58 research outputs found

    Recent Advances in Signal Processing

    Get PDF
    The signal processing task is a very critical issue in the majority of new technological inventions and challenges in a variety of applications in both science and engineering fields. Classical signal processing techniques have largely worked with mathematical models that are linear, local, stationary, and Gaussian. They have always favored closed-form tractability over real-world accuracy. These constraints were imposed by the lack of powerful computing tools. During the last few decades, signal processing theories, developments, and applications have matured rapidly and now include tools from many areas of mathematics, computer science, physics, and engineering. This book is targeted primarily toward both students and researchers who want to be exposed to a wide variety of signal processing techniques and algorithms. It includes 27 chapters that can be categorized into five different areas depending on the application at hand. These five categories are ordered to address image processing, speech processing, communication systems, time-series analysis, and educational packages respectively. The book has the advantage of providing a collection of applications that are completely independent and self-contained; thus, the interested reader can choose any chapter and skip to another without losing continuity

    Statistical pattern recognition for audio-forensics : empirical investigations on the application scenarios audio steganalysis and microphone forensics

    Get PDF
    Magdeburg, Univ., Fak. für Informatik, Diss., 2013von Christian Krätze

    Digital Watermarking for Verification of Perception-based Integrity of Audio Data

    Get PDF
    In certain application fields digital audio recordings contain sensitive content. Examples are historical archival material in public archives that preserve our cultural heritage, or digital evidence in the context of law enforcement and civil proceedings. Because of the powerful capabilities of modern editing tools for multimedia such material is vulnerable to doctoring of the content and forgery of its origin with malicious intent. Also inadvertent data modification and mistaken origin can be caused by human error. Hence, the credibility and provenience in terms of an unadulterated and genuine state of such audio content and the confidence about its origin are critical factors. To address this issue, this PhD thesis proposes a mechanism for verifying the integrity and authenticity of digital sound recordings. It is designed and implemented to be insensitive to common post-processing operations of the audio data that influence the subjective acoustic perception only marginally (if at all). Examples of such operations include lossy compression that maintains a high sound quality of the audio media, or lossless format conversions. It is the objective to avoid de facto false alarms that would be expectedly observable in standard crypto-based authentication protocols in the presence of these legitimate post-processing. For achieving this, a feasible combination of the techniques of digital watermarking and audio-specific hashing is investigated. At first, a suitable secret-key dependent audio hashing algorithm is developed. It incorporates and enhances so-called audio fingerprinting technology from the state of the art in contentbased audio identification. The presented algorithm (denoted as ”rMAC” message authentication code) allows ”perception-based” verification of integrity. This means classifying integrity breaches as such not before they become audible. As another objective, this rMAC is embedded and stored silently inside the audio media by means of audio watermarking technology. This approach allows maintaining the authentication code across the above-mentioned admissible post-processing operations and making it available for integrity verification at a later date. For this, an existent secret-key ependent audio watermarking algorithm is used and enhanced in this thesis work. To some extent, the dependency of the rMAC and of the watermarking processing from a secret key also allows authenticating the origin of a protected audio. To elaborate on this security aspect, this work also estimates the brute-force efforts of an adversary attacking this combined rMAC-watermarking approach. The experimental results show that the proposed method provides a good distinction and classification performance of authentic versus doctored audio content. It also allows the temporal localization of audible data modification within a protected audio file. The experimental evaluation finally provides recommendations about technical configuration settings of the combined watermarking-hashing approach. Beyond the main topic of perception-based data integrity and data authenticity for audio, this PhD work provides new general findings in the fields of audio fingerprinting and digital watermarking. The main contributions of this PhD were published and presented mainly at conferences about multimedia security. These publications were cited by a number of other authors and hence had some impact on their works

    Music similarity analysis using the big data framework spark

    Get PDF
    A parameterizable recommender system based on the Big Data processing framework Spark is introduced, which takes multiple tonal properties of music into account and is capable of recommending music based on a user's personal preferences. The implemented system is fully scalable; more songs can be added to the dataset, the cluster size can be increased, and the possibility to add different kinds of audio features and more state-of-the-art similarity measurements is given. This thesis also deals with the extraction of the required audio features in parallel on a computer cluster. The extracted features are then processed by the Spark based recommender system, and song recommendations for a dataset consisting of approximately 114000 songs are retrieved in less than 12 seconds on a 16 node Spark cluster, combining eight different audio feature types and similarity measurements.Ein parametrisierbares Empfehlungssystem, basierend auf dem Big Data Framework Spark, wird präsentiert. Dieses berücksichtigt verschiedene klangliche Eigenschaften der Musik und erstellt Musikempfehlungen basierend auf den persönlichen Vorlieben eines Nutzers. Das implementierte Empfehlungssystem ist voll skalierbar. Mehr Lieder können dem Datensatz hinzugefügt werden, mehr Rechner können in das Computercluster eingebunden werden und die Möglichkeit andere Audiofeatures und aktuellere Ähnlichkeitsmaße hizuzufügen und zu verwenden, ist ebenfalls gegeben. Des Weiteren behandelt die Arbeit die parallele Berechnung der benötigten Audiofeatures auf einem Computercluster. Die Features werden von dem auf Spark basierenden Empfehlungssystem verarbeitet und Empfehlungen für einen Datensatz bestehend aus ca. 114000 Liedern können unter Berücksichtigung von acht verschiedenen Arten von Audiofeatures und Abstandsmaßen innerhalb von zwölf Sekunden auf einem Computercluster mit 16 Knoten berechnet werden

