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Abstract
This thesis deals with scalable perceptual audio compression. Two scalable perceptual 
solutions as well as a scalable to lossless solution are proposed and investigated. One 
of the scalable perceptual solutions is built around sinusoidal modelling of the audio 
signal whilst the other is built on a transform coding paradigm. The scalable coders 
are shown to scale both in a waveform matching manner as well as a psychoacoustic 
manner. In order to measure the psychoacoustic scalability of the systems investigated 
in this thesis, the similarity between the original signal’s psychoacoustic parameters 
and that of the synthesized signal are compared. The psychoacoustic parameters used 
are loudness, sharpness, tonality and roughness. This analysis technique is a novel 
method used in this thesis and it allows an insight into the perceptual distortion that 
has been introduced by any coder analyzed in this manner.

The scalable sinusoidal coder is built around the sorting of perceptually significant 
sinusoids and the use of the sorted relationship between the sinusoids to implement 
unique quantization techniques allowing for scalable compression. The results pre­
sented, which show the scalability of the coder, also re-enforce the idea that the 
phase component of the sinusoids has a limited perceptual contribution. The sinu­
soidal coder is compared to the MPEG-4 AAC coder at various rates with a variety 
of test material. The obtained results are promising for this scheme. This scheme is 
not developed further due to the limitations that are imposed on the granularity of 
the scalability, rather a scheme with much finer granularity is pursued and developed.

The scheme that is pursued is the second scalable scheme proposed in this thesis. 
It is built around the Set Partitioning In Hierarchical Trees (SPIHT) algorithm and

xiv



X V

the Modulated Lapped Transform (MLT). This scheme is shown to produce better 
compression than the sinusoidal scheme as well as other schemes that combine SPIHT 
with other transforms. The MLT-SPIHT scheme is combined with masking and 
a modification to the SPIHT algorithm to increase its compression. The results 
presented for the MLT-SPIHT scheme with masking show very good quality at rates 
at or above 56 kbps. The scheme is also shown to be scalable both objectively and 
perceptually. The scalability of the scheme is the direct result of the use of SPIHT 
which is a set sorting, bit plane transmission algorithm.

This thesis then extends the scalable concept to approaching and achieving loss­
less compression in a smooth manner. To facilitate such a coding scheme a number 
of possibilities are proposed and investigated. An integer transform based scheme 
is investigated with two integer transforms. The results show limited lossless com­
pression with a loss in perceptual quality at the medium to low rates. This scheme 
is thus replaced by an MLT-SPIHT based scheme that operates by applying SPIHT 
to the original signal’s MLT coefficients, obtaining a residual signal and applying 
SPIHT again in the time domain to the residual signal. Lossless compression that 
is competitive with the current state of the art is achieved whilst maintaining good 
perceptual quality at the low to medium rates. This scheme is again extended by 
the development of the Perceptual SPIHT (PSPIHT) algorithm which arranges the 
bits for transmission in a perceptually significant manner without resorting to quan­
tizing the less perceptually significant bits using a lower resolution than the other 
coefficients. Whilst there is a cost in terms of lossless performance, the algorithm 
does allow the focus to be on perceptually significant coefficients at the lower rates. 
Objective results are presented for this scheme to compare it with the MLT-SPIHT 
scalable to lossless scheme.
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Chapter 1 
Introduction

1.1 Perceptually scalable audio compression
Perceptual audio compression aims to reduce the amount of information that is trans­
mitted or stored whilst facilitating the reproduction of a sound perceptually equivalent 
to the original. Perceptual audio compression has become the norm in the compres­
sion of audio signals as it is now expected that new compression algorithms will have 
perceptual concepts embedded in them somehow. This of-course has not always been 
the case; instead, it is the result of the combination of efforts in both signal processing 
technology and psychoacoustic concepts.

The interest in audio compression in general stems from the simple concept of max­
imizing return for a given cost, or minimizing the cost for a given return. Whichever 
way it is looked at, the problem at hand is to be able to provide high quality audio 
for the lowest transmission cost. Naturally, there are other costs that must be taken 
into account such as complexity and delay.

This thesis is concerned with addressing the issue of perceptually scalable audio 
compression, i.e., compression schemes are proposed that scale in perceptual quality

1



1.2 Scalable to lossless audio compression 2

with increasing bit rate. This is a growing area in audio compression as it allows 
the delivery of different quality audio at varying bit rates. The algorithms that are 
studied and proposed in this context all aim to provide a single paradigm at different 
bit rates, a variation from the current standardized practice of employing different 
paradigms at different bit rates. The advantage of this approach is the ability to 
smoothly scale in quality with fine granularity up to a perceptual limit that is signal 
dependent.

