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A B S T R A C T 
 

 

Ambient Intelligence (AmI) refers to an environment capable of recognizing and re- 

sponding to the presence of different individuals in a seamless, unobtrusive and often 

invisible way. In this environment, people are surrounded by intelligent intuitive inter- 

faces that are embedded in all kinds of objects. The goals of AmI are to provide greater 

user-friendliness, more efficient services support, user-empowerment, and support for 

human interactions. Examples of AmI scenarios are smart cities, smart homes, smart 

offices, and smart hospitals. 

In AmI, biometric technologies represent enabling technologies to design personal- 

ized services for individuals or groups of people. Biometrics is the science of establish- 

ing the identity of an individual or a class of people based on the physical, or behav- 

ioral attributes of the person. Common applications include: security checks, border 

controls, access control to physical places, and authentication to electronic devices. In 

AmI, biometric technologies should work in uncontrolled and less-constrained condi- 

tions with respect to traditional biometric technologies. Furthermore, in many applica- 

tion scenarios, it could be required to adopt covert and non-cooperative technologies. 

In these non-ideal conditions, the biometric samples frequently present poor quality, 

and state-of-the-art biometric technologies can obtain unsatisfactory performance. 

There are two possible ways to improve the applicability and diffusion of biometric 

technologies in AmI. The first one consists in designing novel biometric technologies 

robust to samples acquire in noisy and non-ideal conditions. The second one consists 

in designing novel multimodal biometric approaches that are able to take advantage 

from all the sensors placed in a generic environment in order to achieve high recogni- 

tion accuracy and to permit to perform continuous or periodic authentications in an 

unobtrusive manner. 

The first goal of this thesis is to design innovative less-constrained biometric systems, 

which are able to improve the quality of the human-machine interaction in different 

AmI environments with respect to the state-of-the-art technologies. The second goal is 

to design novel approaches to improve the applicability and integration of heteroge- 

neous biometric systems in AmI. In particular, the thesis considers technologies based 

on fingerprint, face, voice, and multimodal biometrics. 

This thesis presents the following innovative research studies: 

• a method for text-independent speaker identification in AmI applications; 

• a method for age estimation from non-ideal samples acquired in AmI scenarios; 

• a privacy-compliant cohort normalization technique to increase the accuracy of 
already deployed biometric systems; 

• a technology-independent multimodal fusion approach to combine heterogeneous 
traits in AmI scenarios; 
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• a multimodal continuous authentication approach for AmI applications. 

The designed novel biometric technologies have been tested on different biometric 

datasets (both public and collected in our laboratory) simulating the acquisitions per- 

formed in AmI applications. Results proved the feasibility of the studied approaches 

and shown that the studied methods effectively increased the accuracy, applicability, 

and usability of biometric technologies in AmI with respect to the state-of-the-art. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
VIII 



C O N T E N T S

abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VII

list of figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . XIII

list of tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .XVII

1 introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.1 Ambient intelligence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2 Biometrics in ambient intelligence . . . . . . . . . . . . . . . . . . . . . . . 6

1.3 Performed research and novelties . . . . . . . . . . . . . . . . . . . . . . . . 7

1.4 Structure of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 ambient intelligence and its application scenarios . . . . . . . . 11

2.1 Introduction to ambient intelligence . . . . . . . . . . . . . . . . . . . . . . 11

2.1.1 Characteristics of ambient intelligence . . . . . . . . . . . . . . . . . 12

2.1.2 Enabling technologies for ambient intelligence . . . . . . . . . . . . 13

2.2 Requirement analysis in ambient intelligence . . . . . . . . . . . . . . . . . 15

2.2.1 Requirement from the user perspective . . . . . . . . . . . . . . . . 15

2.2.2 Requirements from the system perspective . . . . . . . . . . . . . . 17

2.3 Ambient intelligence applications . . . . . . . . . . . . . . . . . . . . . . . . 19

2.3.1 Domotics (smart homes) . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.3.2 Smart offices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.3.3 Smart transportation . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.3.4 Smart healthcare . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.3.5 Smart cities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.4 Human-computer interaction in ambient intelligence . . . . . . . . . . . . 22

2.5 Challenges to ambient intelligence . . . . . . . . . . . . . . . . . . . . . . . 24

2.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3 biometric systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.1 Overview of biometric systems . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.1.1 Characteristics requirement of biometric systems . . . . . . . . . . 28

3.2 Structure and operational modalities of biometric systems . . . . . . . . . 28

3.2.1 General structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.2.2 Operational modalities . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.3 Characteristics of biometric traits . . . . . . . . . . . . . . . . . . . . . . . . 30

3.4 Multibiometric systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

IX



X contents

3.5 Human-computer interaction in biometrics . . . . . . . . . . . . . . . . . . 35

3.6 Performance evaluation and figures of merit of biometric systems . . . . 36

3.6.1 Evaluation protocols and standards . . . . . . . . . . . . . . . . . . 38

3.6.2 Figures of merit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.7 Applications of biometric systems . . . . . . . . . . . . . . . . . . . . . . . 46

3.8 Recent trends . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.9 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4 biometric technologies for ambient intelligence . . . . . . . . . . 49

4.1 Most used biometric traits in ambient intelligence . . . . . . . . . . . . . . 49

4.1.1 Face . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.1.2 Fingerprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.1.3 Voice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.1.4 Soft biometric traits . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.1.5 Other biometric traits . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.2 Multimodal fusion and score normalization in ambient intelligence . . . . 54

4.3 High-level design of biometric technologies for ambient intelligence . . . 58

4.4 Continuous authentication in ambient intelligence . . . . . . . . . . . . . . 60

4.5 Open problems and challenges . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5 innovative frameworks for biometric technologies in ambi-
ent intelligence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.1 User-friendly and less-constrained technologies for HCI in biometric
systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.1.1 Text-independent speaker recognition . . . . . . . . . . . . . . . . . 68

5.1.2 Age estimation from face analysis . . . . . . . . . . . . . . . . . . . 72

5.2 Methods to improve deployed biometric technologies . . . . . . . . . . . . 75

5.2.1 Adaptive cohort normalization . . . . . . . . . . . . . . . . . . . . . 75

5.2.2 Multibiometric systems for ambient intelligence . . . . . . . . . . . 80

5.2.3 Multimodal continuous authentication . . . . . . . . . . . . . . . . 83

5.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

6 experimental results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

6.1 User-friendly and less-constrained technologies for HCI in biometric
systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

6.1.1 Text-independent speaker recognition . . . . . . . . . . . . . . . . . 92

6.1.2 Age estimation from face analysis . . . . . . . . . . . . . . . . . . . 95

6.2 Methods to improve deployed biometric technologies . . . . . . . . . . . . 100

6.2.1 Adaptive cohort normalization . . . . . . . . . . . . . . . . . . . . . 101

6.2.2 Multibiometric systems for ambient intelligence . . . . . . . . . . . 109

6.2.3 Multimodal continuous authentication . . . . . . . . . . . . . . . . 115

6.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117



contents XI

7 conclusion and future works . . . . . . . . . . . . . . . . . . . . . . . . . 121

7.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

7.2 Future Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

references . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

a publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153





L I S T O F F I G U R E S

Figure 2.1 Components of ambient intelligence. . . . . . . . . . . . . . . . . . 14

Figure 2.2 Applications of ambient intelligence . . . . . . . . . . . . . . . . . 19

Figure 2.3 Smart devices and automation system designed for domotics. . . 20

Figure 2.4 Examples of smart offices. . . . . . . . . . . . . . . . . . . . . . . . 21

Figure 3.1 Schema of the enrollment step of biometric systems. . . . . . . . . 29

Figure 3.2 Schema of the verification mode of biometric systems. . . . . . . 30

Figure 3.3 Schema of the identification mode of biometric systems. . . . . . 30

Figure 3.4 Examples of physiological biometric traits: (a) fingerprint, (b)
face, (c) iris, (d) palmprint, (e) hand geometry, (f) ear shape, (g)
DNA, and (h) vein patterns . . . . . . . . . . . . . . . . . . . . . . 31

Figure 3.5 Examples of behavioral biometric traits: (a), voice, (b) gait, (c)
signature, and (d) keystroke dynamics . . . . . . . . . . . . . . . . 31

Figure 3.6 Examples of genuine and impostor scores distributions. . . . . . 41

Figure 3.7 Example of ROC curves. . . . . . . . . . . . . . . . . . . . . . . . . 42

Figure 3.8 Example of DET curves. . . . . . . . . . . . . . . . . . . . . . . . . 44

Figure 3.9 Example of CMC curves. . . . . . . . . . . . . . . . . . . . . . . . . 45

Figure 3.10 Applications of biometric systems in (a) access control, (b) surveil-
lance, (c) entertainment, and (d) shops and malls . . . . . . . . . . 46

Figure 4.1 Cohort score normalization process . . . . . . . . . . . . . . . . . 57

Figure 4.2 Studied high-level design of biometric technologies for AmI. . . . 59

Figure 4.3 Comparison of various characteristics and evaluation aspects of
biometric technology for: (a) AmI applications; (b) Security ap-
plications. The graphs represent the percentage of importance
that we estimated for each of the nine aspects characterizing
biometric applications [8]. This figure shows that biometric tech-
nologies for AmI present strong differences with respect to bio-
metric technologies used for security applications. AmI is more
user-centric and requires technologies with high usability and
high user acceptance. . . . . . . . . . . . . . . . . . . . . . . . . . . 60

Figure 5.1 Schema of biometric identification systems performing multiple
identity comparison. . . . . . . . . . . . . . . . . . . . . . . . . . . 69

Figure 5.2 Schema of biometric identification systems that search the iden-
tity of the user by classifying a single biometric template. . . . . . 69

Figure 5.3 Schema of the proposed text-independent speaker recognition
method. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

Figure 5.4 Schema of the proposed approach for age estimation. . . . . . . . 73

XIII



XIV list of figures

Figure 5.5 Outline of the proposed privacy-compliant cohort score normal-
ization approach. To comply with privacy protection regulations
on biometric data in AmI, our approach uses an external dataset
of templates to compute the cohort matching scores. . . . . . . . 77

Figure 5.6 Proposed schema of multimodal fusion in AmI. . . . . . . . . . . 81

Figure 5.7 An example of the considered scenarios and scope of biometric
technologies for continuous authentication in AmI. . . . . . . . . 84

Figure 5.8 Example of critical points in continuous authentication: the face
scores go rapidly down when the user starts talking on the
phone, nevertheless the voice scores can be used to maintain
the trust level of the multimodal system. . . . . . . . . . . . . . . 85

Figure 5.9 Schema of the studied multimodal continuous authentication
for AmI applications. . . . . . . . . . . . . . . . . . . . . . . . . . . 87

Figure 6.1 CMC curve achieved by the studied method for text-independent
speaker recognition in its best configuration (ISF+SVM) and by
the baseline method (MFCC+GMM). The realized method achieved
better accuracy for each considered rank. . . . . . . . . . . . . . . 94

Figure 6.2 Examples of cropped faces in WIKI dataset. . . . . . . . . . . . . . 96

Figure 6.3 Examples of cropped faces in Adience benchmark dataset. . . . . 97

Figure 6.4 Examples of cropped faces in AmI-Face Dataset simulating less-
constrained and non-cooperation scenarios including rotations:
(a, h) frontal, (b, i) 22◦, (c, j) 45◦, (d, k) 75◦, (e, l) 90◦; and activi-
ties: (f, m) using cellphone, and (g, n) expression changes. . . . . 97

Figure 6.5 Examples of fingerprint images in Dataset–A: lab best-case sce-
nario. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

Figure 6.6 Examples of fingerprint images Dataset–B: lab worst-case scenario.103

Figure 6.7 Examples of fingerprint images in dataset-C: Casia Fingerprint
Image Database Version 5.0. . . . . . . . . . . . . . . . . . . . . . . 104

Figure 6.8 ROC curves of the studied privacy-compliant approach using
the cohort normalization methods based on SVM–20–cohorts
technique (that achieved the best performance in term of FMR1000)
for Dataset–A. The higher the values along the vertical axis (100−
FNMR(%)) are, the better is the accuracy. . . . . . . . . . . . . . . 108

Figure 6.9 ROC curves of the studied privacy-compliant approach using
the cohort normalization methods based on SVM–all–cohorts
technique (that achieved the best performance in term of FMR1000)
for Dataset–B. The higher the values along the vertical axis (100−
FNMR(%)) are, the better is the accuracy. . . . . . . . . . . . . . . 108

Figure 6.10 ROC curves of the studied privacy-compliant approach using
the cohort normalization methods based on SVM–20–cohorts
technique (that achieved the best performance in term of FMR1000)
for Dataset–C. The higher the values along the vertical axis (100−
FNMR(%)) are, the better is the accuracy. . . . . . . . . . . . . . . 109

Figure 6.11 Simulated multibiometric systems for scenario 1. . . . . . . . . . . 111



list of figures XV

Figure 6.12 Simulated multibiometric systems for scenario 2. . . . . . . . . . . 112

Figure 6.13 Examples of collected multimodal database for continuous au-
thentication systems. . . . . . . . . . . . . . . . . . . . . . . . . . . 116

Figure 6.14 EER obtained at different time distances in seconds. In partic-
ular, the neural-based method has achieved lowest EER com-
pared to other used fusion approaches. The obtained accuracy
of the studied method for multimodal continuous authentica-
tion is measured as ERR, with mean equal to 2.38%, and the
standard deviation equal to 3.10% . . . . . . . . . . . . . . . . . . 117





L I S T O F TA B L E S

Table 1.1 Comparison of the features of ambient intelligence with other
application scenarios. . . . . . . . . . . . . . . . . . . . . . . . . . . 7

Table 3.1 Characteristics of different biometric traits [1] . . . . . . . . . . . 32

Table 4.1 Comparison of the studies in the literature for multimodal con-
tinuous authentication using face and voice . . . . . . . . . . . . . 63

Table 5.1 Cohort score normalization methods used in the studied method 78

Table 6.1 Rank-1 Identification Accuracy achieved by the baseline method
(MFCC+GMM) and the studied method for text-independent
speaker recognition in different configurations . . . . . . . . . . . 93

Table 6.2 Rank-1 Identification Accuracy achieved using different number
of enrolled samples per user . . . . . . . . . . . . . . . . . . . . . . 94

Table 6.3 Comparison of the three feature selection methods in terms of
MAE (in years) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

Table 6.4 Performance of the studied method for age estimation from face
analysis in less-constrained conditions in terms of MAE (in years) 99

Table 6.5 Results in the literature for age classification on Adience bench-
mark dataset using classification accuracy . . . . . . . . . . . . . . 100

Table 6.6 Results of the cohort normalization using the validation tech-
nique based on a single dataset (2-fold validation iterated 10

times) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

Table 6.7 Accuracy of the studied privacy-compliant approach for cohort
normalization using different cohort normalization methods . . . 105

Table 6.8 Accuracy of the studied privacy-compliant approach using dif-
ferent cohort normalization methods and the privacy-compliant
test methodology proposed by Frontex [324] . . . . . . . . . . . . 106

Table 6.9 Score-level fusion results . . . . . . . . . . . . . . . . . . . . . . . . 113

Table 6.10 Privacy-compliant score-level fusion results using the quality-
based likelihood ratio . . . . . . . . . . . . . . . . . . . . . . . . . . 113

Table 6.11 Improvement of EER and FMR1000 using the sum fusion, with
respect to using only the most accurate biometric trait, in a
technology-independent environment, for different combinations
of recognition algorithms. Negative values correspond to in-
crease in accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

XVII





1
I N T R O D U C T I O N

In this chapter, we first present an introduction to ambient intelligence. Then, we de-
scribe biometric technologies for ambient intelligence. Subsequently, we discuss the
objective of the thesis, the performed research, and the obtained results. Finally, the
structure of the thesis is detailed.

1.1 ambient intelligence

Ambient Intelligence (AmI) refers to an environment capable of recognizing and re-
sponding to the presence of different individuals in a seamless, unobtrusive and often
invisible way. In this environment, people are surrounded by intelligent intuitive inter-
faces that are embedded in all kinds of objects. Examples of AmI scenarios are smart
cities, smart homes, smart offices, and smart hospitals.

The AmI technologies involve different areas of computer science, including: ubiq-
uitous computing, sensors and networks, detection and tracking, human-centered ap-
proaches, and computational intelligence.

The goals of AmI are to provide greater user-friendliness, more efficient services,
user-empowerment, and support for human interactions. In particular, AmI applica-
tions should select specific characteristics or features of the environment, which can
be adjusted according to the preferences of the user inside the environment. AmI tech-
nologies can provide adaptation of certain features of the considered environment for
allowing users to express their needs through various ways while interacting with the
environment. These needs may be expressed through a set of commands provided by
the user, or automatically estimated by the AmI through voluntary or non-voluntary
actions of the user. For example, gestures and the emotional state can be used for
environmental adaptability to facilitate the users with the preferred services.

In the current scenario, users can interact with the environment with expressed com-
mands related to specific services. AmI technologies should be able to estimate and
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6 introduction

store the preferences of each single user unobtrusively so that the user and AmI should
be able to access these preferences anywhere across different environments. These pro-
files should be unique for each user and selected by recognizing the individual. Fur-
thermore, the adaptability of the infrastructure of AmI should consider the preferences
of classes of users. For example, AmI technologies can customize the environment for
children, or elder people.

To recognize the users or their characteristics, AmI technologies should use user-
friendly and unobtrusive methods. In this context, biometric technologies represent
enabling technologies to design personalized services for individuals or classes of peo-
ple.

1.2 biometrics in ambient intelligence

Biometrics is the science of establishing the identity of an individual or a class of peo-
ple based on the physical, or behavioral attributes of the person. Biometric traits are
the discriminative characteristics used to perform identity recognitions. Examples of
physiological biometric traits are the fingerprint, face, iris, palmprint, and hand geom-
etry. Examples of behavioral biometric traits are the voice, gait, keystroke and mouse
dynamics. Soft biometric traits are characteristics that do not have sufficient discrim-
inability to perform recognitions, but can help in profiling a user class. Examples of soft
biometric traits are the age, gender, height, and weight. Common applications include:
security checks, border controls, access control to physical places, and authentication
to electronic devices.

Biometric technologies may allow designing adaptable infrastructure and intelligent
support for AmI, based on the user-centric approach. In particular, biometric technolo-
gies can be considered in AmI to infer information on the user identity, which permits
to select the preferences estimated for an individual or class of people and provide
personalized services. Soft biometric information may allow for specifying the actions
desired by a class of persons and customizing the infrastructure of AmI in order to
provide class-specific services without identifying the individuals.

In AmI, biometric technologies should work in uncontrolled and less-constrained
conditions with respect to traditional biometric technologies. Furthermore, in many
application scenarios, it could be required to adopt covert and non-cooperative tech-
nologies. In these non-ideal conditions, the biometric samples frequently present poor
quality, and state-of-the-art biometric technologies can obtain unsatisfactory perfor-
mance.

The design of biometric technologies for AmI scenarios need to consider the specific
features of each application. Table 1.1 shows a comparison between important features
of biometric technologies for AmI with respect to the security and surveillance appli-
cations. From the table, it is possible to observe that the features of AmI applications
are different from the ones of the security and surveillance applications. In particu-
lar, most of the biometric technologies designed for security applications require to
perform identification and verification of the identities [1, 2]. In surveillance applica-
tions, biometric technologies have also been used for monitoring and tracking users
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Table 1.1: Comparison of the features of ambient intelligence with other application scenarios.

Features
Security

Applications

Ambient

Intelligence

Surveillance

Applications

Operational

modalities

identification,

verification [1, 2]

identification, verification,

preference-estimation,

facilitation, human-

computer interaction [5, 6]

identification, behavior-

detection, monitoring,

tracking, watchlist

[3, 4]

Overt/covert mostly overt [7] overt or covert mostly covert [7, 3]

Most used

traits
face, finger, iris [1]

face, voice, gait, soft

biometrics [5, 6]
face, gait [3, 4]

Touchless/

Touch-based

touch-based or

touchless [8]
mostly touchless [5, 6] touchless [8]

Enrollment require [1, 7] required or not required mostly not required

[3, 4]. Differently, in AmI applications, the primary tasks of biometric technologies
is to facilitate users in different environments. The main characteristic that biometric
technologies should have to be used in AmI scenarios are a simple human-computer
interaction and, in many cases, the capability of working in covert conditions. For this
reason, the mostly used biometric traits are the face, voice, gait, or soft biometrics
[5, 6]. Furthermore, it is interesting to note that, many AmI scenarios do not require a
preliminary enrollment of the users.

A way of increasing the accuracy of biometric systems in AmI scenarios character-
ized by non-ideal acquisition conditions is to fuse the information collected by different
sensors in a multibiometric system. However, to the best of our knowledge, there are
no studies in the literature for designing frameworks for biometric technologies to
integrate heterogeneous traits, sensors, and environmental conditions typical of com-
plex AmI. The current state-of-the-art for biometric technologies lacks in designing
AmI technologies able to automatically recognize non-cooperative individuals using
the widest set of information that can be obtained from the set of sensors deployed
in a generic scenario. Moreover, user-friendly biometric technologies robust to non-
ideal and less-constrained acquisitions should be further investigated to improve the
accuracy and the quality of the human-computer interaction in AmI scenarios.

1.3 performed research and novelties

The thesis presents innovative less-constrained technologies able to increase the appli-
cability of biometric systems in AmI and improve the quality of the human-computer
interaction in different AmI scenarios. The realized approaches include biometric tech-
nologies based on less-constrained and non-cooperative acquisitions to facilitate the
interaction between the users and the systems in AmI.
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The first goal of this thesis is to design innovative less-constrained biometric sys-
tems, which are able to improve the quality of the human-machine interaction in dif-
ferent AmI scenarios with respect to the state-of-the-art technologies. The novelty of
the approaches, with respect to the state-of-the-art, resides in the fact that we consider
less-constrained acquisition scenarios and non-cooperative users to increases the ap-
plicability of biometric technologies in AmI. Differently, most of the methods in the
literature require cooperative users to perform their recognition.

Novel feature extraction and matching techniques have been studied for unimodal
biometric technologies. In particular, we studied text-independent speaker recognition
methods to perform closed set identification by using a limited amount of computa-
tional resources and templates of small size, thus allowing to use in embedded archi-
tecture for the AmI applications.

A novel age estimation method has been designed to extract soft biometric informa-
tion from non-ideal samples collected in AmI scenarios. The realized method is robust
to non-ideal images and deal with samples affected by strong rotations.

The second goal of this thesis is to design novel approaches to improve the applicabil-
ity and integration of heterogeneous biometric systems in AmI. The performed studies
regard original methods for novel and comprehensive biometric systems able to deal
with heterogeneous traits, sensors, and environmental conditions. Novel approaches
have been studied to improve the applicability and integration of heterogeneous bio-
metric systems in AmI. The realized approaches have been designed to improve the
recognition accuracy of the already deployed biometric technologies in AmI.

In particular, adaptive cohort normalization methods have been studied to improve
the recognition accuracy of the previously deployed biometric systems in AmI. The
designed method can be applied in existing AmI applications in a privacy-compliant
manner and without requiring hardware or software modifications.

Multimodal biometric systems have been studied to combine biometric information
acquired from heterogeneous traits and sensors in AmI. Score-level fusion approaches
based on fixed rules and matching score densities have been studied to improve the
recognition accuracy of the multimodal biometric systems in AmI. Moreover, the de-
signed multimodal biometric system is technology independent and based on privacy
compliant training approaches.

A multimodal continuous authentication systems and adaptive fusion approaches
have been studied for AmI applications. The studied dynamic and intelligent fusion
approach allow to integrate the heterogeneous information available in terms of differ-
ent biometric traits, data from multiple sensors, and quality of biometric samples.

The designed novel biometric technologies have been tested on different biometric
datasets (both public and collected in our laboratory) simulating the acquisitions per-
formed in AmI applications. Results proved the feasibility of the studied approaches
and shown that the studied methods effectively increased the accuracy, applicability,
and usability of biometric technologies in AmI with respect to the state-of-the-art.
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1.4 structure of the thesis

The thesis is structured as follows:

• Chapter 2 presents an introduction to AmI and its application scenarios. In par-
ticular, it describes the most promising technologies, the techniques for human-
computer interactions, current research trends, and challenges in AmI.

• Chapter 3 contains an introduction to biometric recognition, biometric modalities,
and the general structure of biometric systems. A survey of the main biometric
traits is presented, and the methodologies used for the evaluation of biometric
systems are described. The applications and research trends in biometric recog-
nition are also presented.

• Chapter 4 provides a literature review on biometrics for AmI. Techniques based
on unimodal biometric technologies for AmI applications are first analyzed. Then
multimodal fusion and score normalization approaches are discussed. The anal-
ysis of high-level design for biometric technologies for AmI and continuous au-
thentication is then discussed. Finally, open problems and challenges are treated.

• Chapter 5 describes the performed research on biometric technologies for AmI,
detailing the implemented methods designed for innovative and user-friendly
biometric technologies to facilitate the human-computer interaction, and stud-
ied original methods for novel and comprehensive biometric systems to manage
heterogeneous traits, sensors, and environmental conditions in AmI.

• Chapter 6 presents the performed experiments and obtained results related to
the studied methods. In particular, this chapter analyzes the performance of the
implemented techniques and compare the obtained results with the state of the
art methods in the literature to assess the feasibility of the considered innovative
methods.

• Chapter 7 summarizes the work and the obtained results, the originality of the
contribution, and then presents a series of possible future works.

• Appendix A contains the list of peer-reviewed papers in which some of the ideas
and significant results presented in this thesis have been published.





2
A M B I E N T I N T E L L I G E N C E A N D I T S A P P L I C AT I O N

S C E N A R I O S

Ambient intelligence (AmI) is a multidisciplinary paradigm, in which, heterogeneous
sensors connected through an unobtrusive network, operate collectively to facilitate
the needs and requirements of the users residing inside the environment.

In this chapter, we first present an introduction to the AmI, its characteristics, and
most promising technologies used in AmI. Then, we analyze the requirement of user’s
need in AmI and discuss AmI application scenarios. We also present a discussion on
human-computer interaction in AmI. Finally, the challenges related to the ambient
intelligence technologies are treated.

2.1 introduction to ambient intelligence

Ambient Intelligence (AmI) refers to an environment capable of recognizing and re-
sponding to the presence of different individuals in a seamless, unobtrusive and often
invisible way. The concept of AmI has laid by Philips [9], which visualized the AmI as
sensitive and responsive to the presence of the user and sympathetic to their needs [9].

The European Commission’s Information Society Technologies Advisory Group (ISTAG)
provided a broader and more formal definition describing AmI as seamless environ-
ment equipped with advanced and intelligent computing, aware of the specific require-
ments of the user inside the environment, adaptive to their needs, and responsive to
their requirements in smart and intelligent manner [10]. AmI envisions people in the
center of the system, and the priority is to bring more focus to the user than the tech-
nology itself.

AmI technologies can allow users to not only interact with the traditional devices
such as keyboard, mouse, and screen, but also through their physiological, behavioral,
and emotional attributes. Moreover, with the advancement in the sensing capabilities

11
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of devices, vision technologies, and computational intelligence techniques, it is possible
to design less-constrained techniques for human-computer interaction in AmI .

2.1.1 characteristics of ambient intelligence

AmI is a multidisciplinary concept, which congeries the technologies from different
areas and possess different characteristics. The design and development of AmI need
to consider the following characteristics of AmI technologies:

• Unobtrusiveness: refers to the ability of the technology to assist users in an unob-
trusive manner as much as possible. The sensors, devices, and other hardware of
the AmI technology should be invisible (or at least not easily detectable) to the
users.

• Context awareness: implies that the system should be aware of the context and
able to understand and respond to the requirements of the user without being
intrusive. The term context can be defined as information that can be used to
characterize the situation of an entity such as user, environment, objects, or all to-
gether [11]. AmI should be able to process the information necessary to estimate
the preferences of the users, to provide proper facilitation.

• connectedness: refers to the state at which various components of the AmI systems
are linked together. AmI consist of many sensors, actuators, hardware and soft-
ware systems that should connect and interact with each other. These physical
devices should be embedded in a network to present a distributed and ubiqui-
tous system. The interoperability of these connected devices can be considered
as an important criterion to design comprehensive systems for AmI.

• Adaptability: refers to the ability of the environment to respond to the user ac-
cording to their preferences. AmI technologies should be able to learn from the
feedback of the interactions, modify the actions accordingly, and respond with
the services corresponding to the preferences of the user. To make the environ-
ment adaptive, It is important to consider the application context, learning ability
of the technology, and the interaction history.

• Personalized: concerns with the customization of the components of AmI to pro-
vide services according to the individual preferences. AmI consider users in the
center of the system. Different users may have different preferences, and the ob-
jective of AmI is to provide personalized services to them. For example, in a
smart home, family members may have different choices for music, temperature,
news, and diets. The AmI technology should be able to adjust the components of
the environment to facilitate the users with the individual choice of service.
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2.1.2 enabling technologies for ambient intelligence

The enabling technologies for AmI can be considered from different areas of computer
science. These techniques can be broadly divided into five different classes, as shown
in Fig. 2.1.

1. Ubiquitous computing: implies a system which is spread throughout the environ-
ment. The advancement of ubiquitous computing provides smart sensors and
objects to capture the contextual information from the users. One such comput-
ing technology is the radio frequency identification (RFID). RFID provides a con-
tactless and automatic identification of objects by using a radio frequency of the
tagged objects. RFID-based technologies have used in many AmI applications
such as homes, shops, industries, and offices. Recently, many ubiquitous devices
that take the remote commands from the users and provide ubiquitous services
have been developed. Examples of such devices are Nest thermostat, Ubi, Ama-
zon echo, and Apple Siri.

2. Sensor networks and actuators: AmI needs to use different sensors (and sensor net-
works) to capture information related to the various requirements of the users.
The sensors acquire a certain behavior of the user inside the environment and
pass to the system software, which response to the action based on the processed
information. Sensors are designed to collect different information from the AmI
regarding physical phenomenon (e.g., temperature, lighting, sound, positions,
and directions), the behavioral phenomenon (e.g., emotion, gestures, diets, and
allergies), and health conditions. The network of sensors allows to communicate
and exchange information inside AmI. New sensors have been developed and
integrated into the existing networks. The integration of new sensors in existing
networks require a common protocol for wireless sensor network (e.g., Bluetooth,
GPS, ZigBee, and UltraWideBand). The actuators are technologies that permit to
perform a sequence of actions according to the data collected by the sensors. The
examples of the actuators are switch-on and switch-off actions for lighting and
thermostats. The Recent development of smart sensing devices made available
new sensing technologies that act intelligently and automatically, such as vision
sensors networks in surveillance and monitoring.

