only using the Lip-

schitz constant of the dynamic mapping f . Although, computing Lipschitz

constants of arbitrary functions is undecidable in general, for certain classes

26

of polynomial functions it can be estimated [49]. However, even if the dynam-

ics of the module is stable, IS discrepancy functions obtained by this method

have witnesses β and γ that grow exponentially with time. Incremental-

integral-input-to-state stability (Definition 3.5) can be proved by construct-

ing an incremental Lyapunov function [65]. For some dynamical models with

physical implications, the incrememtal Lyapunov function may capture the

energy of the system. However, constructing the incremental Lyapunov func-

tion is in general a non-trivial problem.

For modules with linear dynamics, IS discrepancy can be computed auto-

matically using Proposition 3.2. For nonlinear modules, we refer the readers

to Algorithm 2 of [61], which is an algorithm that computes a local version

of discrepancy function and witnesses that satisfy all these assumptions.

3.5 Small Approximations from IS Discrepancy

In this section we construct a scalar (one-dimensional) approximation for

each |Xi|-dimensional dynamical module Ai = 〈Xi, Ui,Θi, fi〉 (Definition 3.6)

in a network, using input-to-state discrepancy functions. For the sake of

a cleaner presentation, we develop the results for a network consisting of

two |X1| and |X2|-dimensional modules A1 and A2 with a two-dimensional

approximation. The general results follow by straightforward extension and

are stated in Section 3.5.4.

3.5.1 IS Approximation of ‖d{A1,A2}

Consider a closed networked dynamical system A = ‖d{A1,A2} composed

of two modules A1 = 〈X1, U1,Θ1, f1〉 and A2 = 〈X2, U2,Θ2, f2〉 and a delay

matrix d ∈ R≥0
2×2. The input signals U2 of A2 are obtained from X1 delayed

by d(2, 1) and the input signals U1 of A1 are obtained from X2 delayed by

d(1, 2). Let Vi be an IS discrepancy function for Ai, i ∈ {1, 2} with witness

(αi, αi, βi, γi). For any pair of initial states θ, θ′ in ΘA, let ξ = T raj(A, θ)
and ξ′ = T raj(A, θ′) be the unique trajectories of the network A starting

from θ and θ′, respectively. We define θi = θ d Xi, θ
′
i = θ′ d Xi, ξi = ξ ↓ Xi

and ξ′i = ξ′ ↓ Xi. From Definition 3.3, the restriction of ξi and ξ′i to Xi are

trajectories of Ai from θi and θ′i. From Definition 3.4, for every t ∈ [0, T] the

27

following holds:

V1(ξ1(t), ξ′1(t)) ≤ β1(|θ1 − θ′1|, t) +

∫ t

0

γ1(|ξ2(s− d(1, 2))− ξ′2(s− d(1, 2))|)ds,

V2(ξ2(t), ξ′2(t)) ≤ β2(|θ2 − θ′2|, t) +

∫ t

0

γ2(|ξ1(s− d(2, 1))− ξ′1(s− d(2, 1))|)ds.

(3.6)

Recall that when a trajectory ξ is evaluated at t < 0, we use the valuation

ξ(t) = ξ(0). Next, we introduce the key notion of a family of IS approxi-

mations for A. Each approximation is parameterized by non-negative reals

δ1, δ2 ≥ 0 and is a closed networked dynamical system M with two main

variables m1 and m2. As we shall see in Theorem 3.7, at any time t, m1 gives

an upper bound on the distance between two state trajectories of A1 that

start from neighboring states at most δ1 apart. Similarly, m2 gives an upper

bound on neighboring trajectories of A2. Of course, the distance between

two neighboring state trajectories of A1 depends on (a) their initial states

and (b) on the inputs they experience. These inputs in turn are delayed

versions of the state trajectories of A2. So, the dynamics of m1 (and m2)

takes into account the impact of both of these factors using the witnesses of

the IS discrepancy functions. Since β1 and β2 witnesses bound the impact of

initial states on the discrepancy as a function of time, the dynamics of m1

(and m2) are time varying.

Definition 3.6. For a pair of non-negative constants (δ1, δ2), the (δ1, δ2)-IS

approximation of a networked dynamical system A = ‖d{A1,A2} is a closed

networked dynamical system M = 〈XM ,ΘM , TM〉 where

(i) XM = {m1,m2},

(ii) ΘM = {θ} where θ d mi = βi(δi, 0), for i ∈ {1, 2}, and

(iii) for any trajectory µ of XM , µ ∈ TM if and only if

µ̇1(t) = β̇1(δ1, t) + γ1α
−1
2 (µ2(t− d(1, 2))),

µ̇2(t) = β̇2(δ2, t) + γ2α
−1
1 (µ1(t− d(2, 1))).

(3.7)

Here µi = µ ↓ mi and β̇i(δi, t) is a short hand for ∂
∂t
βi(δi, t).

28

Recall from Section 2.1 that γ1α
−1
2 and γ2α

−1
1 are the function compositions

γ1 ◦ α−1
2 and γ2 ◦ α−1

1 , respectively. The dynamics of the closed reduced

network M is defined syntactically in terms of the IS discrepancy functions

of the dynamic modules A1 and A2 and the delay matrix. The witness

functions α−1
1 , γ1, etc., are Lipschitz continuous and Lipschitz functions are

closed under composition. Therefore, the delay differential Equation (3.7)

has a unique solution. Since M has a single initial state, it is completely

deterministic. Note that both the initial state and the dynamics of M depend

on the choice of the parameters δ1 and δ2. In Theorem 3.7 we relate m1 and

m2 with the divergence between trajectories of A1 and A2. Specifically, if

µ is the trajectory of a (δ1, δ2)-IS approximation then µi = µ ↓ mi(t) gives

an upper bound on the distance between the trajectories of Ai starting from

initial states that are at most δi apart.

3.5.2 Over-Approximation with IS Discrepancy

For any pair of non-negative reals δ = (δ1, δ2) and any state x ∈ Val(XA),

we define

Bδ(x) = Bδ1(x d X1)× Bδ2(x d X2)

as the product of the δi-balls around x d Xi. Given a pair of discrepancy

functions V = (V1, V2) for A1 and A2, a state m ∈ Val(XM) of M naturally

defines a sublevel set LV (m) ⊆ Val(XA)× Val(XA):

LV (m) = {(x,x′) | ∀i ∈ {1, 2}, Vi(x d Xi,x
′ d Xi) ≤m d mi}.

This set is the intersection of the (m d mi)-sublevel sets of Vi. For a state

x ∈ Val(XA) of A and a state m ∈ Val(XM) we define

BVm(x) = {x′ ∈ Val(XA) | (x,x′) ∈ LV (m)}

as the subset of states of A for which (x,x′) lies in the sublevel set defined

by m.

We will now prove a sequence of results that ultimately established in

Lemma 3.6 that the trajectory of M gives an upper bound on the discrepancy

29

of A. That is, at any time t ≥ 0,

β1(|θ1 − θ′1|, t) +

∫ t

0

γ1(|ξ2(s− d(1, 2))− ξ′2(s− d(1, 2))|)ds ≤ µ1(t)

β2(|θ2 − θ′2|, t) +

∫ t

0

γ2(|ξ1(s− d(2, 1))− ξ′1(s− d(2, 1))|)ds ≤ µ2(t).

(3.8)

From the construction of M , we observe that at time t = 0, the above inequal-

ities hold. Moreover, the first derivatives of the right-hand sides upper-bound

those of the left-hand sides at time t = 0. However, this property at t = 0

does not immediately generalize to all t > 0. In our proof, we first construct

a strict upper bound of the left-hand sides of Equation (3.8) that holds for

all t, and then show that this bound converges to µ(·).
First, for any positive ε > 0, we construct a pair of ε-factor trajectories

(µ1ε, µ2ε) with derivatives ε-close to the trajectory of µ in Equation (3.7) and

show that these trajectories strictly upper-bound the discrepancy functions

of V1 and V2.

For any δ1, δ2 ≥ 0 and any ε > 0, a pair of trajectories µ1ε, µ2ε : R≥0 → R≥0

are defined as solutions to the differential equations:

µ̇1ε(t) = β̇1(δ1, t) + γ1α
−1
2 (µ2ε(t− d(1, 2))) + ε, and

µ̇2ε(t) = β̇2(δ2, t) + γ2α
−1
1 (µ1ε(t− d(2, 1))) + ε, (3.9)

with µ1ε(0) = β1(δ1, 0) + ε and µ2ε(0) = β2(δ2, 0) + ε. The right-hand side

of Equation (3.9) is Lipschitz, and therefore, the solutions µ1ε and µ2ε are

well-defined differentiable functions of time. For any two initial states of A,

θ, θ′, we define two differentiable functions g1, g2 : R≥0 → R:

g1(t) = µ1ε(t)− β1(δ1, t)−
∫ t

0
γ1(|ξ2(s− d(1, 2))− ξ′2(s− d(1, 2))|)ds,

g2(t) = µ2ε(t)− β2(δ2, t)−
∫ t

0
γ2(|ξ1(s− d(2, 1))− ξ′1(s− d(2, 1))|)ds.

(3.10)

Recall that ξ = T raj(A, θ) and ξ′ = T raj(A, θ′) are the trajectories of A
starting from θ and θ′. The following proposition states that if g1(t), g2(t)

are positive for all t ≥ 0, then the distance between trajectories ξ and ξ′ are

bounded by (µ1ε, µ2ε).

Proposition 3.4. Consider any non-negative pair δ = (δ1, δ2) and initial

30

states θ, θ′ ∈ ΘA such that θ′ ∈ Bδ(θ). Let ξ = T raj(A, θ) and ξ′ =

T raj(A, θ′). Then, for any ε > 0, t ≥ 0, if g1(t), g2(t) > 0, then

V1(ξ1(t), ξ′1(t)) < µ1ε(t), and V2(ξ2(t), ξ′2(t)) < µ2ε(t).

Proof. Here we prove the bound for V1; the bound for V2 follows by symmetry.

For any t ≥ 0, since g1(t) > 0, from Equatoin (3.10) we have

µ1ε(t) > β1(δ1, t) +

∫ t

0

γ1(|ξ2(s− d(1, 2))− ξ′2(s− d(1, 2))|)ds. (3.11)

From θ′ ∈ Bδ(θ), we have |θ1 − θ′1| ≤ δ1. Since β1(·, t) is a class-K function,

it follows that

β1(δ1, t) ≥ β1(|θ1 − θ′1|, t).

Thus, Equation (3.11) becomes

µ1ε(t) > β1(|θ1 − θ′1|, t) +

∫ t

0

γ1(|ξ2(s− d(1, 2))− ξ′2(s− d(1, 2))|)ds.

By applying Equation (3.6), it follows that

µ1ε(t) > β1(|θ1 − θ′1|, t) +
∫ t

0
γ1(|ξ2(s− d(1, 2))− ξ′2(s− d(1, 2))|)ds

≥ V1(ξ1(t), ξ′1(t)).

The next lemma establishes that we can drop the assumption about the

positivity of g1 and g2 and still arrive at the conclusion of Proposition 3.4.

Lemma 3.5. Consider any non-negative pair δ = (δ1, δ2), and initial states

θ, θ′ ∈ ΘA such that θ′ ∈ Bδ(θ). Let ξ = T raj(A, θ) and ξ′ = T raj(A, θ′).

Then, for any ε > 0, t ≥ 0,

V1(ξ1(t), ξ′1(t)) < µ1ε(t) and V2(ξ2(t), ξ′2(t)) < µ2ε(t).

Proof. By Proposition 3.4, it suffices to prove that for all t ≥ 0, g1(t), g2(t) >

0. At t = 0, by Equation (3.10)

g1(0) = β1(δ1, 0) + ε− β1(δ1, 0) = ε > 0.

31

Similarly, g2(0) > 0. Suppose for the sake of contradiction that ta > 0 is the

first time when g1(t), g2(t) > 0 is violated. From the continuity of g1, g2, we

have that the both of the following conditions hold:

(i) g1(t), g2(t) > 0 for all t ∈ [0, ta), and

(ii) g1(ta) = 0 or g2(ta) = 0.

Without loss of generality, we assume g1(ta) = 0. From the mean value

theorem, we know that there exists some time tb ∈ (0, ta) such that

ġ1(tb) =
g1(0)− g1(ta)

0− ta
≤ − ε

ta
< 0. (3.12)

We can bound the derivative ġ1(tb) as:

ġ1(tb) = µ̇1ε(tb)−
d

dt

(
β1(δ1, tb) +

∫ tb

0

γ1(|ξ2(s− d(1, 2))− ξ′2(s− d(1, 2))|)ds
)
.

Plugging the right-hand side of Equation (3.9) into the above equation, it

follows:

ġ1(tb) = β̇1(δ1, tb) + γ1α
−1
2 (µ2ε(tb − d(1, 2))) + ε

−β̇1(δ1, tb)− γ1(|ξ2(tb − d(1, 2))− ξ′2(tb − d(1, 2))|)

= ε+ γ1α
−1
2 (µ2ε(tb − d(1, 2)))− γ1(|ξ2(tb − d(1, 2))− ξ′2(tb − d(1, 2))|).

(3.13)

From condition (i), we know g2(tb − d(1, 2)) > 0. It follows from Proposi-

tion 3.4 that

µ2ε(tb − d(1, 2)) > V2(ξ2(tb − d(1, 2)), ξ′2(tb − d(1, 2))). (3.14)

From Definition 3.4, we have V2(ξ2(tb), ξ
′
2(tb)) ≥ α2(|ξ2(tb− d(1, 2))− ξ′2(tb−

d(1, 2))|). Equation (3.14) yields µ2ε(tb − d(1, 2)) > α2(|ξ2(tb − d(1, 2)) −
ξ′2(tb − d(1, 2))|). Because γα−1

2 is a class-K function, it follows that

γ1α
−1
2 (µ2ε(tb − d(1, 2))) ≥ γ1(|ξ2(tb − d(1, 2))− ξ′2(tb − d(1, 2))|).

Combining the above equation with Equation (3.13), we have that ġ1(tb) ≥
ε > 0, which contradicts Equation (3.12).

32

Lemma 3.5 shows that for any ε > 0, the ε-factor trajectories µ1ε and µ2ε

give strict upper bounds on the distance between corresponding trajectories

of the original modules A1 and A2. In the following lemma, we show that as

ε→ 0, µiε converges to the trajectory µ ↓ mi; recall that µ is the trajectory

of the IS approximation M . It follows that the trajectory µ indeed bounds

the divergence of any trajectories of A.

Lemma 3.6. Consider any non-negative pair δ = (δ1, δ2) and initial states

θ, θ′ ∈ ΘA such that θ′ ∈ Bδ(θ). Let ξ = T raj((A, θ)), ξ′ = T raj((A, θ′)),

and µ be the trajectory of A’s (δ1, δ2)-IS approximation M . Then for all

t ≥ 0,

(ξ(t), ξ′(t)) ∈ LV (µ(t)).

Proof. For brevity we write µ ↓ mi as µi. By integrating both sides of

Equation (3.7) with initial condition µ1(0) = β1(δ1, 0) and µ2(0) = β2(δ2, 0),

we have,

µ1(t) = β1(δ1, t) +
∫ t

0
γ1α

−1
2 (µ2(s− d(1, 2)))ds,

µ2(t) = β2(δ2, t) +
∫ t

0
γ2α

−1
1 (µ1(s− d(2, 1)))ds.

(3.15)

Similarly, by integrating Equation (3.9), we have

µ1ε(t) = β1(δ1, t) +
∫ t

0
γ1α

−1
2 (µ2ε(s− d(1, 2)))ds+ ε(1 + t),

µ2ε(t) = β2(δ1, t) +
∫ t

0
γ2α

−1
1 (µ1ε(s− d(2, 1)))ds+ ε(1 + t).

(3.16)

Define h(t)
∆
= |µ1(t)− µ1ε(t)|+ |µ2(t)− µ2ε(t)|. Plugging in Equations (3.15)

and (3.16) into the definition of h(t), we have,

h(t) ≤ 2ε(t+ 1) +
∫ t

0
|γ1α

−1
2 (µ1ε(s− d(1, 2)))− γ1α

−1
2 (µ1(s− d(1, 2)))|ds

+
∫ t

0
|γ2α

−1
1 (µ2ε(s− d(2, 1)))− γ2α

−1
1 (µ2(s− d(2, 1)))|ds.

(3.17)

We will bound the two integrals of above inequality in Equations (3.18)

and (3.19). The property of delay function implies that for any t ∈ [0, d],

33

µ(t− d) = µ(0). By splitting the integral intervals, we have,

∫ t
0
|γ1α

−1
2 (µ1ε(s− d(1, 2)))− γ1α

−1
2 (µ1(s− d(1, 2)))|ds

=
∫ d(1,2)

0
|γ1α

−1
2 (µ1ε(0))− γ1α

−1
2 (µ1(0))|ds

+
∫ t−d(1,2)

0
|γ1α

−1
2 (µ1ε(s))− γ1α

−1
2 (µ1(s))|ds

≤ d(1, 2)|γ1α
−1
2 (µ1ε(0))− γ1α

−1
2 (µ1(0))|

+
∫ t

0
|γ1α

−1
2 (µ1ε(s))− γ1α

−1
2 (µ1(s))|ds.

(3.18)

By using the same trick, we rewrite the last term of Equation (3.17) as

∫ t
0
|γ2α

−1
1 (µ2ε(s− d(2, 1)))− γ2α

−1
1 (µ2(s− d(2, 1)))|ds

≤ d(2, 1)|γ2α
−1
1 (µ2ε(0))− γ2α

−1
1 (µ2(0))|ds

+
∫ t

0
|γ2α

−1
1 (µ2ε(s))− γ2α

−1
1 (µ2(s))|ds.

(3.19)

From the Lipschitz property of γ1α
−1
2 and γ2α

−1
1 , we can find a constant

L > 0 such that |γ1α
−1
2 (µ1ε(t)) − γ1α

−1
2 (µ1(t))| ≤ L|µ1(t) − µ1ε(t)| and

|γ2α
−1
1 (µ2ε(t)) − γ2α

−1
1 (µ2(t))| ≤ L|µ2(t) − µ2ε(t)|. Using the Lipschitz con-

dition with Equations (3.18) and (3.19), Equation (3.17) becomes

h(t) ≤ 2ε(t+ 1 + LdM) +

∫ t

0

Lh(s)ds,

with dM = max{d(1, 2), d(2, 1)}. By Gronwall-Bellman inequality [70], it

follows that

h(t) ≤ 2ε(t+ 1 + LdM) + 2εL

∫ t

0

(s+ 1 + LdM)eL(t−s)ds. (3.20)

It follows that for any t ∈ R≥0, the integral
∫ t

0
(s + 1)eL(t−s)ds is bounded.

Thus h(t) → 0 as ε → 0, which implies both |µ1(t) − µ1ε(t)| → 0 and

|µ2(t) − µ2ε(t)| → 0 as ε → 0. Using Lemma 3.5, and taking the limit of

ε→ 0, it follows that

V1(ξ1(t), ξ′1(t)) ≤ µ1(t) and V2(ξ2(t), ξ′2(t)) ≤ µ2(t).

That is, for any t ≥ 0, (ξ(t), ξ′(t)) ∈ LV (µ(t)).

34

Theorem 3.7 states that the reach set of any (large) networked dynamical

system A = ‖d{A1,A2} from a set of states can be over-approximated by

bloating an individual execution ξ of A by a factor that is entirely determined

by (a) IS discrepancy functions V1 and V2 of its (smaller) modules, and (b)

the trajectory µ of the reduced (two-dimensional) dynamical system M that

is its IS approximation.

Theorem 3.7. Consider a networked dynamical system A = ‖d{A1,A2}
with IS discrepancy functions V = (V1, V2). Let ξ = T raj(A, θ) for some

initial state θ ∈ ΘA. For any non-negative pair δ = (δ1, δ2) suppose µ is the

trajectory of the (δ1, δ2)-IS approximation M . Then, for any T ≥ 0

ReachA(Bδ(θ), [0, T]) ⊆
⋃

t∈[0,T]

BVµ(t)(ξ(t)).

Proof. This follows from the bounds on the distance between trajectories

established above. For any x ∈ ReachA(Bδ(θ), [0, T]), there exists an initial

state θ′ ∈ Bδ(θ), a trajectory ξ′ = T raj(A, θ′) and a time t ∈ [0, T] such

that ξ′(t) = x. It follows by Lemma 3.6 that (ξ(t), ξ′(t)) ∈ LV (µ(t)), and

therefore, x ∈ BVµ(t)(ξ(t)).

Theorem 3.7 establishes an over-approximation of the set of reachable

states from a δ-ball Bδ(θ). To compute the set of reachable states from a

compact initial set ΘA, we can proceed as usual by first computing a δ-cover

of ΘA, and then computing the union of reach sets of the covers using the

theorem.

Theorem 3.7 does not require A to be stable or any global property to

hold for the IS discrepancy functions. To use Theorem 3.7 we need to (a)

find IS discrepancy functions for the modules, and (b) compute individual

trajectories ξ of complete network A and µ of M . Fortunately, for large

classes of nonlinear dynamical systems there exist scalable numerical tech-

niques for (b). This is one of the motivations of this work. For linear and

some special classes of nonlinear systems (a) can be solved automatically (see

Section 3.4.2). For nonlinear models, we refer the readers to [61], where we

present an algorithmic approach for computing local versions of the discrep-

ancy function.

35

3.5.3 Precision of the IS Approximation

The error in the over-approximation obtained from the reduced model is

determined by the trajectories of the reduced model. In the following, we

show that the over-approximation error can be made arbitrarily small with

sufficiently small but positive δ1, δ2.

Lemma 3.8. Consider any T > 0, t ∈ [0, T], and a sequence of pairs of

positive reals δk = (δk1 , δ
k
2) converging to (0, 0). For the trajectory (µk) of

the corresponding (δk1 , δ
k
2)-IS approximation Mk, |(µk ↓ mi)(t)| → 0 for i ∈

{1, 2}.

Proof. Fix a T > 0 and δk = (δk1 , δ
k
2). This defines the (δk1 , δ

k
2)-IS approxi-

mation Mk and its trajectory µk. We will prove that for all t ∈ [0, T],

|(µk ↓ m1)(t)|+ |(µk ↓ m2)(t)| → 0,

as δk → 0. From here on, we drop the superscript k and use the notations

setup earlier: µi = µ ↓ mi, etc.

From the first row in Equation (3.15), applying the same trick as Equa-

tion (3.18), we have that

|µ1(t)| ≤ β1(δ1, t) + d(1, 2)|γ1α
−1
2 (µ2(0))|+

∫ t

0

|γ1α
−1
2 (µ2(s))|ds. (3.21)

From the Lipschitz property of γ1α
−1
2 , there exists some L > 0, such that

|γ1α
−1
2 (µ2(s))−γ1α

−1
2 (0)| ≤ L|µ2(s)−0|. Since γ1α

−1
2 is of class-K, it follows

that

|γ1α
−1
2 (µ2(s))| ≤ L|µ2(s)|.

From Equation (3.15), we observe that for i ∈ {1, 2}, µi(t) are non-negative

scalars. We drop the absolute value symbols | · |. Then Equation (3.21)

reduces to

|µ1(t)| ≤ β1(δ1, t) + d(1, 2)Lβ1(δ1, 0) +

∫ t

0

L|µ2(s)|ds. (3.22)

Since β1(δ1, t) is bounded in compact intervals, we define

CT
1 (δ1) = sup

t∈[0,T]

β1(δ1, t), (3.23)

36

as the upper bound of the function β1(·, t) in interval t ∈ [0, T]. It follows

from Equation (3.22) that

|µ1(t)| ≤ CT
1 (δ1) + d(1, 2)Lβ1(δ1, 0) +

∫ t

0

L|µ2(s)|ds. (3.24)

Starting from the second row of Equation (3.15), and following similar steps

from Equations (3.21)-(3.24), we have,

|µ2(t)| ≤ CT
2 (δ2) + d(2, 1)Lβ2(δ2, 0) +

∫ t

0

L|µ1(s)|ds. (3.25)

Summing up Equations (3.24) and (3.25), by applying the Gronwall-Bellman

inequality, we have

|µ1(t)|+ |µ2(t)| ≤ (CT
1 (δ1)+CT

2 (δ2)+d(1, 2)Lβ1(δ1, 0)+d(2, 1)Lβ2(δ2, 0))eLt.