    Scalable and perceptual audio compression

    Get PDF
    This thesis deals with scalable perceptual audio compression. Two scalable perceptual solutions as well as a scalable to lossless solution are proposed and investigated. One of the scalable perceptual solutions is built around sinusoidal modelling of the audio signal whilst the other is built on a transform coding paradigm. The scalable coders are shown to scale both in a waveform matching manner as well as a psychoacoustic manner. In order to measure the psychoacoustic scalability of the systems investigated in this thesis, the similarity between the original signal\u27s psychoacoustic parameters and that of the synthesized signal are compared. The psychoacoustic parameters used are loudness, sharpness, tonahty and roughness. This analysis technique is a novel method used in this thesis and it allows an insight into the perceptual distortion that has been introduced by any coder analyzed in this manner

    Digital watermarking methods for data security and authentication

    Get PDF
    Philosophiae Doctor - PhDCryptology is the study of systems that typically originate from a consideration of the ideal circumstances under which secure information exchange is to take place. It involves the study of cryptographic and other processes that might be introduced for breaking the output of such systems - cryptanalysis. This includes the introduction of formal mathematical methods for the design of a cryptosystem and for estimating its theoretical level of securit

    Robust speech recognition under band-limited channels and other channel distortions

    Full text link
    Tesis doctoral inédita. Universidad Autónoma de Madrid, Escuela Politécnica Superior, junio de 200