3. Detection and tracking: technologies in AmI should be able to detect, locate, and
track the user continuously. Different technologies can be used to specify and
locate the position of the user (e.g., GPS, RFID, and microchip). The detection
and tracking can help in designing an environment with preventive measures for
the users. For example, a smart and intelligent monitoring system can detect an
abnormal behavior or walking pattern of the patients. It can prevent the danger
of catastrophic events like fall or heart attack by sending the information to the
nearest hospital or calling an ambulance. Moreover, the social and emotional
status can be tracked and used to facilitate user with prioritized services.
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Figure 2.1: Components of ambient intelligence.

4. Human centered computing: AmI technologies are aimed to facilitate users accord-
ing to their social, behavioral, and physiological interactions with the system.
The human-centered computing uses the enabling technologies such as artificial
intelligence, signal and image processing, and ubiquitous computing to design
the smart environments to facilitate and support users day to day activities.

5. Computational intelligence: refers to the ability of the machines to learn and do the
specific tasks according to the observed data. Techniques based on computational
intelligence can be used to design an intelligent environment which can perform
the desired tasks accurately and efficiently. These techniques allow the system to
learn the specific behavior or pattern of the users, adapt and update itself during
the system operation and provide low-cost solutions to design and maintain the
system. Examples of computational intelligence techniques are

• neural networks;

• support vector machines;

• fuzzy logics;

• evolutionary computations, and

• learning theory

Some examples of the scenarios in which the computational intelligence tech-
niques can be useful for AmI include

• continuously learning and estimating the preference, requirements, and be-
havior of the user and adapting the system accordingly;
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• locating, detecting, and tracking the users inside the environments;

• accurate diagnosis of the health conditions;

• smart visioning abilities to provide support for the older adults and patients,
and

• intelligent and remote agents such as artificial robots and drones.

2.2 requirement analysis in ambient intelligence

To design an intelligent environment that can sense and respond smartly according to
the needs of the user, it is important to analyze the list of needs and requirements of the
user. The requirement analysis is a software engineering approach, which determines
the specific needs, feature expectations, and needs of the considered user or group
of users before designing the system. The list of requirements is the outcome of this
process.

The requirement analysis of user’s need in AmI includes the study and observa-
tions of different ways of interactions of the user with the environment. The design
approaches of considered technologies for AmI must consider the possible needs of
the users and the technology available to express those needs and different types of
sensors (or combination of sensors) available to capture the expressions of the user
knowingly and unknowingly.

2.2.1 requirement from the user perspective

A list of possible requirements of the user in AmI is presented in the following.

1. Service categorization: refers to the different level of serves required to the user
in AmI. In AmI scenarios, a secure authentication system may be required for
accessing sensitive resources (e.g., email, login sessions bank transactions, etc.), a
partial authentication system may be more suitable to provide access to special
group members (e.g., entertainment, news, and other media related services), and
other common services may be available to access without authentication. More-
over, the access modalities for some critical applications may differ for group of
users.

2. Usability of the system: defined as the extent to which the considered technology
can be used by specified users to achieve specified goals with effectiveness, effi-
ciency, and satisfaction in AmI.

3. Voice interaction: refers to the most natural and unconstrained HCI modalities.
Voice-based interfaces are enabling technologies for AmI to take commands in
truly unobtrusive and ubiquitous manner.

4. Remote access: of the services is an important requirement for the users. Systems
should be able to operate from remote places as well as from the environment
itself. For example, for domotic environments, the services should be managed
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by the user from outside the home (e.g., lighting control, thermostat, locks, mon-
itoring of child or old people).

5. Preference-based services: different users may have different preferences. To facili-
tate the users, the environment should understand and recognize its users, and
the components of the AmI should be customized according to their preferences.

6. Privacy requirements: the privacy of the users inside AmI should not be com-
promised. Therefore, the technology which accesses user’s sensitive information
should be designed in a privacy-compliant manner.

7. Special service in emergency: AmI should be sensitive to the user information, es-
pecially regarding the health-related monitoring. In case of emergency situations,
the environment should trigger an alarm, send messages to the owner, or take
preventive actions to avoid dangerous, alarming, or uncommon events.

8. Automatic Learning (Adaptability): systems should be able to automatically adapt
themselves according to the preferences of the users. These systems should be
based on intelligent and continuous learning techniques. For example, in domoic
environment, adaptive methods are required for the services of temperature con-
trol, lighting control, working of electronic gadgets, working of the coffee ma-
chine, locking the main door, the announcement of things finished in kitchen,
doctors appointment, schedulers list, and laundry services.

9. Message broadcasting: the technologies for AmI should be able to sense and track
the presence of the user inside the environment and deliver the messages, mails,
or other important notifications at the exact location of the users.

10. Coupling of services: refers to the array of sensors and actuators which anticipate
and triggers the actions in reflection to the previous completed. For example, in
smart homes, the coupling of services can be designed to make the environment
automated and service-oriented to the users.

11. Range of communication systems : some services required a short range of com-
munication (e.g., when a user wants to ask about some information of personal
use or information like weather updates, traffic situation, web search, configur-
ing a voice mail, and broadcasting a message in AmI). On the other hand, some
services may require a long range of communication (e.g., asking general infor-
mation, light controls, and heating controls.).

12. Interaction and learning from user’s input: in AmI, the interaction between the hu-
man and the environments should be simplified and effective. In some appli-
cations, users prefer a system which takes input whenever a new event occurs.
In other applications, it is required to design a system that does not ask any
questions and automatically evaluates the behaviors (commonly termed as self-
learning systems).
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2.2.2 requirements from the system perspective

The requirements from the system perceptive are different from the requirements of the
users. From the system’s perspective, the main focus is on the interoperability, network-
ing, throughput, reliability, and efficiency of the technologies used in the environments.
According to the study performed in this work, the list of possible requirements are as
follows.

1. Complexity of the system: the system should not be very complex; otherwise, the
user may not be able to use it easily. The technologies for AmI need to be de-
signed by considering their end users. The designed technologies should be char-
acterized by easy procedures of installation, use, modification, and de-registration.

2. Interoperability: refers to the ability of the technologies to share and exchange in-
formation between different components. The new devices should be compatible
with the existing networks and able to exchange the acquired information from
other existing devices. Moreover, AmI systems should be able to support new
technologies by adding new devices, subsystem, or software update.

3. Switching technology: AmI should provide the switching between different modal-
ities to express different the needs and requirements accrediting to the situations.
Switching technology should have the availability of options for selecting suitable
modality for interaction (e.g., voice, gesture, touch, type).

4. Distinction between the different groups of users: the requirement of considering dif-
ferent age groups while designing AmI technologies is important in many scenar-
ios. For example, in a typical smart home, the users are of different age groups,
and the system should be designed to consider the distinct age groups while
providing access to the resources.

5. Reliability of the services: the designed technologies should be characterized by
reliable and consistent performance.

6. Responsiveness: actions taken by a user should be responded within a reasonable
period. A delay in the response may affect the user’s perception of the system.
Examples of such cases are, taking actions in the emergency situations (e.g., in
the event of fire, smoke, unusual behavior of elder persons, and intruder attacks.
Moreover, the user should not be able to notice the transmission delay between
two systems or a system and its subsystems.

7. Accuracy and precision : the system should be able to implement the requested ac-
tions with utmost accuracy and precision. If the designed system is not accurate,
it can cause the devices to malfunction, which may cause user frustration.

8. Portability: to increase the portability of the system, it is necessary that the hard-
ware units should be compact and lightweight.
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9. Customizability: users may choose different combinations of devices to put under
continuous monitoring and regulation. The design of the system should allow
users to customize the devices according to their requirements.

10. Energy efficiency: AmI technologies keep the continuous listening devices run-
ning all the time. It is therefore required to consider devices that consume a low
amount of electrical power.

11. Multimodal interface: in AmI, the entire user interface should be simple, self-
explanatory and easy to learn and use. The system should provide multimodal
interfaces which can combine different interaction modalities. The technology
should be designed to operate with more than one modality (e.g., voice, gesture,
touch, or image) and different modes depending on the type of application or
services.

12. Minimal interaction: data should be displayed in a way that requires minimal in-
teraction from the user. The system should require least user-machine interaction
for a particular service.

13. Safety of the user: as the application deals with the remote handling of electrical
appliances, ensuring the safety of the environment is of utmost importance. The
process of distant regulation of a device should be safe enough for AmI, such
that it does not cause electrical shocks, short-circuits, and cause fires.

14. Language Independent: the implementation of the system should be independent
of any programming language. Each designer should be able to decide their ap-
plication with the programming language of their choice.

15. Group Identifier: devices should be associated with different identifiers. This will
enable devices to be addressed based on their groups instead of individuality.
Moreover, it will also ensure the interoperability and scalability of the technology
with large-scale systems.

16. Inheritance: it should be possible to refine dependency information and the group
identifier of the device. For example, the group identifier "‘Kitchen"’ can be in-
herited from the another group identifier "‘ROOM"’.

17. Prevent Undesirable Actions: the system should be able to prevent the expected un-
desirable actions for a subsystems devices may be due to subsystem interactions.

18. Authorization of Device: only authorized devices or subsystems should be part of
the system. It should be restricted for an intruder to add a subsystem to the
system

19. Discovery of new device: a subsystem of the AmI systems should be able to publi-
cize its existence and discover the other subsystems. For example, when a new
subsystem is connected, it should automatically inform of its existence and look
for other subsystems.
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Figure 2.2: Applications of ambient intelligence

2.3 ambient intelligence applications

AmI technologies have been successfully deployed in many smart environments such
as homes, offices, and transportation. There are many applications of AmI technologies
which impact our daily lives. Fig. 2.2 shows examples of the real world applications
of AmI technologies in domotic environments, offices, entertainment, healthcare, trans-
portation, and smart cities.

2.3.1 domotics (smart homes)

A growing area of research consists of the design of AmI technologies for the do-
motic environment. A domotic environment is a home with informatics, technologies,
telematics, and robotics [12, 13]. Domotics defines the integration of technology and
services inside the home to provide a better quality of life to its user. Other com-
mon names of domotics are smart homes or home automation. The focus of AmI in
domotic environments is on smart devices and sensors to provide less-cooperative in-
teractions and use of computational intelligence techniques for information retrieval,
information processing, adaptive learning, and fast and reliable services to its residents
[12, 14, 15, 16, 17, 18]. Examples of the smart devices developed for domotic environ-
ments are shown in Fig. 2.3. These devices include the thermostat for temperature
control, continuous listening devices, smart cameras, locks, and interactive mirrors.

AmI technologies for domotics considers the design and development of smart vir-
tual sensors that enable to estimate user’s needs by evaluating her identity, physical
characteristics or behaviors. Typical tasks of AmI technologies in domotic environ-
ments include locating and tracking users, listening and answering queries, turning
on and off the lights, and media devices. Moreover, AmI systems are also considered
for customizing the environments according to the preferences of the resident (e.g.,
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Figure 2.3: Smart devices and automation system designed for domotics.

AC control, thermostat, broadcasting channels, and monitoring the health of people)
[19, 12, 16, 20]. The Bill Gate’s home is an ideal smart home where the user’s prefer-
ences have been in the center of the design [21].

2.3.2 smart offices

Another important application of AmI technologies is in smart offices. A smart office is
an environment which is adaptive to the user’s preferences and capable of assisting in
decision-making. The smart office environments use continuous and ubiquitous track-
ing to provide secure, and a reliable authentication and can manage the heterogeneous
information collected from the environment available at each moment to facilitate the
users [22, 23, 24]. A smart office is an intelligent environment equipped with smart
sensing devices, actuators, ubiquitous computing technologies, secure mechanism to
protect the personal information, and pervasive support systems [25, 26, 22]. Fig. 2.4
shows some examples of real-world projects using AmI technologies for the smart
offices include Monica smart office [27], Standford’s Interactive Workspace [28], and
NIST smart space project [29].

2.3.3 smart transportation

AmI technologies for smart transportation consist of the design of a fast, accurate, and
secure system to make the public transport environment comfortable to the passen-
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Figure 2.4: Examples of smart offices.

gers, secure to the thefts, interactive and decision support systems for drivers, and
smart sensors for information processing and communication with reasonably low op-
erational cost [30]. AmI technologies can be used in transportation systems for tracking
and locating vehicles, controlling automated doors and ports, efficient management of
loading and unloading goods, smart traffic management, and identity recognition of
the staff.

AmI technologies for the transportation systems include GPS trackers, RFID identi-
fiers, and smart vision sensors. Advanced vision technologies have adopted in trans-
portation systems for tracking the lanes and vehicles to alert the drivers. Interactive
systems have been developed for analyzing the behavior of the drivers while they per-
form different actions, such as breaking, accelerating, and crossing lanes [31]. These
observations are further used to assist drivers with interactive support in case of am-
biguous driving patterns or emergency situations. Other examples of AmI technologies
in transportation are gaze detection of drivers to analyze if she is tired or sleeping [32],
continuous monitoring the state and mood of the driver to eventually provide support
[33]. There has also been a Microsoft initiative for using AmI technologies in vehicle
route planner [34, 35].

2.3.4 smart healthcare

AmI technologies are widely used to support and assist people at home and patients in
hospitals to provide a continuous health monitoring and diagnosis. The advancement
of the surveillance cameras and supporting technologies made it possible to assist men-
tally and physically challenged people to lead their lives independently. The primary
tasks of AmI technologies in health care include activity recognition, monitoring, con-
trol of diets, anomaly detection, health diagnosis, automated support and interaction
systems, and abnormal walking pattern detection [20]. Examples of application of AmI
technologies in healthcare include:

• Assistance: AmI is also useful in assisting individuals with physical or memory-
related problems to assist and remind users of their normal daily activities [36,
37]. Examples of such AmI technologies include personalized GPS and navigator
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to track the routes from anywhere to their home, and ambient media broadcast-
ing systems to schedule meetings, appointments with doctors, regular visit for
health monitoring, and diet-related assistance.

• Home care: In urban areas, most of the elderly population live solitary lives.
"‘Proactive Health Group"’is an initiative by Intel which aims to take care of
the users living alone in their homes and improve the overall quality of life for
them [38]. The focus of Intel’s technology is on the social interactions to analyze
the lifestyle of the individuals.

• Comfort: AmI systems can be adopted in hospitals and medical centers to ame-
liorate the user experience of patients coming to hospitals. An example of such
technology is implemented in Chicago hospital children ward [39] for recogniz-
ing the patients from their RFID tag and customizing the components of the
environment according to their preferences.

• Extended-support: AmI technologies can be used to extend the care and support
to the older adults or patients in their homes. PathFinder project which connects
hospitals to the smart homes [40, 41]. The smart healthcare facilities inside the
houses have also advocated by AARP reports [42], which emphasized to extend
the care and support for the patients in their homes. These technologies can also
decrease the queues of patients in the hospitals, lower the burden of nursing staff,
and improve the functionality of the medical centers [43].

2.3.5 smart cities

AmI can help in designing a smart city with the aim of empowering the lives of its
residents. A smart city is characterized by connected devices which work ubiquitously,
smart cars with drive assistance, smart homes with automated lighting, temperature,
thermostats, and security systems. Moreover, it also includes intelligent traffic man-
agement equipped with sensors and actuators, smart offices and meeting rooms, and
other intelligent environments such as, shops, classrooms, and urban spaces. The focus
of AmI in smart cities include the concept of consumerism, security, privacy, culture,
and social aspects [44]. The vision of AmI for the smart city is still in developing phase
and require innovative techniques to make the balance between the technological ad-
vancement of AmI and privacy issues related to the confidential information of people.
Several countries are making efforts to bring the vision of smart city into reality. In Eu-
rope, USA and Canada, attempts have been made to build smart cities in accordance
with the government initiatives [45]. Some initiatives and ongoing projects on smart
cities have been presented in [46, 47, 48, 49, 50].

2.4 human-computer interaction in ambient intelligence

One of the main aims of AmI is to change the style and functioning of interaction
between humans and the computers, commonly known as human-computer interac-
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tion (HCI). Traditional approaches of HCI include users interacting with computers
or machines with limited capacities and are based on monitors, mouses, keyboards,
and screen. These source of interactions are further constrained by fixed input-output
devices and bandwidth allowed for the interactions. These approaches are not able
to capture different needs, requirements, and expressions of the users while they are
interacting. To simplify the HCI and improve the capabilities of the systems to under-
stand and respond according to the human needs, the systems should be equipped
with intelligent sensors and computational power.

The performed activities of the users with the software and hardware modules of the
system can help in profiling users. Every user interacts with the system in a different
style, and ability and a specific activity behavior can learn to extract information of the
user. In particular, software or hardware interactions describe the behavior of direct or
indirect interactions of the users with the system modules. These interactions provide
information regarding the working pattern of the users and corresponding responses
generated by the systems. These techniques include:

• Graphical User Interface provide a low-level interaction based information which
allows extracting behavioral information of the user working on the system. This
includes the pattern of mouse clicks, user-run commands, and keyboard activi-
ties.

• Email behavior can be used as peculiarities to characterize users. The patterns
of mailing, such as length of the mails, email timing, the frequency of email
checking, and management of mailbox can be extracted to profile individuals.

• Audit logs can provide behavior of the user while she is performing activities such
as CPU usage, creation and deletion of files, frequent access to a certain directory,
and performed activities on a system.

AmI technologies allow users to interact also with their physiological, behavioral,
and emotional attributes. Ambient sensors and multimodal systems allow capturing a
wide range of expressions of the users in a ubiquitous manner. Different modalities of
interactions are needed to contextualize the possible interactions, which require mul-
timodal interaction systems. Multimodal interface for HCI can accept inputs from the
users in the form of voice commands, typing commands, valid gesture commands, fa-
cial expressions, and emotions. To capture these inputs, the infrastructure of AmI must
be equipped with smart sensors such as video cameras, motion sensors, microphones,
touch sensors, and other biometric technologies.

The technologies based on user-adaptive interfaces adopted for a simplified HCI in
smart environments are:

• Video technologies aim to acquire the visual information such as the presence of
the user, state of emotion, location, and contextual data. The preferences of the
users are extracted from their commands or the non-voluntary actions.

• Audio technologies are used to take command from the users and respond to their
queries. The devices based on smart voice technologies allow users to interact
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with the systems from anywhere and anytime. The continuous listening devices
are developed which can understand the context of the conversation and respond
to the user’s queries.

• Biometric technologies can improve the interactions between the user and the sys-
tems in AmI. Biometric technologies can be considered as enabling technologies
for AmI, which can offer user friendly, reliable, and secure HCI in AmI. The na-
ture of biometric technologies allow to capture physical and behavioral attributes
of the persons for active and passive interactions. In particular, biometric tech-
nologies can be adopted to estimate information from the users that permits to
deliver ad-hoc services and facilities. For example, the soft biometric information
such as age, gender, height, and emotional state of the users can be used either to
automatically select specific classes of services or to design a personalized or pri-
ority based services to the users. Moreover, biometric technologies such as voice
and face are unobtrusive and less-constrained HCI modalities which are suitable
for the AmI.

2.5 challenges to ambient intelligence

The futuristic vision of AmI which considers humans surrounded by smart sensors,
intelligent networking, and ubiquitous computing devices is becoming a reality by
increasing efforts to create smart environments [21, 27, 29, 51, 34, 38, 46, 50]. However,
there are some challenges in AmI which need to be addressed.

• Accurate context-aware technologies: AmI technologies require processing a large
amount of information in various complex environments. The context-aware tech-
nologies for AmI should be able to process the information necessary to estimate
the preferences of the users. Moreover, these technologies should be accurate to
provide decisions based on insufficient, incomplete and noisy data samples.

• Interoperability between the devices: The interoperability between the connected de-
vices and new incoming devices is a challenge for AmI. To address this problem,
AmI system should implement standardized interfaces for the systems and its
components.

• Conflicting requirements: AmI technologies need to be customized to provide ser-
vices in shared spaces with conflicting requirements (e.g., AC control in home or
car, TV and media services at home). When more than one users are present in
the environment, the AmI technologies should study the class (or group) prefer-
ences in place of personal preference of the users.

• Privacy issues: The privacy of the user’s data is always in danger whenever the
personal information regarding the user is accessed which provide the irrefutable
and unique identity of the user. Several studies are performed and advocated the
issues of misuse of the personal information of the data collected from the users
[52, 53, 54]. The use of smart sensors and vision technologies, which continuously
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collecting sensible information from the user in a ubiquitous manner, raises the
issues of privacy of the personal data [52]. As an example, in the development
of the smart cities and collaborative environments, the vast amount of user’s
personal information may lead to putting user’s personal life in trouble. In some
cases, the privacy issues are agreeable and accepted by the citizens. The example
is an initiative on the smart city in North Korea [55]. However, in most of the
cases, privacy issues are seriously considered, and strict laws are imposed on
the use of personal information. For example, in European projects for smart
cities indicate and emphasize on the privacy regulations which restrict to access
sensitive information of the users [10, 56, 57, 58].

• Data security: In addition to the privacy issues of AmI technologies, the risks re-
lated to the security issues are also demonstrated in the literature [59, 53]. The
personal information accesses in AmI are distributed along different channels
and networks. Security mechanism needs to be adopted to protect the collected
data at each of the distributed networks to provide secure AmI systems. Attempts
have been made to reduce the privacy and security issues in AmI [60, 61, 62].
Some studies focus on the security mechanism and encryption keys for the trans-
action of the personal information [62].

2.6 summary

Ambient intelligence refers to an environment capable of recognizing and responding
to the presence of different individuals in a seamless, unobtrusive and often invisible
way. AmI is user-centric and considers the users in the center of the system while
designing the technologies. The basic foundation of AmI lies in the fact that the tech-
nologies should disappear into the environment to provide unobtrusive but ubiquitous
and seamless services to its users. The underlying technologies should be aware of the
context of the environment. AmI should be adaptive to the presence and preferences
of its resident to provide the personalized services.

AmI is a multidisciplinary concept, and the enabling technologies for AmI systems
can be considered from different areas of computer science. These enabling technolo-
gies include pervasive and ubiquitous computing, smart sensors and actuators, detec-
tion and tracking, human-centered computing, and computational intelligence.

The design approaches of considered technologies for AmI require analyzing the list
of needs and requirements of the user. It is therefore important to perform requirement
analysis of user’s need in AmI to study and observe the possible ways of interactions
of the user with the environment.

AmI technologies are successfully designed for many application scenarios and have
shown its advantages in improving the quality of services and facilitation toward the
users. Example of such application scenarios includes smart homes, smart offices, trans-
portation, healthcare, entertainment, and smart cities. The underlying characteristics
and enabling technologies of AmI help in designing an adaptive and personalized en-
vironment which can assist and support users in daily life activities and ameliorate the
quality of life to the users.
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The vision of AmI consists in the design of intelligent environments which can allow
simplified and improved HCI. AmI technologies can allow users to communicate with
the environment with their physiological, behavioral, and emotional attributes. The
advancement in sensor technologies allows making AmI more sensible, intelligent, and
less-cooperative in sensing the requirements of the users to improve the quality of the
interaction between the users and the environment.

There are few challenges for AmI technologies which need to be addressed. AmI sys-
tems are consist of many heterogeneous sensors and computing devices. Advancement
in the information technology brings more new devices to connect to the system. The
interoperability between the connected devices and new incoming devices is a chal-
lenge for the AmI. Further, the use of smart sensors and vision technologies, which
continuously collecting sensible and personal information from the user in a ubiqui-
tous manner, raises the issues of privacy of the personal data. Moreover, the private
information accesses in AmI are distributed along different channels and networks,
which raises the risk of security of personal data of the users. It is important to protect
the collected data at each of the distributed networks to provide secure AmI systems.
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B I O M E T R I C S Y S T E M S

Biometric systems provide high accuracy in personal recognition, high level of security,
user convenience, and resistance to the intrusion attacks. Biometric systems are gradu-
ally replacing other traditional security systems, such as passwords, keys, smart cards,
and tokens.

In this chapter, we first describe biometric systems and their characteristics require-
ments. The structure of biometric systems and their operational modalities are pre-
sented. Further, different biometric traits, their characteristics, advantages, and disad-
vantages are discussed. Then, various techniques and protocols for the performance
evaluation of the biometric systems, and their figures of merit are detailed. Finally, we
outline the application of biometric systems, recent trends, and challenges.

3.1 overview of biometric systems

Biometrics is the science of establishing the identity of an individual or a class of peo-
ple based on the physical, or behavioral attributes of the person. [1]. Physiological
characteristics are related to the physical measurements of the human body, whereas,
behavioral characteristics are related to a specific behavior of a human while perform-
ing some tasks, such as speaking, walking, or typing.

Traditional recognition systems based on passwords, tokens, keys, or smart cards
impose to the users to carry or memorize a representation of his identity. These systems
suffer from some drawbacks, as the password can be easily forgotten or hacked, tokens,
keys, or smart cards can be lost, misplaced, or stolen. Hence, the level of security
provided by the traditional recognition systems is not very reliable. The user can deny
his identity by claiming that his identity token is stolen or forgotten. Also, it is possible
that the user can hide his identity by presenting duplicate identity representations.
Moreover, these systems are not much user convenient as users need to either always
carry the identity documents or remember the passwords.

27
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Biometric systems, on the other hand, provide more reliable, accurate, and user-
friendly recognition systems. These physiological and behavioral characteristics are
inherited by the individual and hence, it is difficult to forge or duplicate. Moreover,
the unique nature of these characteristics makes the recognition system more robust
against possible false claims of the user in order to hide her identity.

For these reasons, biometric systems are widely adopted in a number of applications
such as civilian applications, security systems, access controls, border checks, criminal
investigations, monitoring, forensics, and surveillance. Large-scale biometric systems
are deployed in government applications such as Automated Fingerprint Identification
System (AFIS) [63] and Automated Border Control (ABC) systems [64].

3.1.1 characteristics requirement of biometric systems

Each biometric trait has its advantages and limitations, and the selection of the appro-
priate biometric trait depends on the considered application. No single biometric trait
can satisfy the requirements imposed by all applications [65]. In order to be used for
recognition systems, the biometric traits must satisfy the following characteristics [1]:

1. Universality: the biometric trait should be possessed by every individual accessing
the application.

2. Distinctiveness: the underlying characteristics of the biometric traits should be
sufficient to differentiate the individuals.

3. Permanence: the characteristics of the biometric trait should not change in time, at
least for the operating period. Physiological traits are more stable and resistant to
changes over a long period of time, whereas, traits associated with the behavior
of the individual may change over the lifespan of the individual.

4. Collectability: it should be possible to measure the biometric trait quantitatively.

5. Performance: it refers to the accuracy, speed, and robustness of the considered
biometric trait. The biometric system used in an application must be evaluated
to ensure sufficient performance for the specific scenario.

6. Acceptability: it refers to the willingness of the users to cooperate with the system
by presenting their biometric traits in order to be recognized.

7. Circumvention: it refers to the robustness of the biometric technologies against the
fraudulent techniques.

3.2 structure and operational modalities of biometric systems

Biometric recognition process can be divided into four steps. Details of these steps are
presented below:
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Figure 3.1: Schema of the enrollment step of biometric systems.

3.2.1 general structure

The four basic modules of the typical biometric systems are:

1. Acquisition: according to the used biometric trait, a sensor is used to acquire the
biometric characteristics from the user presented to the system and convert it to
a digital form to be transferred to the next module. The captured biometric trait
can be images, signal, frame sequence, and is typically referred as "‘sample"’.

2. Feature Extraction: this process involves extracting distinctive information from
the captured raw samples and transforming it into a compact and effective repre-
sentation (called "‘template"’) which is more compact and stable than the original
sample. Templates can be composed of strings, pixels values, coordinate of par-
ticular points in the images, or signals.

3. Enrollment: the computed template of the user is stored in the database with as-
sociated identity. This step is known as enrollment. Fig. 3.1 shows the enrollment
process of the biometric recognition systems.

4. Matching: the template of the user is compared with the templates stored in the
database. The outcome of the template matching is a value called matching score.
The template matching can be based on different metrics and can return a simi-
larity or dissimilarity index.

5. Decision: the computed match score is used to provide the final decision of the
biometric system, which is a boolean value representing the classes "‘accept"’ and
"‘reject"’.

3.2.2 operational modalities

The biometric systems can operate in two modalities: verification and identification.

• Verification: in the verification mode, the identity of the user is declared in ad-
vance through the user’s ID. The user’s biometric trait is acquired and con-
verted into a template by using a feature extraction method. Then, the fresh
computed template is compared with the reference template of the user stored in
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Figure 3.2: Schema of the verification mode of biometric systems.

Figure 3.3: Schema of the identification mode of biometric systems.

the database, by using a suitable matching algorithm. In this case, a 1:1 matching
is performed, and the access is granted to the user based on a selected thresh-
old value. Fig. 3.2 shows the verification modality of the biometric recognition
systems.

• Identification: in the identification mode, the biometric system has to establish the
identity of the person by comparing the fresh template with all the templates
stored in the database. In this case, 1:N matching are performed to search the
identity of the person associated to the most similar template, based on the ob-
tained matching scores. Fig. 3.3 shows the identification modality of the biometric
recognition systems.

The term "‘recognition"’ is used when there is no need to make a distinction between
verification and identification modes.

3.3 characteristics of biometric traits

Biometric traits can be divided in to physiological and behavioral characteristics. Phys-
iological traits are related to the physical measurements of the human body. Examples
of physiological traits include the fingerprint [66], face [65], iris [67], palmprint [68],
hand geometry [69], hand vein patterns [70], ear [71], DNA [72], and the ECG [73]. Fig.
3.4 shows the examples of the most used physiological biometric traits.
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Figure 3.4: Examples of physiological biometric traits: (a) fingerprint, (b) face, (c) iris, (d) palm-
print, (e) hand geometry, (f) ear shape, (g) DNA, and (h) vein patterns

Figure 3.5: Examples of behavioral biometric traits: (a), voice, (b) gait, (c) signature, and (d)
keystroke dynamics

On the other hand, behavioral traits are related to a specific behavior of a human.
Examples of behavioral traits are voice [74], gait [75], signature [76], and keystroke
dynamics [77]. Fig. 3.5 shows the example of most used behavioral biometric traits.