Two forms of perceptually scalable algorithms are proposed in this thesis. The 
first is built around the popular sinusoidal model of audio. The second algorithm is 
built around a transform paradigm, which is an effective paradigm frequently adopted 
in audio compression. Chapters 4 and 5 deal with both algorithms respectively.

1.2 Scalable to lossless audio compression
The perceptual scalability of an audio compression scheme is only one aspect that 
is dealt with in this thesis. The other main issue is scalability to lossless compres­
sion. That is, smooth scalability in quality up to the lossless representation of the 
original signal at an acceptable bit rate. The aim with such a scheme is to allow 
complete scalability in the sense that given a high enough bit rate (that is below the 
quantization bit rate of the original signal) an exact copy of the original signal will 
be obtained. Lossless compression of audio is becoming a field of increasing interest 
with the increase in bandwidth available for wireless and internet applications.

In this thesis the scalable to lossless issue is dealt with in Chapter 6 where a novel



1.3 Contributions 3

scheme is proposed; the algorithm maintains smooth scalability from lossy compres­
sion to lossless compression whilst offering a lossless compression rate that is compet­
itive with the state of the art in lossless compression.

1.3 Contributions
The contributions of this thesis are the following:

• A unique compression analysis method is proposed to allow more insight into the 
effects that individual coders have on speech and audio signals. This analysis is based 
on the use of sensory pleasantness parameters to study the psychoacoustic behavior 
of the synthesized signal as compared to the original. (Chapter 2) [RRBM02].

• A novel scalable sinusoidal compression scheme is proposed. The scheme is 
also developed as a variable rate compression scheme. The scalable scheme, although 
simple in concept is shown to only be slightly outperformed by the MPEG-4 A AC 
coder. (Chapter 4) [RB01] [RBM01].

• Novel quantization schemes are also proposed that involve spline interpolation 
and weighted phase quantization. (Chapter 4) [RBM01].

• A perceptually scalable algorithm that is built around the Modulated Lapped 
Transform (MLT) and a set sorting algorithm known as Set Partitioning in Hierar­
chical Trees (SPIHT) is proposed. (Chapter 5) [RMB02c] [RMB02b].

• A modified version of SPIHT is proposed that is found to be more suitable to 
perceptual audio compression. The modified algorithm is developed from the results 
of a comprehensive investigation into the application of SPIHT for audio compression 
which also lead to the definition of unique tree sets for audio compression. (Chapter 
5) [RMB02b].



1.4 Publications 4

• A fine grain scalable to lossless compression algorithm is proposed and investi­
gated. The proposed algorithm is a two stage application of SPIHT to the input audio 
signal which allows both scalability and acceptable lossless compression. (Chapter 6) 
[RMB02a].

• An investigation into the application of integer transforms to scalable to lossless 
audio compression as well as a psychoacoustic analysis of the proposed scalable to 
lossless scheme. (Chapter 6).

• A new algorithm, based on SPIHT and named Perceptual SPIHT (PSPIHT), 
is proposed. PSPIHT allows perceptually based set sorting of the frequency domain 
representation of the audio signal whilst maintaining the ability to scale to lossless 
compression. (Chapter 6) [RMB03].
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Chapter 2
D SP and psychoacoustic concepts 
in audio compression
As a starting point in this thesis, this chapter will look at the DSP theory and psy­
choacoustic concepts that are used in audio compression. The focus is on transform 
theory, signal modelling and masking. Sensory pleasantness is also considered and 
introduced as a coder analysis tool. As such, this chapter introduces the first contri­
bution described in this thesis and published in [RRBM02].

2.1 Introduction
Audio compression is one application of signal compression. Digital Signal Processing 
(DSP) concepts play the central role in the development of algorithms and techniques 
that will reduce the volume of information that is needed to create a similar (if not 
exactly the same) copy of the original signal. DSP concepts such as transform theory, 
signal modelling and quantization form the backbone of current audio compression 
technology.

6
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Transform theory has developed techniques that allow more compact represen­
tations of audio than its time-domain form. The development of lapped transforms 
and the wavelet transform has aided in representing time domain signals in less error 
prone ways. Lapped transforms have helped in reducing the blocking effects that are 
so prominent in block transforms, whilst the wavelet transform has made it possi­
ble to represent different time domain signal components with different resolutions. 
This has meant that the same transform can have high frequency resolution for low 
frequency components and high time resolution for high frequency components.

The other main set of concepts that aid in the development of effective audio 
compression algorithms come from the field of Psychoacoustics. The best known con­
tribution of this field to audio compression is the masking model that is an important 
component of all of the state of the art audio compression schemes. This model de­
fines the signal components the compression algorithm may ignore or modify whilst 
maintaining a high quality synthesized signal. Psychoacoustic concepts have also 
helped in the development of more perceptually relevant objective measures that al­
low judgements to be made with regard to the perceived quality of the audio signal 
without having to resort to expensive and time-consuming formal listening tests. This 
ofcourse does not mean that these measures are mature enough to replace formal lis­
tening tests, but they are fast and more accurate than waveform distortion measures 
that are popular in DSP in general. An example of such measures is the standardized 
objective audio quality measure PEAQ [TtOO].