For i ∈ {1, 2}, βi(·, ·) is a class-K function in the first argument, thus

βi(δ
k
i , 0)→ 0 and Ci(δ

k
i)→ 0 as δki → 0. It follows that, |µk1(t)|+ |µk2(t)| → 0

as δk → 0.

Proposition 3.9 follows from the fact that for i ∈ {1, 2}, for any x,x′ ∈ Xi,

αi(x− x′) ≤ Vi(x,x
′) (Definition 3.4).

Proposition 3.9. For dynamical system A with discrepancy function V =

(V1, V2), fix any x ∈ XA. For any ε > 0, there exists r > 0, such that

BVr (x) ⊆ Bε(x).

Using Lemma 3.8 and Proposition 3.9, the next theorem bounding the

error on the over-approximation of the reach set follows in a straightforward

fashion.

Theorem 3.10. Consider a closed dynamical system A = ||d{A1,A2} with

IS discrepancy V = (V1, V2). Let ξ = T raj(A, θ) for some initial state

θ ∈ ΘA. For any ε > 0, there exists a positive pair δ1, δ2 > 0, such that for

A’s (δ1, δ2)-IS approximation M , for any T ≥ 0,⋃
t∈[0,T]

BVµ(t)(ξ(t)) ⊆ Bε(ReachA(Bδ(θ), [0, T])),

where µ is the unique trajectory of M .

37

If the over-approximation obtained from Theorem 3.7 is not precise enough

to prove safety, then, we can refine the parameters δ1 and δ2. Then we can

compute BVµ(t)(ξ(t)) for each of the smaller partitions with higher precision.

This is the standard approach used in simulation-based verification [52, 31,

71]. In the next section, we present this algorithm in more detail.

3.5.4 Generalizing to Arbitrary Networked Dynamical
Systems

The approximation and its analysis presented in the previous section can

be extended to closed networked dynamical systems. Let {Ai}i∈[N] be a

compatible closed collection of dynamic modules and d ∈ R≥0
N×N be a delay

matrix. Let A = ||d{Ai}i∈[N] be the corresponding closed dynamic network.

For any pair of trajectories ξ, ξ′ ∈ T raj(A,Θ), and for each i ∈ [N], we

define ξi = ξ ↓ Xi and ξ′i = ξ′ ↓ Xi. The next definition gives a natural

generalization of Definition 3.4 to account for dynamical modules that take

inputs from more than one module in the network.

Definition 3.7. Let Ai = 〈Xi, Ui, θi, fi〉 be a dynamic module receiving

input signals from a collection of modules {Aj}j∈Ui∩Xj
. An input-to-state

discrepancy function for Ai (in this environment) is a continuous function

Vi : Val(X)2 → R≥0 with class-K witnesses (αi, αi, βi) and {γij}(i,j):Ui∩Xj 6=∅,

such that

(i) for any x,x′ ∈ Val(Xi), αi(|x− x′|) ≤ Vi(x,x
′) ≤ αi(|x− x′|), and

(ii) for any pair of initial states θ, θ′ ∈ Θi and input signals ηij, η
′
ij ∈

Traj(Ui ∩Xj) from module Aj to Ai, for each t ≥ 0

Vi(ξi(t), ξ
′
i(t)) ≤βi(|θ − θ′|, t) +

∫ t

0

∑
j:Xj∩Ui 6=∅

γij(|ηij(s)− η′ij(s)|)ds,

where ξi and ξ′i are the trajectories of Ai from initial state θ (θ′ respec-

tively) and with input signal ηij (η′ij respectively) from module Aj.

The set {Aj|Xj ∩ Ui 6= ∅} is the set of modules that provide inputs to

module Ai. Definition 3.7 allows each Aj providing an input to Ai to have

a different witness γij to the discrepancy function Vi. This flexibility also

38

permits the input signals from different modules to experience delays to dif-

ferent degrees. Generalizing Definition 3.6, the IS approximation of A is a

N -dimensional closed deterministic dynamical system M .

Definition 3.8. For any δ = (δ1, . . . , δN) ∈ RN
≥0, the δ-IS approximation of

A = ||d{Ai}i∈[N] is a dynamical network M = 〈XM ,ΘM , TM〉, where

(i) XM = {m1,m2, . . . ,mN},

(ii) ΘM = {θ}, where θ d mi = βi(δi, 0), for each i ∈ [N], and

(iii) for any trajectory µ of XM , µ ∈ TM if and only if

µ̇i(t) = β̇i(δi, t) +
∑

j:Xj∩Ui 6=∅

γijα
−1
j (µj(t− d(i, j))),

where µi = µ ↓ mi.

The dynamics of the closed reduced network M is defined syntactically in

terms of the IS discrepancy functions of the constituent modules {Ai}i∈[N]

and the delay matrix d. Once again, from the Lipschitz continuity of the

right-hand side it follows that the delay differential equation has a unique

solution. The IS approximation M of the original dynamical network A is an

N -dimensional system. The construction of M is defined syntactically only

using (a) information of individual modules (IS discrepancy functions etc.)

and (b) the topology and delay matrix for composition. An N -dimensional

analogue of Theorems 3.7 and 3.10 giving approximations of ReachA(Θ, [0, T])

in terms of µ(·) can be proven essentially following the same steps.

3.6 Verification Algorithm

Theorem 3.7 gives us a recipe for verifying bounded time invariants (or safety

properties) of closed networks, only by numerically computing trajectories of

the whole network A and the trajectories of the statically computed reduced

IS approximation M . That is, detailed static analysis of the complete model

A becomes unnecessary in this method. In this section, we develop this idea

further and provide the details of the verification algorithm.

The algorithm involves simulations or numerical computation of trajec-

tories of dynamical systems. We proceed by first defining what we mean

39

by simulations. Given a closed networked dynamical system A without de-

lay (d(i, j) = 0 for all i, j), an initial state θ, let ξ = Traj(A, θ) be the

actual trajectory of A from the initial state θ. For a step size τ > 0,

validated ODE solvers such as [72, 73, 74] compute a sequence of boxes

R1, R2, . . . , Rl ⊆ Val(XA), such that for each k ∈ [l], t ∈ [(k − 1)τ, kτ],

ξ(t) ∈ Rk. For a desired error bound ε > 0, by reducing the step size τ , the

diameter of Rk can be made smaller than ε. For delayed differential equa-

tions, there are existing techniques for numerical simulation [62, 75, 76, 77].

Several of these reduce the problem to simulating ODEs [78]. Specifically,

the simulations generated in [62] have validated error bounds. Our safety

verification algorithm assumes the availability of a subroutine Simulate for

computing numerical simulations that meet Definition 3.9.

Definition 3.9. Consider a closed network A, an initial state θ, a time

bound T , an error bound ε > 0, and time step τ > 0. Let ξ = T raj(A, θ)
denote the trajectory of A from the initial state θ. A (θ, T, ε, τ)-simulation

trace is a finite sequence φ = 〈R0, t0〉, 〈R1, t1〉, . . . , 〈Rl, tl〉 where

(i) t0 = 0, tl = T , and ∀ k ∈ [l], tk − tk−1 ≤ τ ,

(ii) ∀k ∈ [l] and ∀t ∈ [tk−1, tk], ξ(t) ∈ Rk, and

(iii) ∀k ∈ [l], dia(Rk) ≤ ε.

In Algorithm 3.1 the subroutine Simulate(A, θ, T, ε, τ) (line 5,20) com-

putes a (θ, T, ε, τ)-simulation of the network A as defined above. For the

completeness of the algorithm, it is required that for any precision parame-

ters ε, τ > 0, a simulation trace fulfilling this condition can be computed.

The algorithm takes several inputs: (a) the system model A = ‖d{Ai}i∈[N],

(b) the unsafe set Unsafe ⊆ Val(XA), (c) initial partition parameter δ0,

simulation parameter ε0, and the time bound T , and (d) a collection of IS

discrepancy functions and witnesses for the modules {Vi, αi, αi, βi, {γji}} .

The algorithm proceeds as follows: The set C computed in line 2 is a finite

set of triples {(θc, δ, ε)}c∈|C|, such that {θc}c∈|C| is a δ-cover of the initial set

ΘA. Each θc is associated with a precision parameter ε > 0 and positive

real-valued vector δ. For each triple (θ, δ, ε) in the cover set C, the algorithm

first computes a simulation trace ψ = 〈R0, t0〉, . . . , 〈Rp, tp〉 containing the

trajectory ξ = T raj(A, θ) of the (large) networked dynamical system A

40

Algorithm 3.1 Bounded verification algorithm

1: δ ← δ0; ε← ε0;R ← ∅;
2: C ← Partition(ΘA, δ, ε);
3: while C 6= ∅ do
4: for (θ, δ, ε) ∈ C do
5: ψ ← Simulate(A, θ, T, ε, τ);
6: S ← BloatWithISD(ψ, d, δ, ε, τ, {Vi, αi, αi, βi, {γij}});
7: if S ∩ Unsafe = ∅ then
8: C ← C\{(θ, δ, ε)};R ← R∪ S ;
9: else if ∃k,Rk ⊆ Unsafe then

10: return (UNSAFE,R);
11: else
12: C ← C\{(θ, δ, ε)};
13: C ← C ∪ Partition(ΘA ∩ Bδ(θ), δ2 ,

ε
2
)

14: end if
15: end for
16: end while
17: return (SAFE,R);
18: function BloatWithISD(ψ, d, δ, ε, τ, {Vi, αi, αi, βi, {γij}})
19: M ← ISApprox (δ, d, {Vi, αi, αi, βi, {γij}});
20: φ← Simulate(M, θM , T, ε, τ);
21: ρ← SupByTime(φ);
22: S ← BVρ (ψ);
23: return S;
24: end function

(line 5). Then the subroutine BloatWithISD bloats the trace ψ to get a tube

S (line 6). We claim that the tube S contains the set of states of A reachable

from the set of initial state Bδ(θ). Then the algorithm checks whether this

tube is safe or unsafe. If neither of these cases can be deduced then the part

of the initial set Bδ(θ) is further refined by adding a new partition to C.
The subroutine BloatWithISD is detailed in lines 18-24. First, an δ-IS

approximation M (line 19) is constructed following Definition 3.8. The

Simulate subroutine is then used again to compute a simulation trace φ =

〈Q0, t0〉, . . . , 〈Qp, tp〉 of the trajectory µ = T raj(M, θM), of the (smaller) re-

duced model M . Here we assume the time stamps of the sequence ψ match up

with that of φ. This can be achieved by using a fixed step solver or through

repeated simulations using smaller step sizes. The sequence ρ computed in

line 21 is a sequence of pairs 〈r0, t0〉, . . . , 〈rp, tp〉, where for each k ∈ [p], rk is

a non-negative real defined as rk = supm∈Qk
|m|. In line 22, the sequence of

41

sets {Rk} is bloated by the sequence of factors {rk} element-wise to construct

a tube S.

3.6.1 Analysis of the Verification Algorithm

We establish the soundness and relative completeness of the algorithm in

Theorems 3.11 and 3.12. Practical scalability of the algorithm is discussed

in Section 3.7.

Theorem 3.11. Algorithm 3.1 is sound. That is, if it returns SAFE then

A is safe up to T , and if it returns UNSAFE then A is unsafe.

Proof. Suppose the algorithm returns SAFE. For any cover (θ, δ, ε) ∈ C,
S computed in line 22 is the union of a sequence of regions {BVrk(Rk)},
where ∪k∈[p]Rk contains the trajectory from θ and the sequence of rk up-

per bounds the trajectory of δ-IS approximation. It follows from Theo-

rem 3.7, that ReachA(Bδ(θ), [0, T]) ⊆ S. Thus if S ∩ Unsafe = ∅, then

ReachA(Bδ(θ), [0, T]) ∩Unsafe = ∅. The algorithm returns SAFE, if all such

covers are checked safe. It is straightforward to check that C captures a fi-

nite cover of the initial set
⋃

(θ,δ,ε)∈C Bδ(θ) ⊇ ΘA. Therefore, we conclude

ReachA(ΘA, [0, T]) ∩ Unsafe = ∅.
Otherwise if the algorithm returns UNSAFE, there exists at least one set

Rk contained in the unsafe set Unsafe. It follows that for the trajectory

ξ = T raj(A, θ) and some t ∈ [tk−1, tk], ξ(t) ∈ Unsafe.

Theorem 3.12. Algorithm 3.1 is relatively complete. That is, if A is robustly

safe then Algorithm 3.1 terminates and returns SAFE and if A is unsafe then

it terminates and returns UNSAFE.

Proof. Suppose that for some ε′ > 0, A is ε′-robustly safe up to time T . It

follows from Definition 3.2 that

Bε′(ReachA(ΘA, [0, T])) ∩ Unsafe = ∅.

It follows that line 8 is never executed. For any θ ∈ Θ, we will show that for

small enough refinement parameters δ, ε > 0, for any k, dia(BVrk(Rk)) < ε′.

From Proposition 3.9, we can show that there exists e > 0 such that for

rk < e,

BVrk(Rk) ⊆ Bε′/3(Rk). (3.26)

42

From Lemma 3.8, there exists a δ > 0, for all t ∈ [0, T], and all i ∈ [N],

|µ(t)| ≤ e/2. For a simulation trace φ = 〈M0, t0〉, . . . , 〈Mq, tq〉 (line 20),

and ε ≤ e/2, it follows from Definition 3.9 that for all k ∈ [q], the di-

ameter dia(Mk) ≤ e/2. Thus for any k ∈ [q], rk = supm∈Mk
|m| ≤ ε +

supt∈[t′l−1,t
′
l]
|µ(t)| ≤ e/2 + e/2 = e. It follows from Equation (3.26) that by

choosing δ ≤ d and ε ≤ e/2, we have BVrk(Rk) ⊆ Bε′/3(Rk). Notice that

the diameter of Rk is bounded by the refinement parameter ε. By choosing

ε = min{ε′/3, e}, it follows that

dia(Bε′/3(Rk)) ≤ ε′/3 + dia(Rk) ≤ ε′/3 + ε′/3 < ε′.

Thus, after a number of max{log(ε0
min{ε′/3,e}), log δ0

d
} refinements, the param-

eters δ, ε are small enough to guarantee that S ∩ Unsafe = ∅. Thus the

algorithm returns SAFE.

On the other hand, suppose A is unsafe with respect to an open unsafe set

Unsafe. There exists an initial state θ, a time t ≥ 0 and a ε′ > 0 such that

Bε′(ξ(θ, t)) ⊆ Unsafe. For the same number of refinement as the robustly

safe case, it can be shown that there exists an BVrk(Rk) ⊆ Bε′(ξ(θ, t)). It

follows that the algorithm returns UNSAFE.

3.7 Experimental Validation

We discuss experimental results from a prototype implementation of Algo-

rithm 3.1 in Matlab. We verify bounded time invariant properties of several

linear and nonlinear networked dynamical systems. First, we give a brief

overview of the different examples. Each module in the linear synchroniza-

tion examples (see [79] for detail) is a four-dimensional linear dynamical

system, and the overall system is composed of several modules in different

topologies. Through communicating with neighbors, the modules in the net-

work aim to reach synchronization to a common solution. We compute reach

sets for several such networks, both with and without delays. The nonlin-

ear water tank network example is a modified version of the one presented

in [59]. In this example, each module captures the water levels in a group of

tanks, that depends on the flows from other tanks. The nonlinear cardiac cell

network with delayed interconnections was shown in Examples 3.1 and 3.2.

43

In the results presented here, the time bound is T = 20 seconds and the

running time is based on executing the procedure on an Intel i5-3470 CPU.

The columns in Table 3.1 present (i) the system being verified, (ii) the number

of total state variables, (iii) the number of modules, (iv) the number of covers

for the initial set, (v) the total number of simulation boxes generated, and

(vi) the running time of the algorithm. Our experimental results show that

the running time roughly scales linearly with the total number of simulation

boxes generated for both the original system A and its IS approximationM.

The number of simulation boxes generated is proportional to the product of

the total number of covers and the time bound. Fixing a compact initial set,

the number of covers generated depends on the level of precision needed to

prove (or disprove) safety, which further relying on the distance between the

unsafe set to the reachable states. From the linear synchronization examples,

we also observe that verifying time-delayed networks takes a longer time than

delay-free networks of the same dimensions, even if the algorithm produces

similar number of simulations boxes. One source of this difference is that

simulating a delayed differential equation is more expensive than simulating

an ODE.

Table 3.1: Experimental results. The columns represent: (1) the system
being verified, (2) # state variables, (3) # modules, (4) # covers of initial
set, (5) # total simulation boxes, and (6) run time.

Systems # V # N # C # sim RT (s)

Linear syn. I 16 4 128 45440 129.2

Linear syn. II 24 6 128 45649 135.1

Linear syn. delay I 16 4 64 23168 103.1

Linear syn. delay II 16 4 128 46304 205.8

Nonlinear cardiac delay I 6 3 16 6134 22.0

Nonlinear cardiac delay II 16 8 24 13563 42.5

Sample reach tubes computed for the linear synchronization example are

shown in Figures 3.3 and 3.4. The blue trace (center) is the simulation of the

actual system and the red lines give the upper- and lower-bounds computed

from the reduced model. These are networks of two four-dimensional modules

with linear dynamics ẋ1 = A1x1 +B1u1 and ẋ2 = A2x2 +B2u2. The modules

are connected with an inter-modular gain g > 0 and a delay d ≥ 0, such

44

that u1(t) = gx2(t− d) and u2(t) = gx1(t− d). For a network with Hurwitz

A1 and A2, as seen in Figure 3.3, the diameter of the computed reach tube

(for the same size of the initial set) grows quickly with the gain, but less so

with delay. The computed reach tubes of networks with an unstable module

are illustrated in Figure 3.4. From the construction of the reduced model

(Definition 3.6), if a module is unstable with β̇i(δ, t) ≥ 0, the corresponding

state component µi of the reduced model is unstable. Thus, even though

the whole network may be stable, the reduced model will be unstable. In

Figure 3.4, the reach tube in (a), which is corresponding to a smaller delay,

is slightly thinner than the one in (b). From the trajectories (blue curves)

in Figure 3.4, the whole network corresponding to (a) is stable however the

reduced model does not capture this. This shows that our approach performs

relatively well when either the individual modules are stable or the inter-

modular gains are small.

(a) Reach tube for network
with delay d = 0 and gain
g = 1

(b) Reach tube for
network with delay d = 0
and gain g = 0.5

(c) Reach tube for network
with delay d = 10s and
gain g = 0.5

Figure 3.3: Reach tubes for network with stable modules projected on one
component of x1. A1 and A2 are both Hurwitz. The blue curve is a
trajectory, and the red curves outline a reach tube from a neighborhood.

Our implementation uses the built-in ODE solver of Matlab and these il-

lustrative experiments assume that the error bounds of the computation in

lines 5 and 20 are met by Matlab’s ODE solver, but in reality this may not

hold. However, from a sequence of sample simulation points, one can con-

struct a sequence of simulation boxes satisfying the rigorous requirements of

Definition 3.9 using methods such as the one presented in [80]. Alternatively,

for one could use a validated ODE solver such as CAPD [72] as in the C2E2

verificaiton tool [52].

45

(a) Reach tube for network
with delay 0

(b) Reach tube for
network with delay 10s

Figure 3.4: Reach tubes for network with an unstable module projected on
one component of x1. A2 is Hurwitz while A1 is not. The blue curve is a
trajectory, and the red curves outline a reach tube from a neighborhood.

3.8 Summary

In this chapter, we presented a verification algorithm to prove bounded time

invariance properties of (possibly unstable) nonlinear networked dynamical

systems with delayed interconnection. Our method uses numerical simu-

lations and IS discrepancy functions for the modules. IS discrepancy of a

module Ai, bounds the distance between two (possibly diverging) trajecto-

ries of Ai in terms of their initial states and inputs. It is closely related to

the notion of input-to-state stability that is well studied in control theory,

but an important distinction is that it does not require the subsystems or

the overall system to be stable. Consequently, our construction of the lower-

dimensional dynamical network M(δ) with the same delayed interconnection

that gives a bound on the divergence of trajectories of A, does not rely on any

global properties like small-gain of the interconnection nor stability of A, but

instead only uses the individual IS discrepancy functions and the numerical

simulations of A and M(δ). Further, we also show that by choosing appro-

priately small δ the over-approximations can be made arbitrarily precise; and

therefore our verification algorithm is sound and relatively complete.

46

Chapter 4

PARTIAL ORDER REDUCTION-BASED
INVARIANT VERIFICATION

In this chapter, we continue with invariant verification for networked cyber-

physical systems (NCPS). In Chapter 3, we study a continuous model, namely

networked dynamical systems, where the states evolve continuously over

time. In contrast, here we focus on systems modeled by discrete time models

or labeled transition systems (LTS). In this model, nodes (or processes) take

actions to communicate with each other and to update the local and shared

states of the system. In a asynchronous network, the nodes runs concur-

rently and the actions may interleave arbitrarily. Thus, the number of the

possible action sequences can be extremely large. Similar to the invariant

verification approach we presented in Chapter 3, we study the reach set com-

putation problem for labeled transition systems. Computing the reach set

for such systems is challenging mainly for two reasons. First, like the model

of networked dynamical system (Definition 3.3), the set of initial states is

uncountable and the number of executions (or trajectories) is uncountable.

Hence explicit examination of every single execution is intractable. Second,

the number of action sequences, even from a single initial state, is large ow-

ing to the combinatorial explosion arising from concurrency. In some cases,

the number grows exponentially with the time bound. In this chapter, we

propose a verification method to address both challenges which exploits the

sensitivity of executions to the ordering of actions.

4.1 Enhance Partial Order Reduction with Metrics

Consider an asynchronous network consisting of N components. In the case

where each component takes an action independent of others, the entire net-

work can take N ! different action sequences or executions. Checking the

invariance property of the network then requires us to examine all these

47

possible action sequences. Partial order reduction methods were first in-

troduced in the context of model checking concurrent softwares to reduce

the number of action sequences needed to be explored in performing model

checking [81, 34, 35]. It exploits the fact that some pairs of actions taken

by different nodes may be commutative, and therefore the executions ob-

tained by swapping them need not to be explored both times. Precisely, two

actions a and b are said to be independent if from any state, the resulting

state would be the same regardless of the order in which a and b are exe-

cuted as illustrated in Figure 4.1a. This independence relation allows one to

define relation over the set of executions which swaps independent actions.

Equivalent executions from the same initial state reach the same final state.

If we can show that the invariance properties are indifferent to equivalent

executions, then checking invariance for a representative action sequence is

sufficient for proving it for the whole equivalent class.

Partial order reduction has proven to be a powerful tool in software veri-

fication. It has been successfully applied to a variety of distributed systems,

including leader election protocol [82], indexers [83], file systems [84], security

protocol [85] and distributed schedulers [86]. In [84], a file transfer protocol

with millions of states and transitions is verified in a matter of seconds using

a partial order reduction method.

The conventional partial order methods have two limitations that hinder

their application to cyber-physical systems. First, a pair of actions are con-

sidered independent only if they lead to exactly the same state regardless

of the order of their execution. Such exactly independent action pairs are

rare in CPS context, where the individual nodes often interact with a shared

environment in the presence of noise and disturbances. This makes the par-

tial order reduction methods ignore action pairs which lead to nearly but

not exactly identical states. Second, there is no way to reason about exe-

cutions with different initial states, even if they experience the same action

sequences.

In this work, we develop partial order reduction techniques that take ad-

vantage of information about the sensitivity of the transitions of the in-

dividual agents in the system to prune executions that are approximately

equivalent. First of all, we assume that there is a metric on the state space.

We introduce the notion of approximate independence of actions. Specifi-

cally, with a parameter ε ≥ 0 chosen by the user, two actions a and b are

48

(a) Resulting states are exactly the
same for executing actions a and b in
any order.

(b) The states are indicated by vectors. Action
a rotate the state around x-axis for 20◦ and b
rotate the state around z-axis for 20◦.
Executing actions a and b in different ordering
result in states close to each other.

Figure 4.1: Exactly and approximately independent actions.

ε-independent if from any state, the resulting states are within ε distance

regardless of the order in which actions a and b are executed. An example

of approximate independent actions is illustrated in Figure 4.1b. Smaller

of the parameter ε, the final states after executing ε-independent actions in

any order are closer to each other. The conventional (exact) independence

relation, as illustrated in Figure 4.1a, is a special case of ε-independence re-

lation with ε = 0. With this extension, we can construct equivalent classes of

action sequences by swapping approximately independent actions. Although

executions that follow equivalent action sequences may not necessarily reach

the same final state, the final states should be close to each other.