Both physiological and behavioral biometric traits have been studied for various
applications. Innovative biometric traits are constantly investigated to improve the per-
formance, speed, cost, or reduce the privacy risks of the biometric systems.

Other than the aforementioned physiological and behavioral biometric traits, soft
biometric traits are studied in the literature in order to improve the accuracy of the bio-
metric recognition systems or to perform less-cooperative recognitions. Soft biometric
traits are defined as "‘the characteristics that provide some information about the indi-
vidual but lack the distinctiveness and permanence to sufficiently differentiate any two
individuals"’ [78, 79]. This kind of traits cannot be used alone to recognize a person
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Table 3.1: Characteristics of different biometric traits [1]

Traits Univ. Uniq. Perm. Coll. Perf. Acc. Circ.

Face H L M H L H L
Fingerprint M H H M H M H

Hand geometry M M M H M M M
Keystrokes L L L M L M M
hand vein M M M M M M H

Iris H H H M H L H
Retinal scan H H M L H L H

Signature L L L H L H L
Voice M L L M L H L

Face thermograms H H L H M H H
Odor H H H L L M L
DNA H H H L H L L
Gait M L L H L H M
Ear M M H M M H M

Notes: Univ. = Universality; Uniq. = Uniqueness; Perm. = Permanence; Coll. = Collectability;
Perf. = Performance; Acc. = Accuracy; Circ. = Circumvention; H = High; M = Medium; L = Low.

because these traits are not distinctive and reliable enough, and can be easily spoofed.
However, the soft biometric information can be incorporated in the primary biometric
systems in order to improve the performance of the recognition systems.

Soft biometric traits can be continuous or discrete [78]. Examples of continuous soft
biometric traits includes height [80], weight [81], and other measurements of the body
parts [78]. Examples of discrete soft biometric traits include age [82], gender [83], eye
color [84], ethnicity [84], and skin and clothing color [78].

The biometric system based on a single biometric characteristic could not ensure a
sufficient level of accuracy. To obtain a better performance in terms of accuracy, re-
liability, and security, it could be advantageous to combine multiple complementary
biometric traits. The systems that use more than one biometric trait are known as
multibiometric systems.

A comparison of the different characteristics of biometric traits is shown in the Table
3.1. A detailed overview of the physiological traits, behavioral traits, soft biometric
traits, and multibiometric systems are presented below.

• Physiological traits

The most used biometric trait is the fingerprint [66, 85] which is characterized
by good performance in terms of accuracy and speed. Fingerprint recognition
refers the pattern based matching of unique ridges, minutia points, and pores
present in a finger. It is the most diffused biometric technology, is robust to ag-
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ing, and offers high recognition accuracy [85]. However, fingerprint recognition
technologies usually suffer from low user acceptability due to the high level of
user cooperation required for capturing data. Typically biometric systems based
on fingerprint are used for physical access control [66, 85], automated border
control and e-gates [86], and forensic applications [66].

Other widely diffused biometric systems are based on the face characteristics [65].
Face recognition is the most natural method for human recognition. Face recog-
nition systems can use either a captured still image or frame sequences acquired
with low user cooperation. Face biometrics typically obtain less accuracy than the
fingerprint biometrics. However, one of the important quality of face recognition
is its high level of user acceptance. Face-based biometric systems are extensively
used for security, forensics, and civilian applications [87, 65, 88]. Moreover, facial
images can be used for analyzing expressions and emotions. For this reason, they
are widely used in HCI [89, 65].

Biometric systems based on the iris are considered as the fastest and most accu-
rate biometric systems [90, 91]. This is due to the fact that the iris shows very high
discriminative characteristics. Iris recognition systems present high recognition
accuracy and require low computational time [91, 92]. However, the acceptability
of iris biometrics is very low due to the high level of required user cooperation.
Moreover, the iris-based technologies are costly and can be perceived as dan-
gerous for the health due to the used infrared illuminators. Iris-based biometric
systems are typically used in scenarios that require high security and accuracy,
such as automated border control [67]. Moreover, recent studies on iris recogni-
tion with mobile phones [93] could allow the diffusion of iris recognition systems
for authentication in the smart phones.

Other biometric systems are based on hand characteristics, such as hand geome-
try [69], palmprint [68], and vein pattern [70]. Biometric systems based on hand
geometry are characterized by low accuracy but have high user acceptance and
low hardware costs. On the other hand, systems based on the palmprint and vein
patterns usually present higher accuracy than that of the systems based on the
hand geometry and also possess high user acceptance. Hand-based biometric sys-
tems are typically deployed in the application scenarios which does not require
high security such as time and attendance systems [68, 69].

Some promising systems based on other physical traits use DNA [72] and ear
shape [71]. Biometric systems based on DNA are the most accurate recognition
systems. However, the recognition process is expensive and require long evalua-
tion time. Biometric systems based on ear shape can obtain sufficient recognition
accuracy for a variety of applications scenarios and have an advantage that it is
possible to perform acquisitions in a contactless manner, even at long distances.

• Behavioral traits

Biometric systems based on behavioral traits consider the characteristics of voice
[94, 74], gait [95, 96], signature [76], and keystroke [77]. These systems are char-
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acterized by high user acceptability. However, they present a lower recognition
accuracy compared to the physiological traits.

Voice recognition provides a true unobtrusive recognition technology. Voice recog-
nition can be divided in two categories, namely: speaker recognition (which aims
to recognize the user based on her voice) and speech recognition (which aims to
recognize what is said). Speaker recognition systems can be classified into text-
dependent and text-independent [94, 74]. The first class requires that the user
enunciate a specific set of words, while the second class does not impose this
limitation. Text-independent speaker recognition systems are usually less accu-
rate than text-dependent systems. Moreover, voice recognition technologies are
not very distinctive and usually affected from background noise and channel
variations. Voice-based systems are typically diffused in many commercial appli-
cations, such as Apple Siri, Ubi and Amazon Echo, etc.

Systems based on the gait characteristics also suffer from low distinctiveness but
possess sufficient discriminatory information to perform recognitions in certain
applications. Gait-based systems are usually diffused in application scenarios
which require low to medium security [75]. Other systems based on signature
and keystroke are well accepted by the users but suffer from the fact that their
characteristics changes over a period of time and are influenced by physical and
emotional conditions of the users.

• Soft biometric traits

Soft biometric traits, such as age, gender, height, skin and clothing color are also
considered for recognition systems [78, 79, 80]. Although they do not allow to
perform the univocal recognition of individuals, they can be used in combination
with other physiological or behavioral traits to increase the recognition accuracy
of the biometric systems. The advantage of using soft biometric information lies
in the fact that they can be acquired without the cooperation of the user.

Soft biometric information is typically used in application scenarios composed of
a limited number of users, or to screen the large datasets in order to avoid unnec-
essary biometric comparisons. Moreover, soft biometric traits allow performing
unobtrusive and continuous verifications [97].

3.4 multibiometric systems

In order to increase the recognition accuracy and reduce the effect of inter-class varia-
tion in biometric recognition systems, multibiometric systems are used. These systems
combine the information from different biometric traits, multiple samples of the same
trait, or different recognition algorithms [98, 99, 100, 101]. Multimodal systems can mit-
igate important problems of monomodal approaches, such as non-universality, high
intra-class, and low inter-class variability. Multibiometric systems incorporate differ-
ent kinds of modalities (hard or soft) with different characteristics. There are different
methods for integrating biometric traits, such as:
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• Sensor-level fusion [102]: where the raw biometric signals or images acquired from
different sensors are fused. One example of this fusion level is combining face
images acquired through different sensors: visible light camera and the infrared
thermal camera.

• Feature-level fusion [102]: where different feature vectors are combined. The fea-
ture vectors can be either extracted from the same biometric trait through differ-
ent algorithms or obtained using different biometric systems.

• Score-level fusion [103, 104]: where the matching scores computed from different
biometric systems are combined. The matching scores of different biometric tech-
nologies can be combined using different fusion rules [104].

• Rank-level fusion [105]: where the matching scores computed from different bio-
metric technologies are converted into a rank matrix by arranging in the decreas-
ing order of confidence. This fusion technique can only be applied for identifica-
tion systems. The rank matrices computed through different biometric matchers
are fused using the rank-level fusion.

• Decision level [105]: where the fusion method combines the outputs of different
biometric systems (matchers of classifiers) at decision level. This strategy can be
used in both verification and identification modes. Most of the available commer-
cial software provides the final decision as an output of the biometric system.
Hence the decision level fusion can be appropriate in these scenarios.

Multibiometric systems can be categorized into two types on the basis of integra-
tion of the biometric traits: (1) fusion before the matching, which includes the sensor
level and the feature level fusion methods and (2); fusion after the matching, which
includes score level, rank level, and decision level fusion methods. The multibiometric
systems obtain higher accuracy and are typically diffused in high-security application
scenarios.

3.5 human-computer interaction in biometrics

The study presented in [106] argues that the biometric technologies for HCI can be
divided into two broad classes: direct HCI-based biometric technologies and indirect
HCI-based biometric technologies [107]. The first class of studies considers the direct in-
teraction of humans with the systems using available sensors (mouse, keyboard, screen,
muscle actions, behavioral and physiological biometrics). The other class of studies con-
siders the indirect interaction of humans with the systems by observing their low-level
behavioral actions. Example of this biometrics includes audit logs, system calls, graph-
ical user interface, traffic of the network, registry access, and system calls [108]. This
indirect biometric information can be acquired when the user performs some respon-
sive actions unwittingly while interacting with the system.

The quality of HCI greatly influences the success of biometric technologies. Inconve-
nient interactions with the system can cause a performance degradation result in low
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social acceptance. In the context of AmI, the quality of HCI is of paramount importance
because it can determine the success or the failure of technology. In the literature, there
are different studies on techniques for evaluating and improving the quality of HCI in
biometric systems, which can be of great help in designing biometric technologies for
the domotic environment. These methods aim to analyze the interactions between hu-
man, sensors, and computers. Recent studies seek to improve the quality of HCI in
biometrics without affecting the system performance [109, 110].

An important technique to evaluate and improve the quality of HCI is HBSI [111,
112]. This technique can be successfully used to analyze biometric recognition systems
[112]. The main idea of this technique is that the numbers or Failure to Acquire (FTA)
and Failure to Enroll (FTE) can be used to estimate usability metrics of the system. This
method classifies erroneous presentations of the biometric trait to the sensor into three
groups: Defective Interaction (DI), False Interaction (FI), and Concealed Interaction
(CI). Correct presentations are classified into Failure to Detect (FTD) and Failure to
Extract (FTX). Statistical analysis of these figures of merit allows estimating the HCI
quality. With proper investigation, it is then possible to correct and improve the device
and algorithms to avoid these errors [113].

There are also standards and guidelines aimed to improve HCI and usability of
biometric systems. ISO 13407 guidelines [114] define the aspects on human-centered
design for HCI system and suggest methods to incorporate usability into the design of
biometric technologies. ISO [115] defines a way to test the performance of the biometric
systems. ISO 9241-11 and ISO/IEC 14598-1 provide guidelines to be adopted for overall
quality and usability of biometric technologies [116].

In the literature, there are also examples of studies on usability and user acceptance
performed to different kinds of biometric technologies based on analysis of the system
accuracy and questionnaires filled by the users [8, 117].

3.6 performance evaluation and figures of merit of biometric

systems

Biometric technologies are widely used in many heterogeneous types of applications.
Different applications require to evaluate and select the most suitable recognition tech-
nology suited for the considered applicative context. The performance of biometric
systems can be analyzed by using different evaluation aspects and commonly adopted
figures of merit.

The performance of the biometric systems can be analyzed by considering the fol-
lowing nine distinct aspects:

• Accuracy can be defined as the reliability of giving a correct recognition decision.
In many high-security applications, like forensics and ABC e-gates [118, 119],
this aspect is on high priority. Accuracy measures are described in more detail in
Section 3.6.2.

• Speed measures the time taken in decision-making. Biometric identification sys-
tems require the use of faster algorithms with respect to verification systems. The
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speed of biometric systems should be determined by evaluating all the hardware
and software modules composing the system. It is an important aspect to evalu-
ate for online biometric systems.

• Usability defines by International Standard Organization (ISO) as "the extent to
which a product can be used by specified users to achieve specified goals with
effectiveness, efficiency, and satisfaction in a specified context of use" [25]. The
usability of the system can be evaluated by analyzing the acquisition time and
a number of incorrectly captured samples. Poor usability decreases the accuracy
of the biometric system and can cause user frustration, thus encouraging people
not to buy and use the system.

• Cost measures the cost of the design, hardware, and software of the recognition
algorithms. Cost of the sensors, devices, software, and computational architec-
tures greatly influence the suitability of a biometric system. In general, low costs
allows for a greater diffusion of a technology but frequently affects the system
performance.

• Security measures the robustness of the system against possible attacks. In the
context of biometrics, the term security ensures: authentication, data integrity,
confidentiality, and non-repudiation [120]. It is continuous challenge to make the
system more secure [121]. To make the biometric system more robust to attacks,
it is important to investigate the robustness of the system against fake biometric
traits, malicious software, and tampering with the features representation and
stored templates.

• Privacy measures the capability of the system to prevent the identity theft and
possible misuses of the biometric data. Security and privacy are two different
concepts because the privacy protection is more restrictive than the security
protection. Differently from security, privacy requires also the data protection
[120, 122, 123]. The expectation from a reliable biometric recognition system is to
provide data protection and an irrefutable proof of the identity of the user. How-
ever, it is an ongoing effort to make the system, more secure and less prone to
misuse of private information. In biometric systems, a huge amount of personal
information is collected by the sensors. The collected personal information can
be either processed through the system or collected in the cloud. It is very im-
portant to have a safeguard on this information. Methods for template protection
and matching in the encrypted domain [120, 122, 123, 124] should therefore be
adopted to protect biometric data and sensible information of the users.

• Scalability of the system describes its flexibility in a high work-load situation
(e.g., in the presence of big amounts of data). The scalability also defines how
capable the system is to give the performance in situations when the work-load
is increased. For example, a video surveillance system needs to process a large
amount of data. A continuous listening device (e.g., Ubi, Amazon Echo, and
Motox.) needs to capture and process a huge amount of data. In these situations,
the biometric system should be highly scalable to process high work pressures.
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To evaluate the scalability of the biometric systems, it is important to consider
the network architecture, hardware architecture (e.g., sensors and CPU), and the
performance of the recognition algorithms in terms of accuracy and speed.

• Interoperability represents the level of compatibility between different biometric
technologies and systems. Biometric systems should be able to exchange the infor-
mation between different components and modules. The biometric traits, sensors,
evaluated systems, and the computational devices should be able to exchange
data one to each other. In many applications, the interoperability is guaranteed
by adopting standards.

• Social acceptance reflects the user’s feeling and opinion regarding the biometric
technology. It may vary within different users due to cultural differences, reli-
gious aspects, and usability aspects of the technology. The social acceptance is
inter-related with the usability aspects. Low social acceptance can determine the
failure of biometric systems.

3.6.1 evaluation protocols and standards

Biometric systems need to be evaluated in order to determine the feasibility of the sys-
tem, select the appropriate biometric technology, and measure the performance of the
considered biometric system in an applicative context. The evaluation protocol for bio-
metric systems includes three strategies. The first is the technology evaluation, which
determines the suitability of the biometric technology for the application. The second is
the scenario evaluation, which evaluates the performance of the considered biometric
technology for a particular application domain. The last is the operational evaluation,
which is used to test the biometric system in a real environment. The applicability of
the biometric technologies in the considered application scenario may be determined
by analyzing the strengths and weaknesses obtained during these evaluations.

• Technology evaluations aim to analyze the performance of the biometric system, to
measure its accuracy. This kind of evaluation is usually performed to determine
the suitable choice of the biometric technology and methodology. Typically, tech-
nology evaluations are performed on public datasets, in order to compare the
performances obtained by a biometric technique with the ones obtained by the
other methods in the literature. A common approach to perform a technology
evaluation consist of open competitions conducted by independent groups. Ex-
amples of technology evaluation competitions are Fingerprint Verification Com-
petition [125], Face Recognition Technology evaluations [126] and the National
Institute of Standards and Technology speaker recognition evaluations [127].

• Scenario evaluations measure the overall system performance of the biometric tech-
nology in a particular application domain. One of the main purposes of this kind
of evaluation is to determine the applicability of biometric technology to obtain
the performance requirements for the considered application. An example of sce-
nario evaluation is the comparison of the performance achieved by using dif-
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ferent biometric traits for access control systems in a specific application such
as e-gates or laboratory access. Scenario evaluations can be performed by using
different biometric traits acquired from the same individuals. To compensate the
variations in biometric readings taken over a considered period, multiple samples
of the same person can be used. Usually, the scenario evaluation is performed on
databases composed of a large number of samples, to evaluate the performance
with statistical significance. Since a scenario evaluation tests the complete system
for a particular application condition, it is not always completely repeatable. A
typical example of scenario evaluation is the UK Biometric Product Testing [128].

• Operational evaluations are used to test the selected biometric system in the real
world scenarios. Operational evaluations are performed on all the possible target
users of the system. This kind of evaluations is difficult or impossible to repeat.
The objective of this kind of evaluations is to determine the impact of the ap-
plied biometric systems on the workflow of the considered application scenario
and to analyze the advantages and disadvantages of the considered biometric
applications.

3.6.2 figures of merit

The evaluation of the figures of merit of biometric systems is a stepwise procedure. The
first step is to compute the matching scores by comparing the fresh acquired templates
with the temples stored in the database. The next step is to compute the standard
errors of the biometric systems using the computed matching scores. The obtained
results allow computing the common figures of merit of the system.

Let us suppose, Sij denotes the acquired jth sample of the ith individual, Tij denotes
the corresponding biometric template, ni denotes total number of templates for an
individual i, N is the total number of identities enrolled in the database, and M(.)
denotes the biometric matching function.

• Matching operations

The matching scores are the results of comparing the fresh acquired template of
an individual with the enrolled templates in the database. There are two types
of matching functions described in the literature, known as symmetrical match-
ing and asymmetrical matching [129, 130]. The matching function M(.) is called
symmetrical if

M(Tij, Tkl) =M(Tkl, Tij), (ij 6= kl) (3.1)

whereas the matching function M(.) is called asymmetrical if

M(Tij, Tkl) 6=M(Tkl, Tij), (ij 6= kl) (3.2)



40 biometric systems

The biometric templates Tij created in the previous step is compared with the
templates Tik(j < k < ni). The resulting matching scores are stored in the "‘gen-
uine"’ matching scores matrix represented by gmsijk. The term "‘genuine"’ repre-
sent the case when the matching scores are obtained by comparing the templates
of the same individual. The genuine matching scores corresponding to each user
are computed and saved in the gms. The resulted score matrix is a square matrix,
and in the case of symmetric matching functions, only the upper triangular ma-
trix is computed. In the case of asymmetrical matching functions, the templates
Tij is compared with the templates Tik(j 6 ni,K 6= i). The resulting matching
score matrix is a square matrix but not symmetrical.

After computing the genuine matching scores, the next step is to compute the im-
postor matching scores. The term impostor represents the case when the match-
ing score is obtained by comparing templates of different individuals. In case
of symmetrical matching functions, each template Ti1(i = 1, 2, ...N) is compared
with the templates Tk1(1 < k 6 N,k > i). The obtained matching scores are
stored in the impostor matching score matrix imsik. The resulting score matrix is
a square matrix, and in the case of symmetric matching functions, only upper tri-
angular matrix is computed. In the case of asymmetrical matching functions, each
template Ti1(i = 1, 2, ...N) is compared with the templates Tk1(1 < k 6 N,k 6= i).
The resulting matching score matrix is a square matrix but not symmetrical. An
example of score distribution curve for genuine and impostor matching scores is
shown in Fig. 3.6.

The computation of the genuine matching scores (gms) and the impostor match-
ing scores (ims) is often affected by the possible errors introduced by the enroll-
ment step. These errors may result in failure to compute and store the biometric
templates Tij in the database. The error introduced in this case is denoted by the
index REJENROLL. The possible errors may be due to the following reasons: if an
individual cannot interact correctly with the biometric sensor, or if the acquired
sample of the individual is of poor quality or the algorithm crashes during the
biometric processing. In particular, the proportion of individuals for which it is
not possible to enroll the temples are refereed as Failure to Enroll Rate (FTER).
Moreover, the proportion of enrollment attempts caused by the failure of the
system to create samples with sufficient quality is referred as Failure to Accept
rate (FTAR) [113, 117]. These errors cause the missing information in the score
matrices gms and ims, and are accounted in REJNGRA and REJNIRA respectively.

• Error rates

The computed genuine and impostor matching scores can be used to calculate the
figures of merit for evaluating the accuracy of biometric systems [113]. These fig-
ures of merit are computed for the biometric systems allowing multiple attempts
for acquiring multiple templates and considering the matching scores as a result
of the comparison between the fresh acquired template with an enrolled tem-
plate. In general, biometric systems can make two types of errors, namely, false
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Figure 3.6: Examples of genuine and impostor scores distributions.

match rate (FMR(t)) and false non-match rate (FNMR(t)), which are functions of
decision threshold t.

FMR represents the cases when the biometric samples from different individuals
are incorrectly recognized as a match (false positive), which may occur due to
large inter-user similarity. It refers to the proportion of matches between the tem-
plates of different individuals that are incorrectly recognized as a match. On the
other hand, FNMR represents the case when the templates of the same individ-
ual are not recognized as matches (false negative), which may occur due to large
intra-user variations. It refers to the proportion of matches between the templates
of the same individual that are incorrectly not recognized as a match.

Both the errors FMR and FNMR are computed using the genuine and impostor
matching scores by varying the threshold (typically ranging between 0 and 1,
where 0 and 1 represent the minimum and maximum match score values of the
genuine and impostor matching scores). The error metrics FMR and FNMR are
computed as:

FMR(t) =
card{imsik|imsik > t}

NIRA
(3.3)
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Figure 3.7: Example of ROC curves.

FNMR(t) =
card{gmsijk|gmsijk < t}

NGRA
+ REJNGRA (3.4)

where card(.) represent the cardinality of the test.

In the context of biometric verification, the error rates FMR and FNMR are also
known as false acceptance rate (FAR) and false rejection rate (FRR) respectively.
FAR can be defined as the proportion of genuine matching scores that are less
tan the threshold, whereas, FRR can be defined as the proportion of impostor
matching scores that are greater than or equal to the threshold. It should be
considered that error terms FAR and FRR are different from the FMR and FNM,
as they are computed by considering the number of incorrect acquisitions. Often,
the term genuine acceptance rate (GAR) is used to report the accuracy of the
biometric verification systems, which can be defined as the proportion of the
genuine matching scores that are greater than the threshold.

One of the most commonly used error terms is the equal error rate (EER), which
can be defined as the operating point where FMR(t) = FNMR(t), for the corre-
sponding threshold. A biometric system can be considered as accurate as lower
the EER is. However, EER does not reflect all the system characteristics. Beside
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EER, other commonly adopted performance criteria, proposed in FVC competi-
tions [66], are:

– ZeroFNMR: defined as the lowest FMR at which the false rejection is zero

– ZeroFMR: defined as the lowest FNMR at which the false acceptance is zero

Both the error rates FMR and FNMR are complementary to each other, and it
is not possible to minimize them simultaneously. When a decision threshold is
selected to minimize one error rate, the other increases correspondingly. Two
kinds of plots are normally used to show the characteristics of the error rates, the
Receiver Operating Characteristics (ROC) curve and the Detection Error Tradeoff
(DET) curve, which are widely used as a measure of the performance in biometric
systems.

The ROC is used to plot the fraction of true positives versus the fraction of false
positives, according to the threshold. In the context of biometric systems, FMR
values are plotted on the x-axis and the (1-FNMR) values are plotted on the y-
axis. ROC curves are plotted in linear, semi-logarithmic, or logarithmic scales.
An example of the ROC curves is shown in Fig. 3.7. The DET is used to plot
the fraction of false negatives versus the fraction of false positives, according to
the threshold. In DET plot, the FMR values are plotted on x-axis and the FNMR
values are plotted on y-axis. Normal and logarithmic scales are used to visualize
this plot. An example of the DET curves is shown in Fig. 3.8. Both ROC and DET
plots are used to directly compare the accuracy of biometric systems, given the
fact that the errors must be evaluated for the same dataset.

In the context of the biometric identification, the accuracy is measured in terms
of identification rate, which is the proportion of times in which the identity de-
termined by the system is the true identity of the user.

The comparison of the fresh acquired template and the templates stored in the
database (1:N matching) results in N matching scores. These matching scores
are arranged in decreasing order of confidence to obtain N ranks corresponding
to N matches. The best K matches are selected out of these N matching scores
to represent the user identity. When the true identity is based on the best found
match (K = 1), it is known as Rank-1 identification accuracy. In some applications,
Rank-K identification accuracy is reported. In this case, the true identity of the
user is expected to lie in the top K matches. The error plot commonly used for
biometric identification systems is the Cumulative Match Characteristic (CMC)
curve. It is computed by plotting ranks on the x-axis and identification accuracy
on the y-axis. An example of the CMC curve is shown in Fig. 3.9.

• Confidence bounds

The above-mentioned figures of merit are generally computed for datasets includ-
ing a limited number of samples. The confidence bounds of the estimated accu-
racy need to be evaluated to obtain a generalization of the performance measures.
Studies in the literature for the confidence bounds estimation can be categorized
into parametric and non-parametric approaches.
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Figure 3.8: Example of DET curves.

In parametric approaches, the confidence of the obtained performance is esti-
mated by using the probability distribution of the matching scores. In case of the
datasets with a limited number of users, commonly used techniques are the Rule
of 3 [131, 132] and the Rule of 30 [127], which compute the confidence interval of
the accuracy by using statistical rule.

The Rule of 3 is used to compute the lowest error rate that can be statistically
determined using N biometric comparisons. These error rate p is the error value
for which the probability of 0 errors in N trials is equal to a fixed value (usually
this value is 5%). It is possible to express the rule as

p ≈ 3/N, with 95% confidence.

The Rule of 30 assumes that, to have a 90% confidence that the true error rate of
the biometric system differs no more that ±30% from the computed error rate, at
least 30 errors must be present in the system.

When the number of samples is sufficiently large, the technique based on the
central limit theorem [133] can be used to obtain the confidence bounds of the
estimated accuracy. The theorem implies the observed error rates should follow
an approximately normal distribution. A 100(1− α)% confidence bounds of the
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Figure 3.9: Example of CMC curves.

estimated error rates can be obtained under the assumption of normality, by
using the formula:

p̂± z(1− α
2
)

√
V̂(p̂) (3.5)

where, p̂ is the error rate, V̂(p̂) is the estimated variance of the error rate, z(.) is
the inverse of the standard normal distribution.

In non-parametric approaches, the knowledge of the score distribution is not
required. These approaches are used to estimate the confidence of the obtained
accuracy in scenarios when the scores distribution is unknown or number of sam-
ples is too low to reliably estimate the confidence interval. A commonly adopted
technique for the confidence estimation is the bootstrap [134, 135]. This method
re-samples the matching scores several times. For each of these re-sampling, it
computes the EER. The bootstrap method allows computing 100(1− α)% confi-
dence bounds of the obtained accuracy with an upper and lower limits U and
L respectively. The estimated confidence bounds for α/2 of the bootstrap values
will be lower than L, and α/2 of the bootstrap values will be greater the U.

Some other techniques based on semi-parametric approaches for confidence esti-
mation is presented in [136, 137].
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Figure 3.10: Applications of biometric systems in (a) access control, (b) surveillance, (c) enter-
tainment, and (d) shops and malls

3.7 applications of biometric systems

Biometric recognition systems have been successfully used in security, surveillance,
medical, forensics, and civilian applications [1]. In particular, biometric systems are
used in security areas for access control in restricted areas, military services, airports,
and automated border controls [1, 118, 66]. In surveillance, it is used in suspicions be-
havior detection and monitoring, in medical it is used for performing diagnosis and
medical analysis [3], in forensics often biometric is used in identifying or verifying the
suspects [1], whereas in civilian applications it is used in e-commerce, smart homes,
access system in classroom, and entertainment [1, 138]. Recent trends show that bio-
metrics can be used to allow an effective human-computer interaction [106]. Moreover,
biometrics can help in designing personalized or priority based services to the user
without the need of establishing their identity [5]. An example of different applica-
tions of biometric recognition systems is shown in Fig. 3.10

3.8 recent trends

The current research trends in biometric systems are detailed in this section.

• Novel techniques for accuracy enhancement: many works in the literature aim to
improve the recognition accuracy of the biometric systems by investigating new
techniques based on hardware and software [8, 1, 4, 66].
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• Managing security and privacy: the security and privacy issues are prime concerns
in the application of biometric recognition systems [139, 140]. Recent research
have shown promising techniques to improve the privacy and security of the
biometric data [120, 124, 123, 8, 141, 122, 142].

• Improving the usability and acceptability: the technological advancements should be
accepted by the end users. There are studies in the literature for making biometric
systems less-cooperative and to increase the social acceptance [143, 110, 25, 144,
117, 145]. Novel methods based on less-constrained acquisition techniques and
non-cooperative users are increasingly studied, in order to improve the usability
and acceptability of the biometric systems.

• Multibiometric systems: combining information from multiple biometric traits, sam-
ples, and sensors have shown promising results in improving the overall perfor-
mance of the biometric systems with respect to the traditional unimodal systems
[138, 146, 103, 147]. However, it is a complex task to integrate these heterogeneous
information available in terms of different biometric data, and better techniques
for efficient fusion strategies are constantly researched.

• less-constrained and non-cooperative systems: to make the biometric system less in-
vasive and user-friendly, researchers have studied touchless and less-cooperative
biometric technologies [148, 149, 150]. Moreover, new sensors are researched to
acquire biometric data without the cooperation of the users [8].

• Biometrics for facilitation: recent studies show that biometrics have plenty of op-
portunities to provide much more than just recognition or identity management.
Even in cases in which the accuracy of the identity establishment is not the pri-
mary aim, biometrics can be used to permit an effective and simplified human-
computer interaction [5, 108, 151, 106, 152]. Moreover, researchers are studying
novel techniques to use biometrics in designing priority based services to the
users without the need of establishing her identity.