This chapter begins with a look at the DSP concepts and techniques that are used 
in audio signal compression. This is followed by a look at perceptual entropy and how 
it helps reduce the amount of information that must be transmitted. At this stage
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sensory pleasantness is discussed and an example of its use to analyze the coding 
effects of different compression algorithms is presented. Finally, we take a look at 
audio quality assessment with both subjective as well as objective techniques being 
described.

2.2 Audio signal processing
This section explores the signal processing aspects of audio compression. The discus­
sion will start with a look at transforms used in audio compression.

2.2.1 Transforms and transform theory

Transform theory is a vast topic which has been the subject of numerous textbooks, 
which means that this topic is too large to be covered in detail in a thesis such as 
this. Instead, the focus of this subsection will be on reviewing the main properties of 
transforms that are utilized in audio compression. More detailed information may be 
foimd in [Mer99], [RY90], [Beu84]. [YH97], [Mal92], [Yip96]. [Hah96], [AR91]. The 
notation that will be used here is borrowed from [AR91], [Mer99] and [Mal92].

Generally, transforms are used to map a signal from one domain to another. The 
mapping is denoted by:

T(x) =  x —» x (2.2.1)

here we are only interested in time-limited transforms and discrete transforms, de­
fined over [0, M — 1]. Naturally, these transforms normally have continuous time 
counterparts and discrete time counter parts which are not time-limited, i.e. defined 
over (—00, 00).
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For a known length signal x = [x(nM)x(nM + 1)... x(nM — M  + 1)]T, the 
transform T(x) is given by:

T(x) = ATx (2.2.2)
where A is a matrix that is formed from the transform basis functions (the size of 
this matrix depends on whether a block or lapped transform is being used). The basis 
functions of the transform may be both real or complex.

For audio compression one is interested in recovering the original signal and hence 
invertible transforms tend to be used. This means that:

(AT) *x = x (2.2.3)

Now, if the matrix A is invertible then the following relationship holds:

At = A "1 
AX = x

a a t -  a ta  = i (2.2.4)

The above is the orthogonality property of a transform. This is clearly an at­
tractive property as it avoids the need for matrix inversion, which leads to simpler
implementation and conservation of the energy of the signal such that:

M —l M —l

Y w2 = Y w2 (2-2-5)
e=o e=o

Further, a transform is said to be linear if it has the following properties:

T(x + y) = T(x)+T(y) 
T(ax) =  aT(x)

(2.2.6)

(2.2.7)
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The transforms that are of interest in this thesis may be classified according to 
the relationship between the lengths of x and X. That is, two broad categories may 
be defined: block transforms and lapped transforms. Block transforms map a vector 
of length M  to another vector of length M. this means that the matrix A is an 
M  x M  matrix. On the other hand a lapped transform maps a vector of length M  

into a vector of length L. where M = kL and k is an integer greater than or equal to 
2. The difference between the two categories of transforms is that block transforms 
may operate without any overlap on consecutive blocks whereas lapped transforms 
can only reconstruct the original signal if successive frames are utilized. In reality, 
block transforms are normally combined with non-rectangular windows in order to 
improve the transform's frequency domain selectivity and to reduce edge effects. This 
effectively means that the block transform operates in a similar fashion to a lapped 
transform.

Within these two broadly defined categories of transforms, another two subcate­
gories are of interest to this thesis; integer coefficient transforms and integer-to-integer 
transforms. Integer coefficient transforms employ only integers in the transform ma­
trix A. Most of the popular transforms have integer coefficient counterparts [PD00]. 
The integer-to-integer transforms that do not have integer coefficients tend to focus on 
the wavelet style transforms [AK00]. [DS97]. [CDSY96], and map integers to integers 
allowing lossless compression of the original signal.

Block transform s
Block transforms have numerous applications including signal filtering, speech scram­
bling, adaptive filtering, spectral estimation, and of course signal compression. The
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block transforms that are of interest here are: the Discrete Fourier Transform (DFT), 
the Discrete Cosine Transform (DCT), the Hilbert transform and the Discrete Wavelet 
Transform (DWT). The listed transforms are not limited to having integer coefficients 
and they are not integer-to-integer. Integer transforms that are analogous to the DFT 
and the DCT are given in [PDOO] and [Cha89].