Together with this approximate independence relation, we exploit the

continuity of the transition functions for approximating reachable states.

Roughly, the continuity of an action a captures the notion that executing

action a from two states that are close to each other, should result in states

that remain close. Using the continuity property, we are able to induc-

tively compute the distance between a pair of executions using the distance

between their initial states. Combining continuity with ε-independence re-

lation, though careful analysis which will be presented in Section 4.6 we can

quantify the distance between executions starting from initial states that are

close to each other and follow equivalent action sequences.

In a nutshell, partial order reduction is model checking that exploits rep-

49

resentatives from equivalent classes of executions [23, 87]. The reduction

is more efficient if a larger size of equivalent class can be represented by a

particular execution. Now with the notions of ε-independent actions and

continuity, we expand the representation power of a single execution. We

will show examples in Section 4.8 that for models where the conventional

partial order reduction does not apply, our method can efficiently compute

an over-approximation of states reached by a class of executions close to a

given representative.

The rest of this chapter is organized as follows. First in Section 4.2 we

discuss related works. In Section 4.3, we introduce a modeling framework

for infinite state systems and a notion of continuity of actions. Then in Sec-

tion 4.4, we introduce the notion of ε-independent actions and equivalent

classes of action sequences. In Sections 4.5-4.7, we gradually develop an al-

gorithm to compute over-approximated reach set of all equivalent executions

using a reduced set of action sequences. This algorithm is applied to ver-

ify invariance properties of a linear transition system and a heater control

system in Section 4.8.

4.2 Related Works

There are two main classes of partial order methods proposed in the last few

decades: persistent set methods and sleep set methods. For each state of

the system, the persistent/ample set methods compute a subset of enabled

transitions, the persistent set (or ample set), such that the omitted transitions

are independent to those selected [23, 82]. The reduced system which only

considers the transitions in the persistent set is guaranteed to represent all

behaviors of the original system. The persistent sets and the reduced systems

are often derived by static analysis of the code. More recently, researchers

developed the sleep set methods to avoid the static analysis [88, 89, 83].

These methods examine the history of actions taken by an execution and

decide a set of actions that need to be explored in the future. The set of

omitted actions is the sleep set. The persistent set and sleep set methods

can be used complementary [83].

In the context of cyber-physical systems, robustness analysis are devel-

oped to quantify the closeness of executions with disturbances. The authors

50

of [90] presented an algorithm to compute the output deviation with bounded

disturbance. The algorithm combines symbolic execution and optimization

techniques. In [91], the authors introduce the robustness analysis to many

classic algorithms and proposed a automated framework to prove robustness

for softwares. Later in [92], this technique is extended to verify robustness

of networked systems.

4.3 Infinite State Transition Systems

We start this chapter by introducing a labeled transition system as a mathe-

matical model of concurrent NCPS. The state of the labeled transition sys-

tem can be finite-valued or real-valued, that is, they are hybrid. The states

evolve according to (possibly nondeterministic) actions and their correspond-

ing transition functions. This framework can capture distributed consensus

and flocking algorithms [93, 94, 95], clock synchronization protocols [96, 97],

and other distributed control systems [98, 99]. We define a discrete version of

discrepancy functions. Roughly, discrepancy functions we use here quantify

the continuity property for the transition functions of the system.

4.3.1 Labeled Transition Systems

We will study a class of infinite state transition systems where each variable

of the system either takes values in a finite set or is real-valued. The initial

set and the set of executions can be infinite.

Definition 4.1. A Labeled Transition System A is a tuple 〈X ∪L,Θ, A,→〉
where

(i) X is a set of real-valued variables and L is a set of finite-valued vari-

ables. Q = Val(X ∪ L) is the set of states,

(ii) Θ ⊆ Q is a compact set of initial states,

(iii) A is a finite set of actions, and

(iv) →⊆ Q× A×Q is a transition relation.

51

A state q ∈ Q is a valuation of the real-valued and finite-valued variables.

We denote q.X
∆
= q d X and q.L

∆
= q d L respectively, the continuous (real-

valued) and discrete (finite-valued) part of the state. As we discussed in

Chapter 2, the continuous part q.X can be seen as a vector in R|X| with

some fixed ordering. For δ ≥ 0 and q ∈ Q, we define the δ-neighborhood

of q as Bδ(q)
∆
= {q′ ∈ Q : q′.L = q.L ∧ |q′.X − q.X| ≤ δ}. The norm

| · | is the standard p-norm with arbitrary p ∈ [1,∞] chosen by the user.

For any (q, a, q′) ∈→, we write q
a→ q′. For any action a ∈ A we define

guard(a) = {q ∈ Q | ∃q′ ∈ Q, q a→ q′} as the guard of a, which is the set of

states where a can occur. An action a is deterministic if for any state q ∈ Q,

at most one state q′ ∈ Q satisfies q
a→ q′. A deterministic action is specified

by a guard and a transition function. In this chapter we will overload the

name of an action a with its transition function. Thus for each q ∈ guard(a),

q
a→ a(q). In this chapter, we will make the following assumptions.

Assumption 4.1. All the actions in A are deterministic. For each a ∈ A
and any q, q′ ∈ Q, the transition function a : Q→ Q satisfies

if q.L = q′.L, then a(q).L = a(q′).L.

It is straightforward to see that any deterministic transitions system with

no real-valued variables (X = ∅) satisfies Assumption 4.1, where the transi-

tion function a(q) is defined as q′ if q
a→ q′ and otherwise as q.

Let A∗ denote the set of finite action sequences (also called traces). For an

action sequence τ ∈ A∗, we denote by len(τ) ∈ N the length of τ . For any

for i ∈ [len(τ)], τ(i) is the i-th action in τ .

For a deterministic transition system, a state q0 ∈ Q and an action se-

quence τ = a0a1 . . . an−1 uniquely specify a potential execution as an alternat-

ing sequence ξ = q0, a0, q1, a1, . . . , an−1, qn where for each i ∈ [n] ai(qi) = qi+1.

We denote such a potential execution by ξq0,τ . An execution is a potential

execution such that (i) for i ∈ [n], qi ∈ guard(ai), and (ii) the first state

q0 is in the initial set Θ. For any potential execution ξ, trace(ξ) denote its

action sequence, that is trace(ξq0,τ) = τ ∈ A∗. The length of ξ equals to the

length of its trace. For i ∈ [len(ξ)], ξ(i) = qi is the state visited by ξ after

the i-th transition. The first and last state on ξ are denoted respectively by

ξ. fstate = ξ(0) and ξ. lstate = ξ(len(ξ)).

For a subset of initial states S ⊆ Θ and a time bound T ≥ 0, we denote by

52

Execs(S, T) as the set of length T executions of the system from initial states

S. We denote by Traces(S, T)
∆
= {trace(ξ) | ξ ∈ Execs(S, T)} as the set of

length T traces that are taken by executions from S. We denote the reach

set at time T by Reach(S, T)
∆
= {ξ. lstate | ξ ∈ Execs(S, T)}. In this chapter,

we present an algorithm to over-approximate the reach set Reach(Θ, T) using

partial order reduction.

1 automata Linear(n ∈ N, N ∈ N)
variables

3 x : Rn;

d : BN ;
5 initially

xi ∈ [−4, 4] for each i ∈ [n];
7 di := false for each i ∈ [n];

1transitions
ai for each i ∈ [N]

3pre di = f alse
eff x := Aix ∧ di := true;

5a⊥
pre ∧i∈[N]di:

7eff di := false for each i ∈ [N];

Figure 4.2: Transition system of consensus.

Example 4.1 (Asynchronous Linear Transition System). An asyn-

chronous linear transition system is presented in Figure 4.2. The system

two vectors of variables, a real-valued vector x with valuations in Rn and a

Boolean-valued vector d. The set of action is {ai}i∈[N] ∪ {a⊥}. The guard

and transition function of each action are defined by the precondition (pre)

and effect (eff) statements. For each i ∈ [N], the action ai modifies x as Aix,

where Ai is an n × n matrix. The Boolean di’s are used to ensure that all

the actions ai occur before any can be repeated. If for all i ∈ [N] di = true,

then the action a⊥ is enabled and it resets di to false.

It can be checked that the transitions are deterministic. For any q, q′ ∈ Q
with q.d = q′.d, we will show that Assumption 4.1 holds. For any i ∈ [N],

action ai sets di to true and keeps all other components unchanged, hence

ai(q).d = ai(q
′).d. Also, the action a⊥ resets all variables di, hence a⊥(q).d =

a⊥(q′).d. Hence, this transition system satisfies Assumption 4.1.

For an instance of the system with N = 3, an example action sequence

can be τ = a0a2a1a⊥a1a0a2a⊥, where the reset action a⊥ is applied exactly

once after all of the other actions {a0, a1, a2} are applied once. Thus, the

linear transformations can be applied in any order and one application of

each constitutes a “round”. This can be viewed as an abstraction of iterative

consensus [100, 46], where N processes perform computations on a shared

state. We note that the system will remain satisfying Assumption 4.1 if we

replace Ai with a nonlinear transition function ai : Rn → Rn.

53

4.3.2 Discrepancy Functions

As we discussed in Chapter 3 and the authors show in [27, 52], for comput-

ing reach set from an uncountable set of initial states, one can exploit the

sensitivity of the executions on initial states. In the context of labeled transi-

tion systems, discrepancy functions capture the distance between continuous

states after an action is applied to a pair of states.

Definition 4.2. For an action a ∈ A, a function βa : R≥0 → R≥0 is a

discrepancy function if for any pair of states q, q′ ∈ Q with q.L = q′.L,

(i) |a(q).X − a(q′).X| ≤ βa(|q.X − q′.X|), and

(ii) βa → 0 as |q.X − q′.X| → 0.

Roughly, discrepancy functions captures that executing action a from two

states that are close to each other should result in states that remain close.

With discrepancy functions, we can reason about distance between executions

that share the same trace using their initial distance.

Proposition 4.1. Fix any time bound T ≥ 0 and any action sequences

τ = a0a1a2 . . . aT equipped with discrepancy functions {βat}Tt=0. For any pair

of states q, q′ ∈ Q with q.L = q′.L, the last states of the pair of potential

executions ξ = ξq,τ and ξ′ = ξq′,τ satisfy

ξ. lstate .L = ξ′. lstate .L, and

|ξ. lstate .X − ξ′. lstate .X| ≤ βaTβaT−1
. . . βa0(|q.X − q′.X|).

The proposition described above can be proved by applying the property

of discrepancy functions along the action sequence τ . This proposition al-

lows us to compute the distance between a pair of potential executions from

their initial distance. We will derive the discrepancy functions for the linear

transition systems in the following example.

Example 4.2. Consider an instance of the asynchronous linear transition

system presented in Example 4.1 with n = 3 and N = 3. We will use the

54

standard 2-norm on the state space R3. Let the matrices Ai be

A0 =


0.2 −0.2 −0.3

−0.2 0.2 −0.1

−0.3 −0.1 0.3

 , A1 =


0.2 0.3 0.2

0.3 −0.2 0.3

0.2 0.3 0

 , A2 =


−0.1 0 0.4

0 0.4 −0.2

0.4 −0.2 −0.1

 .

We note that all the three matrices are stable. For any ai ∈ A and any state

q, q′ ∈ Q with q.L = q′.L,

|ai(q).X − ai(q′).X|2 ≤ |Ai|2|q.X − q′.X|2.

We note that the induced 2-norms of the matrices are |A0|2 = 0.57, |A1|2 =

0.56, |A2|2 = 0.53. For any v ∈ R≥0, the discrepancy functions of a0, a1, a2

are defined as follows,

βa0(v) = 0.57v, βa1(v) = 0.56v, and βa2(v) = 0.53v.

4.4 Independent Actions and Close Executions

Central to partial order methods is the notion of independent actions. In the

conventional sense, a pair of actions are independent if the resulting state is

exactly the same regardless of the order in which the actions are executed. In

this section, we extend this notion with an approximation parameter ε ≥ 0,

such that a pair of actions are ε-independent if the resulting states are within

ε distance after swapping the order of actions.

4.4.1 Approximately Independent Actions

Definition 4.3. For ε ≥ 0, two distinct actions a, b ∈ A are ε-independent,

denoted by a
ε∼ b, if for any state q ∈ Q,

(i) (Commutativity) ab(q).L = ba(q).L, and

(ii) (Closeness) |ab(q).X − ba(q).X| ≤ ε.

This notion of ε-independence has two extensions form the standard def-

inition of independent actions (see e.g. Definition 8.3 of [24]). The main

55

extension is that the continuous states of ab(q) and ba(q) need not match up

perfectly. Instead, for a parameter ε ≥ 0, the continuous states are required

to be within ε distance. If the two actions a, b are ε-approximately indepen-

dent with ε = 0, Definition 4.3 becomes the commutative condition in the

standard definition of independent actions.

We note that this extension introduces a side effect that swapping indepen-

dent actions may disturb the enableness of the future actions. An example

is illustrated in Figure 4.3. Suppose action a and b are ε-independent with

ε = 0, as illustrated in Figure 4.3a. If ξq0,abc is an execution, then action

c is enabled at state q2. After swapping actions a and b the potential ex-

ecution ξq0,bac still visits q2 and action c remains to be enabled. However,

if ε > 0, as illustrated in Figure 4.3b, swapping actions a and b makes the

execution deviate from the state q2 to q′2. Then, whether action c would be

enabled at q′2 is unknown. Hence, if ξq0,abc is an execution, that does not

imply that the potential execution ξq,bac is also an execution. Later in this

chapter, we will compute a ball around an execution ξq0,abc such that the ball

over-approximate all potential executions derived by swapping ε-independent

action pairs of ξ. Due to this side effect, the tube may contains potential

executions that need not to be included. Despite that, in Section 4.6, we are

able to show that for small enough ε, this side effect can be made negligible

and the reach set can be over-approximated precisely.

(a) If a
ε∼ b with ε = 0, swapping actions a

and b does not affect future actions.
(b) If a

ε∼ b with ε > 0, swapping actions
a and b may change the enableness
condition of future actions.

Figure 4.3: The enableness condition guarantees that swapping
independent actions in an execution results in a valid execution. However,
the same property does not hold for approximately independent actions.

The second extension we made in Definition 4.3 is that action b is not

required to be enabled at state a(q). As a consequence, for a pair of ε-

independent actions a and b, if ξq0,ab is an execution, ξq0,ba may not be one.

56

As we discussed in the previous paragraph, swapping ε-independent actions

does not maintain the enableness property of an execution any way. Hence,

making this extension does not introduce additional loss of precision.

In the notion of ε-independence, the parameter ε ≥ 0 captures the degree

of the approximation. For a smaller ε, the independent relation is more

restrictive. For an action sequence τ ∈ A∗ and an action a ∈ A, τ is ε-

independent to a, written as τ
ε∼ a, if τ is empty string or for every i ∈

[len(τ)], τ(i)
ε∼ a.

It is clear that the approximate independence relation is symmetric. How-

ever, it need not to be transitive. We give instances of both transitive and

non-transitive independence relations in the following example.

Example 4.3. We will discuss the approximately independent actions in

Example 4.2. Fix any i, j ∈ [N] such that i 6= j and any state q ∈ Q. It can

be checked that the following holds:

aiaj(q).dk = ajai(q).dk =

 true, k ∈ {i, j}

q.dk, otherwise.

Hence, we have aiaj(q).d = ajai(q).d and the commutativity condition of

Definition 4.3 holds for any pair of actions ai and aj.

We will examine the closeness condition with an instance of the system.

Notice that for any q ∈ Q, switching the order of ai, aj leads to

|aiaj(q).x− ajai(q).x|2 = |(AiAj −AjAi)q.x|2 ≤ |AiAj −AjAi|2|q.x|2. (4.1)

If the matrices Ai and Aj commute, then ai and aj are ε-approximately

independent with ε = 0. If Q is a compact set or the system has a bounded

invariant set, then |q.X|2 is bounded and there always exists a finite ε ≥ 0

such that ai
ε∼ aj. Consider the matrices A0, A1, A2 presented in Example 4.2.

We note that A0, A1, A2 are all stable matrices. Fix any state q and any

i ∈ [3]. The change in the squared 2-norm of the states after the transition

is

|ai(q).x|22 − |q.x|22 = q.x>A>i Aiq.x− q.x>q.x = q.x>(A>i Ai − I3)q.x.

It can be checked that, for each i ∈ [3], A>i Ai − I3 is a negative definite

57

matrix. Hence |ai(q).x|2 ≤ |q.x|2 holds for each i ∈ [3] and any state q.

That is, the norm of the continuous state is non-increasing. Suppose initially

x ∈ [−4, 4]3 then the 2-norm of the initial state is bounded by the value

4
√

3. Since the norm of state is non-increasing in any transitions, we can

show that Inv = {x ∈ R3 : |x|2 ≤ 4
√

3} is an invariant of the system. Thus,

from Equation (4.1), we have |a0a1(q).x − a1a0(q).x|2 ≤ 0.1, |a0a2(q).x −
a2a0(q).x|2 ≤ 0.07, and |a1a2(q).x − a2a1(q).x|2 ≤ 0.17. Thus, with ε = 0.1,

it follows that a0
ε∼ a2 and a1

ε∼ a2. Here the
ε∼ relation is not transitive. On

the other hand, if we choose ε = 0.2, then any pair of actions in a0, a1, a2 is

ε-independent, where
ε∼ is transitive.

Definition 4.3 implies that from any state q, executing two ε-independent

actions in either order, we end up in states that are within ε distance. In the

following proposition, we examine potential executions with different initial

states.

Proposition 4.2. For a pair of ε-independent actions a, b ∈ A, two states

q, q′ ∈ Q with q.L = q′.L, we have

(i) ba(q).L = ab(q′).L, and

(ii) |ba(q).X − ab(q′).X| ≤ βbβa(|q.X − q′.X|) + ε,

where βa, βb are discrepancy functions of a, b respectively.

Proof. Fix any pair of states q, q′ ∈ Q such that q.L = q′.L. Since a
ε∼ b,

we have ba(q).L = ab(q).L. Using Assumption 4.1 twice, we have ab(q).L =

ab(q′).L.

Using triangular inequality, we have |ba(q).X − ab(q′).X| ≤ |ba(q).X −
ba(q′).X|+ |ba(q′).X − ab(q′).X|. The first term is bounded by βbβa(|q.X −
q′.X|) using the property of discrepancy functions. The second term is

bounded by ε by definition of approximate independent actions. Therefore

|ba(q).X − ab(q′).X| ≤ βbβa(|q.X − q′.X|) + ε.

4.4.2 Equivalent Action Sequences and Close Executions

For a set of ε-approximately independent actions, we define an equivalence

relation on the space of finite action sequences A∗.

58

Definition 4.4. For any ε ≥ 0, we define a relation R ⊆ A∗ ×A∗ such that

τRτ ′ iff there exists σ, η ∈ A∗ and a, b ∈ A such that

a
ε∼ b, τ = σabη, and τ ′ = σbaη.

We define an equivalence relation on traces
ε≡ ⊆ A∗×A∗ called ε-equivalence,

as the reflexive and transitive closure of R.

That is, a pair of traces τ, τ ′ ∈ A∗ is ε-equivalent if we can construct

τ ′ from τ by swapping consecutive ε-independent actions. In the following

proposition, we show that two potential executions with the same initial

discrete state (location) and equivalent trace share the same final locations.

Proposition 4.3. Fix any potential executions ξ = ξq0,τ and ξ′ = ξq′0,τ ′. If

ξ and ξ′ have the same initial location and equivalent traces, then they have

the same final location. Precisely,

if q0.L = q′0.L and τ
ε≡ τ ′, then ξ. lstate .L = ξ′. lstate .L.

Proof. If τ = τ ′, then the proposition directly follows Assumption 4.1. Sup-

pose τ 6= τ ′, from Definition 4.4, there exists a sequence of action sequences

τ0, τ1, . . . , τk to join τ and τ ′ by swapping neighboring approximately inde-

pendent actions. Precisely the sequence {τi}ki=0 satisfies

(i) τ0 = τ and τk = τ ′, and

(ii) for each pair τi and τi+1, there exists σ, η ∈ A∗ and a, b ∈ A such that

a
ε∼ b, τi = σabη, and τi+1 = σbaη.

From Definition 4.3, swapping approximately independent actions maintains

the location in the final state. Hence for any i ∈ [k], ξq0,τi . lstate .L =

ξq0,τi+1
. lstate .L. Therefore, ξ. lstate .L = ξ′. lstate .L.

Informally, a pair of potential executions that take equivalent action se-

quences should be close to each other. The following definition captures these

pairs of potential executions.

Definition 4.5. For δ, ε ≥ 0, a pair of potential executions ξ = ξq0,τ and

ξ′ = ξq′0,τ are (δ, ε)-close to each other, denoted by ξ
δ,ε
≈ ξ′, if

q0.L = q′0.L, |q0.X − q′0.X| ≤ δ, and τ
ε≡ τ ′.

59

That is, two potential executions ξ, ξ′ are (δ, ε)-close if their first states

lie in the δ-neighborhood of each other, and their traces are ε-equivalent. It

follows from Proposition 4.3 that the final locations of any pair of (δ, ε)-close

potential executions are the same. In Section 4.6, we quantify the distance

between (δ, ε)-close potential executions. Then, by bloating a single potential

execution, we can over-approximate the reach set of all potential executions

close to it.

Example 4.4. In Example 4.3, we show that a0
ε∼ a2 and a1

ε∼ a2 with

ε = 0.1. We consider the following two executions of the system:

ξ = q0, a2, q1, a1, q2, a0, q3, a⊥, q4, and ξ′ = q′0, a1, q
′
1, a0, q

′
2, a2, q

′
3, a⊥, q

′
4.

That is, the traces of the executions are trace(ξ) = a2a1a0a⊥ and trace(ξ′) =

a1a0a2a⊥. For ε = 0.1, we have a2a1a0a⊥
ε≡ a1a2a0a⊥ and a1a2a0a⊥

ε≡
a1a0a2a⊥. Since the equivalence relation

ε≡ is transitive, we have trace(ξ)
ε≡

trace(ξ′). Suppose q0 ∈ Bδ(q′0), then ξ and ξ′ are (δ, ε)-close executions with

ε = 0.1.

4.5 Interleaving Independent Actions

In this section, we present several results that help partial order reduction

in model checking labeled transition systems. We will study the distance

between potential executions which are derived by inserting a single action

to the same execution at different positions. Building up on this result,

for any δ, ε ≥ 0 and an execution ξ, we develop an inductive method for

computing distance between ξ and its (δ, ε)-close executions. Throughout

this section, we study a simplified case where the actions are mutually ε-

independent. Later in Section 4.6, we generalize the this result to actions

defined with an arbitrary ε-independence relation.

We start with some definitions related to a set of discrepancy functions.

For a finite set of discrepancy functions {βa}a∈S corresponding to a set of

actions S ⊆ A, we define β = maxa∈S{βa} as the upper bound of discrepancy

functions. For an n ≥ 0 and a function β defined as above, we define a

function γn =
∑n

i=0 β
i. Recall from Chapter 2 that βi is the nested form

of β such that βi = ββi−1 for i ≥ 1 and β0 is the identity mapping. We

60

note that for any n ∈ N, the function γn is uniquely specified by a set of

discrepancy functions {βa}a∈S. Using the properties of discrepancy functions

as in Definition 4.2, we can show the following properties of {γn}n∈N.

Proposition 4.4. Fix any finite subset of discrepancy functions {βa}a∈S
with S ⊆ A. Let β = maxa∈S{βa} be the maximum function. For any n ≥ 0,

γn =
∑n

i=0 β
i satisfies

(i) for any ε ∈ R≥0 and any n ≥ n′ ≥ 0, γn(ε) ≥ γn′(ε), and

(ii) limε→0 γn(ε) = 0.

Proof. (i) For any n ≥ 1, we have γn − γn−1 = βn. Since βn = maxa∈S{βa}
for some finite S, using Definition 4.2, βn takes only non-negative values.

Hence, the sequence of functions {γn}n∈R≥0
is non-decreasing.

(ii) Using the property of discrepancy functions, we have limε→0 β(ε) = 0.

By induction on the nested functions, we have limε→0 β
i(0) for any i ≥ 0.

Hence for any n ∈ R≥0, limε→0 γn(ε) = limε→0

∑n−1
i=0 β

i(ε) = 0.

4.5.1 Insertion of Independent Action

We will quantify the distance of two potential executions with equivalent

traces using the function γn defined above. Our first step involves computing

the distance between two potential executions after inserting a single action

at different position. We study a simplified case where the inserting action

is independent to all other actions in the execution.