3.9 summary

Biometrics is the science of establishing the identity of an individual or a class of people
based on the physical, or behavioral attributes of the person. These physiological and
behavioral characteristics are unique for each individual and present an irrefutable
representation of the associated identity. Biometric recognition systems use stepwise
procedures (acquisition, feature extraction, matching, and decision) to establish the
user identity. The main operational modalities of biometric systems are verification
and identification. In case of verification, the system confirms the identity stated by
the user, and in identification, the system establishes the true identity of the unknown
user by using her biometric data.

Different biometric traits have different characteristics. Physiological traits represent
physical attributes of the human body (e.g., face, iris, fingerprint), whereas behavioral
traits represent a specific behavior of a human while performing some tasks (e.g., voice,



48 biometric systems

gait, signature). Soft biometric traits represent some information about the individual
(e.g., age, gender, height), but lack of distinctiveness and permanence, and hence may
not be used alone for recognition purposes. However, soft biometric information can
be used for the continuous authentication systems or to combine them with hard bio-
metric traits to improve the accuracy of traditional biometric systems.

The design of biometric systems needs to consider the specific characteristics of each
application scenario. In order to evaluate the biometric technologies for a particular ap-
plication, different aspects need to be evaluated, such as: accuracy, speed, security, pri-
vacy, scalability, and interoperability. The error rates of the biometric systems usually
depend on the inter-user similarities and intra-user variations in the identity matching.
Further, the system errors such as FTER and FTAR describe the nature of the interac-
tion between users and the biometric systems and need to be considered for effective
implementation in practical problems. Moreover, the successful deployment of biomet-
ric systems in real-world applications also depends on other criteria, such as: usability,
social acceptance, and cost.

Current studies explore new dimensions of applications for biometric systems, which
is not only limited to the recognition of an individual but also provide facilitation in
terms of personalized services in different environments. Among them, one of the
most promising areas of study focuses on the use of biometric technologies for sim-
plifying the human-computer interactions. Novel techniques are being researched for
full or partial identity management, which can provide more anonymous recognition
system and may find a reasonable balance between the privacy and security concerns.
The studies are focused on the design of less-constrained and non-cooperative biomet-
ric technologies to improve the usability, applicability, and acceptability of biometric
systems in different application scenarios.
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B I O M E T R I C T E C H N O L O G I E S F O R A M B I E N T

I N T E L L I G E N C E

Biometric technologies are increasingly used to perform identity recognition in differ-
ent scenarios that require high security and trust of the user identity. They are fre-
quently used for applications such as access control systems, security checks, border
controls, civilian applications, and surveillance. Biometric characteristics provide an
irrefutable proof of the associated identity, which can be used to identify and verify
the user uniquely. Biometrics can also be adopted to provide personalized services in
user-friendly applications by inferring information on the user identity, which allows
to select the needs and requirements of a person from a list of characteristics previously
inferred by other adaptive services of an Ambient intelligence (AmI) scenario.

In this chapter, we first provide a survey on different biometric technologies used
in AmI applications.Then, we present the multibiometric systems and score normal-
ization approaches that can be used in AmI. The analysis of the high-level design of
biometric technologies for AmI is also presented. Furthermore, the biometric technolo-
gies adopted for continuous authentication systems for AmI are detailed. Finally, the
open problems and research challenges for biometric technologies in AmI are outlined.

4.1 most used biometric traits in ambient intelligence

There are few studies available in the literature focused on using biometrics for AmI.
These studies consider biometric technologies to associate the estimated needs to the
specific individual by evaluating their identity, physical characteristics, or behavior.
A survey on different biometric traits for AmI has been presented in [5]. The de-
scribed scenario presents different profiles for each identity (called partial identities)
and biometric technologies that enable partial identity classifications such as gender,
age, height, and other soft biometric traits. These partial identities enable the users to
share different data according to various scenarios, thus providing control of data in-

49
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formation to its owner. However, the presented study only considers the technological
point of view.

In this section, we discuss the studies in the literature and commercial systems de-
veloped by using different biometric traits for AmI.

4.1.1 face

Face recognition is the most natural method for human recognition [1]. Face recogni-
tion systems can use either a set of captured still images or frame sequences acquired
with low user cooperation. These biometric technologies are extensively used for secu-
rity, forensics, and civilian applications.

One of the important quality of face recognition is its high level of user acceptance
due to the low level of required user cooperation. Moreover, facial images can be used
for analyzing expressions and emotion and are therefore widely used in AmI scenarios
[153, 154].

Face-based systems have been developed for tracking and answering the users in
smart environments [155, 15]. A multi-sensor based system is proposed to perform
fusion using multiple face images to provide robust recognition system in ubiquitous
computing environments [156]. A three-dimensional face recognition system has also
been studied for user recognition in AmI [26].

Some studies dealing with face recognition in the domotic environment are pre-
sented in [157, 158]. The described systems can recognize and interact with the users
without requiring to perform voluntary actions. In [158], the authors proposed a fast
and low-cost embedded system for the domotic environment. The presented system
(HomeFace) can deal with unconstrained facial acquisitions. Facial expression is also
analyzed in domotic environments [15]. In this work, the domotic system can under-
stand if the information presented to the user makes her understand the context or not
by analyzing the face expression. Due to the increasing research on emotion vocabu-
lary, the interest on facial emotion recognition for HCI in the domotic environment is
constantly increasing [16].

Different face recognition methods have been studied for smart environments [159,
160, 161]. In particular, method studied in [159] used a simple neural net for face recog-
nition for aligned and normalized face samples. The eigenfaces based techniques are
used to represent facial features. The work presented in [161] used the eigenfaces
with the residual error for face detection and recognition. Their method has achieved
a reliable and real-time face recognition in a less-constrained environment. Moreover,
different feature extraction methods have been studied for face recognition such as
Canny filter[162], gradient analysis [163], Adaboost method [164], and LBP (local bi-
nary pattern) [165].

To evaluate the real applications of the face recognition methods with larger face
dataset in minimally constrained environments, a FERET (face recognition technol-
ogy) program is established [166]. The methods studied in [167] is based on Gabor jet
features and template comparison of face image descriptors using a graph-matching
pattern. A linear discriminant based techniques for face recognition have been pre-
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sented in [168], whereas, a quadratic discriminant based face recognition technique
has been presented in [169]. Some other methods based on deep neural networks for
face recognition is also studied [170, 171]. Moreover, a commercial face recognition
system has been proposed in [172]. Their method was based on a sparse variant of the
eigenface transform for face representation and followed by neural networks to per-
form face recognition. Some other commercial systems developed for face recognition
are reported in [173].

4.1.2 fingerprint

Fingerprint recognition refers the pattern-based matching of unique ridges, minutia
points, and pores present in the fingertip [174]. It is the most diffused biometric tech-
nology, is robust to aging, and offers high recognition accuracy [1, 66]. However, fin-
gerprint recognition technologies usually suffer from low user acceptability due to the
high level of user cooperation required for acquiring data [129].

Fingerprint recognition represents one of the most mature and accurate biometric
technologies [175]. However, the recognition performance of fingerprint-based tech-
nologies can be negatively impacted by non-ideal conditions typical of AmI, such as
dirt on the hands (e.g., after eating) or on the sensor (e.g., after multiple uses) [119],
stress and lack of effective signaling in an unsupervised context [176].

Fingerprint recognition systems usually require additional sensors with respect to
the ones present in the AmI. Nevertheless, fingerprint recognition has been successfully
deployed in many commercial applications and more recently in mobile devices, as
Apple iPhone 5s and Samsung Galaxy s5, thus making them reliable for authentication
in smart environments such as domotic systems. Recent studies proposed to improve
the user acceptance of fingerprint recognition in AmI by using touchless acquisition
devices [85, 8] that could be more suitable for the smart environments with respect to
traditional touch-based recognition methods.

Different fingerprint recognition methods are studied in the literature. Minutiae-
based fingerprint recgonition methods are most studied and applied in the literature.
This method searches the corresponding minutiae points in the considered feature sets
of the fingerprint. Techniques for minutiae-based methods include Hough transform
[177], relaxation [178], and energy minimization [179] are frequently used for finger-
print recognition. Methods are based on correlation-based techniques, which computes
the matching scores between two fingerprint images, include cross-correlation values
[180] and correlation between local regions [181]. Other commonly adopted fingerprint
recognition methods include FingerCode template [182], scale-variant features (SHIFT)
[183], and Gabor filters [184].

Recently, touchless fingerprint recognition methods are also studied in the literature,
which are based on less-constrained acquisitions techniques [8, 85]. Some commercial
software for fingerprint recognition include NIST BOZORTH3 [185], Dermalog [186,
187], and Neurotechnology VeriFinger [188].
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4.1.3 voice

Voice recognition provides a true unobtrusive HCI technology. Voice-based systems
can provide user recognition as well as unconstrained interactions between humans
and the environment.

Speaker recognition systems estimate the identity of a person based on her speak-
ing utterances [94, 189]. Speaker recognition is mostly used for authentication pur-
poses [94]. Speaker recognition systems can be classified into text-dependent and text-
independent [190, 191, 189]. The first class requires that the user enunciate a specific
set of words, while the second class does not impose this limitation. Text-independent
speaker recognition systems are usually less accurate than text-dependent systems.
Nevertheless, text-independent systems are based on a natural and unconstrained HCI
modality and are therefore suitable for user-friendly application scenarios.

In text-dependent speaker recognition systems, the phrases spoken is matched with
the same enrolled phrase. These systems consider the feature dynamics of the words
for identification. The most common modeling techniques for text-dependent speaker
recognition are the Hidden Markov Models (HMM) [192] and Dynamic Time Warping
(DTW) [193].

Text-independent systems pose no restrictions on the phrases spoken. Hence these
systems do not consider the feature dynamics and process the feature vector as a bag
of symbols. In this kind of systems, the speakers are frequently modeled by using the
Gaussian Mixture Model (GMM) [190, 194] or Vector Quantization (VQ) [195]. GMM
requires a large amount of training data to create the speaker model and to estimate
a set of parameters (mean, variance, and weights related to each speaker). VQ clusters
the speaker data by using k-means clustering. Each cluster is represented by a code that
denotes the centroid of the clusters. The set of codes is known as codebooks, which
are used to model the individuals. Universal Background model (UBM)[196, 197] is
an another technique to model the speaker distribution, which is used for verification
purpose. Usually, it uses a very large GMM trained to represent speaker-independent
datasets. Other approaches in the literature use Support Vector Machines based on
GMM [198] or Artificial Neural Networks [191].

The features corresponding to the speech signal represent differences between the
vocal traits of sets of individuals, which are frequently described using the frequency
spectrum of the signal [190, 194]. The Mel-Frequency Cepstral Coefficient (MFCC) is
one of the mostly used feature extraction techniques [199, 190, 194, 189]. MFCC is a
filterbank-based approach designed to resemble the human auditory frequency percep-
tion. Other feature extraction methods are: delta-MFCC and delta-delta MFCC [200],
linear predictive cepstral coefficients [201], perceptual linear prediction [202], coeffi-
cients cepstral mean and variance normalization [203], relative spectral transform fil-
tering [204], feature warping [193], i-vectors and super-vectors [192].

Speaker recognition systems based on deep learning have recently been proposed
[205, 206]. The advantage of deep learning is that the system can learn discriminative
features from the raw input signal. Studies have shown that deep learning can obtain
better accuracy with respect to MFCC and GMM features [207, 208].
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Methods in literature for text-independent speaker recognition frequently suffer
from some drawbacks. The GMM method with MFCC features [190, 194] provides
very reliable accuracy for speaker recognition, but it requires templates composed of a
big number of features, which are difficult to store in low-cost hardware architectures.
Deep learning shows improved accuracy, but it requires large amounts of training data,
which increases the training time of identification applications based on single classi-
fiers.

4.1.4 soft biometric traits

In AmI, the mostly used soft-biometric traits are extracted from face images, due to the
simplicity and high acceptance of the acquisition process. Soft biometrics, such as age
and gender play a major role in human-machine interaction to adjust the content pre-
sented to the user [78, 209]. Few noticeable applications of age and gender estimation
can be considered in security and surveillance, health care systems, and entertainment
applications. In particular, the age and gender estimation help in customizing the com-
ponents of the AmI to provide facilitation in smart environments such as homes, offices,
and smart cities [5]. However, their usage is still in the preliminary stage and requires
more research for establishing them as a promising candidate for the interactions in
AmI scenarios.

Gender classification has gained popularity over the years due to its application
in face recognition [210] as well as in human-computer interaction [211]. One of the
earliest work on gender classification using neural networks was proposed in [212].
Recently, many studies have focused on gender estimation from the facial images
[213, 210, 83, 211]. In particular, a detailed analysis on the comparison of different
methods and guidelines for gender classification is presented in [213]. Different fea-
tures such as LBP, HOG, and BIF are also utilized for gender recognition [211]. Re-
cently, A framework for real-time gender classification from video streams is proposed
in [210].

Age estimation from face analysis is a widely studied problem. In the literature, there
are techniques for age estimation [214], simulation of the aging process [215], and bio-
metric recognition techniques designed to cope with images acquired at different ages
[216]. The studies in the literature on age estimation methods can be divided into ma-
chine learning approaches based on feature sets designed to extract discriminative age
characteristics and methods that directly infer knowledge from the samples by using
deep neural networks. There are studies focusing on general texture features, such as:
LBP (local binary patterns) features [217], Gabor features [218], and AAM (active ap-
pearance model) [215]. Other studies focus on computing novel features specifically de-
signed for age estimation [219, 82]. The approach presented in [219] uses bio-inspired
features, based on pyramids of Gabor filters. The method described in [220] uses the
AAM to extract the regions of age local features. Since one of the main problems in
designing age estimation methods is the fact that face datasets usually lack sufficient
training data for many ages, recent techniques also propose ad-hoc learning methods
able to exploit information from the ordinal relationship of the aging labels [221, 222].
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Pattern recognition techniques based on deep learning have shown promising results
in many real-world applications [223, 224]. The research community has also success-
fully designed and trained deep neural networks for age estimation [225, 226, 83, 227].
Most of these techniques are based on deep convolutional neural networks (CNNs)
[225, 226]. Other methods are based on different approaches, such as the group-aware
deep feature learning [227] or dropout-support vector machines [83]. These studies
achieved high accuracy for heterogeneous datasets acquired in different application
scenarios. However, the main drawback consists of the relevant amount of time needed
to train deep neural networks in different application scenarios.

4.1.5 other biometric traits

Apart from the above discussed biometric technologies, there are other biometric traits
which could be used in AmI, such as gait, iris, palmprint, ear shape, hand geometry,
and keystroke dynamics.

Gait recognition represents a promising technology for AmI due to its unobtrusive
nature and the fact that it does not require user cooperation. Gait is a behavioral bio-
metrics and can be captured through video sequences [96]. Although, the accuracy of
gait recognition systems is lower than that of other more commonly used biometric
traits [129]. The application of gait recognition in HCI for domotics requires further
studies in real application scenarios.

There are biometric technologies based on different information extracted from eye
images and frame sequences [228]. In the context of eye-based biometrics, recognition
systems based on the iris are the most diffused ones [91]. This is because the iris shows
very high discriminability, iris recognition systems present high recognition accuracy
and require low computational time [129]. However, the acceptability of iris biometrics
in AmI is very low due to the high level of required user cooperation. Moreover, most
of the iris recognition systems use infrared illuminators, which can be perceived as
dangerous for the health.

At the best of our knowledge, there are no studies on iris-based systems for AmI.
However, recent studies on iris recognition performed at-a-distance, on the move, and
in natural light conditions [92, 229] could increase the suitability of iris recognition
for AmI applications. Moreover, recent studies on iris recognition with mobile phones
[230, 93] could allow the diffusion of iris recognition systems for authentication in the
domotic environment. Very recently, the first smartphones performing iris recognition
have been launched in the market (e.g., Microsoft Lumia 950XL, Samsung S4, and
Samsung Galaxy Tab7).

4.2 multimodal fusion and score normalization in ambient in-
telligence

The main objective of using multimodal fusion in AmI is to increase the security while
facilitating the services to the users. For this reason, it is important to rely on well-
established and robust fusion techniques.
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In AmI, it is needed to design a technology-neutral multimodal fusion method to
compensate the biometric information coming from different software or hardware
provided by various vendors. AmI is composed of many heterogeneous sensors com-
bined to perform multiple tasks. The addition or removal of any particular sensor may
cause the system to restart again from scratch. The technology-independent approach
is required in AmI scenarios to manage the information acquired from the sensors.
For this reason, it is necessary to design technology-neutral techniques that do not af-
fect existing and proprietary biometric systems. Moreover, it is desirable to investigate
a privacy-compliant training procedure, by using different datasets for training and
test (including public datasets). This procedure reduces the privacy and data security
issues in AmI.

Score level techniques are more suitable for AmI applications, which combine the
matching scores obtained from different matching methods. In AmI context, these fu-
sion methods offer a technology-neutral approach, which can favor the integration
of the different modules of the biometric recognition process. In the literature, many
score level methods have been proposed. However, not all of them are suitable for
AmI applications. In particular, the application of learning-based methods that require
the training of fusion models [104] is limited by privacy issues, since it is not always
possible to use biometric data captured in AmI for training the models.

The application of multi-modal biometric recognition in AmI has been discussed in
[231, 152]. In [232] a multimodal dialogue system is developed (SmartKom) for com-
bining gesture, speech, and facial expressions. They showed that multimodal systems
give better HCI mechanism compared to the single modalities. The work presented
in [233] uses the speech, multi-modality, and visual cue acquisition, which enable the
human-computer interaction inside the domotic environment. Multi-sensor based fu-
sion approach is presented in [156] to perform fusion using multiple face images to
provide robust recognition system in ubiquitous computing environments. Due to the
nature of the AmI, which uses a wide set of heterogeneous sensors, multimodal HCI
and multimodal biometrics represent challenging and promising research fields. Score
level methods have been designed for smart environments by combining face and fin-
gerprint in a hierarchical way [234].

Nonetheless, some techniques can be easily applied to AmI applications and that, to
the best of our knowledge, have not been previously tested in real operational environ-
ments. These techniques include the well-known methods such as sum rule, product
rule, maximum rule, minimum rule, and weighted sum rule.

Several works have demonstrated that the rule of the sum always helps in increasing
the recognition accuracy [102].

Usually, the works proposing classifier-based methods require a training phase, use
the same database to train and validate the technique, and only in some cases, the
tests are performed using techniques such as cross-validation, which allows to avoid
over-fitting and obtain realistic error estimations. However, this kind of approach is not
directly applicable to AmI applications, because the possibility to store data needed by
this operation is not common in real AmI applications. The likelihood ratio technique
[104] offers a good alternative in this sense since it is a mature technique that relies on
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a simple robust model, Gaussian Mixture Models. Besides, it also permits to exploit
quality scores.

Privacy protection represents another important challenge for the development of
viable fusion methods for AmI. In some countries, the legal framework denies the pos-
sibility to store and disseminate biometric data obtained from government systems
[235], resulting in a design problem from two perspectives. First, many advanced fu-
sion techniques, such as classifier-based techniques [98], require a preliminary training
to tune some of the parameters. In these cases, the larger the amount of data similar
to the data that can be found in the operational environment, the more accurate the
obtained model will be. However, it is difficult to obtain large quantities of biometric
samples due to privacy limitations. Hence, the obtained models could not perform as
expected, and it would be preferable to use techniques that only require simple train-
ing or that can be trained using public datasets. Second, the operational evaluation of
the AmI system is more complex than the procedure used in other application scenar-
ios, and the computation of typical figures of merit, such as FAR, FRR or ROC curves
is also more challenging. It is, therefore, necessary to rely on evaluations carried out
using public datasets or with internal testing procedures [236].

Several methods have been proposed in the literature to increase the recognition per-
formance of biometric recognition technologies in already deployed systems, such as
using a quality threshold to discard low-quality samples [175], fusing multiple images
[237], or using multi-modal biometric systems [99]. However, these methods could de-
crease the throughput of AmI systems and reduce the user acceptance. Moreover, it is
possible to use enhancement methods for low-quality images [238], but they need to be
tuned according to the used acquisition sensor and feature extraction method, which
is frequently manufactured by different producers.

Techniques based only on processing the matching scores resulting from identity
comparisons can increase the recognition accuracy independently from the underlying
hardware and software [239], and without requiring the user to be subject to mul-
tiple biometric acquisitions. These techniques are usually called score normalization
methods and aim to increase the biometric recognition accuracy by better separating
the genuine and impostor matching scores. They are based on the analysis of sets of
genuine and impostor matching scores and can use statistical or computational intelli-
gence approaches. Cohort normalization methods are score normalization approaches
that use the matching scores obtained by comparing an input template with a set of
cohort templates. Cohort templates are the templates in a biometric system other than
the template of the claimed identity [240]. Cohort normalization has the advantage of
making no assumptions on the nature of the biometric or the matcher [241], facilitating
its application to different scenarios [242, 243] and sensors [244, 148, 245].

Fig. 4.1 shows the cohort score normalization process. A fresh acquired biometric
sample (sample A) is compared with the reference sample (sample B) to produce fresh
matching scores and also compared with the cohort samples stored in an external
database to compute cohort scores. The fresh matching score is normalized using the
normalization parameters estimated from the cohort scores.
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Figure 4.1: Cohort score normalization process

In the literature, there are different studies on cohort-based score normalization
methods that aim to increase the accuracy of biometric recognition systems [246, 240],
with applications to fingerprint [247], face [248], palmprint [249], as well as multimodal
biometric systems [241].

Many methods analyze the cohort matching scores using algorithmic approaches
to normalize the matching score computed from the fresh and the enrolled template
(fresh score). The method described in [249] compares the fresh score with the high-
est cohort score for palmprint biometrics. The study described in [247] presents two
techniques for fingerprint recognition: the first one normalizes the fresh score using
the first and second order moments of the cohort scores, while the second one is the
T-normalization. The method described in [241] computes the ratio between the fresh
score and the maximum of the cohort scores to increase the accuracy of multimodal
recognition systems. Another widely used statistical approach is the Z-normalization
[250].

More complex methods train computational intelligence classifiers to learn the rela-
tion between fresh and cohort scores. This approach has been applied to fingerprint
recognition by using the maximum of the cohort scores or the "‘second best matching
score"’ together with feed forward neural networks[246]. Other methods use the whole
set of cohort scores or a significant subset of it as input for a SVM classifier [243].

More recent approaches have shown that not only the most similar templates con-
tain useful information, but also the most dissimilar ones can be exploited to increase
the accuracy. For instance, the method described in [240] exploits this information by
computing a polynomial regression of the cohort scores. In addition, the size, qual-
ity, and the number of users in a cohort set have a direct impact on the performance
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of the method [248]. The approach also provides a reference for tuning the parame-
ters of cohort-based score normalization methods in the context of unconstrained face
recognition.

However, the regulations of some countries pose strong restrictions on the use of
biometric data captured for AmI applications [235], limiting the applicability of score
normalization techniques. These regulations regard the type of data stored in the sys-
tems, limit the amount of usable information, and impose the use of well-known cryp-
tographic algorithms (e.g., AES) that differ from template protection methods specifi-
cally designed for biometric systems [124, 251, 123]. In this context, most of the score
normalization techniques, which perform multiple genuine identity comparisons, are
not suitable because it is not always allowed to store additional data with respect to the
biometric samples enrolled in the system. Also, cohort normalization methods, which
do not consider genuine matching scores, need to be modified by including privacy-
compliant procedures to be used in AmI applications.

4.3 high-level design of biometric technologies for ambient in-
telligence

The studied high-level design of biometric technologies for AmI applications consist of
different modules that interact one to each other to facilitate the personalized services
to the users residing in the environment. Fig. 4.2 shows the schema of the studied
high-level design of biometric technologies for AmI. The users can interact with the
AmI with voluntary or non-voluntary inputs. The biometric information is collected by
the acquisition module, which can be composed of cameras, microphones, and other
sensors. The acquired signals are then fed into the signal processing module, which
processes the signal, extract meaningful information, and convert the raw signal into
a discriminative and compact representation of the user’s data (commonly referred
as features or templates). The interaction module interacts with vocabulary library to
link the processed signal with associated commands. The service selection module
selects the service types requested by the user by interacting with the service library
and provide the final desired personalized services to the users. The user is in the
center of the system, and the objective of the design approach is to facilitate users with
simplified human-computer interaction which results in the delivery of the requested
services. The components of the studied high-level design are described below:

• User’s input: The system can take input from the users in the form of voluntary
or non-voluntary actions. The voluntary actions required user cooperation to ex-
press certain commands to interact with the environment. These commands can
be expressed through biometric traits such as fingerprint, gestures, voice, iris, or
other traits. Non-voluntary inputs can be acquired by using biometric traits such
as the face, gait, gestures, voice, and emotions.

• Sensor array: The sensor array is composed of heterogeneous sensors and devices
to capture the biometric traits of the users. Different biometric traits have dif-
ferent characteristics, which need to acquire and process differently. The sensor
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Figure 4.2: Studied high-level design of biometric technologies for AmI.

array includes cameras, microphones, and wearable sensors to acquire the het-
erogeneous biometric information from the user.

• Signal processing module: The acquired biometric traits are processed in the signal
processing module. Different biometric signals (such as face, voice, finger, and
gait) have distinct characteristics which require a different level of processing.
This module converts the raw input biometric signals into corresponding tem-
plates. The templates are a compact representation of the signals which posses
discriminative information.

• Interaction analysis: The interaction analysis module uses the computed biometric
templates to interact with the system, to link the actions expressed by the user
with a specific category of services. The different types of service information are
stored in the service vocabulary. The interaction analysis model interacts with
the service vocabulary to extract a list of possible services which can be linked to
the input command provided by the user.

• Service selection module: The final aim of the studied system design is to select
and facilitate the requested services to the users based on the provided input.
The service selection module interacts with the service library and selects the
desired services to the users. The outcome of this module gives the type of service
requested and takes user’s feedback regarding the services.

Considering the user-centric nature of AmI applications, the design methodologies
for biometric technologies in AmI should present different characteristics with respect
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Figure 4.3: Comparison of various characteristics and evaluation aspects of biometric technol-
ogy for: (a) AmI applications; (b) Security applications. The graphs represent the
percentage of importance that we estimated for each of the nine aspects character-
izing biometric applications [8]. This figure shows that biometric technologies for
AmI present strong differences with respect to biometric technologies used for se-
curity applications. AmI is more user-centric and requires technologies with high
usability and high user acceptance.

to that of the systems used in a vast majority of biometric applications. As described in
chapter 3, it is possible to evaluate a biometric system by considering nine distinct as-
pects [8]: accuracy, speed, cost, scalability, interoperability, usability, social acceptance,
security, and privacy. As an example, Fig. 4.3 shows two nine-dimensional graphs rep-
resenting the priorities that we estimated for designing biometric systems for security
applications security applications (e.g., ABC e-gates) and AmI.

4.4 continuous authentication in ambient intelligence

Most of the computer systems authenticate the user once during the initial login ses-
sion. Once the user is authenticated positively, the access is granted to the user and
assumed that the validity of the user is same during the session. This can be a critical
flaw in the security of the systems as any impostor user can access the resources of the
systems without the permission of the initial signed-in user. To deal with this problem,
the authentication of the user needs to perform continuously based upon the activ-
ity user perform on the machine. This type of authentication is known as continuous
authentication.

AmI is composed of heterogeneous sensors and capturing devices, which are used
to acquire the information from the user in direct or indirect manner. The network of
sensors used to obtain these information process large amount of biometric data. This
large amount of biometric information allows designing continuous biometric authen-
tication in AmI, which continuously tracks users and provides a secure and reliable
ambient management systems for accessing resources. In AmI, continuous authentica-
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tion assures the recognition of correct user accessing the services throughout the time
[97, 252, 253]. Moreover, to customize the components of the environment according to
the personal preferences of the users, it is required to understand and recognize that
the user who is availing the services is the same or is changed over a period.

Continuous authentication systems for AmI must be designed for less-constrained
acquisition scenarios and non-cooperative users. These systems should be able to es-
timate the biometric information from the user in transparent and unobtrusive man-
ner. The use of hard biometrics, such as the fingerprint or iris, may not be suitable
for AmI application because of the require user cooperation. Also, systems based on
face biometrics may suffer from occlusions, pose variations, strong head rotations, or
uncontrolled illumination conditions, which are common in AmI. The design method-
ology of continuous authentication systems for AmI applications should consider user-
friendly and less-constrained biometric technologies to perform authentication without
the cooperation of the users. It is required to investigate dynamic and intelligent fu-
sion approaches to integrate the biometric information coming from different sensors
with different sampling rate. The multimodal fusion strategies should be based on
technology-independent methods. Moreover, the adaptive training approaches need to
be considered while designing the continuous authentication system to minimize the
effect of addition or removal of a particular sensor from the system.

There is a good deal of studies in the literature on continuous authentication using
unimodal and multimodal biometrics. The early methods for continuous authentica-
tion using unimodal biometrics are proposed in [254, 255, 256, 257]. Since these meth-
ods use a single biometric technology, their methods are not able to authenticate the
user and the continuous authentication system forced to shut down the console.

To deal with the uncertainties in the biometric measurement, multimodal continuous
authentication systems are proposed [258, 259, 260, 97, 253, 261]. These methods show
improvement in the performance of the continuous authentication systems compared
to the unimodal systems.

In particular, a multimodal continuous authentication system is proposed in [258]
by using face, fingerprint, and voice biometrics. The authors presented two important
issues in continuous authentication systems, namely: the integration of biometric traits
across modalities over time, and the determination of the authentication certainty even
in the absence of biometric measurement. The authors used a score-level fusion based
on the weighted sum of the scores computed from each modality. The weighting factor
is chosen in such a manner that captures the reliability of the modality and decreases
monotonically with the time. When the biometric data is absent, the authentication
certainty must go down to maintain the security of the system, irrespective of the fact
that the user is in front of the console or not. The method proposed in [259] integrates
the face and the fingerprint traits during time by using hidden Markov models model
(HMM) in a Bayesian framework. However, the inter-class and intra-class scores distri-
butions are required to compute the reliability of each modality. The work proposed
in [260] integrates the face and keystroke traits by using dynamic Bayesian networks
(DBN) instead of HMM model. The advantages of using DBN instead of HMM model
reside in the fact that it allows more hidden variables to capture contextual informa-
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tion, and in the fact that can integrate the modalities at score level as well as decision
level.