The DFT is defined as [Mer99]:
M—1

X{n) = Y ,  (2.2.8)
£=0

where Wm =  exp -j^-- The basis functions of the DFT transform matrix are then 
given by:

ant =  (2.2.9)
One of the useful properties of the DFT is the symmetry of the DFT coefficients 

if the signal is real, i.e., X m- i — X\ where * stands for complex conjugation. This 
property is helpful in signal compression as one half of the DFT coefficients may be 
used to deduce the other half.

Spectral estimation has been, and remains, a very important application of the 
DFT [Mer99], [Mal92]. This application is of particular interest to sinusoidal trans­
form coders as the STFT is simply the DFT with a window, and one of the main 
techniques of obtaining the sinusoidal model requires the use of the STFT [MQ95]. 
The DFT is also a popular tool for transferring required calculations from the time 
domain to the frequency domain, where they may be more efficiently performed. An 
example of such a simplification is presented in [GS92] where the sinusoidal model 
analysis-by-synthesis (A-by-S) procedure is conducted in the frequency domain for in­
creased efficiency. Another example is given in [EPOO] where the sorting of sinusoidal

3 0009 03300730 8
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parameters is carried out in the frequency domain, again with the aim of increasing 
computational efficiency.

The DFT is fundamentally a complex sinusoidal transform in that the basis func­
tions of the transform are made up of sines and cosines in the complex plane. Another 
sinusoidal transform which is of interest in audio compression is the DCT. The DCT 
is a real transform in that its basis functions are real. It should be noted at an early 
stage that the DCT is defined in multiple ways, with each definition labelled as a 
different type; the literature defines exists Type-I, II, III and IV DCTs. The basis 
functions for all four type are given in the following [Mal92], [Mer99]:

4 f~2~ r. 1J7T.= ^ M COs[{n+2) M ] l'H  =

<i0 (2.2.10)

4 \~2 1J 71= ^ M C0Ŝ n + 2) M ] l’n =
0 ,.. .,  M — 1 (2.2.11)

4 / 2 r 1 TL7Y, . ^= ¿ = o, ...,  M -  1 (2.2.12)

4 / = 1 / 4  cos f(n + -)(( + - ) —1 iV M  LV 2a 2 M
: = 0 ,..., M -  1 (2.2.13)

(2.2.14)

where
[ if k =  0, or M  

Ik ~  \[ 1 otherwise
The type-II DCT tends to be the one most employed in practice [Mal92]. The main 

advantage of the DCT in general is that it delivers a higher spectral resolution than the 
DFT of the same length. That is, a frequency bin in the DFT is approximately double 
that of a frequency bin in the DCT. This increased frequency resolution comes at a 
cost as the DCT produces coefficients that cannot be interpreted in terms of phase.
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Also, the DCT can miss strong signal components that are |  out-of-phase with the 
basis functions [Mal92]. However, this problem can be solved by taking a number of 
consecutive DCTs of the signal.

The DCT finds plenty of applications in spectral estimation [RY90] as well as 
signal compression [RY90], [Mer99], [Mal92]. The Type-IV DCT has been used in 
the development of the Modulated Lapped Transform (MLT), which is a popular 
transform in audio compression [Shl97]. In this thesis the DCT (Type-II) is used in 
an investigative study that will be presented in Chapter 5 whilst the MLT is the basis 
for the scalable compression algorithms presented.

The next two transforms to be mentioned here, the Hilbert transform and the 
DWT are not sinusoidal based transforms. The Hilbert transform is mentioned here 
for completeness as it finds use in signal envelope calculation for parametric coding 
[PMOO]. The DWT is used as a sub-band transform and has found use in a number 
of recent audio coders [PSOO].

The Discrete Hilbert Transform (DHT) may be calculated through the following 
[Hah96]:

M - 1
Xg = h(t — n)x(n) (2.2.15)

n=0
where f "A? sin ”7j~2 cot for M  even 

h(n) = { M
1 l E , = 21 s in -F 2 for M  odd

As already mentioned, interest in the Hilbert transform for audio compression 
originates from the fact that it allows the calculation of the time domain envelope of 
the transformed signal. To obtain the envelope from the DHT, the following steps 
are taken [Mer99], [Har98]:
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Step one - Form the analytic signal using the equation:

Xa X +  j X H i l b e r t

Step two - Shift the analytic signal into the base band:

(2.2.16)

x bb =  xQ exp (-jiu0t) (2.2.17)

where ljq is the center frequency of the positive bandwidth of signal x 
Step three - Determine the envelope by:

v |x06 (2.2.18)