Lemma 4.5. Fix any ε ≥ 0, any initial state q0 ∈ Q, any action a ∈ A and

any action sequence τ ∈ A∗ with length n ≥ 1. If a and τ are ε-independent,

then the potential executions ξ = ξq0,τa and ξ′ = ξq0,aτ satisfy

(i) ξ′. lstate .L = ξ. lstate .L, and

(ii) |ξ′. lstate .X − ξ. lstate .X| ≤ γn−1(ε), where γn−1 corresponds to the set

of discrepancy functions {βc}c∈τ for the actions in τ .

Proof. Part (i) directly follows from Proposition 4.3. We will prove part (ii)

by induction on the length of the action sequence τ .

Base: For any action sequence τ of length 1, ξ and ξ′ are of the form

ξ = q0, b0, q1, a, q2 and ξ′ = q0, a, q
′
1, b0, q

′
2. Since a

ε∼ b0, it follows from

61

Definition 4.3 that |q′2.X − q2.X| ≤ ε. Recall from the preliminary that

γ0(ε) = β0(ε) = ε. Hence |q′2.X − q2.X| ≤ γ0(ε) holds for action sequence τ

with length n = 1.

Induction: Suppose the lemma holds for any τ with length at most n− 1.

Fixed any τ = b0b1 . . . bn−1 of length n, we will show the lemma holds for τ .

Let the potential executions ξ = ξq0,τa and ξ′ = ξq0,aτ be of the form

ξ = q0, b0, q1, b1, ..., bn−1, qn, a, qn+1,

ξ′ = q0, a, q
′
1, b0, q

′
2, b1, ..., bn−1, q

′
n+1.

It suffice to prove that |ξ. lstate .X − ξ′. lstate .X| = |qn+1.X − q′n+1.X| ≤
γn−1(ε). We first construct a potential execution ξ′′ = ξq0,b0ab1...bn−1 by swap-

ping the first two actions of ξ′. Then, ξ′′ is of the form

ξ′′ = q0, b0, q1, a, q
′′
2 , b1, ..., bn−1, q

′′
n+1.

The potential executions ξ, ξ′ and ξ′′ are illustrated in Figure 4.4.

Figure 4.4: Executions ξ = ξq0,τa, ξ
′ = ξq0,aτ , and ξ′′ which is constructed by

swapping the first two actions in ξ′.

We first compare the potential executions ξ and ξ′′. Notice that, ξ and ξ′′

share a common prefix q0, b0, q1. Starting from q1, the action sequence of ξ′′

is derived from trace(ξ) by inserting action a in front of the action sequence

τ ′ = b1b2 . . . bn−1. Since τ ′
ε∼ a, applying the induction hypothesis on the

length n− 1 action sequence τ ′, we get

|qn+1.X − q′′n+1.X| ≤ γn−2(ε). (4.2)

Then, we compare the potential executions ξ′ and ξ′′. Since b0
ε∼ a, by

applying the property of Definition 4.3 to the first two actions of ξ′ and ξ′′,

62

we have |q′2.X − q′′2 .X| ≤ ε. We note that ξ′ and ξ′′ have the same suffix of

action sequence from q′2 and q′′2 . Using Proposition 4.1 from states q′2 and q′′2 ,

we have

|q′n+1.X − q′′n+1.X| ≤ βb1βb2 . . . βbn−1(|q′2.X − q′′2 .X|) ≤ βn−1(ε). (4.3)

Combining Equations (4.2) and (4.3) with triangular inequality, we have

|qn+1.X − q′n+1.X| ≤ |qn+1.X − q′′n+1.X|+ |q′n+1.X − q′′n+1.X|

≤ γn−2(ε) + βn−1(ε) = γn−1(ε).
(4.4)

Therefore, the lemma holds for the action sequence τ with length n, which

completes the induction.

In Lemma 4.6, we analyzed distance between executions after inserting

one single action at different position, where the difference in the inserting

positions is n. We show that the distance between these executions increases

with n.

4.5.2 Permutation of Independent Actions

Using the results we presented in Section 4.5.1, we will compute an upper

bound of the distance between (δ, ε)-close potential executions. We start

with a formal definition of the quantity we are going to compute.

Definition 4.6. For any δ, ε, r ∈ R≥0 and any potential execution ξ = ξq0,τ ,

ξ is a (δ, ε, r)-representative potential execution if any potential execution ξ′

that is (δ, ε)-close to ξ satisfies

ξ′. lstate ∈ Br(ξ. lstate).

That is, for a (δ, ε, r)-representative potential execution ξ, the r-neighborhood

of its last state Br(ξ. lstate) contains the last states of all its (δ, ε)-close poten-

tial executions. The parameter r is the representative radius of the potential

execution ξ. In the rest of this chapter, we will present algorithms to compute

the representative radius and reach set.

63

The following lemma states a inductive way of constructing representa-

tive potential executions. Roughly, it shows how the representative radius

r changes if an action a is appended to a potential execution ξ. We start

with a special case where the appended action a is ε-independent of all other

actions on ξ.

Lemma 4.6. Fix any δ, ε, r ∈ R≥0, any (δ, ε, r)-representative potential ex-

ecution ξq0,τ , and any a ∈ A such that τ
ε∼ a. Then, ξ = ξq0,τa is a (δ, ε, r′)-

representative potential execution with

r′ = βa(r) + γlen(τ)−1(ε). (4.5)

Proof. Fix any ξ′ such that ξ′
δ,ε
≈ ξ with initial state q′0 ∈ Bδ(q0). It follows

from Proposition 4.3 that ξ′. lstate .L = ξ. lstate .L. It suffice to prove that

|ξ′. lstate .X − ξ. lstate .X| ≤ r′.

Since trace(ξ′)
ε≡ τa, trace(ξ′) is in a form φaη with some φη

ε≡ τ . We

construct a potential execution ξ′′ = ξq′0,φηa. The three potential executions

are illustrated in Figure 4.5.

Figure 4.5: Execution ξ, its ε-equivalent execution ξ′, and execution ξ′′ that
is constructed by swapping action a to the back of ξ′.

We note that the prefix (q0, τ, qn) of ξ is a (δ, ε, r)-representative potential

execution. Since φη
ε≡ τ and q′0 ∈ Bδ(q0), it follows from Definition 4.6 that

|qn.X − q′′n.X| ≤ r. Hence

|ξ. lstate .X − ξ′′. lstate .X| ≤ βa(|qn.X − q′′n.X|) ≤ βa(r). (4.6)

On the other hand, we observe that the traces of ξ′ and ξ′′ differ only in the

position of action a. Application of Lemma 4.5 on ξ′ and ξ′′ yields

|ξ′. lstate .X − ξ′′. lstate .X| ≤ γlen(η)−1(ε) ≤ γlen(τ)−1(ε). (4.7)

64

Combining Equations (4.6) and (4.7) with triangular inequality, we have

|ξ. lstate .X − ξ′. lstate .X| ≤ βa(r) + γlen(τ)−1(ε).

In Lemma 4.6, we analyze how the representative radius changes after

appending a single action a to a potential execution ξq0,τ . Here we consider

the spacial case where action a is ε-independent to the entire trace τ . In the

next section, we generalize this results to any action a and trace τ , without

specific requirements on their independence condition.

4.6 Generalization of Executions

In this section, for any parameters δ0, ε ≥ 0 and any potential execution ξ

of length T , we will compute the representative radius δT for ξ, such that

ξ is a (δ0, ε, δT)-representative potential execution. Our method involves

computing a sequence of representative radii {δt}Tt=0 inductively such that δt

is the representative radius of the length t prefix of ξ.

Let action a be the t-th action on ξ and τ be the length t prefix of trace(ξ).

If action a is ε-independent to τ , then the representative radius δt can be

computed from δt−1 using Lemma 4.6. In this section, we generalize this

result to the case where action a is not necessarily ε-independent to the

whole sequence τ . First, we will introduce the notion of anchor position of a

in τ , which is the left most position of action a in all equivalent traces of τ .

4.6.1 Anchor Position

In the proof of Lemma 4.6, we use the fact that any ε-equivalent trace of

τa must be in a form of φaη. We observe that, the representative radius of

ξq0,τa depends on the length of φ and η, as presented in Equation (4.7). For

computing the representative radius, we need the maximum length of η, or

equivalently the minimum length of φ. We introduce the notion of anchor

position to capture this quantity.

For any sequence τ ∈ A∗ and an action a ∈ τ in τ , we define τ.lastPos(a)

as the largest index k such that τ(k) = a. The anchor position is the first

65

possible position of a in any τ ′ that is equivalent to τ . We formally define

this quantity as follows.

Definition 4.7. For any action sequence τ ∈ A∗ and any action a ∈ A, the

anchor position of a on τ is

min
τ ′

ε
≡τa

τ ′.lastPos(a).

For any trace τa, its ε-equivalent traces can be derived by swapping con-

secutive ε-independent action pairs. Hence, the anchor position of a is the

left most position it can be swapped to. Since any equivalent trace of τa can

be written in a form φaη with some φ, η ∈ A∗, an equivalent way of defining

the anchor position is as as following:

min
φaη

ε
≡τa, a/∈η

len(φ).

In Algorithm 4.1, we find the anchor position of action a on an action

sequence τ . For any trace τ and action a, anchor(τ, a) constructs a trace

φ ∈ A∗. Initially φ is set to be the empty sequence. Iteratively, from the end

of τ , we add action τ(t) to φ if it is not independent to the entire trace φa.

We will prove that, length of φ gives the anchor position of action a on trace

τ . The time complexity of the algorithm is at most O(n2), where n is the

length of trace τ .

Algorithm 4.1 anchor(τ, a)

1: φ← 〈〉;
2: //let T be the length of τ
3: for t = T − 1 : 0 do
4: if ∃b ∈ φa, τ(t) 6 ε∼ b then
5: φ← τ(t)φ;
6: end if
7: end for
8: return len(φ);

Lemma 4.7. For any action a ∈ A and trace τ ∈ A∗, the function anchor(τ, a)

computes the anchor position of a on τ .

Proof. For a trace τ and an action a, algorithm anchor(τ, a) constructs a

66

trace φ and returns its length. To prove that len(φ) gives the anchor position

(p) of a on τ , we show both len(φ) ≥ p and len(φ) ≤ p.

len(φ) ≥ p. It suffice to prove the statement by constructing a trace η

such that φaη
ε≡ τa and a /∈ η. Let η = τ\φ be the remaining subsequence

of τ after removing the actions in φ. We note that the ordering of actions

in η is the same as that in τ . For each action c ∈ η, line 5 is not executed.

Hence, for all actions b ∈ φa which is originally to the right of c, we have

b
ε∼ c. Therefore, action c can be swapped repeatedly to the right of action a.

Repeat this process for all actions in η, we derive trace φaη from the original

trace τa. Therefore φaη
ε≡ τa. In addition, we note that from Definition 4.3,

an ε-independent action pair consists of two distinctive actions, which implies

a 6 ε∼ a. Hence, for each occurrence a ∈ τ , line 5 is not executed, that is, a /∈ η.

Therefore, the statement holds.

len(φ) ≤ p. First, we convert any trace τa to a trace consists of only

distinctive actions. If otherwise some action b ∈ τa occurs more than once,

we replace the occurrences as distinctive pseudo-actions b0, b1, . . . , such that

each bi inherit the same independence relation from b and any pair of these

pseudo-actions is not independent. In this way, we map an arbitrary trace

τa to a trace consists of only distinctive actions. It can be checked that this

mapping is bijective. Without loss of generality, we assume that the actions

in τa are distinctive.

We prove len(φ) ≤ p by contradiction. Suppose len(φ) > p, then there

exist traces φ′, η′ such that (i) a /∈ η′, (ii) φ′aη′
ε≡ τa, and (iii) len(φ′) <

len(φ). From (iii), there exists an action c ∈ φ\φ′. If there are multiple

choices of such actions, we choose the rightmost action c in φ. From lines 4

and 5, action c is in φ iff there exists another action b ∈ φ to the right of c

such that c 6 ε∼ b. Since we choose action c as the rightmost action in φ that

is not in φ′, we have b ∈ φ′. Originally in trace τa, action b is to the right of

action c. As actions b and c are not ε-independent, in any equivalent trace

φ′aη′
ε≡ τa, the relative position of them should not be changed. Hence in

trace φ′aη′, action b is also to the right of action c. However, since b ∈ φ′ and

c /∈ φ′, we have action c is to the right of action b in trace φ′aη′. We derive

a contradiction. Therefore, if the actions in τa are distinctive, len(φ) ≤ p.

Example 4.5. In Example 4.3, we show that a0
ε∼ a2 and a1

ε∼ a2 with

67

ε = 0.1. It can also be checked that a⊥ is not ε-independent to any actions.

Consider the anchor position of a0 on the trace τ = a⊥a2a1. We can swap a0

ahead following the sequence τa0 = a⊥a2a1a0
ε≡ a⊥a1a2a0

ε≡ a⊥a1a0a2. Since

neither of a⊥ and a1 is independent to action a0, it cannot be swapped any

further ahead. The anchor position of a0 is 2, corresponding to its position

on a⊥a1a0a2. Algorithm 4.1 construct a trace φ = a⊥a1, where the length of

φ gives the correct anchor position 2.

4.6.2 Generalization of an Individual Execution

In this section, we present an algorithm to compute a ball centered at the

final state of a potential execution ξ, such that the ball contains the final

states of all (δ0, ε)-close executions of ξ. Algorithm 4.2 takes inputs of an

execution ξ = ξq0,τ , two parameters δ0, ε ≥ 0, and a set of discrepancy

functions {βa}a∈A. For each t ∈ [len(ξ)], let a be the t-th action of ξ and τ

be the prefix before a. The algorithm first finds a lower bound of the anchor

position of a on τ , which is the leftmost position that action a can reach by

swapping consecutive ε-independent action on τ . Using the anchor positions,

we can compute a sequence of representative radii {δt}Tt=1 inductively. Our

computation guarantees that for each t ∈ {1, 2, . . . , T}, the length t prefixes

of ξ is a (δ0, ε, δt)-representative potential execution.

Algorithm 4.2 Generalization(ξ, δ0, ε, {βa}a∈A)

1: β ← max{βa};
2: //let T be the length ξ
3: for t ∈ [T] do
4: //let the length (t+ 1) prefix of trace(ξ) be τa
5: k ← anchor(τ, a);
6: if k = t then
7: δt+1 ← βa(δt);
8: else
9: δt+1 ← βa(δt) + γt−k−1(ε);

10: end if
11: end for
12: return BδT (ξ(T));

We will establish the correctness of Algorithm 4.2. First, we will show that

the sequence of {δt}Tt=1 is valid representative radii for the prefixes of ξ.

68

Lemma 4.8. For any t ≤ len(ξ), the length t prefix of ξ is a (δ0, ε, δt)-

representative execution.

Proof. For any t ≤ len(ξ), We prove the lemma by induction on t.

Base: For t = 0, the length 0 prefix of ξ is a single state q0. Any ξ′ (δ0, ε)-

close to q0 is also a single state q′0 with q′0 ∈ Bδ0(q0). Hence the lemma holds

for t = 0.

Induction: Suppose the lemma holds for any prefix of ξ with length at most

t < len(ξ). We will prove the lemma holds for the length t + 1 prefix of ξ.

Let q0 be the initial state of ξ, τ be the length t prefix of trace(ξ), and a ∈ A
is the (t+ 1)th action. Then ξt+1 = ξq0,τa is the length t+ 1 prefix of ξ. The

execution ξt+1 is illustrated in Figure ??. Fix any ξ′ that is ξ′ is (δ0, ε)-close

to ξt+1. From Proposition 4.3, ξ′. lstate .L = ξt+1. lstate .L. It suffice to prove

that |ξ′. lstate .X − ξt+1. lstate .X| ≤ δt+1.

Since trace(ξ′)
ε≡ τa, action a is in the sequence trace(ξ′). Partition-

ing trace(ξ′) on the last occurrence of a, we get trace(ξ′) = φaη for some

φ, η ∈ A∗ with a 6∈ η. Since k is a lower bound of the anchor position, from

Definition 4.7, the position of the last occurrence of a on trace(ξ′) is at least

k. Hence we have len(φ) ≥ k and len(η) = t− len(φ) ≤ t− k. We construct

another potential execution ξ′′ = ξξ′. fstate,φηa. The executions ξ, ξ′ and ξ′′ are

illustrated in Figure 4.6.

Figure 4.6: Illustration of the potential executions.

From the inductive hypothesis, the length t prefix of ξt+1, which is the

execution ξt = q0, τ, at in the figure is an (δ0, ε, δt)-representative execution.

We note that the length t prefix ξ′′ is (δ0, ε)-close to ξt. Therefore, |qt.X −

69

q′′t .X| ≤ δt. Using the discrepancy function of action a, we have

|qt+1.X − q′′t+1.X| ≤ βa(|qt.X − q′′t .X|) ≤ βa(δt). (4.8)

We will quantify the distance between ξ′ and ξ′′. There are two cases:

(i) If k = t and line 7 is executed. Then, len(η) ≤ t− k = 0, that is, η is an

empty string. Hence, ξ′ and ξ′′ are indeed identical and q′t+1 = q′′t+1. Thus

from Equation (4.8),

|qt+1.X − q′t+1.X| = |qt+1.X − q′′t+1.X| ≤ βa(δt).

Therefore if δt+1 is computed by line 7, the lemma holds for the length t+ 1

prefix of ξ. (ii) Otherwise k < 0 and line 9 is executed. From Lemma 4.5,

we can bound the distance between ξ′ and ξ′′ as

|q′t+1.X − q′′t+1.X| ≤ γlen(η)−1(ε) ≤ γt−k−1(ε).

Combining with Equation (4.8), we get

|qt+1.X−q′t+1.X| ≤ |qt+1.X−q′t+1.X|+ |qt+1.X−q′t+1.X| ≤ βa(δt)+γt−k−1(ε).

Therefore, if δt+1 is computed by line 9, the lemma holds for the length t+ 1

prefix of ξ, which completes the proof.

Using this lemma, we immediately establish the soundness of the algorithm

as follows.

Theorem 4.9. For any execution ξ′ such that ξ′ is (δ0, ε)-close to ξ, the last

state of ξ′ is in the returned set BδT (ξ(T)).

Proof. From Lemma 4.8, ξ is a (δ0, ε, δT)-representative potential execution.

From Definition 4.6, for any potential execution ξ′ that is (δ0, ε)-close to ξ,

we have ξ′. lstate ∈ BδT (ξ(T)).

In the following theorem, we show that the radius δT can be made arbitrar-

ily small for small enough initial radius δ0 and the approximation parameter

ε.

Theorem 4.10. For any t ≤ len(ξ), as δ0 → 0 and ε→ 0, the size of radius

δT goes to 0.

70

Proof. From Proposition 4.4, for any n, γn(ε) → 0 as ε → 0. From Def-

inition 4.2, for any δt and discrepancy function β, β(δt) → 0 as δt → 0.

Therefore, either line 6 or line 8 in Algorithm 4.2 is executed, δt+1 → 0 as

δt → 0 and ε → 0. Iteratively applying this observation leads that, δT → 0

as δ0 → 0 and ε→ 0. Therefore the theorem holds.

For an execution ξ of length n, the worst case time complexity of Algo-

rithm 4.2 is O(n3), since finding the anchor position can take at most O(n2)

time. However, if all actions in ξ are mutually approximately independent,

the algorithm can over-approximate the final states of a number of O(n!) ex-

ecutions in the best case, which can lead to a dramatical saving in reach set

computation. In the coming section, we will use Algorithm 4.2 as a subrou-

tine to compute an over-approximation of the reach set of a labeled transition

system.

4.7 Reach Set Over-Approximation

In Section 4.6, we presented a function generalize() to over-approximate the

reach set of a group of (δ, ε)-close potential executions using a single potential

execution. Building upon this function, we will present an algorithm to

compute an over-approximation of the reach set of a labeled transition system

at a time T .

4.7.1 Equivalent Action Sequences

As we defined in Section 4.3.1, for any set of initial states S ⊆ Θ and time

bound T ≥ 0, Execs(S, T) is the set of executions from S with length T ,

and Traces(S, T) is the set of action sequences taken by these executions.

In concurrent systems, even with S being a singleton {q}, the size of action

sequences Traces(q, T) can grow exponentially with T . Partial order reduc-

tion methods are developed to reduce the number of action sequences needed

to be explored. These methods exploit the equivalence relation on the set

of action sequences and divide Traces(S, T) into equivalence classes. Then,

checking a representative action sequence suffices to cover the whole equiv-

alence class. Here we define the set of representative action sequences in a

71

formal way.

Definition 4.8. Fix any time bound T ≥ 0, any equivalence relation
ε≡ on

the set of length T action sequence AT and any set of state S ⊆ Q. The

T -representative action sequences from S is a set T ⊆ Traces(S, T) such that

(i) any pair of action sequences in T are not ε-independent, and

(ii) an action sequence τ ∈ T is a T -representative sequence iff there exists

an action sequence τ ′ ∈ Traces(S, T) such that τ
ε≡ τ ′.

In another word, the T -representative action sequences T is the quotient

space of the set Traces(S, T) by the equivalence relation
ε≡. Over the past

few decades, various partial order methods have been proposed to compute

the representative action sequences. Roughly, there are two main classes of

methods that have been proposed. For each state q, the ample/persistent set

techniques select an ample set as a subset of enabled actions from q, where

the missing actions are independent to those actions in the ample set [23].

Then execution sequences that take actions from the ample sets are the

representatives for equivalent classes. In contrast, the sleep set techniques

decide which action to explore on-the-fly [88]. The technique maintains a

sleep set as a set of actions that should not be explored immediately and

update the set based on the independence relation along the execution. In

our algorithm, we assume that the T -representative action sequences can be

computed for any compact initial set S.

4.7.2 Reach Set Over-Approximation

We propose an algorithm to compute an over-approximation of Reach(Θ, T).

In this algorithm, we first compute a δ-cover Q0 of the initial set Θ such

that Bδ(Q0) ⊇ Θ. Then, in line 4, we compute the T -representative action

sequences from each cover Bδ(q0). Then, we use the algorithm Generalize()

to compute a ball R′ that over-approximate the set of states reached by a

group of executions from a cover following equivalent action sequences. Then

the algorithm returns a set R as a union of such balls R′.
We are able to show that, for any T ≥ 0, the set R over-approximate the

reach set of the system at time T .

72

Algorithm 4.3 Reachability algorithm to over-approximate Reach(Θ, T)

1: Q0 ← δ-cover(Θ);
2: R ← ∅;
3: for q0 ∈ Q0 do

4: T ← Traces(Bδ(q0))/
ε≡;

5: for τ ∈ T do
6: R′ ← Generalization(ξq0,τ , δ, ε, {βa}a∈A);
7: R ← R∪R′;
8: end for
9: end for

10: return R;

Theorem 4.11 (Soundness). For the set R returned by Algorithm 4.3, we

have R ⊇ Reach(Θ, T).

Proof. Fixed any ξ ∈ Execs(Θ, T), it suffice to show that ξ(T) ∈ R. Since

ξ(0) ∈ Θ and Q0 is a δ-cover, there exists a q0 ∈ Q0 such that ξ(0) ∈
Bδ(q0). For this q0, let T be the T -presentative action sequences from Bδ(q0)

computed in line 4 . From Definition 4.8, there must be a representative

action sequence τ ∈ T such that τ
ε≡ trace(ξ). Since ξ is (δ, ε)-close to ξq0,τ ,

from Theorem 4.9, the R′ computed using Generalization() guarantees that

ξ. lstate ∈ R. Therefore the theorem holds.

We are also able to show that, we can compute the over-approximation up

to arbitrary precision.

Theorem 4.12 (Completeness). For any r > 0, there exist δ, ε > 0 such

that, the set R computed by Algorithm 4.3 satisfies R ⊆ Br(Reach(Θ, T)).

Proof. Fix arbitrary r > 0. The set R is a union of balls R′ computed in

line 6. Fix any such R′ centered at the last state of potential execution

ξ = ξq0,τ . It suffices to show that R′ satisfies R′ ⊆ Br(Reach(Θ, T)) for small

enough δ and ε.