In [97], face and soft biometric information, such as colors of user’s clothing and
facial skin, are used to monitor the user continuously. This method does not require
inter-class and intra-class score distributions since no pre-registration is required. A
decision level fusion approach is proposed in [261] to integrate three biometric traits
(keystroke, face, and skin color) across modalities and over time using the weighted
sum of the authentication scores provided by each individual authenticator.

Multimodal continuous authentication systems are also designed for smart phones
to provide secure and reliable services to mobile users [252, 262, 263, 264, 265, 266, 267].
In particular, a multimodal continuous authentication system based on face images and
touch gestures is proposed in [262]. The authors used a multivariate low-rank presen-
tation method for combining face and touch gestures using feature level fusion. The
method proposed in [263] integrates the face and speech modalities using score level
fusion for continuous mobile authentication. The authors used LBP based method for
face feature extraction and i-vector-based method for speech feature extraction. Other
approaches use the fusion of behavioral and text-based modalities for continuous mo-
bile authentication [264, 265, 266, 267, 268].

The multimodal continuous authentication systems based on face and fingerprint
[253, 259, 269] require cooperative users to capture the biometric data which decreases
the usability of the system. On the other hand, the authentication accuracy of the
continuous authentication systems based on face and soft biometrics decreases when
the face sample is absent or of poor quality.

Multimodal systems using face and voice biometrics can provide less-constrained
and user-friendly systems for authentication. Face and voice are complementary bio-
metric modalities which can be acquired without the cooperation of the user. There
are few studies in literature exploring face and voice biometrics for continuous authen-
tication systems [270, 258, 271, 263, 272]. Most of them are designed for either smart
phones or protected internet services. There is only one study in the literature for multi-
modal continuous authentication systems using face and voice for general applications
[258]. This study uses a simulated database for evaluating continuous authentication.
Table 4.1 shows the comparison of different features of the studied methods in the lit-
erature for multimodal continuous authentication using face and voice which are close
to the studied approach.

Other studies in the literature for multimodal continuous authentication systems
using face and voice are tailored for specific applications such as smartphones or secure
web services [270, 271, 263].

Multimodal fusion of biometric data coming from two data streams shows different
characteristics. Each data stream may have been sampled at different frame rates, may
have different length, possess different temporal characteristics, or less likely to be
synchronized [273, 274, 275, 276, 277]. Example of such kind of asynchronous system
is audio-visual systems, in which the video data and the audio data may have acquired
with different non-constant sampling rates.
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Table 4.1: Comparison of the studies in the literature for multimodal continuous authentication
using face and voice

Ref Traits Type App. Fusion DB Cont.

[263] face, and voice cont. mobile
logistic-

regression

real,

not public
not

[270]
face, voice,

and touchanalytics
cont. mobile

feature-

concatenation

real,

not public
yes

[258]
face, voice,

and fingerprint

face: cont.

voice: cont.

finger: not cont.

general
Bayesian-

approach
synthetic yes

[272] face and speech continuous general
Bayesian,

maximum-

likelihood

real,

public
not

Ref. = Reference, Cont. = Continuous, App. = Application, DB = database

Different methods have been proposed in the literature to synchronize the data
streams at the same sampling rate [273]. The most common strategy adopted in the
literature is to synchronize the data at a regular interval or combine the modalities at
the time instant when they are available in the system. There are also methods based
on asynchronous hidden Markov model (AHMM) [276, 275], which are designed to
deal with the asynchronous data streams by modeling joint probability distribution of
asynchronous sequences of audio and video streams. Other common approaches in-
clude dynamic Bayesian networks [278], dynamic time warping [274], and correlation-
based methods [277]. These methods have shown promising results in asynchronous
multimodal systems. Nevertheless, finding the optimal time period required to obtain
different data or best strategy to fuse the data streams are still a challenge and need
further investigation.

To the best of our knowledge, there are only two studies in the literature which deals
with a multibiometric asynchronous continuous authentication systems [279, 280]. A
multimodal continuous speech recognition system based on a multi-stream approach
is presented in [279]. This method performs an asynchronous modeling of acoustic
and visual speech continuous speech recognition. A perceptual linear prediction based
method is used to extract features from acoustic signals. An appearance-based model
of the articulators is used from the mouth region to locate, track and recover visual
speech features, such as lip tracking and lip shapes. To deal with the asynchronous data
streams for multimodal fusion, visual vectors are artificially added (by copying frames).
Moreover, in [280] the authors have proposed a novel multibiometric trust model to
cope with the asynchronous data streams acquired from the face and keystroke dy-
namics. In their work, the keystroke is measured continuously, and the face recognition
is performed periodically once in every one minute. The designed trust model deals
with the cases when the minimum typing pattern or frontal faces are not available for
a period, by introducing weights to the individual modality trust models.
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Most of the studied methods for continuous authentication perform a one-time en-
rollment. However, there are few studies that continuously update the stored templates
[281, 282, 283, 255, 257, 284, 285]. The idea of template update is to make the reference
template relevant to the input templates acquired during the operational phase. In par-
ticular, the methods proposed in [281, 285] consider the criteria of change in illumina-
tion to update the stored template using image subtraction methods. In [282] a growing
and sliding window template update method for keystroke biometric trait is presented.
If the user is verified, the new template is inserted into the reference, and the oldest
template is removed. However, it is necessary to recompute the model parameters
whenever the new template is added in the reference. In [283] unsupervised template
update strategies are proposed for managing the variability of the ECG signals. The
authors presented a method to automatically update the database of biometric tem-
plates by analyzing the results obtained from the biometric queries. In literature, there
are also studies on more complex template update strategies for periodically updating
the biometric databases [286, 287].

4.5 open problems and challenges

There are some open problems and challenges which need to be addressed for the
technological advancement of AmI systems. Some of the research challenges for the
application of biometric technologies in AmI are detailed in this section.

1. Design issues: There are no studies on a design methodology for biometric tech-
nologies in AmI. The design of biometric systems needs to consider the specific
characteristics of each application scenario of AmI. Due to the user-centric nature
of AmI applications, biometric systems for AmI should present different charac-
teristics with respect to that of the systems applied in other scenarios such as
security and surveillance. The design and implementation of biometric technolo-
gies require performing the evaluation of the requirements both from the point
of view of users and the systems. It is needed to study the methodologies for
formal analysis of application scenarios of AmI. Moreover, the evaluation of the
applicability and usability of the biometric technologies in AmI are needed to
be analyzed. The design methodology includes the system level and high-level
design analysis of biometric applications for AmI, and a suitable representation
model (such as UML diagrams).

2. Integrating the information from multiple sources: AmI is typically composed of a
wide set of heterogeneous sensing devices to capture the personal, behavioral,
and contextual information from the users. This heterogeneous information com-
ing from different sensors show different characteristics. Each data stream may
have been sampled at different frame rates, may have different length, possess dif-
ferent temporal characteristics, or in general less likely to be synchronized. There
are some studies in the literature dealing with the asynchronous data. These
methods have shown promising results in asynchronous multimodal systems,
nevertheless, finding the optimal time period required to obtain different data
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or best strategy to fuse the data streams are still a challenge and need further
investigation.

3. Technology-independent approaches: In AmI, it is required to design a technology-
neutral multimodal fusion method to compensate the biometric information com-
ing from different software or hardware provided by different vendors. AmI is
composed of many heterogeneous sensors combined to perform the tasks. The ad-
dition or removal of any particular sensor may cause the system to restart again
from scratch. A technology-independent approach is required in AmI to man-
age the information acquired from the sensors. For this reason, it is necessary to
design technology-neutral techniques that do not affect existing and proprietary
biometric systems. Moreover, it is desirable to investigate privacy-compliant pro-
cedures.

4. Less-constrained and non-cooperative systems: Another aspect that should be consid-
ered to design biometric technologies for AmI is the fact that the technological
development should be accepted by the end users. The issues related to the us-
ability and the acceptability of the biometric systems need to be addressed, re-
searched, and improved for the technological advancement in AmI. Most of the
biometric technologies studied in literature for AmI require cooperative users to
perform recognition, which decreases the usability and acceptability of biometric
systems. For example, most of the implemented systems put a constrained on
the user to place his face at a particular position and height to acquire good qual-
ity samples. The voice-based interactions in AmI are constrained by the distance
of the user from the microphone, enunciating a fixed phrase, or in a particular
style. Other systems based on iris, fingerprint, or hand and face gestures require
active user cooperation. An open research area to design biometric systems for
less-constrained acquisitions scenarios and non-cooperative users to increase the
usability and acceptability of the biometric technologies in AmI applications.

4.6 summary

Biometrics has been widely used for identity recognition in various scenarios ranging
from granting access at security checks to establishing the identity of the person in
forensics. The robust and adaptive nature of biometrics makes it a suitable choice for
security, civilian, forensics, and surveillance applications. Recent studies in the liter-
ature show that biometric technologies can also be used to provide personalized or
priority based services to the user in different AmI.

Different biometric traits have been investigated for the application in AmI. The
mostly used biometric traits for AmI include face, voice, gait, gestures, and soft biomet-
ric traits such as age, gender, height, and ethnicity. Apart from the unimodal biometric
technologies, multimodal biometric systems have also been studied for AmI. AmI is
composed of a wide set of heterogeneous sensors to acquire different information from
the users. It is required to design novel systems to manage this heterogeneous infor-
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mation available regarding different biometric traits, data from multiple sensors, and
quality of biometric samples.

The literature in AmI is prolific and growing rapidly. However, the literature lacks
in the studies on how to design the environment intelligent in automatically adapting
to the user’s preferences. Moreover, it is also needed to design less-constrained and
non-cooperative acquisition scenarios to increase the acceptability of biometric tech-
nologies in AmI. These issues need to be addressed, researched, and improved for the
technological advancement of biometric systems in AmI.

Recent progress in biometric technologies has introduced contactless sensors which
are capable of acquiring biometric information at a distance. These sensors allow per-
forming ubiquitous and unobtrusive recognition in AmI. New techniques are studies
to combine the various information acquired from different sensors. Nevertheless, it is
still an open problem to manage the amount of information available in AmI. The asyn-
chronicity of the data streams presents new challenges for multimodal fusion regard-
ing different sampling rate, length variability, and different temporal characteristics. It
is required to investigate dynamic and intelligent fusion approaches to combine the
biometric information coming from different sensors with different sampling rate. The
optimal strategy to combine these data streams are still a challenge and need further in-
vestigation. Additionally, the large amount of biometric information allows designing
continuous biometric authentication in AmI, which continuously tracks users and pro-
vides a secure and reliable ambient management systems for accessing resources. The
continuous authentication systems for AmI should be designed for less-constrained
acquisition scenarios and non-cooperative users. Moreover, it is also required to inves-
tigate the adaptive training approaches for designing the continuous authentication
systems to mitigate the effect of addition or removal of sensing devices from the sys-
tem.
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T E C H N O L O G I E S I N A M B I E N T I N T E L L I G E N C E

This chapter presents the studied innovative design approaches and methods for bio-
metric technologies for AmI. These methods are based on less-constrained and non-
cooperative acquisitions for improving the quality of human-computer interactions
in biometric systems. Furthermore, the realized methods can manage heterogeneous
traits, sensors, and environmental conditions, typical of AmI.

We first describe the studied methods for less-constrained human-machine inter-
actions in biometric systems. These methods consist of novel feature extraction and
matching techniques for unimodal biometric technologies in AmI. In particular, the
studied methods for text-independent speaker recognition systems in AmI applications
are first discussed. Then, the realized techniques for age estimation from non-ideal face
images are detailed.

Then, we present the studied methods for novel and comprehensive systems for bio-
metric recognition, able to deal with heterogeneous traits, sensors, and environmental
conditions typical of complex AmI. The studied methods are based on adaptive train-
ing approaches, dynamic and intelligent fusion techniques, technology-independent
and privacy-compliant approaches. In particular, the realized methods based on adap-
tive cohort normalization techniques for improving the recognition accuracy of the
previously deployed biometric systems in AmI applications are discussed. The studied
techniques for designing multibiometric systems in AmI applications are then detailed.
Lastly, multimodal continuous authentication systems for AmI are presented.

5.1 user-friendly and less-constrained technologies for hci in

biometric systems

This section presents the studied novel and user-friendly technologies for less-constrained
HCI in biometric systems. These technologies are based on non-cooperative acquisi-
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tions for improving the quality of the interaction between the user and the environ-
ment.

The performed studied on less-constrained technologies are divided into two broad
categories. The first category is based on methods for voice-based recognition for AmI
applications. A novel feature extraction and classification method for text-independent
speaker recognition systems are described. The considered system imposes no restric-
tion on the spoken phrases and extracts the voice templates of the user which is com-
posed of only 12 floating-points numbers. The second category is based on methods for
human age estimation from facial images. The realized method estimates the age from
non-ideal face images acquired with strong rotations and occlusions, which represent
a typical scenario in AmI.

5.1.1 text-independent speaker recognition

Most of current biometric systems are designed for security applications [86, 288]. A
growing research area consists of designing biometric technologies to improve the HCI
in AmI. These technologies should be based on less-constrained technologies with re-
spect to traditional biometric systems [244, 85, 289, 150]. In this context, voice recogni-
tion techniques are of paramount importance due to their high user acceptance amd
low required cooperation.

Voice recognition provides a true unobtrusive HCI method. Voice recognition appli-
cations can be divided in two categories, namely: speaker recognition (which aims to
recognize the user based on her voice) and speech recognition (which aims to recog-
nize what is said). Speech recognition technologies are widely used in HCI for AmI
[18, 290]. On the other hand, speaker recognition is mostly used for authentication
purposes [94]. Studies in the literature use the speech-based interaction between hu-
man and computers to facilitate the users inside their home [291, 292, 232, 233]. The
work in [292] presents an AmI based on speech and speaker recognition. The authors
deployed the proposed technologies in the domotic system named STARHome, which
is a functional prototype. Many commercial applications use speech recognition for
HCI technologies designed for AmI, such as Apple Siri, Ubi and Amazon Echo, etc.
The work proposed in [293] presents a list of commercial applications using speech for
HCI in AmI.

Speaker recognition systems can be classified into text-dependent and text-independent
[190, 191, 189]. The first class requires that the user enunciate a specific set of words,
while the second class does not impose this limitation. Text-independent speaker recog-
nition systems are usually less accurate than text-dependent systems. Nevertheless,
text-independent systems are based on a natural and unconstrained HCI modality and
are therefore suitable for user-friendly application scenarios.

In AmI, it is frequently needed to identify the users in relatively small closed-sets
by using biometrics. There are two main categories of closed set identification systems:
systems performing multiple identity comparisons, and systems that search the iden-
tity of the user by classifying a single biometric template. The first category has the
advantage of being more scalable since the enrollment of new users does not require
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Figure 5.1: Schema of biometric identification systems performing multiple identity compari-
son.

Figure 5.2: Schema of biometric identification systems that search the identity of the user by
classifying a single biometric template.

to train any classifier. Nonetheless, having a biometric database of N identities, these
systems need to computeN identity comparison to estimate the identity corresponding
to the fresh template. Fig. 5.1 shows the schema of the identification systems perform-
ing multiple identity comparisons. Differently, the second category of identification
systems estimates the final result by performing a single classification, thus requiring
less computational time and resources. However, enrolling a new user requires to re-
train the classifier. Fig. 5.2 shows the schema of the identification systems that search
the identity of the user by classifying a single biometric template.

Biometric recognition algorithms for AmI are frequently deployed in embedded sys-
tems, characterized by reduced computational resources with respect to general pur-
pose architectures. Therefore, these algorithms should be optimized in terms of com-
putational time and memory. Specifically, identification applications should be based
on fast feature extraction algorithms and use templates of limited size. The computa-
tional limitations also justify the choice of identification systems based on classifiers
for a wide range of applications.

The studied text-independent speaker recognition method is designed to perform
closed-set identification by using a limited amount of computational resources and
templates of small size, thus allowing for its use in embedded architectures for AmI.

5.1.1.1 computation of information-set features

The studied feature extraction method for text-independent speaker recognition sys-
tems can be divided into three steps: : computation of MFCC, computation of information-
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set (ISF) features, and hierarchical classification. Fig. (Fig. 5.3) shows the schema of the
studied feature extraction method.

• MFCC feature extraction

MFCC features are widely used in the literature for text-independent speaker
recognition [190, 189]. The computation of these features can be divided into the
following tasks:

– Framing and windowing: papers in the literature show that the speaker
signal in small time duration windows is stationary and it is possible to
extract reliable features in these windows. Hence, the signal is divided into
windows of 20ms. The signal extracted from each window is called frame.

– Computation of the DFT: to extract the spectral information from the signal
of each window, we compute the energy available for each frequency band.
Therefore, we compute the Discrete Fourier Transform (DFT), as follows:

Si(k) =

F∑
f=1

Si(n)h(n)e
−(j2πkn)/F, 1 6 k 6 K, (5.1)

where h(n) is a sample analysis Hamming window, and K is the length of
the DFT.

– Computation of the Mel Filter Banks: to estimate the energy in different
frequency regions, we use Mel Filter Banks [199]. These are triangular filter
banks, non-linearly placed throughout the bandwidth and Mel scale. The
Mel-spaced scale changes the signal from the frequency domain to the Mel-
scale as follows:

m = 2595 log10 (1+ f/700) (5.2)

This bank of filters estimates the energy available for each of the frequency
bands.

– Computation of the Logarithm: after computing the Mel filter banks, we
compute the logarithm of each filter bank. This task allows us to use the
cepstral mean subtraction, which is a channel normalization technique.

– Computation of the DCT: finally, we compute the Discrete Cosine Transform
(DCT) of the filtered signal to estimate the cepstral coefficients. The result-
ing features are called Mel Frequency Cepstral Coefficients. In this work, we
use 12 coefficients of the MFCC.

• Information set features (ISF) computation

The concept of information set was introduced in [294] to enlarge the scope of
a fuzzy set using the Hanman-Anirban entropy function [295]. The fuzzy set
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Figure 5.3: Schema of the proposed text-independent speaker recognition method.

theory considers only the value obtained by applying a membership function to a
property, without taking into account the value of the property itself. Differently,
an information set connects the attribute values and the fuzzified values by using
empowered membership functions [296]. Feature extraction approaches based on
the information set theory have been applied in biometric systems based on face
[297] and ear [298].

Let us suppose a collection of values of an attribute Φ = {Φ1,Φ2, ...Φn}, an
empowered membership function is defined as follows:

IΦ =
∑
i

XΦ(ϕi)GΦ(ϕi), (5.3)

where GΦ(ϕi) is a gain function. GΦ(ϕi) is computed as follows:

GΦ(ϕi) = e−[aΦ(xΦ(ϕi))
3 + bΦ(xΦ(ϕi))

2

+cΦ(xΦ(ϕi)) + dΦ]
βΦ ,

(5.4)

where the parameters (aΦ,bΦ, cΦ,dΦ,βΦ) are the real valued variables.

This formulation of entropy function can be modulated by selecting a suitable
choice of parameters (aΦ,bΦ, cΦ,dΦ,βΦ). As an example, using the variables (
aΦ = bΦ = 0, cΦ = 1/2σj, dΦ = −µj/2σj), we get the following function:

GΦ(ϕi) = e−[(xΦ(ϕi)−µj)/2σj]
βΦ (5.5)

In this work, we apply the information set theory to reduce the size of the feature
set. ISF enables to extract the cepstral as well the temporal possibilistic uncertain-
ties from the MFCC features.

The MFCC feature matrix X is of dimension (d×m), where d is the number of
cepstral coefficients and m is the number of frames. From each cepstral coeffi-
cient j of X, the proposed algorithm extracts the first and second order moments,
creates a gain function Gj according to the extracted information, and computes
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ISF value. The number of features composing the final ISF vector Y is equal to
the number of cepstral coefficients d.

We compute every gain function as follows:

Gj = e−1/2[(Xij−µj)/σj]
2

, j = 1, 2, ...d, (5.6)

where, µj and σj are the mean and variance of the cepstral coefficient j.

The ISF value for the cepstral coefficient j is then computed using the concept of
empowered membership function, as follows:

Yj =
m∑
i=1

(
Xij ·Gj

)
. (5.7)

5.1.1.2 hierarchical classification

We use a hierarchical classification strategy to estimate the identity corresponding to
the fresh template Y. Single classifiers may obtain unsatisfactory accuracy for problems
with high numbers of classes involved [299]. To achieve higher accuracy, many studies
in the literature use hierarchical classification approaches based on a pool of classifiers.
There are different categories of strategies, including the flat classification approach,
the local classifier approach, and the global classifier approach. In the studied method,
we use a flat classification approach since it is one of the simplest and mostly used
techniques in the literature.

Considering a biometric database composed of N enrolled identities, our method
uses a pool of N binary classifiers and a score fusion strategy. Each classifier Ci con-
siders the identity i as the positive class and returns a score value si ∈ [0, 1]. We use
the following strategy:

Identity = argmax
i=1...N

(si). (5.8)

We consider different types of classifiers: k-Nearest Neighbors (kNN) [300], Feed-
forward Neural Networks (FFNN) [301], and Support Vector Machines (SVM) [302].
More details on the learning strategies and configurations of the single classifiers are
reported in the experimental result section (Section 6.1.1).

5.1.2 age estimation from face analysis

Face biometrics is the most natural method for human recognition because of its high
level of user acceptance due to the low level of required user cooperation [1]. Face
images can also be used to infer a wide set of soft biometric characteristics, such as:
the emotional state, ethnicity, gender, and age. Among this set of characteristics, the
automatic age estimation can be particularly important in different application sce-
narios, such as: security and defense scenarios, surveillance, health-care systems, en-
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Figure 5.4: Schema of the proposed approach for age estimation.

tertainment, automated border controls, and human-machine interactions in ambient
intelligence environments [79].

Recent works in the literature showed that deep learning techniques can achieve
promising accuracy in age estimation [227, 83]. Moreover, the studies described in
[303, 304, 305] analyzed the possibility of estimating the age by processing a face im-
age using deep networks previously trained for face recognition. All of these meth-
ods apply fine tuning strategies to achieve accurate results on heterogeneous image
datasets.

The studied approach presents a preliminary study on techniques to increase the
accuracy of pre-trained deep networks without applying fine-tuning approaches. To
the best of our knowledge, this work presents the first study on age estimation that
uses previously trained convolutional neural networks (CNNs) without needing any
training or fine tuning of the deep neural networks, thus considering CNNs trained
for other applications as generic feature extractors. This approach has the advantage
of simplifying the tuning task with respect to fine tuning techniques. The considered
methods use heterogeneous networks trained using non-ideal samples to extract robust
features from non-ideal face images. A feature level fusion is performed of the data
computed by a set of CNNs, reduces the dimensionality of the obtained feature set,
and estimates the age by using a feed-forward neural network (FFNN). To achieve ro-
bustness to non-ideal conditions, the dimensionality reduction method is tuned using
public face datasets of poor-quality face images acquired in uncontrolled conditions.

The studied method estimates the age from a single face image by using multiple
pre-trained deep networks that permit to robustly estimate features from non-ideal
face images. The considered age estimation method can be divided into three main
steps: feature extraction using pre-trained CNNs, dimensionality reduction, and age
estimation using FFNNs. Fig. 5.4 shows the schema of the studied age estimation me-
thod.

5.1.2.1 feature extraction using cnn

We use one or more pre-trained CNNs to extract features from the input face images
for age estimation. In this paper, we use VGG-Face CNN [170] and AlexNet CNN [171],
although these two deep networks can be easily substituted.

VGG-Face CNN consists of 15 layers, trained on 2.6M facial images from 2622 in-
dividuals to perform face recognition. Each CNN block contains a linear operator fol-
lowed by one or more non-linear layers, such as a rectification layer or max pooling.
The first 12 such blocks are convolutional layers. The last 3 blocks are fully connected.
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We used the second fully connected layer for feature extraction, obtaining 4096 dimen-
sional feature sets.

AlexNet CNN consists of 8 layers, trained on 1.2M samples of ImageNet ILSVRC
challenge dataset [306]. As in VGG-Face CNN, each CNN block contains a linear op-
erator followed by one or more non-linear layers. The first 5 blocks are convolutional
layers, while the last 3 are fully connected. We used the second fully connected layer
for feature extraction, obtaining 4096-dimensional feature sets.

5.1.2.2 dimensionality reduction approaches

First, we create a feature set of 8, 192 features by using the data extracted applying
VGG-Face CNN and AlexNet CNN. Then, we reduce the dimensionality of this fea-
ture set by applying a dimensionality reduction technique. We analyzed the results
of three strategies, namely: Statistical Dependency algorithm (SD) [307], Mutual In-
formation (MI) [307], and Principal Component Analysis (PCA) [308]. To obtain an
age estimation method that is easily applicable in different application scenarios, we
choose to adopt an external image dataset to train only one time the parameters of the
evaluated dimensionality reduction methods. In particular, to increase the robustness
to rotations and non-ideal samples, we train the dimensionality reduction strategies
using a public dataset of poor-quality face images acquired in uncontrolled conditions
(WIKI Dataset [225]).

• Statistical Dependency (SD): This method aims to measure the statistical depen-
dency of the features to its class labels. The feature set is first quantized in such a
way that each bin contains roughly the same number of samples from the whole
dataset. The statistical dependency between the feature values x and the age y,
modeled as a class instead of a continuous value, is computed as:

SD =
∑
x∈X

∑
y∈Y

p(x,y)
p(x,y)
p(x)p(y)

(5.9)

We calculate SD for each feature and select the features having the highest values
as final feature set.

• Mutual Information (MI): MI quantifies the mutual dependency between the two
random variables. This method takes into account that the statistical dependency
between the features and the age labels may be affected by the highly informative
level of quantization [307]. To reduce this effect, MI is computed between the
features and the age labels as:

MI =
∑
x∈X

∑
y∈Y

p(x,y)log
(
p(x,y)
p(x)p(y)

)
(5.10)

• Principal Component Analysis (PCA): PCA computes the Eigenvectors from the
covariance matrix. The covariance matrix evaluates the amount by which neigh-
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boring features are related to each other. The Eigenvectors associated with the
largest Eigenvalue are the ones that reflect the largest variance in the image.

5.1.2.3 age estimation using feed-forward neural network

The last step uses the features computed in the feature selection step to train a FFNN.
We use a FFNN for regression to estimate a floating point number representing the
age, as well as we apply a FFNN for classifying groups of ages. In particular, we
use a single linear node for the output layer of the neural network and the scaled
conjugate gradient backpropagation method [309] for training. The achieved results of
the studied methods for age estimation is reported in the Section 6.1.2

5.2 methods to improve deployed biometric technologies

This section presents the studied approaches for improving the recognition accuracy
of the previously deployed biometric technologies in AmI. These studies are divided
into three main categories.

The first category is based on the studied methods for adaptive cohort normalization
techniques. These techniques are generic and can be applied in existing AmI applica-
tions without requiring hardware or software modifications.

The second category is based on the studied methods for combining multiple bio-
metric technologies in AmI applications. These methods are technology-independent,
which do not affect existing and proprietary biometric systems. Moreover, the realized
system uses adaptive and privacy-compliant training approaches which reduce the
privacy and data security issues in AmI.

The last category is based on the studied methods for multimodal continuous au-
thentication systems and adaptive fusion approaches for AmI. The studied methods are
designed for less-constrained and non-cooperative acquisition, which are able to deal
with heterogeneous traits, sensors, and environmental conditions typical of complex
AmI. A true multimodal audio-visual database is acquired in our laboratory simulat-
ing an AmI. The studied system handles the asynchronous behavior of the multimodal
biometric data and deals with the uncertainties in the recognition scores of continuous
authentication systems.

5.2.1 adaptive cohort normalization

Matching score normalization methods can improve the performance of biometric
recognition in AmI applications and mitigate the effect of non-idealities typical of
this scenario without modifying the existing biometric technologies [239, 99, 310, 311].
Several methods have been proposed in the literature to increase the recognition per-
formance of biometric recognition technologies in already deployed systems, such as
using a quality threshold to discard low-quality samples [175], fusing multiple images
[237], or using multi-modal biometric systems [99]. However, these methods could de-
crease the throughput of AmI systems and reduce the user acceptance. Moreover, it is



76 innovative frameworks for biometric technologies in ambient intelligence

possible to use enhancement methods for low-quality images [238], but they need to be
tuned according to the used acquisition sensor and feature extraction method, which
are frequently manufactured by different producers.

Techniques based only on processing the matching scores resulting from identity
comparisons can increase the recognition accuracy independently from the underlying
hardware and software [239], and without requiring the user to be subject to multiple
biometric acquisitions. These techniques are usually called score normalization meth-
ods and aim to increase the biometric recognition accuracy by better separating the
genuine and impostor matching scores. They are based on the analysis of sets of gen-
uine and impostor matching scores and can use statistical or computational intelligence
approaches.

Cohort normalization methods are score normalization approaches that use the
matching scores obtained by comparing an input template with a set of cohort tem-
plates. Cohort templates are the templates in a biometric system other than the tem-
plate of the claimed identity [240]. Cohort normalization has the advantage of making
no assumptions on the nature of the biometric or the matcher [241], facilitating its
application to different scenarios [242, 243] and sensors [244, 148, 245].

However, the regulations of some countries pose strong restrictions on the use of
biometric data captured for government applications [235], limiting the applicability
of score normalization techniques. In this context, most of the score normalization
techniques, which perform multiple genuine identity comparisons, are not suitable
because it is not allowed to store additional data with respect to the biometric samples
enrolled in the electronic documents or smart cards.

The studied cohort score normalization method is generic and does not make any as-
sumptions about the nature of the biometric or the matcher, facilitating its application
to different scenarios, and sensors. These methods are based on the privacy-compliant
and adaptive normalization approaches for enhancing the biometric recognition accu-
racy in AmI systems. The adaptability of the analyzed cohort normalization method,
which can be used for any biometric traits, makes it suitable for its application in AmI.

First, we present the studied cohort normalization methods for biometric technolo-
gies in AmI. Then, a case study for the fingerprint recognition systems is presented to
demonstrate the applicability of the studied cohort normalization method for enhanc-
ing the recognition accuracy of the previously deployed biometric systems.

5.2.1.1 cohort normalization methods

In this section, we describe the studied approach for cohort score normalization in AmI
systems. The approach has the features of being privacy-compliant and adaptive to dif-
ferent operational conditions (Fig. 5.5). To comply with privacy protection regulations
on biometric data in AmI systems, the considered approach uses an external dataset
of templates for computing the cohort matching scores. This dataset could be a public
database or a dataset created and maintained secret by the vendor of the biometric
technology.