The final transform that is of interest in this section is the DWT. The DWT is 
a multi-resolution transform that has good localization in both time and frequency. 
The multi-resolution nature of the DWT makes it attractive for signal analysis and 
signal compression, as natural signals are such that there usually exists a small section 
of the full bandwidth of a signal which is of real significance. The DWT is built on 
the idea of analyzing an input signal by the use of basis functions that are similar 
in shape [VK95], [RV91]. These wavelets are dilated and translated versions of one 
‘‘wavelet" (/). This one wavelet is dilated by the use of the following relationship 
in the continuous time domain [Mer99]:

w{aM(t) =  l a l ^ i - — -)' a
t - b . (2.2.19)

This results in the following equation for the evaluation of the continuous wavelet 
transform: / OC 1   1

x ( t ) h J i ( ------) d t  (2.2.20)
a
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The DWT is a sampled version of the continuous time wavelet transform, i.e. 
letting av = 2P and bpq = apqT = 2pqT, then:

'ippqit) =  |ap|"21'01(-— (2.2.21)
up

The above sampling and scaling of the wavelet fat gives the equation of the DWT 
as:

X(apq,bpq) — {x -)'lPpq) (2.2.22)
where (•) denotes the inner product. Equation (2.2.22) defines a wavelet series that 
is sampled dyadically. Using such an expression and defining the space L2(M) as a 
sum of subspaces, with each space representing a given frequency band, this can be 
shown to lead to those subspaces being nested [Mer99]. The relationship between 
these subspaces is more clearly illustrated using a diagram.

Figure 2.1 illustrates how the DWT operates and what the set of coefficients that 
are obtained represent. The dyadic nature of the transform means that each band 
is split into two smaller bands with each application of the transform. The high­
pass (HP in the diagram) component, or filter, of the transform produces the detail 
coefficients of that band. The low pass (LP) filter of the transform produces the 
“approximation” coefficients of the input signal [VK95]. It must be pointed out here 
that the DWT is not strictly a time-frequency transform, it is actually a time-scale 
transform because the base wavelet is scaled and not modulated [Mer99]. However, 
it is most easily understood for the application at hand in terms of its partitioning of 
the frequency domain.

The high localization in time for high frequency components and the high local­
ization in frequency for the low frequency components makes the wavelet transform
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Figure 2.1: The wavelet transform and its sub-band operation

a powerful signal analysis tool [Mer99], [Mal92]. In audio compression, the wavelet 
transform has been employed in [LP98], [ST93b] and others, with a number of dif­
ferent wavelets as the base wavelet. In this thesis the Daubechies 10 wavelet is used 
(in Chapter 5) in a comparative study between a number of different transforms for 
scalable audio compression.

As a final note, although the wavelet transform has been included in this section 
along with block transforms, it is quite different in structure to the other transforms 
mentioned. In fact, the wavelet transforms are lapped transforms.

Lapped Transforms

Lapped transforms may be viewed as a generalization of block transforms as lapped 
transform theory cohapses to block transform theory when the basis functions of 
the transform do not overlap [Mal92]. The overlapping of the basis functions is the 
distinguishing property of lapped transforms. Originally, lapped transforms were



2.2 Audio signal processing 17

designed to reduce the blocking effects of block transforms [Mal92]. Blocking effects 
appear at the edges of blocks that have been coded and reconstructed through the 
use of a block transform. The reason behind these effects is the discontinuities that
may result at the block edges due to quantization noise in the transform domain; this 
leads to edge samples that are not at their correct level.

In audio compression, if block transform coding was to be applied as it is in image 
compression (i.e. no-overlap between the blocks or some other mechanism to account 
for edge effects) then a periodic audible distortion would occur [Mal92]. The reason 
behind the periodicity of this distortion is the high likelihood of occurrence of edge 
errors at the end of each coded frame.

As stated earlier, the overlapping basis functions means that given an input block 
of length M, the resultant number of transform coefficients is L with M > L or 
M — kL with k integer. These simple relationships show that for k =  1 the lapped 
transform is a block transform, thus, for M  new samples received by the transform 
engine, M  new transform coefficients are produced [Mal92]. This maintains the overall 
sampling frequency of the system.

Mathematically, a lapped transform operation is similar to a block transform 
operation, however, there is the following added restriction to guarantee perfect re­
construction:

Ar DmA = <5(m)I m = 0 , l , . . . , k - l (2.2.23)
where

This is because the basis functions of a lapped transform must be orthogonal 
to each other (i.e. to the other basis functions in the same block) as well as the
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overlapping basis functions.
In terms of implementation, the lapped transform of choice in audio compression 

is the MLT [Shl97](better known as the MDCT with a sinusoidal window). The MLT 
has basis functions with an overlap factor of 2, and basis functions given by:

au. =  sin ((£ +  V Yi C0S ({e +  + (2.2.24)

The sine term in the above equation is the definition of the sinusoidal Perfect Recon­
struction window which will be discussed later.