Since τ ∈ T is a T -representative action sequence from the initial set

Bδ(q0), from Definition 4.8, there exists an action sequence τ ′ ∈ Traces(Bδ(q0),

T) such that τ and τ ′ are ε-equivalent. Hence, there is an execution ξ′ ∈
Execs(Bδ(q0), T) from the ball Bδ(q0) following the action sequence τ ′. By the

definition of reach set, we have ξ′. lstate ∈ Reach(Θ, T). On the other hand,

ξ′ is (δ, ε)-close to the potential execution ξ. From Theorem 4.9, ξ′. lstate is

73

in the ball R′. That is, the ball R′ and the reach set Reach(Θ, T) intersect

at the state ξ′. lstate.

From Theorem 4.10, the radius of R′ can be made arbitrarily small as δ

and ε go to 0. We chose small enough δ and ε, such that the radius of R′ is

less than r/2. Therefore, the ball R′ is contained in the radius r ball of the

reach set Br(Reach(Θ, T)).

In this section, we proposed an algorithm to over-approximate the reach

set of label transition systems. In addition, we showed that the computation

can be made arbitrarily precise. We will apply our method to verification of

a linear transition system and a temperature control system.

4.8 Case Studies

4.8.1 Linear Transition Systems

We will first study the linear transition systems as presented in Example 4.1.

In Example 4.3, we constructed an instance of the system with N = 3,

and showed that a0
ε∼ a2 and a1

ε∼ a2. The instance of the system has three

continuous variables and three actions a0, a1, a2. We also showed that a0
ε∼ a2

and a1
ε∼ a2 with ε = 0.1. In Example 4.4 we further presented an execution

and its (δ, ε)-close executions.

For this system, we want to prove if the continuous states can converge to

a box [−0.5, 0.5]3 in three rounds. We illustrate an execution ξ = ξq0,τ with

q0.x = [2.5,−3.5, 1.2] and τ = a0a2a1a⊥a2a1a0a⊥a1a0a2a⊥ in Figure 4.7 (blue

curve). Using Algorithm 4.2, we compute a tube around the execution to

over-approximate all (δ, ε)-close potential executions (green curves). To give

an example of δ, ε-close potential executions to ξ, we compute a potential exe-

cution ξ′ = ξq′0,τ with q′0.x = [2.3,−3.2, 1] and τ ′ = a0a1a2a⊥a1a0a2a⊥a2a1a0a⊥

(red curve). The result validates that ξ′ lies in the tube computed using our

technique.

74

Figure 4.7: A tube around an execution of a linear transition system. The
blue curve is the execution ξ. The green curves illustrate a tube around ξ.
The red curve is a (δ, ε)-close potential execution with δ = 0.5 and ε = 0.1.

4.8.2 Room Heating Problem

We present a building heating system in Figure 4.8. The building has N

rooms each with a heater. For i ∈ [N], xi ∈ R is the temperature of room

i and mi ∈ {0, 1} captures the off/on state of the heater in the room. The

building measures the temperature of rooms periodically every T seconds and

save the measurements to yi. Based on the measurement yi, each room takes

action ai to decide whether to turn on or turn off its heater. The Boolean

variable di indicates whether room i has made a decision. These decisions

are made asynchronously among the rooms with a small delay h. For this

system, we want to check whether the temperature of the room remains in

an appropriate range.

automata Roomheating(N : Nat)
2 variables

x : RealN initially x[i] := 60;

4 y : RealN initially y[i] := 60;

d : BoolN initially d := f alseN ;

6 m : BoolN initially m := f alseN ;

8 transitions
oni, for i ∈ [N]

10 pre !di ∧ yi <= 72
eff x := W (h)x+ b(h) + C(h)m;

12 di := true ∧mi := true;

2offi, for i ∈ [N]
pre !di ∧ yi >= 68

4eff x := W (h)x+ b(h) + C(h)m;
di := true ∧mi := f alse;

6

8flow
pre ∧i∈[N]di

10eff x := W (T)x+ b(T) + C(T)m;
di := f alse for each i ∈ [N];

12y := x;

Figure 4.8: Transition system of room heating.

75

For i ∈ [N], actions on i, off i capture the decision-making process of room

i on whether or not to turn on the heater. During the process, time elapses

for a (short) period h, which leads to an update of the temperature as an

affine function of current temperature x and the heaters state m. The affine

function is derived from the thermal differential equation presented in [98].

In this section, we use an instance of the system with the following matrices,

W (h) =


0.96 0.01 0.01

0.02 0.97 0.01

0 0.01 0.97

 , b(h) =


1.2

0

1.2

 , C(h) =


0.4 0 0

0 0.1 0

0 0 0.4

 . (4.9)

After a room made its decision, either on i or off i is taken, it sets the variable

di to true. After all variables di are set, action flow captures the time elapse

for a (longer) period T after the decision-making of rooms, and updates a

measure value y. We use an instance of this step with the following matrices,

W (T) =


0.18 0.11 0.14

0.18 0.25 0.17

0.09 0.13 0.28

 , b(T) =


34.2

24

30

 , C(T) =


11.4 0 0

0 8 0

0 0 10

 .
(4.10)

For each i ∈ [N] and a ∈ {on i, off i}, we will derive the discrepancy func-

tion for action a. For any q, q′ with q.L = q′.L,

|ai(q).x− ai(q′).x|

= |W (h)q.x+ b(h) + C(h)q.m−W (h)q′.x− b(h)− C(h)q′.m|

≤ |W (h)||q.x− q′.x|.

We note that |W (h)| = 0.99. Hence, we can define βa(|q.x−q′.x|) = 0.99|q.x−
q′.x| as the discrepancy functions of each a ∈ {on i, off i}i∈[3]. Similarly, we

derived that βflow(|q.x− q′.x|) = 0.52|q.x− q′.x|.
For any i, j ∈ [3] with i 6= j, a ∈ {on i, off i} and b ∈ {off j, off j}, we can

prove a
ε∼ b with ε = 0.6. Notice that, ai(q).x = W (h)q.x+b(h)+C(h)q.m =

76

aj(q).x are identical, but ai(q).m and aj(q).m could be different.

|aiaj(q).x− ajai(q).x|

= |W (h)aj(q).x+ b(h) + C(h)aj(q).m−W (h)ai(q).x− b(h)− C(h)ai(q).m|

= |C(h)aj(q).m− C(h)ai(q).m| ≤ |C(h)||aj(q).m− ai(q).m|.

We note that |C(h)| = 0.4. We will give an upper bound on |aj(q).m −
ai(q).m|. Notice that ai(q).m and q.m can only differ in one bit (mi). Sim-

ilarly, aj(q).m and q.m can only differ in one bit (mj). Hence ai(q).m

and aj(q).m can be differ in at most two bits, and |ai(q).m − aj(q)
′.m| ≤

|[1, 1, 0]| = 1.41. Therefore,

|aiaj(q).x− ajai(q).x| ≤ 0.4 ∗ 1.41 ≤ 0.6.

Thus for any pair of rooms, the on/off decisions are ε-approximately inde-

pendent with ε = 0.6. For a round, where each room makes a decision once

in arbitrary order, there are in total 3! = 6 ε-equivalent action sequences.

Figure 4.9: A tube around an execution of a room heating problem. The
blue curve is the execution ξ. The green curves illustrate a tube around ξ
over-approximating (δ, ε)-close potential execution with δ = 2 and ε = 0.6.

We present an execution ξ in Figure 4.9 as the blue curve, which ran for

eight rounds. There are a number of 1.6 million (68) (δ, ε)-close potential

executions of ξ with ε = 0.6 and δ = 2. We illustrate a tube computed by

our technique in green, which is proved to contain the final state of all these

77

(δ, ε)-close potential executions.

4.9 Summary

In this chapter, we propose a partial order reduction for infinite state tran-

sition systems. We proposed the notion of ε-independent actions as an ex-

tension of the conventional notion of independent actions, such that the

resulting states are within ε distance regardless of the order of executing a

pair of ε-independent actions. The conventional notion of independent ac-

tions is indeed a special case of ε-independent actions with ε = 0. With

this ε-independence relation, we are able to define an ε-equivalence relation

among traces by swapping consecutive ε-independent actions.

We derive the distance between two executions after inserting a single

action at different positions (Lemma 4.5). We observe that the distance be-

tween executions depends on the difference in the inserting positions. Based

on this result, we proposed an algorithm to compute over-approximated reach

set of all executions with ε-equivalent traces. In O(n3) time, the algorithm

can over-approximate a number of at most O(n!) executions. We applied

the algorithm to verify properties of a linear transition system and a heater

control system.

78

Chapter 5

DIFFERENTIALLY PRIVATE
DISTRIBUTED CONTROL

The distributed control system is a class of cyber-physical system, where

agents cooperate to achieve individual and global objectives. In these sys-

tems, individuals desire to keep certain sensitive data private, while simul-

taneously sharing some information in order to benefit overall system per-

formance. Hence, there is a dichotomy between privacy and cost. Examples

of such systems include peak generation scheduling using consumption data

obtained from smart electric meters [39], traffic-aware navigation based on

location and destination data obtained from smart GPS [37, 38], and data

aggregation from sensor networks [40, 41].

At one extreme is the completely private society where the agents only

interact through their coupled dynamics. The other extreme is the com-

pletely non-private society. Agents share complete information, which allows

all agents to make accurate predictions (e.g., traffic or electricity demands)

and to make optimal decisions. Between these two extremes lies a multitude

of other possible communication strategies. The privacy-cost trade-off can

formalized as the cost of privacy measured by the difference between the cost

achieved through a given communication strategy and the cost achieved by

the completely non-private strategy.

5.1 Privacy-Performance Trade-Off in Distributed

Control

In this chapter, we present a general framework for studying cost of pri-

vacy for distributed control systems in which a collection of agents pursue

individual goals and communicate for the purpose of sensing their shared en-

vironment. Each agent i has a preference pi. These preferences capture, for

example, a sequence of waypoints for a vehicle or the electric power demand

79

of a household. The evolution of an agent depends on (a) its dynamics, (b)

the control action it takes, and also (c) the environment or the aggregate state

of the other agents. If the communication strategy shares more information

about agents’ preferences, then all agents in the society can estimate the

environment more accurately and, therefore, make better control decisions.

On the other hand, such a communication strategy may leak information

about agent preference. The cost of an agent is defined by the deviation of

its trajectory from its preference.

In our formulation, once the underlying dynamics of the system, the in-

dividual preferences, and the communication strategy are fixed the overall

system is deterministic.1 In our formulation, we show (Proposition 5.1) that

knowing the preference for the agents and an observation of the system al-

lows an adversary to uniquely infer the complete state trajectory of an agent

over time. The inference process of the adversary is indeed summarized as an

inverse observation mapping (η−1), which associate the observation sequence

with a trajectory of agents.

To keep the sensitive data private, one common approach is to add noise

to the communicated information. The effectiveness of such an approach can

be measured by using the concept of ε-differential privacy which was first

introduced in studies on statistical data bases [101, 43, 44, 45]. Roughly,

ε-differential privacy ensures that the probability distribution of any obser-

vation does not change substantially with a change in the sensitive data

corresponding to any one agent. Hence, an adversary cannot infer the sen-

sitive data of agents from the observation. Differentially private algorithms

are developed for mechanism design [102], data mining [103] and machine

learning [104]. More recently, this notion of privacy is extended to dynami-

cal systems [46, 105] and find its application in optimization [106, 107, 108]

and consensus [46, 109, 110].

During the past decade, several varieties of differential privacy have been

proposed [101, 44, 46, 111, 112]. The definition of differential privacy used

in this chapter (Definition 5.3) is introduced in [112] which augmented the

most common definition of differential privacy [101, 44] with metrics. The

main technical adjustment to the conventional definition (see e.g. Definition

1 of [43]) is the introduction of a notion of distance on the continuous space

1If the communication strategy uses randomization, the the overall system is purely
probabilistic.

80

of sensitive data. A consequence of the generalization is that greater changes

in the sensitive data of an agent now permit greater differences between the

corresponding probability distributions of observation sequences.

In this chapter, we develop a communication strategy for distributed con-

trol systems, which guarantees differential privacy. The main technical step

in our approach is to compute the sensitivity of a distributed control sys-

tem. Roughly, the sensitivity of a distributed control system captures the

distance between its trajectories with change in one agent’s preference. Then,

the noise to add follows Laplace distributions parameterized by the sensitiv-

ity. We prove that the resulting distributed control system is differentially

private. We study the privacy-performance trade-off for linear distributed

control systems. We show that the sensitivity of a distributed control system

decreases with the stability of its dynamics. Hence, the required standard

deviation of noise decreases with the stability of the dynamics. We establish

that the cost of differential privacy using our communication strategy up to

time T for a system with N agents is at most O(T 3

Nε2
) for stable systems.

The cost can also grow exponentially with T for unstable systems. This sug-

gests that the proposed strategy is more likely to be useful for stable systems

with short-lived participants (e.g., drivers with short commutes), and further

research is needed for strategies that scale better with time.

The rest of this chapter is organized as followng. Section 5.2 discusses

related research. Section 5.3 introduces the mathematical formalism we will

use throughout the chapter, namely, Markov chains with observations. A

Markov chain is essentially a transition system, like the one we studied in

Chapter 4, but associated with a probability space. Section 5.5 presents the

Laplace communication mechanism for general distributed control systems

and Section 5.6 develops specialized results for linear systems.

5.2 Related Works

Several varieties of differential privacy has been proposed in literature [101,

44, 46, 111, 112]. The common requirements for differential privacy is that

the change of an individual agent’s data can only result in unsubstantial

changes in the output distribution. Various mechanisms for achieving dif-

ferential privacy have been studied in the literature [102, 113, 114]. The

81

Laplace mechanism requires adding Laplace noise to the query output and

was proposed in [42]. To satisfy the privacy condition, the distribution of the

Laplace noise is a function of the sensitivity of the query, which is defined as

the distance between output if an individual agent changes its data. Then an

exponential mechanism, as a generalization of Laplace mechanism, is intro-

duced to design a privacy-preserving auction [102]. To further improve the

accuracy of the mechanism measured by the second moment of the noise, one

can add a carefully designed noise, whose probability density is a staircase

function, instead of standard Laplace noise [115].

In [44], the notion of differential privacy is expanded to include stream-

ing and online computations in which the adversary can look at the entire

sequence of outputs from the analysis algorithm. In parallel, with distance

defined on the space of data sets, one can measure how much the data have

changed and design mechanisms with lower error bounds [116, 117]. Our def-

inition of differential privacy absorbs the extension of the above two lines of

work, which ensures that the streaming output distribution does not change

substantially if one agent changes its data with a small amount.

Recently, privacy-preserving mechanisms are developed for dynamical sys-

tems. In [46], we introduce the notion of differential privacy to a consensus

problem and present a Laplace mechanism for solving it. Later, the authors

of [110] present an algorithm for unbiased average consensus and quantify the

convergence rate. In [118], we proved that adding Laplace noise achieves a

minimized entropy of estimation among all differentially private mechanisms.

In [119], we used a similar technique to solve a privacy-preserving distributed

optimization problem where participants cooperate to minimize the sum of

individual costs without exchanging the exact individual cost functions.

Contemporaneously with our work, the authors of [120] adopt the notion

of differential privacy to dynamical systems, where an adversary cannot tell

the exact input by looking at its output stream. Laplace and Gaussian

mechanisms are presented for converting an ordinary dynamical system to a

differentially private one. Then, a Kalman filter is designed to estimate the

state of differentially private systems with minimized estimation error. The

sufficient condition of the minimization problem is established in the form of

linear matrix inequalities. This technique is applied to estimate traffic flows

with GPS data [121].

82

5.3 Distributed Control System

In this section, we present a modeling framework for distributed control

systems. Like the labeled transitions system we discussed in Chapter 4, the

distributed control systems evolve through discrete transitions. However, in

contrast, here the transitions are associated with a probability distribution.

5.3.1 Continuous-State Markov Chain with Observations

The underlying model of a distributed control system is a Markov chain with

possibly uncountably many states.

Definition 5.1. A Markov chain is a tuple 〈X ∪ Y,F ,Θ, κ〉, such that

(i) X is a set of internal variables and Y is a set of observable variables,

Q = Val(X ∪ Y) is the state space equipped with the standard Borel

measure µ and Val(Y) is the space of observations,

(ii) F ⊆ 2Q is a σ-algebra on the state space Q,

(iii) Θ ∈ F is a set of initial state,

(iv) κ : Q × F → [0, 1] is the kernel function such that (a) for any q ∈ Q,

κ(q, ·) is a probability measure on the measurable space 〈Q,F〉, and

(b) for any S ∈ F , κ(·, S) is a measurable function.

The variables in X can be either real-valued or finite-valued. For any state

q and a measurable set of states S, the kernel of the Markov chain κ(q, S)

specifies the probability of transition from state q to any state in the set

S. We assume the kernel κ is differentiable in the second argument with

respect to µ, that is there exists a measurable function p : S × S → R≥0

such that κ(q, S) =
∫
s∈S p(q, s)dµ for any q ∈ Q and S ∈ F . The function

p is the kernel density of the Markov chain. Given a kernel density p, a

Markov kernel κ is uniquely specified. In this chapter, the state space Q are

Euclidean spaces and F is the standard Borel σ-algebra.

A trajectory (or execution) of the Markov chain of length k is a sequence

of states ξ = q0, q1, . . . , qk−1, such that q0 ∈ Θ. For any execution ξ =

q0, q1, . . . , qk−1, the probability density of ξ is defined as f(ξ) =
∏k−1

i=0 p(qi, qi+1).

That is, the probability density of an execution is the product of the kernel

83

density on each step. The set of executions of length k is Qk. From Sec-

tion 2.4, the product σ-algebra with measure µk are well defined. Hence for

any measurable set of executions S ⊆ Qk, the probability of these sets of

execution P(S) =
∫
ξ∈S f(ξ)dµk is well defined.

For an execution ξ, the restriction of the execution on the set of observable

variables Y is denoted as η(ξ) = ξ ↓ Y . We denote O as the σ-algebra of

all measurable observations. It can be checked that, the projection function

η is measurable. Hence, for a measurable set of observation O ∈ O, the

probability of the Markov chain generating observations in O is well defined

as P(O) = P(η−1(O)).

5.3.2 Distributed Control Systems

In this section, we formally introduce distributed control systems. The be-

havior of the complete system is modeled as a Markov chain parametrized by

a quantity p. We begin by defining a distributed control system abstractly

(see Figure 5.1); Section 5.6 provides more concrete instantiations of these

definitions in terms of linear models. A system consists of N agents oper-

ating in a shared environment. Each agent i, i ∈ [N], has a preference pi,

which captures its initial state and control objectives. The agent’s behavior

consists of a physical part which evolves according to some deterministic dy-

namics and a controller which computes the control inputs for the physical

dynamics. The agent uses a communication strategy to broadcast some noisy

version of its state to the other agents. The broadcasts are noisy to preserve

privacy and are used to estimate the state of the environment. These esti-

mates are used by the i’s controller for computing the inputs (along side its

own state). Fixing the vector of preferences p for all agents, the evolution of

the complete system becomes a Markov chain with observationsM(p). The

stochasticity arises from the noise values used in the communication strategy

of the individual agents.

The Markov chain modeling the distributed control system consists of N

agents. Each agent i, i ∈ [N], has variables Xi, Ui, Yi which are the state,

input, and observable variables of the agent. For all i ∈ [N], we write X =

Val(Xi) = Val(Yi) and U = Val(Ui), respectively as the state space and input

space of individual agents. Let Z be a set of environmental variables and Z̃

84

Figure 5.1: Block diagram of a distributed control system.

be the set of estimated environmental variables with Val(Z) = Val(Z̃) = Z.

The preferences of each agent i (pi ∈ X ∗) consisting of a sequence of points

in the individual agent’s state space X which defines a path agent i wants to

follow. The kernel density of the Markov chain is specified by the following

functions: (a) A dynamics function f : X × U × Z → X which defines the

next state of an agent as a function of its current state, control input and

the environment’s state. (b) A control function g : X × Z × N → U which

defines the agent’s controller output as a function of its state, the estimated

environment state. (c) An aggregation function h : XN → Z which defines

the state of the environment as a function of the agents’ states. And finally

(d) A observation probabilistic density r : X × X × N → R≥0 such that

for any x ∈ X and t ∈ N, r(x, ·, t) is a probability density. The value of

r(x,y, t) gives the probability density of selecting y as observable at time t

if the actual state is x.

A state of agent i is a point in X 2×U and its three components are the true

agent state (denoted by xi), the observed agent state (yi), and the control

input (ui), respectively. The state of the environment is Z2 and the two com-

ponents are the (true) environment state (z) and the observed environment

state (z̃). The dynamics functions f and the aggregation function h capture

the physical behavior of the system and the coupling between agents—as the

control designers, we cannot change them. In this chapter, we assume that

the controller function g is obtained through existing control theoretic tech-

85

niques (see Section 5.2 for a discussion of related work). The only component

up for design is the observation density r. In defining the Markov chain be-

low, we will use r to probabilistically update a state component of the agent

(called x̃i below) which is produced as an observation. This simplifies our

model by keeping the observation function η deterministic.

Thus, the state space of the Markov chain modeling the complete system

is Q = (X 2×U)N ×Z2. For any state q ∈ Q, we write q.xi, q.ui, respectively

as the valuations of variables Xi, Ui. We denote q.x and q.u as the aggregate

vector 〈q.x0, . . . , q.xN−1〉 and 〈q.u0, . . . , q.uN−1〉, respectively. For a sequence

of states q0, q1, . . . , we write the corresponding states as x(0),x(1), . . . as the

states are clear in the context. The space of observations for the Markov

chain is Y = XN ×Z. For each i ∈ [N] we denote the valuations of variables

Xi at time t ∈ N as xi(t). The valuations ui(t),yi(t), z(t), z̃(t) are defined

similarly. The kernel density of the Markov chain at time t ∈ N is defined

by the following sequence of equations:

ui(t) = g(xi(t− 1), z̃(t− 1)), (5.1)

xi(t) = f(xi(t− 1),ui(t), z(t− 1)), (5.2)

yi(t) ∼ r(xi(t), ·, t), (5.3)

z(t) = h(x0(t), . . . ,xN−1(t)), (5.4)

z̃(t) = h(y0(t), . . . ,yN−1(t)). (5.5)

The first three equations define values of the control input (ui), the agents

state (xi), and the environment state (zi), for each i ∈ [N]. The value of

yi(t)’s is chosen according to the probability distribution r(xi(t), ·, t).
The observation function η of the Markov chain is defined as follows: for

any state q ∈ Q,

η(q) = 〈y0, . . . ,yN−1, z̃〉.

In other words, an observation is simply the projection of the state on the Y

and Z̃ components. The initial state q0 is specified by the global preference

vector p and the aggregate function h. For each agent, the initial state is

defined by the first point of its preference xi(0) = pi(0). Then the aggregate

state is z(0) = h(x0(0), . . . ,xN−1(0)). The initial control inputs (ui(0)) and

the initial observed agent state (yi(0)) and initial observed environment state

(z̃(0)) are set to 0. We denote Execs(p) as the set of all executions of M(p).

86

The only sources of uncertainty in the behavior of a control system are (a)

the preferences of the agents (p) and (b) the randomized observation map (r),

which is used to disseminate noisy private information for the sake of better

performance. Thus, given a preference vector and an observation sequence,

and the knowledge of the parameters f , g, h, it is possible to infer a unique

execution of M(p). We formalize this notion in Proposition 5.1.

Proposition 5.1. For any distributed control system M(p), given a pref-

erence vector p and an observation sequence β of length k, η−1
M(p)(β) is a

singleton set.

Proof. The proof is by induction on the length of β.

Base. If β is of length one then η−1(β) is the single starting state θ. As we

mentioned previously, the agent i’s state matches the first point of pi, that

is xi(0) = pi(0), which is specified by p. Also, z(0) = h(x0(0), . . . ,xN−1(0)).

And other variables are initialized as 0. Thus, the start state θ is fixed.

Induction. Suppose β = β′b be an observation of length k+1, where η−1(β′)

is the unique execution ξ′ ending with last state qk = 〈u(k),x(k),y(k), z(k),
˜z(k)〉. It suffices to show that for the given state qk and the observation

y, there is a unique state qk+1 which makes ξ′qk+1 = η−1(β). From Equa-

tion (5.1), it follows that for each i ∈ [N], ui(k + 1) is uniquely defined

as g(xi(k), z̃(k)). This and Equation (5.2) imply that xi(k + 1) is uniquely

defined. Similarly, the ui’s and the xi’s together with Equation (5.4) imply

that z(k + 1) is also uniquely defined. Finally, yi(k + 1) and z̃(k + 1) are

specified by the last state b of β. Hence, the states at k + 1 step are fully

specified.