The cohort score normalization procedure works as follows:
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Figure 5.5: Outline of the proposed privacy-compliant cohort score normalization approach. To
comply with privacy protection regulations on biometric data in AmI, our approach
uses an external dataset of templates to compute the cohort matching scores.

1. For a fresh sample si and a sample stored in the biometric database sj, an identity
comparison is performed to simulate the biometric verification performed in the
security applications, and the fresh matching score gij is computed as follows:

gij = match(si, sj), (5.11)

where gij is the biometric similarity score obtained using the biometric matching
function (·).

2. For each sample i, we extract a set E of n samples from an external database, and
we compute the set MC

i of impostor identity comparisons. The number of sam-
ples n is empirically selected as a tradeoff between accuracy and computational
time. In studied approach, n is constant for each identity comparison gij. Each
matching score mCk of MC

i is computed as follows: mCk = s|s = match(si, ek),
ek ⊆ E, where ek is the k-th sample in the external biometric database E.



78 innovative frameworks for biometric technologies in ambient intelligence

Table 5.1: Cohort score normalization methods used in the studied method

Method Description

Baseline No normalization is performed

Max–rule [241] Ratio of the raw score to the maximum of the cohort
scores for each user.

T–norm [247] The first and second order moments of the cohort scores
are used to normalize the raw score.

SVM–all–cohorts All the cohort scores for each user are used as input to
a SVM classifier.

SVM–20–cohorts [243] The 20 maximum cohort scores for each user are used
as input to a SVM classifier.

3. The final normalized matching score mij is obtained by applying a cohort nor-
malization method. Table 5.1 summarizes the cohort normalization methods that
we considered in this work.

We chose the methods presented in Table 5.1 because they are well-known tech-
niques in the literature. We did not use other well-known techniques that require to
store additional information because they are not compliant with the privacy protec-
tion regulations imposed in AmI applications.

In the following, we briefly describe the implemented cohort normalization methods.

• The Max–rule normalization method [241] computes the ratio between the fresh
matching score gij and the maximum score in the set of cohort scores MC

i . After
computing the set of cohort scoresMC

i from the external dataset E, the maximum
of the cohort scores is used to normalize the fresh matching score gij. The final
normalized matching score is computed as follows:

mMaxRule = g/max(mC1 , · · · ,mCn). (5.12)

• In the T–norm cohort normalization method [247], the first order moment µC =

EmC
k∈MC

i
[mCk ] and second order moment (σC)2 = EmC

k∈MC [(mCk − µC)2] of the
cohort set MC are used to normalize the fresh matching score g. The final nor-
malized matching score is computed as follows:

mTNorm = [(g− µC)/σC, s.t. µC,σC ∈MC
i ]. (5.13)

• The method SVM–all–cohorts classifies a feature set obtained using the samples
si and sj in two classes: genuines (mSVM = 1) and impostors (mSVM = 0). For
each identity comparison between the samples si and sj, the SVM takes in input
a feature vector xl composed of the fresh score gij and the cohort scores MC

i . The
feature vector therefore consists of n+ 1 values.
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To comply with privacy laws, the classifier is trained using only data belonging
to the external dataset E.

For each element of the training set, which represents a comparison between the
biometric samples ei and ej pertaining to the external dataset E, the cohort set
MC
i is computed as the set of matching scores obtained from all the possible

impostor comparisons between the sample ej and the samples pertaining to E.

The training set is composed of n · (n− 1) elements representing all the possible
combinations of identity comparisons between the n samples belonging to the
external dataset E. The number of samples n of E is equal to x · y, where x is
the number of individuals and y is the number of samples per individual. The
training dataset is therefore composed of x ·y genuines and x2(y− 1)y impostors.

The application of SVM classifiers to the training dataset can obtain poor results
because the class distribution is very imbalanced. To cope with this problem,
we use an ensemble learning approach that combines the decisions of 25 SVM
classifiers using a voting approach that chooses the most voted class, following
the work in [312]. The set of impostor comparisons is divided into 25 subsets
obtained by random sampling without substitution, where each subset contains
2 ·x ·y impostor comparisons. Each SVM is trained using the whole set of genuine
comparisons combined with one of the impostor comparisons subsets.

• The method SVM–20–cohorts [243] is similar to SVM–all–cohorts but it uses a
reduced feature set composed of gij and the 20 highest values of MC

i . We chose
to use 20 cohorts because studies in the literature show that this number allows
obtaining a good tradeoff between accuracy and computational time [243].

5.2.1.2 case study in fingerprint recognition

To demonstrate the applicability of the studied cohort score normalization approaches,
we present a case study in the fingerprint recognition systems. The considered me-
thod is used to enhance the recognition accuracy of the previously deployed biometric
systems based on fingerprint biometrics.

Fingerprint recognition represents one of the most mature and accurate biometric
technologies [175]. However, the recognition performance of fingerprint-based tech-
nologies can be negatively impacted by non-ideal conditions typical of AmI, such as:
dirt on the hands (e.g., after eating) or on the sensor (e.g., after multiple uses) [119],
and lack of effective signaling in an unsupervised context [176].

In the presented case study, we studied a novel adaptive cohort normalization ap-
proach for AmI applications. First, the considered approach increased the accuracy of
fingerprint recognition in our tests simulating AmI systems. Second, the approach con-
siders privacy requirements imposed by current laws, using a privacy-compliant pro-
cedure that selects a limited number of cohorts from a fingerprint database captured
in different conditions and containing different individuals (e.g., a public database).
Third, we apply SVM for the score normalization in AmI systems. Moreover, to the
best of our knowledge, it is the first work in the literature that uses external datasets
for cohort normalization.
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We performed a technological evaluation and a scenario evaluation by using data
simulating different conditions. To simulate real scenarios, we used a commercial soft-
ware for feature extraction and matching, which is currently adopted for fingerprint
recognition. The detailed analysis of the obtained results is discussed in Section 6.2.1.

5.2.2 multibiometric systems for ambient intelligence

We also studied methods for combining the heterogeneous biometric information avail-
able in the AmI. The multibiometric systems integrate the information from different
biometric systems (e.g., different biometric traits, multiple samples of same trait, differ-
ent algorithms) at various levels. First, we present the studied technology-independent
approaches for multimodal fusion in AmI. Then, the studied methods for the score-
level fusion for multibiometric systems in AmI are detailed.

5.2.2.1 technology-independent approaches

AmI is composed of many heterogeneous sensing devices to acquire physiological, be-
havioral, and contextual information from the user. The collected information needs to
be processed differently. Multibiometric systems in AmI applications require combin-
ing information acquired from different biometric traits. Each trait has its own charac-
teristics, and require a distinct level of processing techniques. For example, the feature
extraction process for physiological biometric traits such as fingerprint biometrics dif-
fers from the techniques used for face or iris images. Similarly, behavioral biometric
traits such as voice, gait, or gestures possess distinct characteristics and require differ-
ent feature extraction steps.

The traditional multibiometric systems integrate the biometric information coming
from different sensors in technology-dependent manner. The addition or removal of
any particular sensor may cause the system to restart again from scratch. To combine
heterogeneous information from multiple biometric traits in AmI, it is important to
fuse the traits in a technology-independent manner. The technology-independent ap-
proach considers a technology neutral multimodal fusion system which can integrate
the information coming from multiple sources (or sensors) independently from their
individual processing.

In the studied method for multibiometric systems for AmI applications, we consider
a technology-independent approach in which different software and hardware pro-
vided by different vendors are used to perform multimodal fusion. From the discus-
sion in the Section 4.2, we argued that the score-level fusion can be a suitable choice
for multimodal systems in AmI, which combine the matching scores obtained from
different matching methods. We studied a technology-independent score-level fusion
method in AmI applications, by using the different combinations of recognition al-
gorithms from different vendors, and analyzing the improvement in the recognition
accuracy (in terms of EER and FMR1000) with respect to using only the most accu-
rate biometric trait (the fingerprint). In particular, we used the software Dermalog
Fingercode3, Cognitec FaceVACS, Neurotechnology VeriFinger, and Neurotechnology
VeriLook. These commercial software uses different image and signal processing tech-
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Figure 5.6: Proposed schema of multimodal fusion in AmI.

niques to compute the templates of the corresponding biometric technologies. The
realized method integrates information acquired and processed by different software
and hardware technologies to evaluate the multimodal biometric fusion in AmI appli-
cations. The proposed schema of the multibiometric system that performs the fusion
after the matching at the score-level is shown in Fig. 5.6.

5.2.2.2 score-level fusion techniques

The studied multimodal fusion methods are based on score-level fusion techniques.
These techniques are technology-neutral and can be easily applied to AmI applications.
First, we considered simple fusion approaches which do not require training. Let us
suppose, si is the match scores of the biometric templates, and N is the total number
of templates available in the system. The studied techniques include the well-known
methods such as:

• Sum rule:
∑N
i=1 si

• product rule:
∏N
i=1 si

• Maximum rule: max (s1, s2, ..., sn)

• Minimum rule: min (s1, s2, ..., sn)

• Weighted sum rule:
∑N
i=1wisi

The sum rule is simple and effective score-level fusion technique, and have demon-
strated in the literature that the rule of the sum always helps in increasing the recog-
nition accuracy [102]. Usually, the works proposing classifier-based methods require a
training phase, use the same database to train and validate the technique, and only in
some cases, the tests are performed using techniques such as cross-validation, which
allows to avoid over-fitting and obtain realistic error estimations. However, this kind of
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approach is not directly applicable to AmI, because the possibility to store data needed
by this operation is not common in real AmI applications.

To comply with these constraints, we investigated a robust method for multimodal
fusion based on Likelihood ratio [104]. The likelihood ratio technique offers a good
alternative in this sense since it is a mature technique that relies on a simple robust
model, Gaussian Mixture Models. In addition, it also permits to exploit quality scores
of the acquired biometric samples. Incorporating the quality of the biometric samples
can provide additional information regarding the computed biometric template, and
hence, can improve the performance of multimodal fusion. For these reasons, besides
the simple likelihood ratio method, we also studied the quality-based likelihood ratio
technique for designing the fusion methods for AmI. The likelihood ratio and quality-
based likelihood ratio fusion method can be computed by using the formulas:

• Likelihood ratio: fgen(s)fimp(s)
,

where, fgen(s) and fimp(s) are the functions of genuine and impostor distribu-
tions, which can be computed as:

fgen(s) =
∑Mgen

j=1 pgen,jφ
N(s;µgen,j,

∑
gen,j)

fimp(s) =
∑Mimp

j=1 pimp,jφ
N(s;µimp,j,

∑
imp,j)

• Quality-based likelihood ratio: fgen(s,q)
fimp(s,q) ,

where, fgen(s,q) and fimp(s,q) are the functions of genuine and impostor distri-
butions with its quality scores, which can be computed as:

fgen(s,q) =
∏N
n=1 fgen,n(sn,qn)

fimp(s,q) =
∏N
n=1 fimp,n(sn,qn)

We also investigated the multimodal fusion based on the Dempster-Shafer Theory
(DST) [313, 314, 315]. The Dempster-Shafer theory is based on the theory of evidence,
which combines evidence from different sources according to their degree of belief
[316]. In DST-based fusion, the probability of a genuine enrollment attempt, the proba-
bility of an imposter enrollment attempt, and the probability of the uncertainty of the
acquired data and/or classifier are considered when evaluating a biometric match.

Briefly, let us assume m(G) denotes the probability of Genuines, m(I) denotes the
probability of impostors, and m(U) represents the uncertainty when it is not possible
to determine if the score belongs to the same user or a different user. The term m(U) is
an uncertainty function affecting the recognition accuracy of each biometric modality,
and can be defined as:
mi(U) = β(α(1−Qi) + (1−α)EERi)

where, Qi is the normalized quality score and EERi is the EER of the ith modality.
α is the weighting factor and β is the scaling parameter which can be learned from the
training set (0 < β < 1).

The two probabilities m(G) and m(I) can be defined as:
mi(G) = Si(1−m(U)i) , and
mi(I) = (1− Si)(1−m(U)i)
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where, Si is the normalized match score of the ith modality.
The DST-based fusion method in case of bimodal systems can be computed by using

the formula [314]:

• Dempster-shafer theory: m1(G)m2(G)+m1(G)m2(U)+m1(U)m2(G)
1−m1(G)m2(I)−m1(I)m2(G)

The DST-based fusion requires the normalization of the scores in the range of (0 to
1) by performing a preliminary normalization.

The considered methods for designing multibiometric systems in AmI applications
are evaluated on public biometric databases simulating operational scenarios. The re-
sults of the studied score-level fusion techniques and privacy-compliant training ap-
proaches for the multimodal fusion systems in AmI applications are reported in detail
in Section 6.2.2.

5.2.3 multimodal continuous authentication

After designing the generic multimodal biometric systems for AmI applications, we
further studied the methods for designing multimodal continuous authentication sys-
tems for AmI applications. The realized continuous authentication systems are based
on face and voice biometrics. Face and voice are complementary biometric modalities
which can be acquired without the cooperation of the user, and hence are suitable for
AmI applications.

First, we present scenarios and the critical points in continuous authentication sys-
tems for AmI applications. Then, the asynchronous behavior of multimodal biometric
systems in AmI is discussed. The feature extraction and matching of the face and voice
biometric technologies are detailed. Finally, the studied methods for designing adap-
tive neural-based multimodal fusion for continuous authentication is outlined.

5.2.3.1 considered scenarios for continuous authentication in ambi-
ent intelligence

We consider an AmI with a single user, where, the user performs some activities (work-
ing with a laptop, talking on a smartphone, walking around, and playing games).
While performing these activities, the user leaves her biometric data, which can help in
providing a continuous authentication. An example of the considered scenarios of ac-
quiring biometric information from the user while performing some activities is shown
in Fig. 5.7.

The continuous authentication for AmI applications needs to be designed for less-
constrained and non-cooperative acquisitions. Traditional methods of continuous au-
thentication based on hard biometric technologies (e.g., fingerprint and iris biometrics)
need cooperative users to perform acquisitions, which may not be suitable for AmI.
On the other hand, methods based on soft biometric information (e.g., face and skin
color) are usually dependent on the quality of facial features. If the face images are not
acquired with good quality, the system may not provide a reliable recognition accuracy.

In AmI, the system should work in an unobtrusive manner, without requiring co-
operation of the users. The designed system should not impose restrictions on the
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Figure 5.7: An example of the considered scenarios and scope of biometric technologies for
continuous authentication in AmI.

users for acquiring her biometric data. Due to these reasons, we investigated multi-
modal continuous authentication systems for AmI applications based on user-friendly
biometric technologies. The studied multimodal systems use face and voice biomet-
rics. Face and voice are complementary biometric modalities which can be acquired
without the cooperation of the user.

Most of the studies in the literature for multimodal continuous authentication using
face and voice biometrics are usually tested on synthetic databases. These databases
typically include frontal faces which may not be the real presentation of actual sce-
narios. For example, when the user is talking on the smartphone, there are occlusions
and rotation of the face. In this interval of time, the match score obtained from the
acquired face biometrics rapidly go down and may not be reliable enough for authen-
tication. Nevertheless, the match score computed from the voice of the user at that
given time can be used as reliable biometric information to perform authentication.
Most of the databases in the literature do not show this "‘critical points"’ in continuous
authentication systems.

To simulate this scenario, we acquired a multimodal database in our laboratory
which shows the critical points in continuous authentication. Fig. 5.8 shows an exam-
ple of the actual scenarios of AmI in which, the user is working on the console, taking
calls, walking, and walk-out from the filed-view of the camera. During these activities,
the behavior of the recognition scores of face and voice biometrics are shown in the
figure. It is possible to observe that, in these critical points, it is required to investigate
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Figure 5.8: Example of critical points in continuous authentication: the face scores go rapidly
down when the user starts talking on the phone, nevertheless the voice scores can
be used to maintain the trust level of the multimodal system.

a suitable method to integrate the information available in the system to increase the
trust level of the continuous authentication systems.

It is important to consider that, during the event, when the user is talking on the
phone, it is not always possible to acquire the face images with good quality. It is a
realistic assumption, which addresses the problem of missing information of biometric
measurements in the certain interval of time in continuous authentication. Most of
the approaches in the literature require frontal faces to compute recognition scores.
However, in real scenarios, it is possible that the system may not be able to compute
face templates when the user is rotated her face at the sharp degree of rotations while
talking on the phone.

Traditional methods for multimodal fusion require the availability of the matching
scores from all the used biometric modalities to perform the fusion. In cases when the
biometric data of one modality is absent, the decision is based on the other available
biometric information. In other words, the traditional fusion methods switch between
multimodal and monomodal systems depending upon the availability of the acquired
biometric samples. Hence, the traditional fusion methods do not provide continuous
authentication using multimodal fusion.

The realized system deals with the uncertainties in the recognition scores of con-
tinuous authentication systems. The studied methods use computational intelligence
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techniques based on neural networks for designing multimodal fusion of biometric
technologies in continuous authentication.

5.2.3.2 studied adaptive multimodal fusion

One of the important aspects of designing multimodal continuous authentication meth-
ods for AmI applications is to consider the asynchronous behavior of the acquired
biometric information. AmI is composed of many heterogeneous sensors that collect
different biometric samples. The biometric data coming from different streams show
different characteristics. For example, the data streams in audio-visual systems consist
of the face and voice biometrics, which may present different frame rates, different
length, and possess different temporal characteristics.

In continuous authentication systems, the integration of the different biometric sig-
nals is performed periodically. The system evaluates the recognition scores of the sys-
tem in a certain interval of time. However, due to the different sampling rate of face
and voice biometric samples, it is difficult to consider the multimodal system in those
intervals in continuous authentication systems.

The studied methods for multimodal continuous authentication are based on an
adaptive fusion strategy which combines various biometric signals asynchronously.

5.2.3.3 proposed approach for continuous authentication

The realized approach is based on neural networks for handling the asynchronous mul-
timodal fusion. The schema of the designed multimodal continuous authentication sys-
tem is shown in Fig. 5.9. The system has a video processing module, which processes
the face images extracted from the video data. The audio processing module extracts
the voice templates from the audio data. The studied adaptive fusion method based
on neural networks perform the asynchronous multimodal fusion. The trust model is
designed to track the behavior of the recognition scores in continuous authentication.
If the recognition scores go below a certain threshold, the decision module locks the
system to maintain the security of the system.

1. Video processing module

The designed video processing module extracts face images from the video data
and computes the face templates from the images. The feature extraction and
matching of the face samples are performed using a commercial software Neu-
rotechnology VeriLook. The software first computes the face templates of the
samples extracted from the faces sequence. The computed templates are matched
against the enrolled templates to compute the matching scores. The software com-
putes the similarity scores s between the two templates Ti and Tj. The matching
score matrix M is computed by comparing all the acquired face templates with
the templates stored in the face database.

2. Audio processing module

The audio processing module analyzes the voice signal. The voice features are
extracted using the publicly available Microsoft speaker recognition (MSR) iden-
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Figure 5.9: Schema of the studied multimodal continuous authentication for AmI applications.

tity toolbox version 1.0 [317]. This toolbox implements GMM-UBM method for
text-independent speaker recognition systems, which is a technique to model
the speaker distribution. Usually, it uses a very large GMM trained to represent
speaker-independent datasets. The steps involved in voice feature extraction and
matching are described below:

• MFCC features: First, the speech signal is pre-processed by applying a first
order high-pass filter to boost high-frequency components to avoid spec-
trum tilt. Studies in the literature showed that the speaker signal in small
time duration windows is stationary and it is possible to extract reliable fea-
tures in these windows. Hence, the signal is divided into windows of 20ms.
The next step is to calculate the power spectrum of each frame. We took
clumps of periodogram bins and summed them up to evaluate how much
energy exists in various frequency regions. This is performed by using Mel
filter banks, which are triangular filter banks non-linearly placed throughout
the bandwidth using the Mel scale. MFCC is a filter bank-based approach
which is designed to resemble the human auditory frequency perceptron.
This technique aims of extracting the low-frequency parts of the features.

The implementation of the MFCC feature extraction from the raw input
voice signal is the one described in Section 5.1.1.1. The template is computed
for each of the voice signals.

• Parameter tuning: The parameters of this toolbox need to be tuned according
to particular applications. There are two main parameters for the GMM-
UBM method in this toolbox namely, a number of Gaussian mixtures, and
relevance factor.

– Gaussian mixtures: represent the probability distribution of observations
in the overall population of the data. The number of mixtures provided
is always in the power of 2 (2m, where m = 1, 2, 3,...). Most of the works
in the literature use 2048 mixtures for the GMM-UBM method. It is im-
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portant to note that, for a classical GMM method, we need less mixture
components (usually 8-32 mixtures), but in case of the GMM-UBM me-
thod, we need a large number of mixture components to construct a
universal background model for overall speaker data. In this test, we
used 2048 Gaussian mixtures.

– Relevance Factor: plays an important role in minimizing the effect of un-
wanted session variability or channel and noise factors, in the MAP
(maximum a posteriori) adaptation process. Most of the studies in the
literature use the relevance factor in the range of [8− 20]. We tested dif-
ferent configurations of the relevance factor values and found the best
results using the value of the relevance factor is equal to 16.

• Matching: The computed fresh templates are matched against the enrolled
templates to compute the matching scores. The software computes the sim-
ilarity scores s between the two templates Ti and Tj. The matching score
matrix M is computed by comparing all the computed voice templates with
the templates stored in the voice database.

3. Adaptive fusion method

The studied method for adaptive multimodal fusion for continuous authentica-
tion is based on computational intelligence techniques. The designed method
consider the voice signal to improve the recognition score of the continuous au-
thentication system only when the user is talking on the phone. The fusion tech-
niques are designed to handle the uncertainties of the biometric information in
multimodal fusion.

• Fusion with uncertainty in biometric data: the uncertainty occurs in the bio-
metric data when the system fails to compute the biometric template. In
this situation, the representative biometric information is not available in
the system, which results in the missing information. Fusion of data with
missing templates can lead to force the system to take the decision on single
available modality. The system based on traditional fusion rules may not be
able to perform continuous multimodal fusion, rather, it performs switch-
ing between multimodal and monomodal systems. When both modalities
are present, the decision of the system is based on multimodal fusion scores,
whereas, if only one modality is available, the system decides on the avail-
able biometric data.

We considered different techniques to replace missing values in input to the
fusion module.

– mean of the matching scores: in this case, the replaced value will represent
the equal probability of being genuine or impostor user. The value is
computed from the training set. The learning of neural network can
consider this value as a pattern when the data is missing, and the fusion
weights of neurons will be tuned accordingly.
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– minimum of the impostor value: in this case, we are simulating an impostor
attack. The replace value represents a weak impostor. This can be a suit-
able consideration to design a secure continuous authentication system.
The value is computed from the training set.

– high negative penalty: in this case, we are helping to better configure the
shape of the network when the input is not present in the monomodal
trait. The replace value (a high negative value) make a pattern to the
neural network to learn the fusion weights in cases when a trait is miss-
ing.

After replacing the scores of the missing data with the values mentioned above,
a feed-forward neural network (FFNN) is trained using the training set. The FFNN is
tested with different adopted strategies and compared with the traditional multimodal
fusion techniques such as mean rule, minimum rule, and maximum rule. The consid-
ered configuration of FFNN and obtained results for multimodal fusion in continuous
authentication is discussed in Section 6.2.3.

5.3 summary

Innovative methods for biometric technologies in AmI have been presented. The stud-
ied approaches are based on user-friendly biometric technologies to facilitate the human-
computer interactions in AmI. The main novelties of the studied techniques are that
they can deal with unconstrained acquisitions and non-cooperative users, and can man-
age heterogeneous traits, sensors, and environmental conditions, typical of AmI.

First, methods based on user-friendly technologies for designing less-constrained
HCI in biometric systems have been described. The realized technologies are based
on non-cooperative acquisition scenarios for improving the quality of interactions be-
tween the user and the environment. Moreover, the studied methods for novel feature
extraction approaches and matching algorithms for unimodal biometric technologies
in AmI applications have been presented.

In particular, innovative approaches for voice recognition systems for AmI applica-
tions have been described. The considered method has designed for novel feature ex-
traction and classification for text-independent speaker recognition systems. The stud-
ied method imposes no restriction on the spoken phrases, uses a limited amount of
computational resources, and computes templates of small size, allowing for its use in
embedded architectures for AmI applications.

The studied methods for human age estimation from facial images have been de-
scribed. The realized method uses pre-trained convolutional neural networks to esti-
mate the age of a non-ideal face image acquired with strong rotations and occlusions,
which represent the scenarios in AmI. The studied method for age estimation deal with
less-constrained conditions and do not require complex training procedures.

Then, the studied methods for improving the recognition accuracy of the previously
deployed biometric systems in AmI have been discussed.
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In particular, the studied methods for adaptive cohort normalization have been first
presented. The studied approaches use cohort normalization techniques in a privacy-
compliant manner, to improve the performance of the existing biometric technologies
in AmI. These methods are generic and can be applied in existing AmI applications
without requiring hardware or software modifications. A case study in fingerprint
recognition systems in AmI applications has been discussed.

Then, the realized methods for combining multiple biometric technologies in AmI
applications have been presented. These methods are technology-independent, which
do not affect existing and proprietary biometric systems in AmI. Moreover, the realized
methods use privacy-compliant and adaptive training approaches which reduce the
privacy and data security issues in AmI.

Finally, the studied methods for multimodal continuous authentication systems and
adaptive fusion approaches for AmI have been described. The realized methods are
based on dynamic and intelligent fusion systems. The studied methods are designed
for less-constrained acquisition scenarios and non-cooperative users. The considered
methods use computational intelligence techniques based on neural networks for de-
signing novel multimodal fusion in continuous authentication systems. The realized
approaches handle the asynchronous behavior of multimodal biometric data and deals
with the uncertainties in the recognition scores of continuous authentication systems.



6
E X P E R I M E N TA L R E S U LT S

This chapter presents the results achieved by evaluating the studied approaches for bio-
metric technologies in AmI applications (discussed in Chapter 5). The realized methods
were evaluated using the testing procedures and figures of merit discussed in Section
3.6.

The realized methods were compared with state-of-the-art techniques. Several public
biometric databases have been used to evaluate the considered methods practically. To
evaluate the methods in real conditions, biometric samples of different users have
been acquired in the laboratory by simulating the actual scenarios in AmI applications.
Moreover, a real multimodal biometric database have been collected to test the studied
multimodal continuous authentication systems in AmI.

In this chapter, we present the experimental procedures, evaluation protocols, con-
sidered datasets, and obtained results of the innovative methods described in Chapter
5. The structure of this chapter is as follows:

First, we present the evaluation methods and achieved results by the studied tech-
niques for text-independent speaker recognition systems in AmI applications (Section
6.1.1). The used databases are presented. Then, the performance of the evaluated meth-
ods in different configurations are discussed. Finally, we compare the achieved results
with that of state-of-the-art techniques .

Section 6.1.2 describes the experiments and results achieved by the realized methods
for age estimation in AmI. The description of the collected biometric samples simulat-
ing AmI applications and used public datasets are presented. The configuration of the
experiments and evaluation protocols for testing the pre-trained convolutional neural
networks are discussed. Then, the considered feature selection and dimensionality re-
duction approaches are outlined. Finally, we compare the results obtained using public
datasets and non-ideal samples acquired in our laboratory, with state-of-the-art tech-
niques.

91
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A discussion on the studied cohort normalization techniques for improving the
recognition accuracy of the previously deployed biometric systems in AmI applica-
tions is also presented in Section 6.2.1. A case study in fingerprint recognition systems
is described. The used datasets and evaluation strategies in a real operational envi-
ronment are detailed. Then, the privacy-compliant approach of the testing procedure
is outlined. A comparison of the obtained results with the traditional methods in the
literature in terms of accuracy and time complexity is finally discussed.

Further, the studied methods for multibiometric systems in AmI based on score-
level fusion are also analyzed in Section 6.2.2. The description of the used multimodal
databases and experimental procedures are first detailed. Then, the considered privacy-
compliant and technology-independent approaches are evaluated. Finally, the results
of the realized score-level fusion techniques are discussed.

Lastly, the results of the techniques for multimodal continuous authentication for
AmI applications are presented in Section 6.2.3. The evaluation procedure of the real-
ized multimodal system for continuous authentication is detailed. The description of
the protocol used for acquiring a true multimodal biometric database is detailed. Fi-
nally, the results obtained from the studied neural-based techniques for asynchronous
multimodal fusion in continuous authentication are analyzed.

6.1 user-friendly and less-constrained technologies for hci in

biometric systems

This section describes the performed evaluation of the studied methods for novel user-
friendly and less-constrained technologies for HCI in AmI. In particular, the experi-
mental procedures and achieved results of the studied methods for text-independent
speaker recognition systems have been first presented. Then, the configurations of the
experiments, evaluation techniques, and achieved results on the studied methods for
age estimation from face analysis have been discussed.

6.1.1 text-independent speaker recognition

This section presents the experiments related to the studied methods based on text-
independent speaker recognition systems designed for AmI applications in Section
5.1.1.

6.1.1.1 database description

We evaluated the proposed method using a set of signals belonging to the Switchboard
NIST 2003 SRE speaker database [318]. This database consists of 356 voice signals
recorded on the telephone for a duration of 2 minutes, with a sampling rate of 8kHz
at 16 bit. We extracted the speech signals of the 149 males of the training set. To create
the samples for our tests, we divided the 2 minutes audio signals into five samples of
24 seconds each. In this manner, we obtained 745 samples (5 samples per individuals).
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Table 6.1: Rank-1 Identification Accuracy achieved by the baseline method (MFCC+GMM) and
the studied method for text-independent speaker recognition in different configura-
tions

Methods Rank-1 Accuracy (%)

ISF+KNN 64.43

ISF+FFNN 83.22

ISF+SVM 85.64

MFCC+GMM 78.66

6.1.1.2 evaluated methods and configurations

We used GMM with MFCC features (MFCC+GMM) as a baseline since it is a widely
used method in the literature. To learn the parameters of GMM, we tested different
numbers of mixtures (in the range of [1,...,32]) and we found the best configuration by
using 16 Gaussian mixtures.

To evaluate the performance of proposed feature set (ISF), we used hierarchical clas-
sifiers based on three computational intelligence techniques, namely: kNN, FFNN, and
SVM.

We tested kNN classifiers with k = 1, 3, and 5, and achieved the best results using k
= 1 and Euclidean distance.