In terms of coding gain, it has been shown experimentally in [Mal92] that well 
designed lapped transforms have a better performance than block transforms. It has 
also been shown that lapped transforms can be implemented with their own set of 
fast algorithms, a useful property for implementation purposes.

Finally, it should be noted that lapped transforms can have any overlap. A lapped 
transform can be designed for any length frame as long as the relationship between 
frame length and overlap is maintained. Cases where k is Above 2 (i.e. where the 
overlap is greater than half the frame length) are referred to as the Extended Lapped 
Transforms (or ELTs) [Mal92]. These transforms have not found much use in audio 
compression.

Integer transforms
Integer transforms are transforms that have only integer coefficients in their transform 
matrix. One of the best known integer transforms is the Walsh-Hadamard transform 
[Beu84]. [YH97] which has a transform matrix made up of ±1 elements only. Integer 
transforms may be block or lapped [GoyOO], [ITN02].
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The Walsh-Hadamard transform introduces a new concept to this discussion as 
it is a "sequencyv transform rather than a frequency or scale transform. Sequency 
refers to the number of zero crossings of a signal and in that sense is a more general 
descriptor than frequency which only describes periodic signals [Beu84]. The "\\ alsh- 
Hadamard transform has seen a number of applications in telecommunications and 
statistics [YH97]. In terms of audio compression, the Walsh-Hadamard transform has 
not seen significant use. More accurately however we should state that the Walsh- 
Hadamard transform may see indirect use in audio compression as it can be used as 
the building block in fast transform algorithms [YH97].

Integer transforms are attractive in applications because they allow a reduction in 
complexity, in that, when dealing with a quantized signal, integers are being multi­
plied by other integers: this is a much less complex operation than the multiplication 
of real numbers. Also, integer transforms allow the potential of lossless representation 
of the original quantized signal. This is because the end result of the transformation 
is guaranteed to be integer avoiding irrational numbers which can only be approxi­
mated by a finite number of bits. This thesis will present a study into the use of two 
integer transforms for audio compression in Chapter 6 and a more detailed look at the 
issues that arise when using such transforms for audio compression will be deferred 
until then.

Integer-to-integer transforms
Integer to integer transforms are a group of transforms that map a set of integers 
to another set of integers without the limitation of having to use integer coefficients 
alone. The advantage of this type of transform (over one that utilizes only integer



2.2 Audio signal processing 20

coefficients) is the maintenance of good frequency selectivity. Generally, integer trans­
forms have lower performance in terms of frequency selectivity and coding gain when 
compared to the non-integer transforms [Cha89]. The use of non-integer coefficients 
allows the transform to maintain frequency selectivity and coding gain closer to those 
of the normal block or lapped transform from which it has been derived. Note here 
that the assumption being made is that both the integer transforms and the integer- 
to-integer transforms are designed from an existing transform. Of course, this is not 
always the case and there have been a number of techniques presented in the literature 
which aid in the design of integer and integer-to-integer transforms [ITN02]. How­
ever, the most popular approach to the design of the integer-to-integer transforms is 
the “lifting scheme” [Swe96], [DS97] which allows the decomposition of a transform 
matrix into a set of matrices that result in an integer-to-integer transform by inserting 
the quantization at each stage of the new matrix representation. It is also important 
to mention that integer-to-integer transforms do provide an implementation advan­
tage, as pointed out in [DS97], because of the stage by stage implementation that is 
made possible by the use of these transforms.

2.2.2 Quantization

Having discussed the transforms that are popular in signal and audio compression, 
the discussion will now shift to the quantization stages of compression. It may be 
stated that two stages of quantization exist in signal compression, the first is the 
expected analogue to digital conversion which is an important step but does not 
directly influence compression algorithms. The second stage is the quantization of 
the transform coefficients or the parameters of an adopted signal model.
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In a way, the actual analogue to digital conversion may be considered compression 
as well since the signal will be represented by a finite set of integers instead of being 
represented by an infinite set of numbers [GG92], [NJ84]. From this point of view 
one may argue that quantization error is inevitable as one cannot map an infinite set 
of numbers to a finite set of integers and back without error. The size and properties 
of the error depends on the size of the integer set and the size of the original number 
set.

Having obtained a digital representation of the analogue signal that is of accept­
able quality, digital compression techniques are applied to reduce the bit rate required. 
These techniques are typically aimed at a simpler representation of the digital signal 
which allows a coarser quantization that leads to a lower bit rate while maintaining 
an acceptable quality signal [GG92], [NJ84].

Quantization techniques may be grouped into two broad categories. Scalar Quan­
tization (SQ) and Vector Quantization (VQ). In this discussion, two other categories 
are also presented (although they also fit under the broad categories SQ and VQ) 
namely entropy quantizers and perceptual quantizers. These will be discussed sepa­
rately as they are important components in many audio compression algorithms.