Thus, fixed an observation sequence β, an execution ξ is fully specified by a

global preference p. Fix an observation sequence, if the adversary has a high

confident guess of the preference vector p, then the agents’ whole trajectory

corresponding to such a p is also of high validity. Otherwise, if the preference

vector is protected, the evolution of the agents is hidden. So it suffices to

consider privacy of the preference vector p.

87

5.4 Privacy and Cost in Distributed Control

For formulating privacy of a distributed control system, we first define com-

parable and adjacent preference vectors. For a pair of preference vectors p

and p′, the corresponding Markov chainsM(p) andM(p′) are comparable if

the observable spaces are identical, that is, OM(p) = OM(p′).

Definition 5.2. A pair of preference vectors p and p′ in (XN)∗ are adjacent

up to time T , written as T -adj(p, p′) in short, if there exists a k ∈ [N], such

that for all t ≤ T , such that (i) |pk(t) − p′k(t)| ≤ 1, and (ii) for all i 6= k

pi(t) = p′i(t).

The norm used in the definition is the standard `p-norm for arbitrary

p ∈ [1,∞] chosen by the user. In other words, two preference vectors are

T -adjacent if they differ only in the preferences of a single agent up to time

T , and the difference in terms of the `p-norm is at most unity at each time.

We adapt the standard definition of differential privacy to this framework

of control mechanisms, where the protection of the individual agent’s prefer-

ences have to be balanced with the benefits of information sharing for control

in a shared environment.

Definition 5.3. The randomized control mechanism M is ε-differentially

private up to time T , if for any two T -adjacent preference vectors p and

p′ and any set of finite observation sequences Obs, M(p) and M(p′) are

comparable and

PM(p)[η
−1
M(p)(Obs)] ≤ eεPM(p′)[η

−1
M(p′)(Obs)]. (5.6)

This definition of differential privacy is similar to the one appears in [44]

with two technical differences. First, we restrict the preferences to be adja-

cent up to a time bound. Secondly, owing our choice of the definition ofM(p)

which allows all the components of M(p) to possibly depend on p, for pri-

vacy of individual agent’s preferences with respect to observation sequences

produced from to Markov chains, it is required that the output spaces of

the corresponding chains are the same. This requirement is incorporated by

making the chains comparable.

Performance of a distributed control system is measured by a cost function.

It is standard to consider the following quadratic cost in optimal control

88

theory. Given an execution of length T + 1, α = q0, q1, . . . , qT , the cost of

control for an individual agent i up to T time is the sum of squared distance

between the agent’s state and its preferred state. That is, costM(p),i(α)
∆
=∑T

t=1 |xi(qt)−pi(t))|22. The summation starts with t = 1 because by definition

xi(q0) = pi(0) and no cost is paid at time t = 0. The cost function of agent i

is the expectation of the function costM(p),i(α) over the space of executions

of length T ,

costM(p),i(T) = E

[
T∑
t=1

|xi(qt)− pi(t))|22

]
.

We give an example of a distributed control problem.

Example 5.1 (Private Nevigation). This example captures the routing

of N agents on a 2-D plane whose motion is affected by the center of gravity

of all the agents. The agent i’s state xi ∈ X ⊆ R2 has two components,

which are the x and y coordinates of agent i. Each agent has a preference

which is a path pi ∈ (R2)∗. The individual agent’s state at time t is affected

by three factors: the previous state xi(t − 1), the aggregate state, which is

the center of the mass of the herd (z(t − 1)), and the individual’s control

input ui(t). The update law of the ith agent’s state at time t+ 1 follows:

xi(t) = 1.5xi(t− 1) + cz(t− 1) + ui(t). (5.7)

The aggregate state z ∈ Z ⊂ R2 is the center of gravity of the herd,

z(t) =
1

N

∑
i∈[N]

xi(t).

Designing a controller for the i-th agent, which cancels out the influence of

the aggregate state on individual agent and drives it toward the goal pi(t+1),

needs the actual states of all other agents. With the precise information of

others, agent i can achieve its desirable individual cost by using some optimal

control technique. For example, the following controller may be used:

ui(t) = −cz(t− 1)− 1.3xi(t− 1) + 0.8pi(t). (5.8)

Combined Equations (5.8) and (5.7), we get the update rule for the whole

close-loop system:

xi(t) = 0.2xi(t− 1) + 0.8pi(t). (5.9)

89

The current state xi(t) is a linear combination of the previous state xi(t− 1)

and the current preference pi(t). If the sequence of preference pi is fixed for

a few rounds, the state xi converges to it geometrically. Otherwise if the

sequence of preference is changing, the state xi keeps tracking it. The cost

of the individual agent is defined by the sum of squared distance between its

state xi and pi, that is,

cost(p, T) =
T∑
t=1

|xi(t)− pi(t)|22.

In Section 5.6, we introduce a mechanism that guarantees differential privacy

for this example.

We define the cost of a randomized control mechanismM as the difference

in the cost of two nearly identical Markov chains with observationsM(p) and

M′(p), where M(p) is the differentially private Markov chain and M′(p) is

identical except that its observation map discloses perfect information about

the agents’ states. Formally, given M(p) defined by the parameters f, g, h,

and r, the perfectly observable version M′(p) is defined by the parameters

f, g, h and r′, where for any t ∈ N, r′(x, y, t) = δ(y − x) with δ(·) being the

Dirac delta distribution. Then, the cost of privacy is defined as the difference

in the costs of M(p) and M′(p).

Definition 5.4. For any ε > 0 and time bound T ∈ N, and an ε-differentially

private randomized control mechanism M, the Cost of Privacy (CoP) up to

time T , is defined by the supremum of the difference between any individual’s

cost in M(p) and the corresponding perfectly observable chain M′(p) over

all preference vector p:

CoP (ε,M, T) = sup
p,i

(
costM′(p),i(T)− costM(p),i(T)

)
.

We will discuss the cost of privacy of Example 5.1 in Section 5.6.2

5.5 Laplace Observations of Differential Privacy

In this section, we introduce a strategy for creating observation maps that

guarantees differential privacy of the agents’ preferences. For the remainder

90

of this chapter let n = |Xi| be the length of local state xi. In this design,

at time t, each agent reports yi(t) by adding a noise ωi(t) on its actual state

xi(t), that is

yi(t) = xi(t) + ωi(t), (5.10)

where ωi(t) is a vector that consists of n independent random noises drawn

from Laplace distribution Lap(Mt). If we combine the two step, we have

y(t) = h(y(t)) = h(x(t) + ω(t)). (5.11)

For brevity, we denote x(t) and ω(t) as the global state and the global noise

vector.

Before proposing an actual design of Mt, we first define the sensitivity

of the system. Fix an observation sequence β ∈ Y T up to time T and

a preference vector p. As we mentioned in Proposition 5.1, η−1
M(p)(β) is a

singleton set. Then, x(η−1
M(p)(β)(t)) is the global state at time t corresponding

to the execution η−1
M(p)(β). To quantify the maximal difference of the system’s

global state at time t resulted from a pair of adjacent preference vectors p

and p′, we introduce the sensitivity of the system.

Definition 5.5. For a mechanismM, we define the sensitivity ofM at time

t ∈ N as

∆(t) = sup
β∈Ot

sup
t-adj(p,p′)

|x(η−1
M(p)(β(t)))− x(η−1

M(p′)(β(t)))|1.

Sensitivity captures the L1 distance between executions with adjacent pref-

erence vectors. We assume that ∆(t) is bounded for any t ∈ N throughout the

chapter. The sensitivity can be computed explicitly for distributed control

systems with linear dynamics and control, and can be estimated numeri-

cally for nonlinear systems. Using the sensitivity, we develop a noise-adding

strategy to achieve differential privacy.

Theorem 5.2. At each time t ∈ [T], if each agent adds a noise vector ωi(t)

which consists of n independent Laplace noise Lap(Mt) such that
∑T

t=0
∆(t)
Mt
≤

ε, then the distributed control system is ε-differentially private up to time T .

Proof. Fix any pair of T -adjacent preference vectors p, p′ ∈ X TN , and any

set of observation sequence Obs ⊆ OT . We will denote the sets of executions

91

η−1
M(p)(Obs) and η−1

M(p′)(Obs) by A and A′, respectively. First, we define a

correspondence B between the sets A and A′. For ξ ∈ A and ξ′ ∈ A′,

B(ξ) = ξ′ if and only if they are the observation sequence up to time T .

That is, η(ξ(t)) = η(ξ′(t)) for all t ∈ [T]. From Proposition 5.1, for any

observation sequence β ∈ Obs there is a unique execution ξ ∈ Execs(p) that

can produce the observation. Similarly, ξ′ is also unique in Execs(p′). So

B is indeed a bijection. We relate the probability measures of the sets of

executions A and A′,

PM(p)[η
−1
M(p)(Obs)]

PM(p′)[η
−1
M(p′)(Obs)]

=

∫
ξ∈A PM(p)[ξ]dµ∫

ξ′∈A′ PM(p′)[ξ′]dµ′
. (5.12)

Changing the variable using the bijection B we have,

∫
ξ′∈A′ PM(p′)[ξ

′]dµ′ =
∫
B(ξ)∈A′ PM(p)[B(ξ)]dµ

=
∫
ξ∈A PM(p)[B(ξ)]dµ.

(5.13)

From Equations (5.1)-(5.5) and the definition of r,∫
ξ∈A

PM(p)[ξ]dµ =

∫
ξ∈A

PM(p)[ξ.y|ξ.x]dµ,

where x(t) is the vector of N agents’ states at t along execution ξ. Each

xi(t) is a vector of length n. We denote the k-th state component of xi(t)

by x
(k)
i (t). As y(t) is obtained by adding n×N independent noise values to

x(t), from the distribution Lap(Mt), it follows that the probability density

of an execution is reduced to

PM(p)[y(ξ)|x(ξ)] =
∏

i∈[N],k∈[n]
t∈[T]

pL(ξ(t).y
(k)
i − ξ(t).x

(k)
i |Mt), (5.14)

where pL(x|b) is the probability density function at x with parameter b. Then,

we relate the distance at time t between the states of ξ and B(ξ) with the

sensitivity ∆(t). Let β = η(ξ) be the observation sequence corresponding to

ξ. By the Definition 5.5, we have

|ξ(t).x− ξ′(t).x|1 ≤ ∆(t).

92

The norm in the above equation is L1-norm. The global state x(t) consists

of N local states xi(t), each of which has n component. So ξ(t).x and ξ′(t).x

lives in space RnN . By definition of L1-norm:

N∑
i=1

n∑
k=1

|ξ(t).x(k)
i − ξ′(t).x

(k)
i | = |ξ(t).xi − ξ′(t).xi|1 ≤ ∆(t).

By the definition of bijection B, the observations of ξ and B(ξ) match, that

is, y(ξ(t)) = y(B(ξ)(t)). From the property of Laplace distribution,

∏
i∈[N]k∈[n]

pL(ξ(t).y
(k)
i − ξ(t).x

(k)
i |Mt)

pL(B(ξ)(t).y
(k)
i −B(ξ)(t)x

(k)
i |Mt)

≤
∏

i∈[N],k∈[n]

exp

(
|ξ(t).y − ξ(t).x−B(ξ)(t).y +B(ξ)(t).x|

Mt

)

=
∏

i∈[N],k∈[n]

exp

(
|ξ(t).x(ξ(t))−B(ξ)(t).x|

Mt

)

=exp

 ∑
i∈[N],k∈[n]

|ξ(t).x−B(ξ)(t).x|
Mt


≤e

∆(t)
Mt .

(5.15)

Combining Equations (5.12), (5.13), (5.14) and (5.15), we derive

PM(p)[η
−1
M(p)(Obs)]

PM(p′)[η
−1
M(p′)(Obs)]

≤
∫
ξ∈A PM(p)[ξ.y|ξ.x]dµ∫

ξ∈A PM(p)[B(ξ).y|B(ξ).x]dµ

≤
∏
t∈[T]

e
∆(t)
Mt ≤ e

∑
t∈[T]

∆(t)
Mt .

If Mt satisfy
∑T

t=0
∆D(t)
Mt

≤ ε, then
∏

t∈[T] e
∆(t)
Mt ≤ eε. Thus the theorem

holds.

We can also derive the following corollary from Theorem 5.2.

Corollary 5.3. At each time t ∈ [T] if each agent adds an vector of inde-

pendent Laplace noise Lap(Mt), where Mt = ∆D(t)T
ε

to its actual state, then

the distributed control system is ε-differentially private.

93

In this mechanism, the noise added is proportional to the sensitivity of

the system and the time bound of the system T . Roughly, an adversary can

examine a number of T observations of an individual agent. The parameter

of the Laplace noises added is proportional to the length of the observation

and the sensitivity of the system.

5.6 Differentially Private Linear Distributed Control

In this section, we will specialize the general framework of Section 5.3 to

linear control systems. Linear models for the physical dynamics and linear

controller functions are the predominant models studied in control theory

literature. In this setup, the optimal controller design problem can be for-

mulated and solved effectively using convex optimization. We assume that

agent i’s state (xi), its observed state (yi), its control input (ui), the envi-

ronment state (z), and the observed environment state (z̃) are all points in

Rn, for some natural number n. Agent i’s preference is an infinite (possi-

bly repeated) sequence of points in Rn. Next, we define the remaining four

parameters of the control system. The linear dynamics function for the i-th

agent is:

f(xi, z,ui) = Axi + cz + ui,

where A ∈ Rn×n is the dynamics matrix and c ∈ R is a coupling constant.

The linear aggregation function h computes the average of the agents’ states,

which is defined as

h(x) =
1

N

∑
i∈[N]

xi.

For this type of dynamics, a linear feedback controller suffices to drive the

agent to any fixed preference point. We choose a general linear feedback

control function of the form:

g(xi, z, t) = (K − A)xi + (I −K)pi(t)− cz̃,

94

where K ∈ Rn×n is a stable matrix and I is the identity matrix. Finally, the

form of the observation map is

yi = xi + ωi(t),

where ωi(t) is drawn from a time-dependent probability distribution to be

defined below.

As in the general case (Section 5.3), given a preference vector p, the above

parameters define the Markov chain M(p) which captures the evolution of

the system. The system of equations defining the transitions of this Markov

chain, corresponding to Equations (5.1)-(5.5), can be written as follows: At

time t ∈ N,

ui(t) = (K − A)xi(t− 1) + (I −K)pi(t)− cz̃(t− 1), (5.16)

xi(t) = Axi(t− 1) + cz(t− 1) + ui(t), (5.17)

yi(t) = xi(t) + ωi(t), (5.18)

z(t) =
1

N

∑
i∈[N]

xi(t), (5.19)

z̃(t) =
1

N

∑
i∈[N]

yi(t). (5.20)

Combining the above equations, the closed-loop dynamics of agent i is:

xi(t) = Kxi(t− 1) + (I −K)pi(t)−
c

N

∑
i∈[N]

ωi(t− 1). (5.21)

Agent i’s state at time t can be written as a function of its preference sequence

{pi(s)}s≤t and the sequence {ωi(s) : i ∈ [N], s ≤ t} of noise vectors added in

all previous rounds. By iteratively applying Equation (5.21), we obtain:

xi(t) =Ktpi(0) +
t∑

s=1

Kt−s(I −K)pi(s)

− c

N

t−1∑
s=0

Kt−s−1
∑
i∈[N]

ωi(s).

(5.22)

Remark 5.1. By taking expectation on both sides of Equation (5.21), we

95

can write x(t)− p(t) = K(x(t− 1)− p(t)). Given a stable the matrix K, for

agent i, after update at time t, the new state gets closer to the preference

pi(t). The more stable K is, the better tracking x(t) performs toward p(t).

For representing the dynamics of the complete system with N agents, we

define two nN × nN matrices

K
∆
=


K

. . .

K

 and C
∆
=

c

N


I . . . I

...
. . .

...

I . . . I

 ,

where K is a block diagonal matrix with K matrices as its diagonal blocks

and C is a block matrix with all the blocks set to c
N

times the identity matrix

I. Combining the Equation (5.21) for all the N agents we obtain:

x(t) = Kx(t− 1) + (I −K)p(t) + Cx(t− 1)− z̃(t− 1)

= (K + C)x(t− 1) + (I −K)p(t)− z̃(t− 1). (5.23)

Given a preference vector p and an observation sequence β, by Proposi-

tion 5.1, we know that there is a unique execution η−1
M(p)(β). The vector of

agents’ states at time t ≥ 0, along this execution is x(η−1
M(p)(β)(t)). Iteratively

applying Equation (5.23) we obtain:

x(η−1
M(p)(β(t))) = (K + C)tp(0)−

t−1∑
s=0

(K + C)t−sz̃(β(t))

+
t∑

s=1

(K + C)t−s(I −K)p(s).

5.6.1 Sensitivity of Linear Distributed Control

In this section, we state Theorem 5.4 which establishes bound on the sensi-

tivity ∆(t). For proving this theorem, we fix two Markov chains of the system

(Equations (5.16)-(5.20)) with adjacent preference vectors p and p′ and com-

pute the difference between two chains. Recall that p and p′ are identical

except the preference of one agent (i). Then, the difference between the two

Markov chains has two components: (1) the change in agent i’s state, and

96

(2) the sum of changes in other agents’ states. The sensitivity is then com-

puted as a bound of the sum of above two components. With this bound on

sensitivity, we introduce a Laplace mechanism defining the observation map

(r) in Corollary 5.5 and then show that the mechanism achieves differential

privacy of the linear distributed control system.

Theorem 5.4. For the linear distributed control system, for all t ∈ N the

sensitivity ∆(t) is upper-bounded by κ(t), where

κ(t)
∆
= |Gt −Kt|+ |Kt|+ |H|

t−1∑
s=0

(|Gs −Ks|+ |Ks|),

with G
∆
= cI +K and H

∆
= I −K.

Proof. We fix a time t, a pair of t-adjacent preferences p and p′, and a

sequence of observations β = 〈z̃(0), x̃(0)〉, 〈z̃(1), x̃(1)〉 Then, by Equa-

tion (5.23) we get

|x(η−1
M(p)(β)(t))− x(η−1

M(p′)(β)(t))|

= |(K + C)t(p(0)− p′(0))

+
∑t

s=1(K + C)t−s(I −K)(p(s)− p′(s))|.

(5.24)

Equation (5.24) is independent of the observation sequence because β affects

the two executions η−1
M(p)(β) and η−1

M(p′)(β) identically and cancels out. For

the remainder of the proof we write x(t) and x′(t) for x(η−1
M(p)(β)(t)) and

x(η−1
M(p′)(β)(t)). It follows from Definition 5.5 that ∆(t) = supT -adj(p,p′) |x(t)−

x′(t)|.
We will first expand the term (K + C)s on the right-hand side of Equa-

tion (5.24). In block matrix form,

(K + C)s =



K

. . .

K

+
c

N


I . . . I

...
. . .

...

I . . . I



s

. (5.25)

The matrix (K + C) has two types of blocks: (1) K + c
N
I as the diagonal

blocks and (2) c
N
I as the off-diagonal blocks. As K and I are commutative,

97

applying binomial expansion of the Equation (5.25) and after some lengthy

but elementary linear algebra the product matrix (K + C)s becomes

(K + C)s =



Ps Qs . . . Qs

Qs
.

...

...
. Qs

Qs . . . Qs Ps


, (5.26)

where Qs = 1
N

(Gs − Ks), Ps = Qs + Ks, and G = cI + K. From Equa-

tion (5.26), we also obtain:

(K + C)s(I −K) =



P ′s Q′s . . . Q′s

Q′s
.

...

...
. Q′s

Q′s . . . Q′s P ′s


, (5.27)

where Q′s = QsH, P ′s = Q′s +KsH, and H = I −K. With Equations (5.26)

and (5.27), we bound the right-hand side of Equation (5.24). Recall that

from Definition 5.2, t-adj(p, p′) if and only if there exists some i ∈ [N], for

all s ≤ t, (a) |pi(s)− p′i(s)| ≤ 1, and (b) for all j 6= i, pj(s)− p′j(s) = 0. That

is, for any s ≤ t,

p(s)− p′(s) =

[
0, . . . , 0, [pi(s)− p′i(s)]>, 0, . . . , 0

]>
, (5.28)

has n non-zero entries corresponding to the preferences of some agent i, and

all other entires are 0. Then, (K+C)s(p(s)−p′(s)) is a vector, where the i-th

component is Ps(pi(s) − p′i(s)) and other components are Qs(pi(s) − p′i(s)).
Similarly |(K+C)s(I−K)(p(s)−p′(s))| is a vector, where the i-th component

is P ′s(pi(s) − p′i(s)) and other components are Q′s(pi(s) − p′i(s)). Therefore,

the term inside the norm on the right-hand side of Equation (5.24) is a vector

where the i-th component is

Pt(pi(0)− p′i(0)) +
t∑

s=1

P ′t−s(pi(s)− p′i(s)), (5.29)

98

and all the other N − 1 components are

Qt(pi(0)− p′i(0)) +
t∑

s=1

Q′t−s(pi(s)− p′i(s)). (5.30)

Substituting Equations (5.29) and (5.30) into Equation (5.24), combining

with |(pi(s)− p′i(s)| ≤ 1, we have

|x(t)− x′(t)| ≤ (N − 1)(|Qt|+
t−1∑
s=0

|Q′s|) + |Pt|+
t∑

s=1

|P ′s|. (5.31)

It follows that ∆(t) ≤ (N − 1)(|Qt| +
∑t−1

s=0 |Q′s|) + |Pt| +
∑t

s=1 |P ′s|. Us-

ing Equations (5.26) and (5.27), we represent Ps, P
′
s by Qs, Q

′
s, K and H.

Therefore,

(N − 1)(|Qt|+
∑t−1

s=0 |Q′s|) + |Pt|+
∑t

s=1 |P ′s|

≤ (N − 1)(|Qt|+
∑t−1

s=0 |Q′s|) + |Qt|+ |Kt|

+
∑t

s=1 |Q′s|+
∑t

s=1 |Ks||H|

= N(|Qt|+
∑t−1

s=0 |Q′s|) + |Kt|+ |H|
∑t

s=1 |Ks|.

(5.32)

Again from Equations (5.26) and (5.27), substitute Qs and Q′s by H,G and

K, we get

N(|Qt|+
t−1∑
s=0

|Q′s|) + |Kt|+ |H|
t∑

s=1

|Ks|

≤|Gt −Kt|+ |H|
t−1∑
s=0

|Gs −Ks|+ |Kt|+ |H|
t∑

s=1

|Ks|

=κ(t).

(5.33)

Chaining Equations (5.31), (5.32) and (5.33), it follows that, for all t-adjacent

p, p′, |x(t)− x′(t)| ≤ κ(t). Thus the lemma follows.

Remark 5.2. The upper bound on the sensitivity at time t, κ(t) has two

components:

(a) |Kt|+ |H|
∑t

s=1 |Ks| over-approximates the change in agent i’s state (xi)

if its own preference changes by at most unity at each time up to t, and

99

(b) |Gs−Ks|+|H|
∑t−1

s=0 |Gs−Ks| over-approximates the sum of the changes

in other agents’ states given agent i’s preference changes by at most unity

up to t.

Remark 5.3. κ(t) is independent to the number of agents (N). It only

depends on matrix K, the coupling constant c and time t. K is specified by

the individual’s control function as in Equation (5.16), which assumes to be

stable. The more stable matrixK is, the faster |Kt| decays to 0. The coupling

constant c quantifies the influence of the aggregate on each individual agent.

The matrix G = cI+K captures the combined dynamics under the influence

of the environment and the dynamics of the individual agents. The weaker

physical coupling is, the smaller |Gt| is. Therefore, we conclude that, as

the individual agent dynamics becomes more stable or the physical coupling

between agents becomes weaker, the sensitivity of the system decreases.

Remark 5.4. The dependence of κ(t) on time t changes based on the sta-

bility of the K and G matrices. If G is stable, κ(t) converges to a constant

as t→∞. Otherwise if G is unstable, κ(t) grows exponentially with t.

Theorems 5.2 and 5.4 immediately suggest an observation map (r) which

guarantees differential privacy of the distributed linear control system.

Corollary 5.5. For any time bound T and privacy parameter ε > 0, for

Mt
∆
= Tκ(t)

ε
and ωi(t) chosen as noise vector of length n drawn independently

from the distribution Lap(Mt), the resulting observation map makes the linear

distributed control system ε-differentially private up to time T .