The considered configurations of FFNN are designed as follows. We used a sin-
gle linear node for the output layer of the neural network. We tested different num-
bers of nodes with tan-sigmoidal transfer functions for the hidden layer (in the range
of [1,...,100]) . We trained the neural networks using the Levenberg-Marquardt back-
propagation algorithm with 500 epochs. We obtained the best results using 80 nodes
in the hidden layer.

We tested three variants of SVM kernels: the linear kernel and two non-linear kernels:
Gaussian kernel, and polynomial kernel of order 2. To learn the parameters of non-liner
kernels, we optimized the value of σ in the range [0.1,...,3]. We achieved the best results
using a Gaussian kernel with σ = 1.70.

6.1.1.3 analysis of the identification performance

To evaluate the performance of the realized speaker recognition methods, we adopted
an iterative-validation strategy. We performed 5 iterations. For each iteration, we ran-
domly selected 4 samples per user to create the training set. The validation set was
composed using the remaining sample for each individual.

We compared the results obtained using the designed ISF templates and different hi-
erarchical classifiers with that achieved using MFCC features. Table 6.1 summarizes the
results achieved by the evaluated methods. This table shows that the studied method
increased the accuracy of the speaker recognition systems. The considered feature ex-
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Figure 6.1: CMC curve achieved by the studied method for text-independent speaker recogni-
tion in its best configuration (ISF+SVM) and by the baseline method (MFCC+GMM).
The realized method achieved better accuracy for each considered rank.

Table 6.2: Rank-1 Identification Accuracy achieved using different number of enrolled samples
per user

Methods

Rank-1 Accuracy (%)

1 enrolled 2 enrolled 3 enrolled 4 enrolled

ISF+KNN 42.62 51.90 59.06 59.06

ISF+FFNN 48.20 69.60 71.80 80.50

ISF+SVM 65.94 74.72 80.54 84.56

MFCC+GMM 66.95 67.79 73.49 76.51

traction method in combination with a hierarchical classifier based on SVMs (ISF+SVM)
achieved the best result on the considered dataset, with Rank-1 identification accuracy
of 85.64%.

Fig. 6.1 shows the Cumulative Match Characteristic (CMC) curves obtained by com-
paring the baseline method (MFCC+GMM) and the studied method in its best configu-
ration (ISF+SVM). Notably, the studied method achieved higher identification accuracy
for all the considered ranks.
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6.1.1.4 performance with reduced number of enrolled samples

To investigate the application of the realized method with less enrolled samples, we
performed an analysis by training the hierarchical classifiers with reduced numbers of
enrolled samples per user.

To simulate this scenario, we adopted a 2 fold validation strategy. The first n samples
per individual were selected as a training set. We tested four scenarios in which the
classifiers were trained with 1 enrolled sample per user, 2 enrolled samples per user, 3
enrolled samples per user, and 4 enrolled samples per user respectively. The validation
set was composed using the remaining samples per individual.

Table 6.2 reports the results obtained. In each evaluated scenario, the studied method
achieved the best results. The studied method (ISF+SVM) achieved Rank-1 identifica-
tion accuracy of 84.56% for 4 enrolled samples per user, 80.54% for 3 enrolled samples
per user, 74.72% for 2 enrolled samples per user, and 65.94% for 1 enrolled sample
per user. These results show that the realized speaker recognition system is capable of
achieving better accuracy than the baseline method with a limited number of training
samples.

6.1.2 age estimation from face analysis

In this section, we discuss the experimental setup, used datasets, and the obtained
results by the studied methods based on age estimation using facial images in AmI ap-
plications. First, we describe the used public datasets and samples acquired in our lab-
oratory simulating the conditions in AmI applications. In particular, we analyzed three
test scenarios to evaluate the implemented techniques. First, we evaluated the perfor-
mance of the studied feature selection methods. Second, we evaluated the performance
of studied methods in general scenarios using a public dataset. Third, we evaluated the
applicability of the realized method on images acquired in our laboratory simulating
less-constrained and non-cooperative user scenarios. Finally, the analysis of the results
obtained on public datasets and simulated less-constrained acquisition scenarios are
presented.

6.1.2.1 database description

We used sets of biometric data belonging both to public biometric databases and sets
of samples acquired in our laboratory by simulating the acquisitions performed in
less-constrained conditions. We tested our method using the following datasets:

• Public datasets: are used to train and compare the performance of the studied
methods with respect to the state of the art techniques. In particular, two public
datasets are used.

– WIKI Dataset: we used this database [225] to estimate the parameters of fea-
ture selection methods and training the final models. It consists of 62, 359
images of popular celebrities from Wikipedia. Most of the images in the
database display various appearances with respect to the poses and illumi-



96 experimental results

Figure 6.2: Examples of cropped faces in WIKI dataset.

nation conditions. Some examples of faces in WIKI dataset is shown in Fig.
6.2.

– Adience Benchmark Dataset: to compare the classification accuracy of our me-
thod with state of the art techniques, we used the dataset Adience Bench-
mark of Unfiltered Faces for Gender and Age Classification [83]. This dataset
consists of 26, 000 face images from 2, 284 individuals. The dataset is catego-
rized into eight age groups: {[0, 2], [4, 6], [8, 13], [15, 20], [25, 32], [38, 43],
[48, 53], [60, -]}. In our study, we assigned integer classes from 1 to 8 to the
age groups sorted in increasing order. As described in [83], to process these
samples using CNNs, we cropped the face region using the face detector
proposed by Viola and Jones [319] and aligned the frontalization method
described in [320]. Some examples of faces in WIKI dataset is shown in Fig.
6.3.

• AmI-Face Dataset: this dataset was created to evaluate the studied methods in non-
ideal conditions. It consists of face images captured at various distances (25cm,
50cm, 100cm, and 150cm) from a webcam. To simulate a less-constrained acquisi-
tion scenario, we acquired faces at various degree of rotations:

– images captured with the face at 0o rotation (frontal face).

– images captured with the face at 22.5o rotation.

– images captured with the face at 45o rotation.

– images captured with the face at 75o rotation.

– images captured with the face at 90o rotation.
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Figure 6.3: Examples of cropped faces in Adience benchmark dataset.

Figure 6.4: Examples of cropped faces in AmI-Face Dataset simulating less-constrained and
non-cooperation scenarios including rotations: (a, h) frontal, (b, i) 22◦, (c, j) 45◦, (d,
k) 75◦, (e, l) 90◦; and activities: (f, m) using cellphone, and (g, n) expression changes.

Moreover, two additional activity scenarios are included. In the first scenario, the
images are acquired when the user is talking on the smart-phone, and in the
second scenario, faces are acquired with different face expressions.

The dataset is composed of 4, 535 face images of 16 individuals. The images were
captured using a Microsoft LifeCam HD-3000. Fig. 6.4 shows some examples of
the used face images.

6.1.2.2 configuration of the experiments

A computational intelligence technique based on feed-forward neural networks (FFNN)
was used to estimate the age from the face images. We tested different numbers of
nodes with tan-sigmoidal transfer functions for the hidden layer of the FFNN regres-
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Table 6.3: Comparison of the three feature selection methods in terms of MAE (in years)

Features

Test database

CNNi + PCA + FFNN CNNi + MI + FFNN CNNi + SD + FFNN

V A Mean V+A V A Mean V+A V A Mean V+A

10
4.38 4.72 3.44 3.51 7.03 4.41 5.12 − 6.96 4.41 5.07 −

30
4.05 5.17 3.87 3.30 7.93 4.28 5.14 9.86 7.05 4.21 4.82 9.39

50
4.17 6.58 4.33 3.40 5.46 5.33 4.14 7.39 4.80 5.31 4.13 7.39

100
4.10 5.09 3.64 3.45 4.70 5.23 3.94 − 4.68 5.51 4.08 −

200
4.52 5.74 3.88 3.85 4.40 5.56 5.12 − 4.13 4.89 3.49 −

V (4096 features) A (4096 features) V+A (8192 features)

All 5.4 5.86 −

We trained the feature reduction and the regression methods using WIKI Dataset, while we tested the
performance of our method using AmI-Face dataset.

V = VGG Face CNN, A = AlexNet CNN, Mean = decision level fusion of V and A,
V+A = feature level fusion of V and A, − = the FFNN did not converge to a suitable model.

sion models (in the range of [1-100]). We imposed a maximum of 2000 training epochs.
We obtained the best results using 15 nodes in the hidden layer. We evaluated the age
estimation error in terms of MAE (Mean Absolute Error), which is the average of the
absolute difference between the estimated age and the actual age. For age classification,
we evaluated the exact classification error.

6.1.2.3 evaluation of dimensionality reduction methods

We evaluated the accuracy of considered dimensionality reduction methods. To ana-
lyze the capability of the studied method to be applied in different scenarios without
performing any training, we performed the dimensionality reduction and training of
the regression methods using WIKI Dataset. We tested the obtained models on the
AmI-Face dataset. In particular, we checked the performance of the method using the
features obtained from VGG-Face CNN, AlexNet CNN, and different feature reduction
strategies. We also compared the performance of the proposed feature level fusion with
that of the single CNNs and of a method performing a decision level fusion (computed
as the mean of the ages estimated using the CNNs singularly). Table 6.3 summarizes
the obtained results.

Results show that, for all the tested configurations, the dimensionality reduction
improved the estimation of the MAE with respect to the full feature set. In our tests,
VGG-16 CNN performed better than AlexNet CNN, probably due to the fact that VGG-
16 CNN has been designed for face recognition and Alexnet CNN has been designed
for analyzing general images. The best performing feature set is the feature level fu-
sion of VGG-Face CNN and AlexNet CNN using 30 features obtained after applying
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Table 6.4: Performance of the studied method for age estimation from face analysis in less-
constrained conditions in terms of MAE (in years)

Frontal 22
◦

45
◦

75
◦

90
◦ Cellp. Expr. DB

3.12 3.03 3.00 3.23 3.48 3.58 3.58 3.30

We trained the feature reduction and the regression methods using WIKI dataset, while we tested the
performance of the studeid method using AmI-Face dataset.

Cellp. = cell phone, Expr. = expression changes, and DB = complete dataset.

PCA. Moreover, PCA is the dimensionality reduction method that achieved the best
accuracy, probably due to its intrinsic capability of reducing noise by discarding the
less significant eigenvectors. Another important observation is that fusion strategies al-
ways increased the performances of single CNNs. In particular, the feature level fusion
obtained better results than the single CNNs and decision level fusion.

6.1.2.4 analysis of the performance for simulated less-constrained

acquisition scenarios

We evaluated separately the accuracy of the best configuration of the realized method
for each non-ideality of AmI-Face Dataset. Table 6.4 summarizes the achieved results.
This table shows that the higher performance decreasing corresponded to the scenario
in which the users were speaking with a smartphone and the scenario in which the
users were appositely performing strong changes in their expression. In all these cases,
MAE decreased of 0.46 years with respect to acquisitions performed with frontal face
and neutral expression. This performance decreasing can be considered as satisfactory
for age estimation methods working in unconstrained scenarios. It is also interesting
to note that MAE decreased only of 0.46 years for acquisition performed with head
rotations of 90o with respect to frontal acquisitions. This result is particularly promis-
ing since most of the methods in the literature are designed to work with frontal
acquisitions and have not been evaluated with this kind of strong face rotations. The
obtained performance suggest that groups of CNNs trained using big and heteroge-
neous datasets can extract discriminative features robust to a non-ideal application
conditions.

6.1.2.5 comparison with recent methods in the literature

To evaluate the performance of the realized method in general scenarios and compare
our results with the state of the art methods, we used the face images of Adience
Benchmark Dataset. We adopted the 5-fold cross-validation procedure suggested in
[83] and evaluated the performance in term of exact classification accuracy (across all
age groups).

Table 6.5 compares the accuracy of the best configuration of the studied method with
that of state-of-the-art techniques for Adience Benchmark Dataset. For this scenario,
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Table 6.5: Results in the literature for age classification on Adience benchmark dataset using
classification accuracy

Method Year Description Classification accuracy (%)

[83] 2014 Dropout SVM + LBP 45.10

[226] 2015 Deep CNN 50.70

[321] 2017 Deep CNN 61.30

[322] 2017 Deep features (DeepID2) 51.10

[323] 2017 Feedforward attention mechanism 61.80

[303] 2016 Pre-trained CNN + fine tuning 57.90

[304] 2016 Pre-trained CNN + fine tuning 64.00

[305] 2016 Pre-trained CNN + fine tuning 52.88

Proposed method for age estimation 2017 Multiple pre-trained CNNs 58.49

Tests performed using Adience benchmark dataset with 5-fold cross validation method. We used the
parameters of PCA estimated using WIKI Dataset.

the best configuration consisted of the feature level fusion applied to a set of 500
values obtained by applying PCA to the feature sets extracted using VGG-16 CNN
and AlexNet CNN.

Table 6.5 shows that the studied method obtained better or comparable classification
accuracy with respect to state-of-the-art methods based on specifically designed fea-
tures or on deep networks trained for the considered dataset. Moreover, it shows that
the considered method achieved better accuracy with respect to most of the techniques
based on the fine-tuning of pre-trained deep networks, thus proving the feasibility of
using pre-trained CNNs as generic feature extractors for age estimation.

The evaluation of the studied method based on age estimation is performed by train-
ing it on a public dataset and testing on images acquired in a less-constrained scenario.
The achieved results show that the studied method achieved satisfactory performance
for non-ideal images acquired in unconstrained scenarios. Also, the accuracy of the
realized age estimation method is compared with that of state-of-the-art techniques by
using a challenging public dataset. The obtained results show that the studied method
achieved better or comparable results with respect to the state of the art. Results also
demonstrated that CNNs trained on general datasets can obtain satisfactory accuracy
for different types of validation images. Furthermore, results proved that pre-trained
deep networks can be considered as general feature extractors for age estimation, also
without applying onerous fine-tuning techniques.

6.2 methods to improve deployed biometric technologies

This section describes the performed evaluation of the studied methods for improving
the recognition accuracy of previously deployed biometric technologies in AmI.
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In particular, the validation strategies and achieved results of the realized methods
for adaptive cohort normalization have been first presented. Then, the experimental
procedures and results of the studied methods for multibiometric systems in AmI have
been analyzed. Finally, the evaluation procedures and achieved results for the studied
multimodal continuous authentication systems in AmI have been discussed.

6.2.1 adaptive cohort normalization

This section presents the experiments related to the studied methods for enhancing
the performance of the previously deployed biometric technologies in AmI applica-
tions. The experimental procedures and obtained results of a case study in fingerprint
recognition are described.

First, we describe the creation of the training and test datasets. Then, we illustrate
the applicability of cohort normalization methods in a general scenario. Second, we
evaluate the feasibility of the proposed approach for privacy-compliant scenarios. We
simulate a deployment performance analysis using the procedure proposed by Frontex
[324], which is an evaluation prodecure compliant with privacy protection regulations
of European countries. We also present an analysis of the computational time required
by the proposed approach. Other score normalization techniques are not compared
with cohort normalization methods because techniques based on the analysis of gen-
uine matching scores cannot be applied in many scenarios due to privacy protection
regulations on the use of biometric data. Finally, the analysis of the obtained results is
presented. The obtained accuracy of the studied methods is evaluated in terms of FMR
(False Matching Rate) and FNMR (False Non-Matching Rate). As error measures, EER
(Equal Error Rate), and FMR1000 (the higher FNMR for FMR 6 0.1%) [175] are con-
sidered, and the accuracy of biometric recognition techniques are evaluated by using
ROC (Receiver Operating Characteristic) curves.

6.2.1.1 used databases

Fingerprint samples can be acquired in a wide variety of non-ideal situations, can
present poor quality due to acquisition problems and can be captured using different
acquisition sensors [176]. To simulate these problems and evaluate the performance of
the proposed approach, we used several fingerprint datasets. The used data pertain
both to public biometric databases and sets of samples acquired in our laboratory
by simulating non-ideal scenarios. All the datasets include images captured with an
optical sensor and at a resolution of 500 ppi, according to the ICAO specifications
[325, 326].

• Dataset–A (lab best-case scenario): this dataset simulates good-quality acquisitions.
We created this dataset in our laboratory by acquiring biometric images using
an optical four finger scanner and software currently adopted in real security
applications [186]. In particular, we collected 1504 biometric samples from 188

fingers in two situations:
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Figure 6.5: Examples of fingerprint images in Dataset–A: lab best-case scenario.

– 752 images (4 samples per finger). The volunteers were asked to place their
fingers on the sensor as they are, with no specific variations in behavioral or
environmental conditions.

– 752 images (4 samples per finger). The volunteers were asked to clean their
fingers before performing biometric acquisitions.

Examples of the fingerprint images in the best-case scenario are shown in Fig. 6.5

• Dataset–B (lab worst-case scenario): this dataset simulates poor-quality acquisitions.
We created this dataset in our laboratory by acquiring biometric images using an
optical four finger scanner and software currently adopted in real security appli-
cations [186]. The images represent poor finger skin conditions or uncomfortable
acquisition conditions [119]. In different scenarios the users can carry luggage
and their fingers can be dirty after touching dusty, unclean surfaces (e.g., hand
rails) or food covered in flour (e.g., donuts, croissants). To simulate these condi-
tions, we collected 1504 biometric samples from 188 fingers in two situations:

– 752 images (4 samples per finger). To simulate fingertips dirtied by touch-
ing dusty, unclean surfaces (e.g., hand rails) or food covered in flour (e.g.,
donuts, croissants), we acquired the fingerprint samples after dirtying the
fingers with flour.

– 376 images (2 samples per finger). To simulate the grease on the hands typ-
ically present after eating fast foods (e.g., sandwiches, mayonnaise, pizza)
or using hand creams, we acquired the fingerprint samples after applying a
hand cream.
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Figure 6.6: Examples of fingerprint images Dataset–B: lab worst-case scenario.

– 376 images (2 samples per finger). To simulate uncomfortable conditions, we
acquired the fingerprints while the users are holding a 4 kg bag on the same
shoulder as the finger used for the acquisition.

Examples of the fingerprint images in the worst-case scenario are shown in Fig.
6.6

• Dataset–C: this dataset is composed of fingerprint images collected from a greater
number of individuals with respect to Dataset–A and Dataset–B. We used sam-
ples belonging to the CASIA Fingerprint Image Database Version 5.0 [327]. We
extracted 2000 images by selecting the first two samples of the left and right
indexes of all the 500 individuals of the CASIA database. We selected the two
indexes of each individual because they are the two fingers most frequently en-
rolled in e-Passports [58]. Examples of the fingerprint images in Dataset-C is
shown in Fig. 6.7

To compute the cohort scores in a manner compliant with privacy laws, we used a
set of samples E corresponding to the public database FVC (Fingerprint Verification
Database) 2002 DB1 [175], composed of fingerprint samples acquired using a legacy
optical sensor with a resolution of 500 ppi. The set is composed of a total of n = 800

images acquired from x = 100 fingers (y = 8 samples per finger).

6.2.1.2 test 1 : validation based on a single dataset

To prove the applicability of cohort normalization techniques in a general application
scenario, we evaluated the performance of different methods by using an iterative val-
idation procedure that uses the samples belonging to a biometric dataset for both the
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Figure 6.7: Examples of fingerprint images in dataset-C: Casia Fingerprint Image Database
Version 5.0.

training and testing processes [328]. In particular, for each considered dataset (Dataset–
A, Dataset–B and Dataset–C), the samples of 50% of the fingers are used for computing
the cohort scores, and the remaining samples are used for testing. We computed the
training feature set needed by SVM classifiers from the partition used to compute the
cohort scores. The evaluation is carried out 10 times, and the results are averaged.
Similar procedures are widely used in the literature to validate score normalization
methods [328, 243].

Table 6.6 summarizes the results achieved using the considered cohort score nor-
malization methods and the described validation strategy based on a single biometric
dataset. This table shows that cohort normalization methods increased the accuracy of
the used fingerprint recognition software (baseline) for each considered dataset. More-
over, the performance improved in terms of EER as well as of FMR1000. In particular,
the methods based on SVM classifiers achieved the best accuracy for all the performed
tests. This result could be due to the generalization capability of SVM classifiers, which
allowed to achieve greater robustness to noisy data with respect to the other normal-
ization methods. Nevertheless, the method T–Norm, which does not require a training
step, achieved satisfactory results for all the performed tests. As an example, the me-
thod SVM–20–cohorts decreased the EER from 1.61% to 1.38% for Dataset–A, from
3.88% to 3.02% for Dataset–B, and from 3.61% to 3.07% for Dataset–C.

6.2.1.3 test 2 : privacy-compliant approach

We evaluated the performance of the studied privacy-compliant approach using Dataset–
A, Dataset–B and Dataset–C. For each user, the sample set E was used to compute the
cohort scores and to train SVM classifiers. It is important to note that the obtained re-
sults are not directly comparable to those presented in the previous section because the
evaluation procedure is different. In this case, the performance of each cohort normal-
ization method is computed once using all the samples pertaining to the considered
datasets.
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Table 6.6: Results of the cohort normalization using the validation technique based on a single
dataset (2-fold validation iterated 10 times)

Method

Test database (DB)

DB–A (lab best-case) DB–B (lab worst-case) DB–C (1000 fingers, public DB)

EER (%) FMR1000 (%) EER (%) FMR1000 (%) EER (%) FMR1000 (%)

Baseline
(test 1)

1.61 1.86 3.88 7.31 3.61 7.42

Max–rule 1.46 1.77 3.39 6.54 3.43 6.40

T–norm 1.45 1.84 3.25 6.47 3.08 5.89

SVM–all–
cohorts

1.38 1.80 3.16 7.14 3.23 6.96

SVM–20–
cohorts

1.38 1.73 3.02 6.55 3.07 6.25

Table 6.7: Accuracy of the studied privacy-compliant approach for cohort normalization using
different cohort normalization methods

Method

Test database (DB)

DB–A (lab best-case) DB–B (lab worst-case) DB–C (1000 fingers, public DB)

EER (%) FMR1000 (%) EER (%) FMR1000 (%) EER (%) FMR1000 (%)

Baseline
(test 2)

1.49 1.71 3.97 7.62 3.59 7.50

Max–rule 1.31 1.63 3.57 6.90 3.27 6.98

T–norm 1.31 1.61 3.46 7.06 3.34 6.60

SVM–all–
cohorts

1.22 1.61 3.34 6.87 3.40 6.85

SVM–20–
cohorts

1.21 1.59 3.37 7.13 3.42 6.50

Table 6.7 summarizes the achieved results. This table shows that the studied ap-
proach increased the accuracy of the used fingerprint recognition software (baseline)
for each implemented cohort normalization method in terms of both EER and FMR1000.
Also, in this case, SVM classifiers achieved the greatest performance improvements.
In particular, SVM classifiers achieved the best FMR1000 for each evaluated dataset.
FMR1000 is a particularly relevant figure of merit for evaluating the performance of bio-
metric technologies for high-security applications. As an example, the method SVM–
20–cohorts decreased the FMR1000 from 1.71% to 1.59% for Dataset–A, the method
SVM–all–cohorts decreased the FMR1000 from 7.62% to 6.87% for Dataset–B, and the
method SVM–20–cohorts decreased the FMR1000 from 7.50% to 6.50% for Dataset–C.
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Table 6.8: Accuracy of the studied privacy-compliant approach using different cohort normal-
ization methods and the privacy-compliant test methodology proposed by Frontex
[324]

Method

Test database

Dataset–C (1000 fingers, public dataset)

EER (%) FMR1000 (%)

Baseline (test 3) 3.69 7.50

Max–rule 3.27 6.50

T–norm 3.17 5.70

SVM–all–
cohorts

3.29 6.50

SVM–20–
cohorts

3.18 6.00

Fig. 6.8 shows the ROC curves obtained by the studied approach using the cohort
normalization methods that achieved the best performance in term of FMR1000 for
Dataset–A, Fig. 6.9 for Dataset–B and Fig. 6.10 for Dataset–C. The ROC curves show
that the realized method increased the accuracy of the used fingerprint recognition
software for all the operational points of the biometric system by using SVM classifiers.

In order to prove the statistical significance of the results achieved by the considered
approach with respect to the baseline method, we estimated the confidence bounds
of the error rates achieved for each curve shown in Fig. 6.8 to Fig. 6.10 by using a
method based on the central limit theorem [131] with 95% confidence limits. In partic-
ular, we observed that the confidence bounds estimated for the implemented method
and for the baseline method present very limited overlapping regions (FMR< 0.1% for
Dataset–A and Dataset–B and FMR< 1% for Dataset–C). These results confirm that the
studied approach can increase the performance of a commercial fingerprint recognition
technologies.

The investigated method and realized approach decreased the EER from 1, 49% to
1, 21% for Dataset–A. Therefore, the studied approach could reduce the number of
identity recognition in cases of false non-matches of around 19% when applied to
samples of good quality (Dataset–A).

6.2.1.4 test 3 : privacy-compliant testing

Since the considered approach could be applied in already deployed systems, we also
tested its accuracy by simulating a scenario evaluation. This analysis is also useful
to illustrate the process that should be followed to evaluate a real deployment, in
which it is not possible to perform a performance evaluation using the mostly adopted
strategies in the literature.

Scenario / operational evaluations of biometric technologies are difficult processes
because privacy protection regulations impose strict limitations in storing samples and
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templates obtained from biometric documents as well from live acquisitions, thus mak-
ing difficult to compute traditional figures of merit in an accurate manner.

To simulate a scenario evaluation, we used the privacy-compliant test methodology
proposed by Frontex [324]. This procedure allows to store only the last 10 fresh tem-
plates to estimate the biometric recognition accuracy of a system. Moreover, it requires
that each finger is presented only once to the system to obtain a single genuine score
between the fresh sample and the one stored in the biometric document. This scenario
evaluation procedure assumes that only genuine attempts of crossing the board are
performed.

We simulated this test methodology by implementing a procedure that compares
each biometric sample with the last 10 acquired fresh samples, using a first-in first-out
(FIFO) structure. Moreover, we used a dataset with two samples per finger (Dataset–C)
and considered the first sample as the one enrolled in the biometric document and the
second sample as the fresh data. For each simulated access attempt, we computed a
single genuine matching score and a maximum of more than 10% impostor identity
comparisons (a maximum of 10 impostor matching scores obtained comparing the
fresh sample and the samples stored in the FIFO structure, and a maximum of 10

impostor matching scores obtained comparing the sample enrolled in the biometric
document and the samples stored in the FIFO structure).

We evaluated the performance of the realized approach using the external dataset E
for each considered cohort normalization method. Table 6.8 summarizes the obtained
results, confirming that the considered approach can increase the recognition accuracy
of the fingerprint recognition software.

6.2.1.5 computational time

Since in many delpoyed systems it is not possible to store additional biometric data in
electronic document or smart cards, the cohort scores should be computed for each ac-
cess attempt. To validate the feasibility of the studied approach, we evaluated the com-
putational time required by the used commercial matching software [187] and by the
SVM classifiers for the computation of the normalized matching score. We performed
this test using an Intel Xeon 3.6 GHz with 32 GB of RAM working with Windows
10 and Matlab R2015b. The time required to compute the cohort scores from E (800
identity comparisons) is 0.24 s. The classification time required by the Matlab toolbox
for SVM is 0.02 s for SVM–20–cohorts and 0.342 s for SVM–all–cohorts. The obtained
results suggest that the studied approach could be used in existing applications with
satisfactory performance.

The performed evaluation and obtained results from the case study in fingerprint
recognition techniques confirm that the studied method can increase the recognition
accuracy of the previously deployed biometric systems in different applications. The
considered adaptive cohort normalization technique is general and does not depend
on a particular biometric technology. We presented the case study in fingerprint bio-
metrics. However, this approach can be easily extended to any biometric technology.
Moreover, the privacy-compliant testing procedure adopted for the evaluation of the
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Figure 6.8: ROC curves of the studied privacy-compliant approach using the cohort normaliza-
tion methods based on SVM–20–cohorts technique (that achieved the best perfor-
mance in term of FMR1000) for Dataset–A. The higher the values along the vertical
axis (100− FNMR(%)) are, the better is the accuracy.

Figure 6.9: ROC curves of the studied privacy-compliant approach using the cohort normaliza-
tion methods based on SVM–all–cohorts technique (that achieved the best perfor-
mance in term of FMR1000) for Dataset–B. The higher the values along the vertical
axis (100− FNMR(%)) are, the better is the accuracy.
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Figure 6.10: ROC curves of the studied privacy-compliant approach using the cohort normal-
ization methods based on SVM–20–cohorts technique (that achieved the best per-
formance in term of FMR1000) for Dataset–C. The higher the values along the
vertical axis (100− FNMR(%)) are, the better is the accuracy.

implemented techniques corroborate that the studied approach can perform biometric
recognition with reduced privacy risks.

6.2.2 multibiometric systems for ambient intelligence

In this section, we discuss the experimental setup, used datasets, and the obtained re-
sults by the studied methods designed for multibiometric systems in AmI. First, we
provide the description of the used public datasets and experimental procedures to
evaluate the studied methods. The results obtained from the implemented fusion ap-
proaches are detailed. Then, the privacy-compliant fusion approaches and technology
neutral evaluation of the realized methods are discussed. Finally, we present the anal-
ysis of the obtained results.

6.2.2.1 used datasets

To evaluate the performance of multibiometric systems in AmI applications, we col-
lected different datasets by considering biometric samples extracted from public bio-
metric databases, simulating different conditions that can arise in AmI. We considered
face and fingerprint databases since they are the most common biometric modalities
used in similar applications [329]. All the images have been captured using acquisi-
tion devices similar to the ones used in controlled environments. In the case of face
databases, we considered both ICAO compliant (good quality) images and non-ICAO
compliant (medium-low quality) samples, to obtain a trade-off between the quality of
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images stored in the database and the quality of fresh images acquired in live environ-
ments. In particular, we considered the following databases:

• FEI Face Database [330], containing face images captured using a color camera
with a uniform background. We selected 100 individuals, with 8 samples for each
individual captured in the same session, for a total of 800 images. A subset of the
images is ICAO compliant [331], thus allowing to simulate good quality images,
while the rest of the images are more challenging. In particular, these images
present challenging aspects that may appear in an AmI scenario, such as varia-
tions in the lighting or changes in pose and expression, which can simulate the
possibility of a live acquisition in the smart environments where the person is not
correctly following the acquisition protocol [332]. Also, even if a uniform back-
ground is not always present in real AmI systems, methods for face detection and
segmentation have been proved to work also with unconstrained backgrounds in
AmI scenarios [333, 334].