Scalar quantization
Scalar quantization allows the mapping of a single real number to a single real integer. 
Given a real number x , a scalar quantizer produces the output x such that:

x =  0x +  e (2.2.25)

where 0  is a gain term and e is an additive noise term [NJ84]. The above equation 
is a general mathematical representation, the values of 3 and e depend greatly on
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the type of scalar quantizer used as well as on the resolution of the quantizer. The 
resolution of a quantizer refers to the number of bits per sample that the quantizer 
utilizes and for this discussion it will be denoted by the letter R. There are three 
types of scalar quantizers; uniform quantizers, non-uniform quantizers and adaptive 
quantizers.

A uniform quantizer is one that divides its range equally amongst the integers in 
its code-book. One of the best known and most popular forms of uniform quantization 
is Pulse Code Modulation (PCM). PCM tends to be used as an analogue to digital 
conversion technique [NJ84]. The number of bits per sample used by PCM depends 
on the bandwidth of the source that must be quantized and on the quality required. 
PCM has the attractive feature of offering a linear relationship between SNR (in dB) 
and the number of bits used [NJ84]. In fact for a quantized speech signal with R bits 
per sample, the SNR can be approximated very well by:

SNRspeech =  6.02R -  10 (dB) (2.2.26)

For narrow-band speech signals, it is normally adequate to use R =  16 bits per sample, 
giving an overall rate of 128 kbps. A wide-band speech signal (bandlimited to 8 kHz) 
demands a rate of 256 kbps and CD quality audio requires a rate of 706 kbps per 
channel if a sampling rate of 44.1 kHz is used, or 768 kbps if 48 kHz is used.

A useful technique for improving the quality of the quantized signal using PCM is 
to introduce a known high-frequency noise component into the original signal. This 
is followed by applying PCM to the new noisy signal and then removing the high 
frequency noise from the quantized signal. This technique is known as dithering 
[NJ84] and much of the current audio material available is quantized by the use of 
this technique.
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Uniform quantization PCM is only one form of PCM. Other popular forms of 
PCM use non-uniform quantization. Non-uniform quantization attempts to improve 
the performance of the scalar quantizer whilst using the same number of bits per 
sample. This is achieved by the application of increased resolution at regions that 
cover numbers that have a higher probability of occurrence than other numbers that 
must be covered by the quantizer. Two standardized techniques of this kind are the 
A-law PCM and the ¿¿-law PCM. A-law PCM uses the mapping:

x = sgn(x) 0 <l+lni4
x m a x ^ ^ ^ s g n ( x )  \  <

m
-4M < ±xmax —  A

\x\ < l (2.2.27)
xmax —

whilst the ¿¿-law PCM adopts the mapping:

x =  xmax
ln l  +J£l£L

umax ( \sgn{x) (2.2.28)In 1 +  /i

It can be shown that in the case of A-law quantization, the SNR is given by [NJ84]:
A

SNRa =  6.021? +  4.77 -  201ogj (2.2.29)>10 1 + ln  A
thus to obtain an SNR which is equivalent to that of the PCM SNR for speech then 
A = 87.56. This is the North-American PCM standard. On the other hand for ¿¿-law 
quantization [NJ84]:

SNR.  =  6.02i? +  4.77 -  20 log10 (1 + In (1 + ¿¿)) (2.2.30)

giving a value of ¿¿ = 255 for an equivalent SNR as uniform quantization. This is the 
European PCM standard.

The use of ¿z-law and A-law PCM is known as log-PCM as the mapping of integers 
requires a logarithmic operation. Now, log-PCM is a very important technique in the 
communications community as it allows the quantization of narrow band speech at
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R = 8 bits per sample, with a total rate of 64 kbps. This rate obtains a SNR of 38 dB 
and a Mean Opinion Score (MOS) of 4.5 [NJ84], which is the definition of toll quality 
speech.

Naturally, variations on PCM exist which allow for high quality signal synthesis 
with a reduced bit rate. Differential PCM (DPCM) is an important variation on 
standard PCM. DPCM uses a linear predictor to remove the inter-sample of a signal 
and transmits the difference between the expected value and the actual value input. 
When the signal has stationary characteristics , this technique reduces the variance 
of the signal to be quantized, allowing a better approximation of the signal for a 
lower rate. The performance of a DPCM quantizer is thus related to the ratio of the 
variance of input signal to that of the error signal. In fact the SNR is given by [NJ84]:

vnvit )
SNRDpcm =  6.02R -  10 + ---- (dB) (2.2.31)varyx — x)

DPCM normally provides high quality speech (just below toll quality) at rates 
between 32 kbps and 48 kbps. In these systems, the linear predictor may be adapted 
in which case the system is referred to as ADPCM.