Example 5.2. Now we can apply the strategy explained above to Exam-

ple 5.1, where K = 1
5
I is a 2 by 2 matrix. G = (c + 1

5
)I in this case. By

Theorem 5.4, the sensitivity is

∆(t) ≤ κ(t) = Gt + (I −K)
∑t−1

s=0G
s,

= 4+20c
20−25c

+ 16−45c
20−25c

(
c+ 1

5

)t
.

As we stated in Remark 5.3, the sensitivity is independent of N . If G is

stable, that is |c + 1
5
| ≤ 1, the sensitivity ∆(t) is bounded and converges to

a constant as t→∞. Otherwise, if |c+ 1
5
| > 1, κ(t) diverges. We choose the

noise to be Mt = κ(t)T
ε

. By Corollary 5.5, the system guarantees ε-differential

privacy up to time T .

100

5.6.2 Cost of Privacy in Linear Distributed Control

The observation map of Corollary 5.5 adds independently drawn Laplace

noise to the state of agent i observation at time t from the distribution

Lap(Mt). The noise parameter Mt depends on the individual’s dynamics

rather than the number of agents. In this section, we discuss the cost of

privacy for this mechanism (see, Definition 5.4) compared to a perfectly ob-

servable system using the same controller.

Theorem 5.6. The cost of privacy of the ε-differentially private mechanism

M of Corollary 5.5 is inversely proportional to the number of agents N and

the squared privacy parameter ε2. In addition, if matrix G is stable, it is

proportional to T 3. Otherwise if G is unstable, the cost of privacy grows

exponentially with T .

Proof. Given the ε-differentially private mechanismM, the perfectly observ-

able systemM′ is obtained by setting the noise values to be 0. We denote by

x̄i(t) the state of agent i for M′ at time t. From Equation (5.22), by fixing

ωi(t) ≡ 0, we get

x̄i(t) = Ktpi(0) +
t∑

s=1

Kt−s(I −K)pi(s).

We define a n × nN matrix B
∆
= c

N
[I, . . . , I]. Let xi(t) be agent i’s state

corresponding to some execution of M(p). Again from Equation (5.22), the

state of an individual agent i is

xi(t) = x̄i(t)−
t−1∑
s=0

Kt−s−1Bω(s).

101

The cost of the mechanism M can be written as

costM,i(T) = E

[
T∑
t=1

|xi(t)− pi(t)|22

]

= E

[
T∑
t=1

|x̄i(t)−
t−1∑
s=0

Kt−s−1Bω(s)− pi(t)|22

]

=
T∑
t=1

E[|x̄i(t)− pi(t)|22 + |
t−1∑
s=0

Kt−s−1Bω(s)|22

−2(x̄i(t)− pi(t))>
t−1∑
s=0

Kt−s−1Bω(s)].

The first term on the right-hand side is the cost of the system with perfect

observations, that is, costM′,i(T). The last term on the right-hand side is the

expectation of a linear combination of zero-mean noise terms, and therefore,

equals 0. By Definition 5.4,

CoP (ε,M, T) = supp,i[costM(p),i(T)− costM′(p),i(T)]

=
∑T

t=1 E
[
|
∑t−1

s=0K
t−s−1Bω(s)|22

]
.

(5.34)

In our Laplace mechanism, for different time steps s, τ , ω(s) and ω(τ) are

independent. Thus,

E[ω(s)>ω(τ)] = E[ω(s)]>E[ω(τ)] = 0.

Then, the right-hand side of Equation (5.34) reduces to

T∑
t=1

E

[
t−1∑
s=0

ω(s)>B>(Kt−s−1)>Kt−s−1Bω(s)

]
.

Recall that each ω(s) consists of a noise vector ωi(s) for each agent i ∈ [N],

and each of these vectors have n independent and identically distributed noise

values drawn from Lap(Ms). Each pair of vectors in ω(s) are independent.

Denote ω(k)(s), k ∈ [nN], be the k-th element of the vector ω(s).

It follows that (a) for k 6= j ∈ [nN], E
[
ω(k)(s)ω(j)(s)

]
= 0, and (b) for any

k ∈ [nN], E
[
ω(k)(s)ω(k)(s)

]
= 2M2

s . Thus, the above expression is reduced

102

to
T∑
t=1

t−1∑
s=0

2M2
sTr(B>(Kt−s−1)>Kt−s−1B), (5.35)

where Tr(A) stands for the trace of matrix A. Recall that B
∆
= c

N
[I, . . . , I].

It follows that

Tr(B>(Kt−s−1)>Kt−s−1B)

=
c2

N
Tr((Kt−s−1)>Kt−s−1) =

c2

N
|Kt−s−1|22.

Substituting the above equation into Equation (5.35) yields

CoP (ε,M, T) =
2c2

N

T∑
t=1

t−1∑
s=0

M2
s |Kt−s−1|22.

By interchanging the order of summation we get

CoP (ε,M, T) =
2c2

N

T−1∑
s=0

T∑
t=s+1

M2
s |Kt−s−1|22

=
2c2

N

T−1∑
s=0

M2
s

T−s−1∑
t=0

|Kt|22.

(5.36)

Recall that in Corollary 5.5, Ms = Tκ(s)
ε

. Combining this with Equation (5.36),

we have

CoP (ε,M, T) =
2c2T 2

Nε2

T−1∑
s=0

κ(s)2

T−s−1∑
t=0

|Kt|22.

From the above expression it is clear CoP (ε,M, T) is inversely proportional

to N and ε2. As the matrix K is stable,
∑T−s−1

t=0 |Kt|22 converges to some

constant as T → ∞. By Remark 5.4, if G is stable then κ(s) converges

to some constant as s→∞,
∑T−1

s=0 κ(s)2 grows linearly with T and we have

CoP (ε,M, T) ∼ O(T 3). Otherwise if G is unstable, κ(s) grows exponentially

with s and CoP (ε,M, T) grows exponentially with T .

Example 5.3. Continuing with the system described in Example 5.1, we

now establish the cost of privacy associated with the communication strategy

of Equation (5.36). In this example, K = 0.2I. We choose the coupling

parameter c to be 0.4. Then, the close-loop system is stable. Therefore, the

sensitivity is bounded by κ(t) = 1.2− 0.2× 0.6t. The cost of privacy of the

103

system with N agents at time T follows 0.24T 3

Nε2
+O(T 2

Nε2
).

Example 5.4. We conclude with a simulation-based analysis of the traffic

control Example 5.1. Consider a linear distributed control system in which

each agent is a point on the plane moving toward a randomly chosen desti-

nation with dynamics described in Example 5.3 and control strategies given

in Example 5.3. The cost of each agent is defined by the distance between its

position to its destination. The coupling between agents is the repulsive force

in the direction of the center of mass (CM) of the population. Thus, if the

control of an individual fights the force too strongly without the knowledge of

the CM then a higher cost is incurred. We numerically simulated the system

with different levels of privacy and different distributions of destinations and

make the following observations.

Figure 5.2 shows the relative costs of control with (blue) no communica-

tion and (green) private communication, with respect to cost of control with

complete (or broadcast) communication. First of all, if both the initial po-

sitions and the destinations are chosen with 0 mean, then the CM of the

population hovers around the origin and in that case, the contribution of the

coupling is small. As a result, there is not much to be gained through com-

munication and we see (Figure 5.2) that the cost of the system with privacy

is comparable to the cost of the system with no communication. When the

destination comes from some distributions slightly biased from 0, we start

to see that the cost of control with private communication starts to become

smaller compared to those of systems with no communications.

Figure 5.3 shows that for the same distribution of initial positions and

destinations the cost of privacy changes as predicted by Theorem 5.6. First

of all, a higher level of privacy comes with a higher cost (Figure 5.3a). As

ε changes from 0.2 to 2, the CoP changes from 10 to 0.1. Secondly, larger

number of agents (N) gives lower cost of privacy (Figure 5.3b). As N changes

from 10 to 100, the CoP decreases from 4 to 0.4. And finally a longer time

horizon (T) translates to higher costs (Figure 5.3c). The simulation results

suggest that the cost of privacy roughly has the order of O(T 3

Nε2
).

104

Figure 5.2: Increase in cost with biased sampled destinations. The blue and
green lines capture the relative cost of control with no communication and
private communication with respect to the cost of control with broadcast
preferences, respectively.

(a) Cost of privacy vs.
privacy level ε.

(b) Cost of privacy vs.
number of agents N .

(c) Cost of privacy vs.
time horizon T .

Figure 5.3: Cost of privacy for different privacy level, number of agents and
time horizon.

5.7 Summary

We presented a general framework for studying cost of differential privacy

for distributed control systems. We proposed a communication strategy by

which individual agents can share noisy information about their states which

preserves ε-differential privacy while aiding the estimation of the aggregate

environment and therefore improving control performance. The distribu-

tion of the noise depends on the sensitivity with respect to the individual’s

data. Specializing to linear systems with quadratic costs, we showed that the

sensitivity and therefore the standard deviation of the required noise is inde-

105

pendent of the number of participating agents. The sensitivity also decreases

with the stability of the dynamics and with the weakening the environment’s

influence on an individual. For stable controllers, for preserving privacy over

indefinite time horizons, the variance of the noise to be added is also inde-

pendent of time. For unstable dynamics, on the other hand, the sensitivity

can grow exponentially with time. The cost of ε-differential privacy for the

proposed communication strategy up to time T for a system with N agents

is at most O(T 3

Nε2
) for stable systems. This suggests that the proposed com-

munication strategy is best suited for distributed control systems with many

short-lived participants.

The proposed framework should enable us to study more sophisticated

communication strategies that incur smaller costs for more persistent agents.

Another direction for future research will be to establish lower bounds on

the best cost of privacy that can be achieved through any communication

strategy, not just the form proposed here.

106

Chapter 6

CONCLUSION

The objective of this thesis is to develop techniques that provably guarantee

safety and privacy for cyber-physical systems (CPS). For different formalisms

of CPS, we compute the bound on sensitivity of the system with respect to

different parameters and use them in two ways. For invariance verification,

bounds on sensitivity are used to generalize a single trajectory to get a tube

that contains all neighboring trajectories. We show that checking these tubes

suffices to prove invariance for the system. For privacy preservation, we

compute sensitivity with respect to user data. Bounds on sensitivity are

used to decide the noise distribution that obscures the exact user data. We

will briefly summarize our main results and discuss possible future directions.

6.1 Summary of Contributions

In this thesis, we present three techniques for invariance verification and pri-

vacy preservation. Figure 6.1 illustrates the main concepts we introduced in

this thesis and how they are connected. There are three streams of technical

contributions.

In Chapter 3, we present a verification algorithm to prove invariance prop-

erties for networked dynamical networks with delayed interconnection. We

propose the notion of IS discrepancy functions for subsystems which bounds

the distance between trajectories with respect to the initial states and inputs.

With IS discrepancy of subsystems, our approach syntactically constructs a

reduced model of the whole network. The trajectory of the reduced model

bounds the distance between trajectories of the entire network. Using the

above results, we present an algorithm to over-approximate reach sets for net-

worked dynamical systems. We further show that the over-approximations

can be made arbitrarily precise. Therefore our verification algorithm is sound

107

Figure 6.1: Concept graph of the thesis.

and relatively complete.

In Chapter 4, we develop a partial order reduction technique for infinite-

state labeled transition systems. We propose the notion of ε-independent

actions, such that the resulting states are within ε distance after executing

a pair of ε-independent actions in any order. We define two executions to

be (δ, ε)-close if their initial states are within δ distance and their action

sequences are identical modulo swapping ε-independent actions. For any ex-

ecution ξ, we present an algorithm for upper-bounding the distance between

ξ and its (δ, ε)-close executions, namely the representative radius. With this

algorithm, we can precisely over-approximate reach set of all (δ, ε)-close ex-

ecutions by examining one representative, which may lead to an exponential

reduction in the number of paths that need to be explored for verifying a

concurrent cyber-physical system.

In Chapter 5, we present a communication strategy that preserves dif-

ferential privacy of participating agents. Central to this technique is the

concept of sensitivity with respect to the private data. We show that, if

each agent adds carefully designed noise—with a distribution depending on

the sensitivity—to its communication, the ε-differential privacy of agents is

protected. We present a framework for studying the privacy-performance

trade-offs. We show that, for linear systems with stable dynamics, the cost

of ε-differential privacy for the proposed communication strategy up to time

T for a system with N agents is at most O(T 3

Nε2
). Hence, the cost decays to

0 as the number of participants increases.

108

6.2 Future Directions

Broadly speaking, the research on sensitivity-based verification of cyber-

physical systems is relatively advanced. Several available tools implement

the algorithms using different strategies and software libraries. These tools

have been used to demonstrate applicability of these techniques on some

realistic benchmark problems. The research on privacy of distributed cyber-

physical systems is still in its early stages. There is considerable ongoing

work on exploring different definitions for privacy and formulations for pri-

vacy preserving mechanisms.

6.2.1 Locally Independent Actions

In Chapter 4, we presented a reach set over-approximation methods exploit-

ing the approximate commutativity property of ε-independent actions. There

is a trade-off in efficiency and precision. Choosing large approximation pa-

rameter ε increase the number of ε-independent action pairs and expands

the equivalent classes of action sequences. This way, our partial order reduc-

tion method is more efficient. However, a large ε leads to over-conservative

over-approximation of the reach set.

In Definition 4.3, ε-independent actions are required to be approximately

commutative globally. That is, from any state q, the resulting states after

executing ε-independent actions in any order are within ε distance. The

current definition ignores those action pairs that are approximately commu-

tative only locally over parts of the state space. Hence, to make such a pair of

actions ε-independent, the current method can lead to an over-conservative

choice of the approximation parameter ε.

As a natural next step, the notion of approximate independent actions

could be relaxed to actions that approximately commute locally. One pos-

sible technique involves splitting locally independent actions. Consider for

example a pair of actions a and b that are only ε-independent over a subset

of states S but nowhere else. If we split actions a and b respectively into

two pairs of actions (a0, a1) and (b0, b1) such that actions a0, b0 are enabled

in S and a1, b1 are enabled otherwise, then the new actions a0 and b0 are

ε-independent. With techniques like this, we could choose tighter parame-

ter ε and still preserve approximate independency for actions in some part of

109

state space. Hence, the precision of reach set computation could be improved

without any loss of efficiency.

6.2.2 Verification of Hybrid Automata

In this thesis, we presented sensitivity-based invariant verification techniques

for both discrete and continuous models of CPS. A natural next step is to ex-

tend these techniques to hybrid automata [10, 11, 12]. Hybrid automata can

be viewed as a combination of transition systems and differential equations,

where the states can update through either continuous evolution or discrete

transitions.

In Chapter 3, we introduced an invariant verification algorithm for dy-

namical systems using IS discrepancy. To extend this approach to hybrid

automata, one need techniques to handle discrete transitions. In [122, 52],

the authors presented routines to detect possible discrete transitions and

over-approximate states after transitions. Combing this technique with our

IS discrepancy-based reachability analysis, one could possibly develop an in-

variant verification method for hybrid automata.

In Chapter 4, we presented a partial order reduction method for labeled

transition systems. To extend the technique to hybrid automata, a straight-

forward approach is through abstraction. In model checking hybrid au-

tomata, it is standard to construct discrete abstraction [57], where our partial

order reduction method can directly apply. However, accurate abstraction of-

ten requires excessive state space partitioning preventing this approach scal-

ing to large models. For partial order reduction, abstraction is only required

in some parts of the state space where commutative discrete transitions can

occur. Hence, one interesting direction is to develop efficient abstraction

technique for partial order reduction.

6.2.3 Differential Privacy with Nonlinear Dynamics

In Theorem 5.2, we presented a general sufficient condition for a differentially

private mechanism in terms of the sensitivity to user data. With this suffi-

cient condition, we developed a differentially private communication strategy

for linear systems. A direct next step is to extend this result to systems with

110

nonlinear and hybrid dynamics. The main challenge in this direction is to

compute sensitivity for these systems. There is no general techniques for

computing the exact sensitivity. Several existing techniques estimate sensi-

tivity by sampling [123, 66], however, they do not provide provable guaran-

tees. More recently, techniques are developed to soundly over-approximate

sensitivity to initial states [124, 48], however, whether they can be used for

differential privacy remains to be explored. Furthermore, for many systems

where user privacy is a major concern, exact global states are sometimes

inaccessible. Hence, an interesting direction is to compute global sensitivity

using only local information.

6.2.4 Tools and Applications

In the past few years, several end-to-end verification tools based on sensitivity

(or discrepancy) analysis are developed, such as C2E2 [52], Breach [27], and

Strong [125]. The main challenge for these tools is to compute sensitivity

of large models efficiently. We have presented two techniques for computing

sensitivity in Chapters 3 and 4. For our techniques to make a greater impact,

future effort should be on building a robust implementation and connecting

with existing verification tools.

Another direction is to apply our techniques to verify other examples of

networked cyber-physical systems. Biological systems are naturally compo-

sitional, making them suitable examples for our invariant verification tech-

niques. Examples of this type include pacemaker-heart interfaces [33, 126],

surgical robots [127, 128], and neural systems [129, 130]. Our techniques

could also aid verifying distributed and swarm robots, in applications such

as flocking [131], connection maintenance [132], and collision avoidance [133,

134]. Power networks also need high assurance of safety [135, 136]. Some of

these systems evolve according to nonlinear differential algebraic equations,

which require theoretical developments for sensitivity analysis.

111

REFERENCES

[1] J. Machowski, J. Bialek, and J. Bumby, Power System Dynamics: Sta-
bility and Control. John Wiley & Sons, 2011.

[2] R. B. Perry, M. M. Madden, W. Torres-Pomales, and R. W. Butler,
The Simplified Aircraft-Based Paired Approach with the ALAS Alerting
Algorithm. NASA/TM-2013-217804, 2013.

[3] P. S. Duggirala, L. Wang, S. Mitra, M. Viswanathan, and C. Munoz,
“Temporal precedence checking for switched models and its application
to a parallel landing protocol,” Proceedings of International Symposium
on Formal Methods. Springer, 2014, pp. 215–229.

[4] T. T. Johnson, Z. Hong, and A. Kapoor, “Design verification meth-
ods for switching power converters,” Proceedings of Power and Energy
Conference at Illinois (PECI), 2012 IEEE. IEEE, 2012, pp. 1–6.

[5] R. Langner, “Stuxnet: Dissecting a cyberwarfare weapon,” IEEE Se-
curity & Privacy, vol. 9, no. 3, pp. 49–51, 2011.

[6] S. Checkoway, D. McCoy, B. Kantor, D. Anderson, H. Shacham, S. Sav-
age, K. Koscher, A. Czeskis, F. Roesner, T. Kohno et al., “Comprehen-
sive experimental analyses of automotive attack surfaces,” Proceedings
of USENIX Security Symposium. San Francisco, 2011.

[7] Y. Mo and B. Sinopoli, “Secure control against replay attacks,” Com-
munication, Control, and Computing, Proceedings of 47th Annual
Allerton Conference on. IEEE, 2009, pp. 911–918.

[8] A. Narayanan and V. Shmatikov, “Robust de-anonymization of large
sparse datasets,” Proceedings of 2008 IEEE Symposium on Security
and Privacy. IEEE, 2008, pp. 111–125.

[9] T. Jeske, “Floating car data from smartphones: What Google and
Waze know about you and how hackers can control traffic,” Proceedings
of the BlackHat Europe, pp. 1–12, 2013.

[10] R. Alur, C. Courcoubetis, T. A. Henzinger, and P.-H. Ho, “Hybrid au-
tomata: An algorithmic approach to the specification and verification
of hybrid systems,” Hybrid Systems. Springer, 1993, pp. 209–229.

112

[11] S. Mitra, “A verification framework for hybrid systems,” Ph.D. disser-
tation, Massachusetts Institute of Technology, 2007.

[12] D. K. Kaynar, N. Lynch, R. Segala, and F. Vaandrager, The Theory
of Timed I/O Automata. Morgan Claypool, November 2005, also
available as Technical Report MIT-LCS-TR-917.

[13] R. David and H. Alla, Discrete, Continuous, and Hybrid Petri Nets.
Springer Science & Business Media, 2010.

[14] R. David and H. Alla, “On hybrid petri nets,” Discrete Event Dynamic
Systems, vol. 11, no. 1-2, pp. 9–40, 2001.

[15] D. Liberzon, Switching in Systems and Control. Springer Science &
Business Media, 2012.

[16] A. Platzer, “Differential dynamic logic for hybrid systems,” Journal of
Automated Reasoning, vol. 41, no. 2, pp. 143–189, 2008.

[17] R. Goebel, R. G. Sanfelice, and A. R. Teel, Hybrid Dynamical Systems:
Modeling, Stability, and Robustness. Princeton University Press, 2012.

[18] P. J. L. Cuijpers and M. A. Reniers, “Hybrid process algebra,” The
Journal of Logic and Algebraic Programming, vol. 62, no. 2, pp. 191–
245, 2005.

[19] G. Filatrella, A. H. Nielsen, and N. F. Pedersen, “Analysis of a power
grid using a kuramoto-like model,” The European Physical Journal B,
vol. 61, no. 4, pp. 485–491, 2008.

[20] L. Chaimowicz, V. Kumar, and M. F. Campos, “A paradigm for dy-
namic coordination of multiple robots,” Autonomous Robots, vol. 17,
no. 1, pp. 7–21, 2004.

[21] R. Grosu, G. Batt, F. H. Fenton, J. Glimm, C. Le Guernic, S. A.
Smolka, and E. Bartocci, “From cardiac cells to genetic regulatory
networks,” Computer Aided Verification. Springer, 2011, pp. 396–411.

[22] M. Sipser, Introduction to the Theory of Computation. Thomson
Course Technology Boston, 2006, vol. 2.

[23] E. M. Clarke, O. Grumberg, and D. Peled, Model Checking. MIT
Press, 1999.

[24] C. Baier, J.-P. Katoen, and K. G. Larsen, Principles of Model Checking.
MIT Press, 2008.

113

[25] R. Cukier, H. Levine, and K. Shuler, “Nonlinear sensitivity analysis
of multiparameter model systems,” Journal of Computational Physics,
vol. 26, no. 1, pp. 1–42, 1978.

[26] T. Maly and L. R. Petzold, “Numerical methods and software for sen-
sitivity analysis of differential-algebraic systems,” Applied Numerical
Mathematics, vol. 20, no. 1, pp. 57–79, 1996.

[27] A. Donzé, “Breach, a toolbox for verification and parameter synthesis
of hybrid systems,” Computer Aided Verification. Springer, 2010, pp.
167–170.

[28] Y. Annpureddy, C. Liu, G. Fainekos, and S. Sankaranarayanan, S-
TaLiRo: A Tool for Temporal Logic Falsification for Hybrid Systems.
Springer, 2011.

[29] P. Duggirala, S. Mitra, and M. Viswanathan, “Verification of anno-
tated models from executions,” International Conference on Embedded
Software, 2013.

[30] Z. Huang and S. Mitra, “Proofs from simulations and modular anno-
tations,” Proceedings of the 17th International Conference on Hybrid
Systems: Computation and Control. ACM, 2014, pp. 183–192.

[31] Z. Huang, C. Fan, A. Mereacre, S. Mitra, and M. Kwiatkowska, “In-
variant verification of nonlinear hybrid automata networks of cardiac
cells,” Computer Aided Verification. Springer, 2014, pp. 373–390.

[32] U. Topcu, A. Packard, and R. Murray, “Compositional stability anal-
ysis based on dual decomposition,” Decision and Control, Proceedings
of the 48th IEEE Conference on, Dec 2009, pp. 1175–1180.

[33] Z. Huang, C. Fan, A. Mereacre, S. Mitra, and M. Kwiatkowska,
“Simulation-based verification of cardiac pacemakers with guaranteed
coverage,” IEEE Design & Test, vol. 32, no. 5, pp. 27–34, 2015.

[34] P. Godefroid, J. van Leeuwen, J. Hartmanis, G. Goos, and P. Wolper,
Partial-Order Methods for the Verification of Concurrent Systems: An
Approach to the State-Explosion Problem. Springer Heidelberg, 1996,
vol. 1032.

[35] D. Peled, “Ten years of partial order reduction,” in International Con-
ference on Computer Aided Verification. Springer, 1998, pp. 17–28.

[36] J. Herrera, D. Work, R. Herring, X. Ban, Q. Jacobson, and A. Bayen,
“Evaluation of traffic data obtained via GPS-enabled mobile phones:
The Mobile Century field experiment,” Transportation Research Part
C, vol. 18, no. 4, pp. 568–583, August 2010.