    BIOMETRIC TECHNOLOGIES FOR AMBIENT INTELLIGENCE

    Get PDF
    Il termine Ambient Intelligence (AmI) si riferisce a un ambiente in grado di riconoscere e rispondere alla presenza di diversi individui in modo trasparente, non intrusivo e spesso invisibile. In questo tipo di ambiente, le persone sono circondate da interfacce uomo macchina intuitive e integrate in oggetti di ogni tipo. Gli scopi dell\u2019AmI sono quelli di fornire un supporto ai servizi efficiente e di facile utilizzo per accrescere le potenzialit\ue0 degli individui e migliorare l\u2019interazioni uomo-macchina. Le tecnologie di AmI possono essere impiegate in contesti come uffici (smart offices), case (smart homes), ospedali (smart hospitals) e citt\ue0 (smart cities). Negli scenari di AmI, i sistemi biometrici rappresentano tecnologie abilitanti al fine di progettare servizi personalizzati per individui e gruppi di persone. La biometria \ue8 la scienza che si occupa di stabilire l\u2019identit\ue0 di una persona o di una classe di persone in base agli attributi fisici o comportamentali dell\u2019individuo. Le applicazioni tipiche dei sistemi biometrici includono: controlli di sicurezza, controllo delle frontiere, controllo fisico dell\u2019accesso e autenticazione per dispositivi elettronici. Negli scenari basati su AmI, le tecnologie biometriche devono funzionare in condizioni non controllate e meno vincolate rispetto ai sistemi biometrici comunemente impiegati. Inoltre, in numerosi scenari applicativi, potrebbe essere necessario utilizzare tecniche in grado di funzionare in modo nascosto e non cooperativo. In questo tipo di applicazioni, i campioni biometrici spesso presentano una bassa qualit\ue0 e i metodi di riconoscimento biometrici allo stato dell\u2019arte potrebbero ottenere prestazioni non soddisfacenti. \uc8 possibile distinguere due modi per migliorare l\u2019applicabilit\ue0 e la diffusione delle tecnologie biometriche negli scenari basati su AmI. Il primo modo consiste nel progettare tecnologie biometriche innovative che siano in grado di funzionare in modo robusto con campioni acquisiti in condizioni non ideali e in presenza di rumore. Il secondo modo consiste nel progettare approcci biometrici multimodali innovativi, in grado di sfruttare a proprio vantaggi tutti i sensori posizionati in un ambiente generico, al fine di ottenere un\u2019elevata accuratezza del riconoscimento ed effettuare autenticazioni continue o periodiche in modo non intrusivo. Il primo obiettivo di questa tesi \ue8 la progettazione di sistemi biometrici innovativi e scarsamente vincolati in grado di migliorare, rispetto allo stato dell\u2019arte attuale, la qualit\ue0 delle tecniche di interazione uomo-macchine in diversi scenari applicativi basati su AmI. Il secondo obiettivo riguarda la progettazione di approcci innovativi per migliorare l\u2019applicabilit\ue0 e l\u2019integrazione di tecnologie biometriche eterogenee negli scenari che utilizzano AmI. In particolare, questa tesi considera le tecnologie biometriche basate su impronte digitali, volto, voce e sistemi multimodali. Questa tesi presenta le seguenti ricerche innovative: \u2022 un metodo per il riconoscimento del parlatore tramite la voce in applicazioni che usano AmI; \u2022 un metodo per la stima dell\u2019et\ue0 dell\u2019individuo da campioni acquisiti in condizioni non-ideali nell\u2019ambito di scenari basati su AmI; \u2022 un metodo per accrescere l\u2019accuratezza del riconoscimento biometrico in modo protettivo della privacy e basato sulla normalizzazione degli score biometrici tramite l\u2019analisi di gruppi di campioni simili tra loro; \u2022 un approccio per la fusione biometrica multimodale indipendente dalla tecnologia utilizzata, in grado di combinare tratti biometrici eterogenei in scenari basati su AmI; \u2022 un approccio per l\u2019autenticazione continua multimodale in applicazioni che usano AmI. Le tecnologie biometriche innovative progettate e descritte in questa tesi sono state validate utilizzando diversi dataset biometrici (sia pubblici che acquisiti in laboratorio), i quali simulano le condizioni che si possono verificare in applicazioni di AmI. I risultati ottenuti hanno dimostrato la realizzabilit\ue0 degli approcci studiati e hanno mostrato che i metodi progettati aumentano l\u2019accuratezza, l\u2019applicabilit\ue0 e l\u2019usabilit\ue0 delle tecnologie biometriche rispetto allo stato dell\u2019arte negli scenari basati su AmI.Ambient Intelligence (AmI) refers to an environment capable of recognizing and responding to the presence of different individuals in a seamless, unobtrusive and often invisible way. In this environment, people are surrounded by intelligent intuitive interfaces that are embedded in all kinds of objects. The goals of AmI are to provide greater user-friendliness, more efficient services support, user-empowerment, and support for human interactions. Examples of AmI scenarios are smart cities, smart homes, smart offices, and smart hospitals. In AmI, biometric technologies represent enabling technologies to design personalized services for individuals or groups of people. Biometrics is the science of establishing the identity of an individual or a class of people based on the physical, or behavioral attributes of the person. Common applications include: security checks, border controls, access control to physical places, and authentication to electronic devices. In AmI, biometric technologies should work in uncontrolled and less-constrained conditions with respect to traditional biometric technologies. Furthermore, in many application scenarios, it could be required to adopt covert and non-cooperative technologies. In these non-ideal conditions, the biometric samples frequently present poor quality, and state-of-the-art biometric technologies can obtain unsatisfactory performance. There are two possible ways to improve the applicability and diffusion of biometric technologies in AmI. The first one consists in designing novel biometric technologies robust to samples acquire in noisy and non-ideal conditions. The second one consists in designing novel multimodal biometric approaches that are able to take advantage from all the sensors placed in a generic environment in order to achieve high recognition accuracy and to permit to perform continuous or periodic authentications in an unobtrusive manner. The first goal of this thesis is to design innovative less-constrained biometric systems, which are able to improve the quality of the human-machine interaction in different AmI environments with respect to the state-of-the-art technologies. The second goal is to design novel approaches to improve the applicability and integration of heterogeneous biometric systems in AmI. In particular, the thesis considers technologies based on fingerprint, face, voice, and multimodal biometrics. This thesis presents the following innovative research studies: \u2022 a method for text-independent speaker identification in AmI applications; \u2022 a method for age estimation from non-ideal samples acquired in AmI scenarios; \u2022 a privacy-compliant cohort normalization technique to increase the accuracy of already deployed biometric systems; \u2022 a technology-independent multimodal fusion approach to combine heterogeneous traits in AmI scenarios; \u2022 a multimodal continuous authentication approach for AmI applications. The designed novel biometric technologies have been tested on different biometric datasets (both public and collected in our laboratory) simulating the acquisitions performed in AmI applications. Results proved the feasibility of the studied approaches and shown that the studied methods effectively increased the accuracy, applicability, and usability of biometric technologies in AmI with respect to the state-of-the-art

    Models and Analysis of Vocal Emissions for Biomedical Applications

    Get PDF
    The MAVEBA Workshop proceedings, held on a biannual basis, collect the scientific papers presented both as oral and poster contributions, during the conference. The main subjects are: development of theoretical and mechanical models as an aid to the study of main phonatory dysfunctions, as well as the biomedical engineering methods for the analysis of voice signals and images, as a support to clinical diagnosis and classification of vocal pathologies
    • …
    corecore