• AR Face Database [335], containing face images captured using a color camera
with a uniform background. We selected 100 individuals, with 8 samples for
each individual captured in two sessions taken 14 days apart, for a total of 800
images. Part of the database is ICAO compliant [331], as images stored in bio-
metric databases should be, whereas other images present some challenges. In
particular, this database allows us to simulate other conditions of AmI, such as
when the biometric samples stored in the database have been captured before,
and differences in make-up or hairstyle can be present during the deployment of
the system.

• FVC (Fingerprint Verification Database) 2002 DB1 [175], containing fingerprint
samples captured using a medium-quality, legacy optical sensor with a 13.2×
25mm sensing area and with 500 ppi resolution. The database is composed by
100 individuals, with 8 samples for each individual, for a total of 800 images.
This database permits to simulate AmI applications with samples captured with
old equipment.

• FVC (Fingerprint Verification Database) 2006 DB2 [336], containing fingerprint
samples captured using a more recent medium-quality optical fingerprint acqui-
sition sensor, with 17.8× 25mm sensing area and 500 ppi resolution. We selected
100 individuals, with 8 samples for each individual, for a total of 800 images.
Differently, from the FVC 2002 DB1 database, the volunteers included also man-
ual workers and older adults. Moreover, the acquisition procedure did not con-
sider any constraint used for increasing the quality of the captured samples. This
database allows simulating people with all kinds of ages, jobs, and familiarity
with technology. Moreover, the fingerprint images captured in non-ideal situa-
tions simulate the possibility of people residing in AmI with fingers swollen,
dirty, or greasy from the travel [119].

Then, using the four databases, we created two scenarios: Scenario 1, using FEI for
face and FVC 2002 DB1 for fingerprint (Fig. 6.11); Scenario 2, using AR for face and FVC
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Figure 6.11: Simulated multibiometric systems for scenario 1.

2006 DB2 for fingerprint (Fig. 6.12). Moreover, to recreate the operational conditions of
security applications, we applied the compression techniques described by the ICAO
for storing biometric samples in the database [331]. In particular, we used the WSQ
compression to produce fingerprint samples with ≈ 10 kB file size, and the JPG com-
pression to produce face images with ≈ 90 pixels between the eyes and ≈ 15− 20 kB
file size.

6.2.2.2 experimental procedure

We used the biometric recognition software Cognitec FaceVACS v9.1.1.0 and Dermalog
Fingercode3 v1.2.1613.13 to compute and match the templates from the face and finger-
print images, respectively. In both scenarios, we performed a scenario evaluation [337]
for all the fingerprint and face databases, separately. For each database, the evaluation
included 5600 genuine comparisons and 633600 impostor comparisons. We considered
as error metrics the EER and the FMR1000 (the lowest FNMR for FMR 6 0.1%).

Then, for each scenario, we performed the score-level fusion using the sum, product,
max, min, weighted sum using Fisher’s rule [338], NCW rule [147], MEW rule [339],
OLD rule [339], likelihood ratio, and quality-based likelihood ratio [104].

The training of the likelihood ratio methods was performed on a random subset
containing 50% of genuine scores and 50% of the impostor scores, and tested on the
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Figure 6.12: Simulated multibiometric systems for scenario 2.

remaining scores. The procedure was repeated 10 times, then the average FMR and
FNMR were used to compute the error metrics [104]. We tested the privacy-compliant
biometric fusion technique that can be applied in AmI systems by performing the train-
ing and the test using two different datasets. Moreover, a technology-neutral evaluation
was performed by considering biometric recognition algorithms produced by different
vendors.

6.2.2.3 results of score-level fusion

The results for the Scenario 1 and Scenario 2 are reported in Table 6.9. In both sce-
narios, it is possible to observe that learning-based methods using the likelihood ratio
obtained the best results in terms of EER and the FMR1000, independently from the
used normalization technique. Moreover, Table 6.9 shows that the sum rule allowed
to obtain high accuracy in terms EER and FMR1000, similar to the one obtained using
learning-based methods, but required a preliminary Z-Score normalization to obtain
the best results.

6.2.2.4 privacy-compliant fusion

To test the accuracy of the privacy-compliant score-level fusion, the scores obtained in
Scenario 1 were used to train the likelihood ratio fusion model, which was then tested
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Table 6.9: Score-level fusion results

Ref. Fusion

Scenario 1 Scenario 2

Normalization method Normalization method

No norm. Min-max Z-Score No norm. Min-max Z-Score

EER FMR EER FMR EER FMR EER FMR EER FMR EER FMR

1000 1000 1000 1000 1000 1000

(%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%)

- Face 1.55 6.78 1.55 6.78 1.55 6.78 4.42 17.53 4.42 17.53 4.42 17.53

- Fingerprint 1.14 1.71 1.14 1.71 1.14 1.71 0.82 1.07 0.82 1.07 0.82 1.07

- Sum 1.00 1.60 0.17 0.42 0.09 0.07 0.64 1.07 0.28 0.60 0.21 0.21

- Product 0.32 0.64 0.28 0.53 0.47 0.64 1.25 2.42 1.10 2.10 0.21 0.21

- Max 1.14 1.71 0.45 6.75 0.21 0.39 0.82 1.07 0.57 1.46 0.37 0.75

- Min 1.55 6.78 0.99 4.60 1.00 1.75 4.42 17.53 2.35 4.35 2.21 4.75

Weighted sum

[338] Fisher 0.10 0.10
a

0.10 0.10
b

0.10 0.10
c

0.17 0.21
d

0.17 0.21
e

0.17 0.21
f

[147] NCW 0.10 0.10
g

0.10 0.10
h

0.10 0.10
i

0.17 0.21
j

0.17 0.21
k

0.17 0.21
l

[339] MEW 0.10 0.10
m

0.10 0.10
n

0.10 0.10
o

0.21 0.21
p

0.21 0.21
q

0.21 0.21
r

[339] OLD 0.42 0.60
s

0.42 0.60
t

0.42 0.60
u

0.57 0.89
x

0.56 0.89
y

0.56 0.89
z

[314] Dempster-Shafer theory∗ - - 0.11 0.16
v - - - - 0.17 0.20

v - -

[104] Likelihood ratio 0.09 0.08 0.07 0.07 0.09 0.09 0.17 0.19 0.21 0.22 0.19 0.20

[104] Quality-based
0.07 0.07 0.07 0.07 0.07 0.07 0.13 0.14 0.11 0.12 0.10 0.10

likelihood ratio

∗ The Dempster-Shafer theory requires normalizing match scores between 0 and 1. Therefore, No norm.
and Z-Score are not applicable for this fusion strategy.

aw = (0.98, 0.02); bw = (0.36, 0.64); cw = (0.49, 0.51); dw = (0.95, 0.05); ew = (0.25, 0.75); fw = (0.31, 0.69)
gw = (0.28, 0.01); hw = (0.08, 0.21); iw = (0.11, 0.17); jw = (0.27, 0.01); kw = (0.07, 0.18); lw = (0.09, 0.16)
mw = (0.28, 0.01); nw = (0.09, 0.19); ow = (0.13, 0.15); pw = (0.28, 0.01); qw = (0.11, 0.16); rw = (0.14, 0.14)
sw = (0.26, 0.02); tw = (0.03, 0.26); uw = (0.04, 0.24); xw = (0.20, 0.08); yw = (0.01, 0.27); zw = (0.01, 0.26)
vw = (0.3, 0.5)

Table 6.10: Privacy-compliant score-level fusion results using the quality-based likelihood ratio

Train scenario

Test scenario
Scenario 1 Scenario 2

EER FMR1000 EER FMR1000
(%) (%) (%) (%)

Scenario 1 0.07 0.07 0.16 0.18

Scenario 2 0.26 0.30 0.10 0.10

on the scores achieved in Scenario 2, and vice versa. A preliminary Z-Score normal-
ization was used. The results are reported in Table 6.10, showing that the recognition
accuracy was not significantly affected when the fusion model is trained on different
datasets, thus demonstrating that it is possible to perform an off-line training of the
fusion model in AmI applications even with data captured in a different context (e.g.,
public datasets).
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Table 6.11: Improvement of EER and FMR1000 using the sum fusion, with respect to using
only the most accurate biometric trait, in a technology-independent environment,
for different combinations of recognition algorithms. Negative values correspond
to increase in accuracy

Scenario 1 Scenario 2

Algorithm ∆EER ∆FMR1000 ∆EER ∆FMR1000

Face Fingerprint (%) (%) (%) (%)

Cognitec FaceVACS v9.1.1.0 Dermalog Fingercode3 v1.2.1613.13 -0.14 -0.11 -0.18 -0.00

Cognitec FaceVACS v9.1.1.0 Neurotechnology VeriFinger v6.0 -0.00 -0.00 -0.00
∗ -0.00

∗

Neurotechnology VeriLook v6.0 Dermalog Fingercode3 v1.2.1613.13 -0.75 -1.07 -0.70 -0.90

Neurotechnology VeriLook v6.0 Neurotechnology VeriFinger v6.0 -0.24 -0.26 -0.00
∗ -0.00

∗

∗ EER and FMR1000 were already equal to 0 using only the most accurate biometric trait

6.2.2.5 technology-independent evaluation

In this section, we provide a technology-independent evaluation of the score-level fu-
sion performance, by using the different combinations of recognition algorithms from
different vendors, and analyzing the improvement in the EER and FMR1000 with re-
spect to using only the most accurate biometric trait (the fingerprint). In particular, we
used the software Dermalog Fingercode3, Cognitec FaceVACS, Neurotechnology Ver-
iFinger, and Neurotechnology VeriLook. No previous normalizations were performed,
and the sum rule was used as fusion method since it does not require any learning
process. In all cases, it increased the accuracy of the recognition [102]. For each combi-
nation, we evaluated the differences ∆EER and ∆FMR1000 obtained by using the sum
fusion strategy with respect to using the fingerprint, which were computed as follows:

∆EER = EERsum − EERfinger ;

∆FMR1000 = FMR1000sum − FMR1000finger . (6.1)

The results are summarized in Table 6.11 for both Scenario 1 and Scenario 2, showing
that in all cases the fusion allowed to obtain lesser or equal EER and FMR1000 with
respect to using only the most accurate biometric trait, independently of the used
recognition algorithm in the AmI context we simulated.

The presented experimental procedure, evaluation protocols and the obtained re-
sults analyze the feasibility of the studied multibiometric systems in AmI applications.
The realized approach for combining multiple biometric traits in AmI is evaluated in
general scenarios and also on the techniques based on technology-neutral approaches
and privacy-compliant fusion.

The performed technology evaluation of the most commonly used score level fu-
sion techniques shows that recent learning-based methods such as the likelihood ratio
obtain the best accuracy. Moreover, the evaluation of the performance of a privacy-
compliant score-level fusion using the likelihood ratio, demonstrate that fusion meth-
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ods can be used to enhance the performance of multibiometric systems in AmI, even
when actual data collected using AmI systems is not available.

The discussed technology-independent evaluation of the studied method for mul-
timodal fusion in AmI proved that it is always possible to use score-level fusion to
increase the recognition accuracy in multimodal AmI systems, independently of the
used recognition algorithm.

6.2.3 multimodal continuous authentication

This section presents the configuration of the experiments, used datasets, and obtained
results for the methods for multimodal fusion in continuous authentication systems.
First, we provide the description of the collected database. Then, the creation of train-
ing and test datasets are detailed. The configuration of the implemented method is
outlined. Finally, the performance evaluation of the studied method and analysis of
the obtained results are discussed.

6.2.3.1 collected database

To the best of our knowledge, there were no available any public multimodal datasets
using face and voice biometrics, acquired in unconstrained conditions. To evaluate the
studied methods for multimodal continuous authentication, we collected a true mul-
timodal audio-visual dataset simulating less-constrained and non-cooperative acquisi-
tions typical of AmI. It consisted of videos of 180 seconds collected from 12 individuals
in our laboratory. The frame rate of the video files were 30 fps, and the sampling rate
of the audio files were 44100 kHz. The size of each frame was 1280× 720 pixel. The
illumination conditions are kept similar to normal conditions in a room. The video and
audio have been captured from a distance of 50 cm from the webcam using a Microsoft
LifeCam HD-3000. The conditions are simulated when the user is sitting idle, working
on the console, or talking on the smartphone. In particular, the images extracted in the
period when the user is talking on the phone, show occlusions, sharp rotations and
various poses. Examples of the images extracted from the database are shown in Fig
6.13. The figure shows different scenarios while the user is working in the office.

6.2.3.2 creation of the training and test datasets

• Enrollment set: the first 20 seconds of each video have been used for creating the
enrollment set. For making the face recognition system, a total of 600 face images
have been extracted from the first 20 seconds of the video of each user. The best
quality sample for each user is used to enroll the user.

For the voice recognition system, a 20 second template is extracted for each user
and used to enroll the user.

• Test set: to extract the face images for the test set, we used a sliding window
method. After the first 20 seconds of the video, the 10 seconds samples have
been extracted.
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Figure 6.13: Examples of collected multimodal database for continuous authentication systems.

The face images have been selected every second after the 20 seconds of video
used for the enrollment. The voice samples have a duration of 10 seconds and
have been acquired every second. The acquisition of the voice samples simu-
lates real conditions with a constant buffer of 10 seconds. The audio samples can
present an overlap.

In total, we obtained 1800 samples from 12 individuals (150 samples per individ-
ual).

6.2.3.3 configuration of the experiments

A computational intelligence technique based on feed-forward neural networks (FFNN)
was used to perform asynchronous multimodal fusion. The considered configurations
of FFNN are designed as follows. We used a single linear node for the output layer of
the neural network. We tested different numbers of nodes with tan-sigmoidal transfer
functions for the hidden layer of the FFNN (in the range from 1 to 10). We trained the
neural networks using the Levenberg-Marquardt backpropagation algorithm with 500
epochs. We obtained the best results using 2 nodes in the hidden layer.

The evaluation is carried out 10 times, and the results are averaged. Similar pro-
cedures are widely used in the literature [328, 243]. For each iteration, we randomly
selected 900 samples to create the training set. The validation set was composed using
the remaining sample.
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Figure 6.14: EER obtained at different time distances in seconds. In particular, the neural-based
method has achieved lowest EER compared to other used fusion approaches. The
obtained accuracy of the studied method for multimodal continuous authentica-
tion is measured as ERR, with mean equal to 2.38%, and the standard deviation
equal to 3.10%

6.2.3.4 performance evaluation

We evaluated the accuracy of the studied adaptive multimodal fusion techniques for
continuous authentication systems. Fig. 6.14 reports the obtained results in terms of
EER.

The achieved results of the studied neural-based multimodal fusion method have
been compared with three baseline score-level fusion techniques, minimum rule, maxi-
mum rule, and mean rule. Fig. 6.14 shows the comparison between the baseline fusion
techniques and the studied adaptive neural-based fusion technique. From the figure,
it is possible to observe that, in the interval of critical points (from 45s to 150s) in
continuous authentication systems, the realized technique able to improve the accu-
racy of the system, by obtaining lower EER. In particular, the considered technique is
able to reduce the EER in the interval of critical points with respect to the compared
techniques.

These results are preliminary and the proposed method should be evaluated using
further data acquired in different scenarios. Nevertheless, these results are promising
and confirm the feasibility of the method.

6.3 summary

The experimental procedures, evaluation protocols and obtained results of the studied
methods for biometric technologies in AmI applications have been described in this
chapter.
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The studied approaches based on user-friendly technologies for less-constrained
human-machine interactions in biometric systems have been analyzed. The results
achieved by using evaluation procedures are compared with state-of-the-art techniques.
All the considered techniques have shown encouraging results. In particular, the results
obtained for the studied methods for text-independent speaker recognition systems
demonstrated that the proposed method reduced the size of the template with respect
to traditional approaches based on GMM and achieved better identification accuracy.
The studied method have been evaluated using reduced numbers of enrolled samples
per individual. The achieved results showed that the realized method is capable of
achieving better accuracy than the baseline.

The obtained results for the studied methods based on age estimation using non-
ideal face images have been analyzed. The realized approach has been evaluated by
training it on a public dataset and testing on images acquired in a less-constrained sce-
nario. The analysis of the results showed that the studied method achieved satisfactory
performance for non-ideal images acquired in unconstrained scenarios and obtained
better or comparable results with respect to state-of-the-art methods. Moreover, the re-
sults also demonstrated that the considered technique trained on general datasets can
obtain satisfactory accuracy for different types of validation images, thus, improving
the generality of the system. Furthermore, results proved that pre-trained deep net-
works can be considered as general feature extractors for age estimation, also without
applying onerous fine-tuning techniques.

Further, we have evaluated the studied methods for improving the recognition accu-
racy of the previously deployed biometric technologies in AmI.

First, the analysis have been performed on the studied methods for adaptive cohort
normalization techniques. A technological and a scenario evaluation of the considered
case study is performed by using biometric samples acquired by simulating different
non-ideal conditions. For all the performed tests, the realized approach increased the
accuracy of the existing biometric systems. The obtained results suggested that the
studied techniques can be effectively applied in existing AmI applications in a privacy-
compliant manner and without requiring hardware or software modifications.

Then, the studied methods for multibiometric systems for AmI applications have
been evaluated. A privacy-compliant evaluation have been performed, which showed
that the realized approach can increase the performance of the multibiometric sys-
tems in AmI applications, by complying the privacy issues of AmI. The technology-
independent evaluation proved that it is always possible to use score-level fusion to
increase the recognition accuracy of multimodal systems in AmI, independently of the
used recognition algorithm.

Finally, the studied methods for multimodal continuous authentication systems for
AmI applications have been analyzed. The considered methods have been tested on
real multimodal database acquired in our laboratory simulating less-constrained and
non-operative acquisition scenarios. The results showed that the realized approach
can perform asynchronous multimodal fusion in a continuous manner. Moreover, the
evaluation of the adaptive neural-based fusion method demonstrated that the realized
approach achieved better performance with respect to the baseline fusion techniques in
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less-constrained scenarios, and were able to reduce the EER of the multimodal fusion
in the interval of critical points in continuous authentication systems. The obtained
results are preliminary and the studied method should be evaluated in different AmI
using further data. Nevertheless, the achieved results are promising and confirm the
feasibility of the studied method.





7
C O N C L U S I O N A N D F U T U R E W O R K S

7.1 conclusion

The objectives of this thesis were the study and implementation of innovative ap-
proaches to improve the human-computer interaction in Ambient Intelligence (AmI)
by using biometrics as enabling technologies to design personalized services for indi-
viduals or classes of people.

In this context, the first contribution of this thesis consists of proposing innovative
less-constrained technologies able to increase the applicability of biometric systems
in AmI and improve the quality of the human-computer interaction in different AmI
scenarios, with respect to the state-of-the-art technologies. The realized approaches
include biometric technologies based on less-constrained and non-cooperative acqui-
sitions to facilitate the interaction between the users and the systems in AmI. With
respect to the state-of-the-art, the novelty of the studied approaches resides in the fact
that we considered less-constrained acquisition scenarios and non-cooperative users
to increases the applicability of biometric technologies in AmI. The studied innovative
methods for less-constrained biometric systems consist of a text-independent speaker
identification system and a technique for age estimation based on facial images. These
methods have been designed to be robust to different kinds of non-idealities typical of
AmI scenarios and showed advantages with respect to state-of-the-art techniques. In
particular, the realized text-independent speaker identification method achieved better
accuracy with respect to traditional biometric systems for small databases of samples
acquired in environmental conditions typical of AmI environments. Moreover, the size
of the templates used by our method was significantly lower with respect to that of
state-of-the-art methods, thus permitting its use in scenarios in which the biometric
data are stored in electronic documents or smart cards. The implemented age esti-
mation method based on deep learning techniques achieved satisfactory accuracy for
non-ideal face images acquired in unconstrained scenarios typical of AmI applications.

121
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Furthermore, this method was faster and easier to tune in different application condi-
tions with respect to the approaches in the literature based on deep neural networks.

A further contribution consists of the study and realization of novel approaches to
improve the applicability and integration of heterogeneous biometric systems in AmI.
The performed studies regard original methods for novel and comprehensive biomet-
ric systems able to deal with heterogeneous traits, sensors, and environmental condi-
tions. The novelty of the studied approaches consists of designing novel multimodal
biometric approaches that take advantage from all the sensors placed in a generic envi-
ronment in order to achieve high recognition accuracy and to permit to perform contin-
uous or periodic authentications in an unobtrusive manner. The realized approaches
have been designed to improve the recognition accuracy of the already deployed bio-
metric technologies based on single and multiple biometric technologies. These ap-
proaches consist of a privacy-compliant cohort normalization technique, a technology-
independent multimodal fusion strategy, and a multimodal continuous authentication
system for AmI applications. These innovative approaches showed advantages with
respect to state-of-the-art techniques. In particular, the cohort normalization approach
achieved better accuracy with respect to baseline technologies by providing effective
privacy protection mechanisms that permit its application in a wide set of countries.
Furthermore, its performance was comparable to that of methods in the literature that
do not consider privacy concerns. The implemented technology-independent multi-
modal fusion approach increased the accuracy of traditional biometric systems for
low-quality samples typical of AmI scenarios. Moreover, a technology-independent
evaluation of the considered method proved that the implemented score-level fusion
approach increased the biometric accuracy of traditional systems for every evaluated
combination of biometric recognition techniques and traits. The studied multimodal
continuous authentication approach proved to effectively handle the asynchronous be-
havior of the multimodal biometric data and to be able to deal with the uncertainties
in the recognition scores of continuous authentication systems. The obtained results
were promising and confirmed the feasibility of the method. However, further studies
should be performed to prove the effectiveness of this approach in different application
scenarios.

The realized novel technologies have been tested on different biometric datasets
(both public and collected in our laboratory) simulating acquisitions performed in AmI
applications. The achieved results proved the feasibility of the studied approaches and
shown that the studied methods effectively increased the accuracy, applicability, and
usability of biometric technologies in AmI with respect to the state-of-the-art.

7.2 future works

The thesis improved the state of the art for biometrics in AmI applications by proposing
user-friendly and uncooperative technologies and by presenting novel approaches for
increasing the accuracy of biometric systems already deployed in AmI scenarios. Nev-
ertheless, the performed research could be expanded in several directions, including
the design of novel techniques to extract and use soft biometric data, novel algorithms
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robust to non-ideal acquisitions for biometric recognition technologies usable in non-
cooperative scenarios, techniques to select the more readable biometric traits according
to the sensors deployed in a specific AmI environment, and approaches to integrate
user-friendly methods for human-computer interaction with biometric technologies.

More details on possible future research topics are provided in the following:

• Novel methods to extract and process soft biometric information from non-ideal
samples should be designed. These methods should extract information from
multi-dimensional signals acquired in non-cooperative AmI scenarios. Moreover,
soft biometric data should permit to classify the users according to sets of prefer-
ences related to physiological or cultural factors. Examples of multi-dimensional
signals that could be used in this context are the face images, voice samples,
and surveillance videos. Examples of soft biometric information are the gender,
height, width, and ethnicity.

• Innovative methods for biometric recognition based on samples acquired in less-
constrained conditions with respect to the literature should be designed to in-
crease the possible application scenarios of biometric technologies in AmI. Ex-
amples of these biometric technologies are face recognition methods for mobile
devices, technologies based on touchless fingerprint images, and biometric tech-
nologies for iris recognition based on samples acquire at a high distance from the
sensor and in natural light conditions.

• Innovative techniques to select the most reliable biometric traits according to the
sensors deployed in a specific AmI application should be studied. Novel tech-
niques able to adapt a multibiometric system to the hardware configuration of
different AmI scenarios should simplify the deployment of biometric technolo-
gies as well as increase the recognition accuracy of current technologies by con-
sidering the biggest amount of information available for each environment.

• Approaches to integrate user-friendly methods for human-computer interaction
with biometric technologies should improve the usability of AmI technologies by
providing integrated frameworks to evaluate different aspects of multi-dimensional
sensors. Examples of technologies to be further studied are systems to analyze
voice signals in terms of speaker as well as speech recognition, methods to infer
the emotion and identity from face images, and techniques to infer the identity
of the user from a frame sequence from the analysis of gestures.

• Biometric datasets composed of large numbers of samples, also acquired in AmI
scenarios different from the ones considered in this thesis, should be collected. Ex-
amples of technologies to be further studied are face recognition systems based
on samples of poor quality acquired from surveillance cameras and voice recogni-
tion systems based on samples acquired in noisy conditions such as background
noise (television or radio sounds) or under stress conditions.
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Some ideas and significant results present in this thesis were published in:

1. “Age Estimation Based on Face Images and Pre-trained Convolutional Neural Networks”
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and F. Scotti

Proceedings of the 2017 IEEE Symp. on Computational Intelligence in Biometrics
and Identity Management (CIBIM 2017), November 27 to December 1, Honolulu,
Hawaii, USA.

ABSTRACT: Age estimation based on face images plays an important role in a
wide range of scenarios, including security and defense applications, border con-
trol, human-machine interaction in ambient intelligence applications, and recog-
nition based on soft biometric information. Recent methods based on deep learn-
ing have shown promising performance in this field. Most of these methods use
deep networks specifically designed and trained to cope with this problem. There
are also some studies that focus on applying deep networks pre-trained for face
recognition, which perform a fine-tuning to achieve accurate results. Differently,
in this paper, we propose a preliminary study on increasing the performance of
pre-trained deep networks by applying post-processing strategies. The main ad-
vantage with respect to fine-tuning strategies consists of the simplicity and low
computational cost of the post-processing step. To the best of our knowledge, this
paper is the first study on age estimation that proposes the use of post-processing
strategies for features extracted using pre-trained deep networks. Our method
exploits a set of pre-trained Convolutional Neural Networks (CNNs) to extract
features from the input face image. The method then performs a feature level
fusion, reduces the dimensionality of the feature space, and estimates the age of
the individual by using a Feed-Forward Neural Network (FFNN). We evaluated
the performance of our method on a public dataset (Adience Benchmark of Un-
filtered Faces for Gender and Age Classification) and on a dataset of non-ideal
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samples affected by controlled rotations, which we collected in our laboratory.
Our age estimation method obtained better or comparable results with respect
to state-of-the-art techniques and achieved satisfactory performance in non-ideal
conditions. Results also showed that CNNs trained on general datasets can ob-
tain satisfactory accuracy for different types of validation images, also without
applying fine-tuning methods.

2. “Text-Independent Speaker Recognition for Ambient Intelligence Applications by Using
Information Set Features”

Abhinav Anand, R. Donida Labati, M. Hanmandlu, V. Piuri, and F. Scotti Pro-
ceedings of the 2017 IEEE International Conference on Computational Intelli-
gence and Virtual Environments for Measurement Systems and Applications
(CIVEMSA 2017), Annecy, France, July 26-28, 2017.

ABSTRACT: Biometric systems are enabling technologies for a wide set of ap-
plications in Ambient Intelligence (AmI) environments. In this context, speaker
recognition techniques are of paramount importance due to their high user accep-
tance and low required cooperation. Typical applications of biometric recognition
in AmI environments are identification techniques designed to recognize individ-
uals in small datasets. Biometric recognition methods are frequently deployed on
embedded hardware and therefore need to be optimized in terms of compu-
tational time as well as used memory. This paper presents a text-independent
speaker recognition method particularly suitable for identification in AmI en-
vironments. The proposed method first computes the Mel Frequency Cepstral
Coefficients (MFCC) and then creates Information Set Features (ISF) by applying
a fuzzy logic approach. Finally, it estimates the user’s identity by using a hierar-
chical classification technique based on computational intelligence. We evaluated
the performance of the speaker recognition method using signals belonging to
the NIST-2003 switchboard speaker database. The achieved results showed that
the proposed method reduced the size of the template with respect to traditional
approaches based on Gaussian Mixture Models (GMM) and achieved better iden-
tification accuracy.

3. “Enhancing fingerprint biometrics in Automated Border Control with adaptive cohorts”

Abhinav Anand, R. Donida Labati, A. Genovese, Enrique Muñoz, V. Piuri,
F. Scotti, and G. Sforza

Proceedings of the 2016 IEEE Symposium on Computational Intelligence for Secu-
rity and Defense Applications (CISDA 2016), Athens, Greece, pp. 1-8, December
6-9, 2016

ABSTRACT: Automated Border Control (ABC) systems are being increasingly
used to perform a fast, accurate, and reliable verification of the travelers’ iden-
tity. These systems use biometric technologies to verify the identity of the person
crossing the border. In this context, fingerprint verification systems are widely
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adopted due to their high accuracy and user acceptance. Matching score nor-
malization methods can improve the performance of fingerprint recognition in
ABC systems and mitigate the effect of non-idealities typical of this scenario
without modifying the existing biometric technologies. However, privacy protec-
tion regulations restrict the use of biometric data captured in ABC systems and
can compromise the applicability of these techniques. Cohort score normaliza-
tion methods based only on impostor scores provide a suitable solution, due to
their limited use of sensible data and to their promising performance. In this
paper, we propose a privacy-compliant and adaptive normalization approach for
enhancing fingerprint recognition in ABC systems. The proposed approach com-
putes cohort scores from an external public dataset and uses computational intel-
ligence to learn and improve the matching score distribution. The use of a public
dataset permits to apply cohort normalization strategies in contexts in which pri-
vacy protection regulations restrict the storage of biometric data. We performed
a technological and a scenario evaluation using a commercial matcher currently
adopted in real ABC systems and we used data simulating different conditions
typical of ABC systems, obtaining encouraging results.

4. “Enhancing the Performance of Multimodal Automated Border Control Systems”

Abhinav Anand, Ruggero Donida Labati, Angelo Genovese, Enrique Muñoz,
Vincenzo Piuri, Fabio Scotti, and Gianluca Sforza

Proceedings of the 15th IEEE Conference on Biometrics Special Interest Group
(BIOSIG 2016), Darmstadt, Germany, pp. 1-5, September 21-23, 2016.

ABSTRACT: Biometric recognition in Automated Border Control (ABC) systems
is performed in response to an increased worldwide traffic, by automatically
verifying the identity of the passenger during border crossing. Currently, ABC
systems seldom use methods for multimodal biometric fusion, which have been
proved to increase the recognition accuracy, due to technological and privacy
limitations. This paper proposes a framework for the biometric fusion in ABC
systems, with the features of being technology-neutral and privacy-compliant,
by performing an analysis of the most suitable biometric fusion techniques for
ABC systems and considering the current technical and legal limitations.
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