114

[37] M. E. Andrés, N. E. Bordenabe, K. Chatzikokolakis, and
C. Palamidessi, “Geo-indistinguishability: Differential privacy for
location-based systems,” Proceedings of the 2013 ACM SIGSAC Con-
ference on Computer & Communications Security. ACM, 2013, pp.
901–914.

[38] M. Xue, W. Wang, and S. Roy, “Security concepts for the dynamics of
autonomous vehicle networks,” Automatica, vol. 50, no. 3, pp. 852–857,
2014.

[39] F. Koufogiannis, S. Han, and G. J. Pappas, “Computation of privacy-
preserving prices in smart grids,” in Decision and Control (CDC), 2014
IEEE 53rd Annual Conference on. IEEE, 2014, pp. 2142–2147.

[40] E. Shi, T.-H. H. Chan, E. G. Rieffel, R. Chow, and D. Song, “Privacy-
preserving aggregation of time-series data.” in 19th Annual Network &
Distributed System Security Symposium (NDSS), vol. 2, no. 3, 2011,
p. 4.

[41] Y. Zhang, Y. Zhang, and K. Ren, “Distributed privacy-preserving ac-
cess control in sensor networks,” Parallel and Distributed Systems,
IEEE Transactions on, vol. 23, no. 8, pp. 1427–1438, Aug 2012.

[42] C. Dwork, “Differential privacy,” Automata, Languages and Program-
ming. Springer, 2006, pp. 1–12.

[43] C. Dwork, “Differential privacy: A survey of results,” Theory and Ap-
plications of Models of Computation. Springer, 2008, pp. 1–19.

[44] C. Dwork, M. Naor, G. Rothblum, and T. Pitassi, “Differential privacy
under continual observation,” Proceedings of the 42nd ACM Sympo-
sium on Theory of Computing, 2010.

[45] M. Hardt and K. Talwar, “On the geometry of differential privacy,”
Proceedings of the 42nd ACM Symposium on Theory of Computing.
ACM, 2010, pp. 705–714.

[46] Z. Huang, S. Mitra, and G. Dullerud, “Differentially private iterative
synchronous consensus,” Proceedings of the 2012 ACM Workshop on
Privacy in the Electronic Society, New York, NY, USA: ACM, 2012.
pp. 81–90.

[47] J. Le Ny and G. J. Pappas, “Differentially private filtering,” Automatic
Control, IEEE Transactions on, vol. 59, no. 2, pp. 341–354, 2014.

[48] C. Fan and S. Mitra, “Bounded verification with on-the-fly discrepancy
computation,” in International Symposium on Automated Technology
for Verification and Analysis (ATVA), 2015, 2015.

115

[49] M. Jha and S. Raskhodnikova, “Testing and reconstruction of Lips-
chitz functions with applications to data privacy,” SIAM Journal on
Computing, vol. 42, no. 2, pp. 700–731, 2013.

[50] D. Angeli, “A Lyapunov approach to incremental stability properties,”
Automatic Control, IEEE Transactions on, vol. 47, no. 3, pp. 410–421,
2002.

[51] E. M. Aylward, P. A. Parrilo, and J.-J. E. Slotine, “Stability and ro-
bustness analysis of nonlinear systems via contraction metrics and SoS
programming,” Automatica, vol. 44, no. 8, pp. 2163–2170, 2008.

[52] P. Duggirala, S. Mitra, M. Viswanathan, and M. Potok, “C2E2: A
verification tool for stateflow models,” in Tools and Algorithms for the
Construction and Analysis of Systems, ser. Lecture Notes in Computer
Science, vol. 9035. Springer Berlin Heidelberg, 2015, pp. 68–82.

[53] T. A. Henzinger, The Theory of Hybrid Automata. Springer, 2000.

[54] R. Alur, C. Courcoubetis, N. Halbwachs, T. A. Henzinger, P.-H. Ho,
X. Nicollin, A. Olivero, J. Sifakis, and S. Yovine, “The algorithmic
analysis of hybrid systems,” Theoretical Computer Science, vol. 138,
no. 1, pp. 3–34, 1995.

[55] T. A. Henzinger, P. W. Kopke, A. Puri, and P. Varaiya, “What’s de-
cidable about hybrid automata?” Proceedings of the 27th Annual ACM
Symposium on Theory of Computing. ACM, 1995, pp. 373–382.

[56] E. Asarin, T. Dang, and A. Girard, “Hybridization methods for the
analysis of nonlinear systems,” Acta Informatica, vol. 43, no. 7, pp.
451–476, 2007.

[57] R. Alur, T. A. Henzinger, G. Lafferriere, and G. J. Pappas, “Discrete
abstractions of hybrid systems,” Proceedings of the IEEE, vol. 88, no. 7,
pp. 971–984, 2000.

[58] E. Clarke, A. Fehnker, Z. Han, B. Krogh, J. Ouaknine, O. Stursberg,
and M. Theobald, “Abstraction and counterexample-guided refinement
in model checking of hybrid systems,” International Journal of Foun-
dations of Computer Science, vol. 14, no. 04, pp. 583–604, 2003.

[59] X. Chen, E. Abrahám, and S. Sankaranarayanan, “Taylor model flow-
pipe construction for non-linear hybrid systems,” in Real-Time Systems
Symposium, 2012 IEEE 33rd. IEEE, 2012, pp. 183–192.

[60] A. Donzé and O. Maler, “Systematic simulation using sensitivity anal-
ysis,” in Hybrid Systems: Computation and Control. Springer, 2007,
pp. 174–189.

116

[61] Z. Huang, C. Fan, and S. Mitra, “Bounded invariant verification
for time-delayed nonlinear networked dynamical systems,” Nonlinear
Analysis: Hybrid Systems, 2016.

[62] L. Zou, M. Fränzle, N. Zhan, and P. N. Mosaad, “Automatic verifica-
tion of stability and safety for delay differential equations,” in Com-
puter Aided Verification. Springer, 2015, pp. 338–355.

[63] J. Nagumo, S. Arimoto, and S. Yoshizawa, “An active pulse trans-
mission line simulating nerve axon,” Proceedings of the IRE, vol. 50,
no. 10, pp. 2061–2070, 1962.

[64] Y. Kuang, Delay Differential Equations: With Applications in Popula-
tion Dynamics. Academic Press, 1993.

[65] D. Angeli, “Further results on incremental input-to-state stability,”
Automatic Control, IEEE Transactions on, vol. 54, no. 6, pp. 1386–
1391, 2009.

[66] G. Wood and B. Zhang, “Estimation of the Lipschitz constant of a
function,” Journal of Global Optimization, vol. 8, no. 1, pp. 91–103,
1996.

[67] P. Benner, J.-R. Li, and T. Penzl, “Numerical solution of large-scale
Lyapunov equations, Riccati equations, and linear-quadratic optimal
control problems,” Numerical Linear Algebra with Applications, vol. 15,
no. 9, pp. 755–777, 2008.

[68] E. D. Sontag, “Comments on integral variants of ISS,” Systems &
Control Letters, vol. 34, no. 1-2, pp. 93 – 100, 1998.

[69] D. Angeli, E. D. Sontag, and Y. Wang, “A characterization of integral
input-to-state stability,” Automatic Control, IEEE Transactions on,
vol. 45, no. 6, pp. 1082–1097, 2000.

[70] H. K. Khalil, Nonlinear Systems, 3rd ed. Prentice Hall, 1992.

[71] P. S. Duggirala, C. Fan, S. Mitra, and M. Viswanathan, “Meeting
a powertrain verification challenge,” In Proceedings of International
Conference on Computer Aided Verification (CAV 2015), 2015.

[72] CAPD, “Computer assisted proofs in dynamics,” 2002. [Online].
Available: http://www.capd.ii.uj.edu.pl/

[73] N. S. Nedialkov, K. R. Jackson, and G. F. Corliss, “Validated solutions
of initial value problems for ordinary differential equations,” Applied
Mathematics and Computation, vol. 105, no. 1, pp. 21–68, 1999.

117

http://www.capd.ii.uj.edu.pl/

[74] O. Bouissou and M. Martel, “GRKLib: A guaranteed Runge Kutta
library,” in Scientific Computing, Computer Arithmetic and Validated
Numerics, 2006. SCAN 2006. 12th GAMM-IMACS International Sym-
posium on. IEEE, 2006, pp. 8–8.

[75] A. Bellen and M. Zennaro, Numerical Methods for Delay Differential
Equations. Oxford University Press, 2013.

[76] L. F. Shampine and S. Thompson, “Solving DDEs in Matlab,” Applied
Numerical Mathematics, vol. 37, no. 4, pp. 441–458, 2001.

[77] K. Engelborghs, T. Luzyanina, and D. Roose, “Numerical bifurcation
analysis of delay differential equations using DDE-BIFTOOL,” ACM
Transactions on Mathematical Software (TOMS), vol. 28, no. 1, pp.
1–21, 2002.

[78] L. F. Shampine and S. Thompson, “Numerical solution of delay differ-
ential equations,” in Delay Differential Equations. Springer, 2009, pp.
1–27.

[79] L. Scardovi and R. Sepulchre, “Synchronization in networks of identical
linear systems,” Automatica, vol. 45, no. 11, pp. 2557–2562, 2009.

[80] Z. Huang and S. Mitra, “Computing bounded reach sets from sampled
simulation traces,” Proceedings of the 15th ACM International Confer-
ence on Hybrid Systems: Computation and Control. ACM, 2012, pp.
291–294.

[81] A. Mazurkiewicz, “Concurrent program schemes and their interpreta-
tions,” DAIMI Report Series, vol. 6, no. 78, 1977.

[82] R. Alur, R. K. Brayton, T. A. Henzinger, S. Qadeer, and S. K. Raja-
mani, “Partial-order reduction in symbolic state space exploration,” in
International Conference on Computer Aided Verification. Springer,
1997, pp. 340–351.

[83] C. Flanagan and P. Godefroid, “Dynamic partial-order reduction for
model checking software,” in ACM Sigplan Notices, vol. 40, no. 1.
ACM, 2005, pp. 110–121.

[84] E. M. Clarke, O. Grumberg, M. Minea, and D. Peled, “State space re-
duction using partial order techniques,” International Journal on Soft-
ware Tools for Technology Transfer, vol. 2, no. 3, pp. 279–287, 1999.

[85] E. Clarke, S. Jha, and W. Marrero, “Partial order reductions for se-
curity protocol verification,” in International Conference on Tools and
Algorithms for the Construction and Analysis of Systems. Springer,
2000, pp. 503–518.

118

[86] C. Baier, M. Größer, and F. Ciesinski, “Partial order reduction for
probabilistic systems.” in QEST, vol. 4, 2004, pp. 230–239.

[87] D. Peled, “Verification for robust specification,” in International Con-
ference on Theorem Proving in Higher Order Logics. Springer, 1997,
pp. 231–241.

[88] Y. Yang, X. Chen, G. Gopalakrishnan, and R. M. Kirby, “Efficient
stateful dynamic partial order reduction,” in International SPIN Work-
shop on Model Checking of Software. Springer, 2008, pp. 288–305.

[89] P. Abdulla, S. Aronis, B. Jonsson, and K. Sagonas, “Optimal dynamic
partial order reduction,” in ACM SIGPLAN Notices, vol. 49, no. 1.
ACM, 2014, pp. 373–384.

[90] R. Majumdar and I. Saha, “Symbolic robustness analysis,” in Real-
Time Systems Symposium, 2009, RTSS 2009. 30th IEEE. IEEE, 2009,
pp. 355–363.

[91] S. Chaudhuri, S. Gulwani, and R. Lublinerman, “Continuity and ro-
bustness of programs,” Communications of the ACM, vol. 55, no. 8,
pp. 107–115, 2012.

[92] R. Samanta, J. V. Deshmukh, and S. Chaudhuri, “Robustness analy-
sis of networked systems,” in International Workshop on Verification,
Model Checking, and Abstract Interpretation. Springer, 2013, pp. 229–
247.

[93] V. Blondel, J. M. Hendrickx, A. Olshevsky, J. Tsitsiklis et al., “Con-
vergence in multiagent coordination, consensus, and flocking,” in IEEE
Conference on Decision and Control, vol. 44, no. 3. IEEE; 1998, 2005,
p. 2996.

[94] S. Mitra and K. M. Chandy, “A formalized theory for verifying stability
and convergence of automata in PVS,” in International Conference on
Theorem Proving in Higher Order Logics. Springer, 2008, pp. 230–245.

[95] R. Olfati-Saber, J. A. Fax, and R. M. Murray, “Consensus and coop-
eration in networked multi-agent systems,” Proceedings of the IEEE,
vol. 95, no. 1, pp. 215–233, 2007.

[96] J. L. Welch and N. Lynch, “A new fault-tolerant algorithm for clock
synchronization,” Information and Computation, vol. 77, no. 1, pp.
1–36, 1988.

[97] I.-K. Rhee, J. Lee, J. Kim, E. Serpedin, and Y.-C. Wu, “Clock syn-
chronization in wireless sensor networks: An overview,” Sensors, vol. 9,
no. 1, pp. 56–85, 2009.

119

[98] A. Fehnker and F. Ivančić, “Benchmarks for hybrid systems verifica-
tion,” International Workshop on Hybrid Systems: Computation and
Control. Springer, 2004, pp. 326–341.

[99] D. Mitra, “An asynchronous distributed algorithm for power con-
trol in cellular radio systems,” Wireless and Mobile Communications.
Springer, 1994, pp. 177–186.

[100] L. Fang and P. J. Antsaklis, “Information consensus of asynchronous
discrete-time multi-agent systems,” in Proceedings of the 2005, Amer-
ican Control Conference, 2005. IEEE, 2005, pp. 1883–1888.

[101] C. Dwork, F. Mcsherry, K. Nissim, and A. Smith, “Calibrating noise
to sensitivity in private data analysis,” Proceedings of TCC, 2006.

[102] F. McSherry and K. Talwar, “Mechanism design via differential pri-
vacy,” in Foundations of Computer Science, 2007. FOCS ’07. 48th An-
nual IEEE Symposium on, oct. 2007, pp. 94 –103.

[103] A. Friedman and A. Schuster, “Data mining with differential privacy,”
in Proceedings of the 16th ACM SIGKDD international conference on
Knowledge discovery and data mining. ACM, 2010, pp. 493–502.

[104] K. Chaudhuri and C. Monteleoni, “Privacy-preserving logistic regres-
sion,” in Advances in Neural Information Processing Systems, 2009,
pp. 289–296.

[105] J. Le Ny and G. J. Pappas, “Differentially private Kalman filtering,”
in Communication, Control, and Computing (Allerton), 2012 50th An-
nual Allerton Conference on. IEEE, 2012, pp. 1618–1625.

[106] M. Hale and M. Egerstedt, “Cloud-based optimization: A quasi-
decentralized approach to multi-agent coordination,” in Decision and
Control (CDC), 2014 IEEE 53rd Annual Conference on, Dec 2014, pp.
6635–6640.

[107] M. Hale and M. Egerstedty, “Differentially private cloud-based multi-
agent optimization with constraints,” in American Control Conference
(ACC), 2015, July 2015, pp. 1235–1240.

[108] S. Han, U. Topcu, and G. Pappas, “Differentially private convex op-
timization with piecewise affine objectives,” in Decision and Control
(CDC), 2014 IEEE 53rd Annual Conference on, Dec 2014, pp. 2160–
2166.

[109] Y. Mo and R. Murray, “Privacy preserving average consensus,” in De-
cision and Control (CDC), 2014 IEEE 53rd Annual Conference on,
Dec 2014, pp. 2154–2159.

120

[110] E. Nozari, P. Tallapragada, and J. Cortés, “Differentially private av-
erage consensus: Obstructions, trade-offs, and optimal algorithm de-
sign,” ArXiv Preprint ArXiv:1512.09039, 2015.

[111] J. Le Ny, “On differentially private filtering for event streams,” in De-
cision and Control (CDC), 2013 IEEE 52nd Annual Conference on.
IEEE, 2013, pp. 3481–3486.

[112] K. Chatzikokolakis, M. E. Andrés, N. E. Bordenabe, and
C. Palamidessi, “Broadening the scope of differential privacy using
metrics,” in Privacy Enhancing Technologies. Springer, 2013, pp.
82–102.

[113] C. Li, M. Hay, V. Rastogi, G. Miklau, and A. McGregor, “Optimizing
linear counting queries under differential privacy,” in Proceedings of
the 29th ACM SIGMOD-SIGACT-SIGART Symposium on Principles
of Database Systems, ser. PODS ’10. New York, NY, USA: ACM,
2010. pp. 123–134.

[114] C. Dwork, K. Kenthapadi, F. McSherry, I. Mironov, and M. Naor,
“Our data, ourselves: Privacy via distributed noise generation,” in
Advances in Cryptology - EUROCRYPT 2006, ser. Lecture Notes in
Computer Science, S. Vaudenay, Ed. Springer Berlin Heidelberg,
2006, vol. 4004, pp. 486–503.

[115] Q. Geng and P. Viswanath, “Optimal noise-adding mechanism in dif-
ferential privacy,” CoRR, vol. abs/1212.1186, 2012.

[116] M. Hardt and K. Talwar, “On the geometry of differential privacy,”
in Proceedings of the 42nd ACM Symposium on Theory of Computing,
ser. STOC ’10. New York, NY, USA: ACM, 2010. pp. 705–714.

[117] J. Reed and B. C. Pierce, “Distance makes the types grow stronger:
a calculus for differential privacy,” in Proceedings of the 15th ACM
SIGPLAN International Conference on Functional Programming, ser.
ICFP ’10. New York, NY, USA: ACM, 2010. pp. 157–168.

[118] Y. Wang, Z. Huang, S. Mitra, and G. Dullerud, “Entropy-minimizing
mechanism for differential privacy of discrete-time linear feedback sys-
tems,” in Decision and Control (CDC), 2014 IEEE 53rd Annual Con-
ference on, Dec 2014, pp. 2130–2135.

[119] Z. Huang, S. Mitra, and N. Vaidya, “Differentially private distributed
optimization,” in Proceedings of the 2015 International Conference on
Distributed Computing and Networking. ACM, 2015, p. 4.

[120] J. Le Ny and G. Pappas, “Differentially private filtering,” Automatic
Control, IEEE Transactions on, vol. 59, no. 2, pp. 341–354, Feb 2014.

121

[121] J. Le Ny, A. Touati, and G. J. Pappas, “Real-time privacy-preserving
model-based estimation of traffic flows,” in ICCPS’14: ACM/IEEE 5th
International Conference on Cyber-Physical Systems. IEEE Computer
Society, 2014, pp. 92–102.

[122] P. S. Duggirala, “Dynamic analysis of cyber-physical systems,” Ph.D.
dissertation, University of Illinois at Urbana-Champaign, 2015.

[123] K. Nissim, S. Raskhodnikova, and A. Smith, “Smooth sensitivity and
sampling in private data analysis,” in Proceedings of the 39th Annual
ACM Symposium on Theory of Computing. ACM, 2007, pp. 75–84.

[124] C. Fan, B. Qi, S. Mitra, M. Viswanathan, and P. S. Duggirala, “Auto-
matic reachability analysis for nonlinear hybrid models with C2E2,” in
International Conference on Computer Aided Verification. Springer,
2016, pp. 531–538.

[125] Y. Deng, A. Rajhans, and A. A. Julius, “STRONG: A trajectory-based
verification toolbox for hybrid systems,” in International Conference on
Quantitative Evaluation of Systems. Springer, 2013, pp. 165–168.

[126] Z. Jiang, M. Pajic, S. Moarref, R. Alur, and R. Mangharam, “Modeling
and verification of a dual chamber implantable pacemaker,” in Inter-
national Conference on Tools and Algorithms for the Construction and
Analysis of Systems. Springer, 2012, pp. 188–203.

[127] S. Kumar, P. Singhal, and V. N. Krovi, “Computer-vision-based deci-
sion support in surgical robotics,” IEEE Design & Test, vol. 32, no. 5,
pp. 89–97, 2015.

[128] K. Miller, “Experimental verification of modeling of delta robot dy-
namics by direct application of Hamilton’s principle,” in Robotics and
Automation, 1995. Proceedings., 1995 IEEE International Conference
on, vol. 1. IEEE, 1995, pp. 532–537.

[129] Y. P. Gad and T. J. Anastasio, “Simulating the shaping of the fastigial
deep nuclear saccade command by cerebellar Purkinje cells,” Neural
Networks, vol. 23, no. 7, pp. 789–804, 2010.

[130] P. Dean and J. Porrill, “Evaluating the adaptive-filter model of the
cerebellum,” The Journal of Physiology, vol. 589, no. 14, pp. 3459–
3470, 2011.

[131] T. T. Johnson and S. Mitra, “Safe flocking in spite of actuator faults
using directional failure detectors,” Journal of Nonlinear Systems and
Applications, vol. 73, p. 95, 2011.

122

[132] A. F. Winfield, W. Liu, J. Nembrini, and A. Martinoli, “Modelling a
wireless connected swarm of mobile robots,” Swarm Intelligence, vol. 2,
no. 2-4, pp. 241–266, 2008.

[133] P. S. Duggirala, T. T. Johnson, A. Zimmerman, and S. Mitra, “Static
and dynamic analysis of timed distributed traces,” in Real-Time Sys-
tems Symposium (RTSS), 2012 IEEE 33rd. IEEE, 2012, pp. 173–182.

[134] S. Bak, Z. Huang, F. A. T. Abad, and M. Caccamo, “Safety and
progress for distributed cyber-physical systems with unreliable com-
munication,” ACM Transactions on Embedded Computing Systems
(TECS), vol. 14, no. 4, p. 76, 2015.

[135] D. J. Hill and I. M. Mareels, “Stability theory for differential/alge-
braic systems with application to power systems,” in Robust Control of
Linear Systems and Nonlinear Control. Springer, 1990, pp. 437–445.

[136] P. W. Sauer and M. Pai, Power System Dynamics and Stability. John
Wiley & Sons, 1997.

123

	Chapter 1 INTRODUCTION
	Formalisms
	Sensitivity Analysis
	Invariant Verification with Input-to-State Discrepancy
	Invariant Verification with Partial Order Reduction
	Differential Privacy for Distributed Control Systems
	Overview of the Thesis

	Chapter 2 PRELIMINARIES
	Set, Metrics and Functions
	Time and Variables
	Trajectories
	Measure and Product Measure

	Chapter 3 VERIFYING INVARIANCE WITH INPUT-TO-STATE DISCREPANCY
	Invariant Verification with IS Discrepancy Functions
	Related Works
	Networked Dynamical System Models
	Dynamical System Modules
	Networked Dynamical Systems with Delays

	Input-to-State Discrepancy
	IS Discrepancy and Witnesses
	Finding IS Discrepancy

	Small Approximations from IS Discrepancy
	IS Approximation of "026B30D d {A1,A2}
	Over-Approximation with IS Discrepancy
	Precision of the IS Approximation
	Generalizing to Arbitrary Networked Dynamical Systems

	Verification Algorithm
	Analysis of the Verification Algorithm

	Experimental Validation
	Summary

	Chapter 4 PARTIAL ORDER REDUCTION-BASED INVARIANT VERIFICATION
	Enhance Partial Order Reduction with Metrics
	Related Works
	Infinite State Transition Systems
	Labeled Transition Systems
	Discrepancy Functions

	Independent Actions and Close Executions
	Approximately Independent Actions
	Equivalent Action Sequences and Close Executions

	Interleaving Independent Actions
	Insertion of Independent Action
	Permutation of Independent Actions

	Generalization of Executions
	Anchor Position
	Generalization of an Individual Execution

	Reach Set Over-Approximation
	Equivalent Action Sequences
	Reach Set Over-Approximation

	Case Studies
	Linear Transition Systems
	Room Heating Problem

	Summary

	Chapter 5 DIFFERENTIALLY PRIVATE DISTRIBUTED CONTROL
	Privacy-Performance Trade-Off in Distributed Control
	Related Works
	Distributed Control System
	Continuous-State Markov Chain with Observations
	Distributed Control Systems

	Privacy and Cost in Distributed Control
	Laplace Observations of Differential Privacy
	Differentially Private Linear Distributed Control
	Sensitivity of Linear Distributed Control
	Cost of Privacy in Linear Distributed Control

	Summary

	Chapter 6 CONCLUSION
	Summary of Contributions
	Future Directions
	Locally Independent Actions
	Verification of Hybrid Automata
	Differential Privacy with Nonlinear Dynamics
	Tools and Applications

	REFERENCES