As previously mentioned, PCM is the format in which most audio material is 
actually obtained in and is thus the format of the source material used for testing in 
this thesis. It is also the format which is termed “original” when loss-less compression 
is applied.

Vector quantization
Vector quantization refers to the mapping of a vector of real numbers to another 
vector of real numbers chosen from a limited set of vectors [GG92], [NJ84], [Ram99].
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Vector quantizers divide the real number plane (that is of the same dimension as the 
vector to be coded) into 2N regions (where N  is the number of bits used to access each 
vector in the code-book), known as voronoi regions [GG92], [Ram99]. Each voronoi 
region contains one vector which is chosen or calculated so that it represents all the 
vectors that fall in that region adequately.

The code book vector is chosen such that an error criteria is minimized. Normally, 
the error criteria is the distance criteria between vectors or the weighted distance 
criteria between vectors [Ram99].

Vector quantizers are designed by dividing the number plane being used into N 

regions and calculating the code book vectors that minimize the distortion criteria. 
This is the process that is followed by the well known iterative LBG (Linde-Buzo- 
Gray) algorithm [GG92]. Variations in the algorithm focus on the distortion measure 
and thus the division of the voronoi regions, depending on whether a certain distortion 
measure will lead to a better performance with the source at hand.

Vector quantization can out-perform scalar quantization, for the same bit rate, 
and the performance tends to increase with the length of the vectors being quan­
tized [GG92]. As the size of the code book increases, the size of the voronoi regions 
decreases which means that the distortion in turn decreases. However, this improve­
ment in performance comes at the cost of increased complexity. Each unit increase 
in N  means a doubling of the code-book size. If each vector contained k elements, 
a complete search of the code-book for the best matching vector would require /c2A 
multiplications and (k — 1)2A additions (assuming that the Euclidean distance mea­
sure is used). In contrast, a scalar quantizer using the same number of bits would 
require k2N̂ k multiplications and k2*/k additions to find the correct code-word.
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The complexity of searching a VQ code-book is considerably greater than the 
complexity of a scalar quantizer. A number of methods of organizing code-books 
in a way that leads to a faster location of the required code-book vector have been 
designed [GG92]. These techniques re-arrange the original structure of the code­
book in a way that is informative about the content of the code-book vectors. Tree 
structured VQ does exactly that, with each node of the tree providing information 
about the subsequent vectors that are connected to it [GG92j. Tree structured VQ 
is one technique that reduces the search complexity considerably. Classified VQ is 
another technique that reduces the search complexity by adopting an identifier code­
book and a number of vector sub-code-books. The identifier code-book determines 
which sub-code-book should be searched for the best matching vector [GG92].

A product code approach may also be adopted to reduce the complexity of VQ 
search. In this case the vector to be quantized is divided into smaller sub-vectors 
and each sub-vector is coded using a code-book that contains vectors of the same 
dimension [Ram99]. Multistage VQ also operates on a similar principle, except here 
the vector to be encoded is first approximated by a vector from one code-book amongst 
multiple code-books. The error between the approximation and actual vector is then 
coded using the second code-book in the set and so on. Multistage VQ is a popular 
VQ technique because of its memory savings and search complexity reduction [GG92], 
[Ram99].

Since audio compression has fundamentally been built around transform coding, 
VQ application to audio has not been as rapid as that for speech where very low rate 
coders demanded the use of VQ in one way or another. That trend was been changed 
by the introduction of TwinVQ, an audio coder which achieves very good results
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at rates around 16 kbps [PSOO], [IMM95]. In this thesis VQ has only been applied 
in a limited fashion. The choice of scalar quantization over vector quantization has 
been made because of the coding algorithms applied and developed and not directly 
because of the disadvantages of complexity and memory consumption.

Entropy coding
Entropy coding refers to the mapping of a number set to another number set in a 
one-to-one match. That is, entropy coding is lossless [NJ84], [GG92], [GPS94], One 
could imagine a real number set being mapped to a binary number set, however the 
size of each set would be very large and the usual application of entropy codes is 
the mapping of integers to another set of integers. Compression is obtained through 
the idea that numbers that are encountered most often are allocated the smallest 
binary integers, and thus the least, number of bits .[GG92]. In this way, entropy codes 
are similar to probability density function (pdf) optimized scalar quantizers that 
allow for better quantization resolution for sub-ranges that have a high probability 
of occurrence [NJ84].

The idea behind entropy codes comes from the knowledge that the information 
carried in a signal is dependent upon the statistics of the signal. The content of 
information is expressed by the first order entropy of the signal x:

# (* ) =  - £  p(x) log2p(x) bits/sample (2.2.32)
It can be seen from the above equation that a purely deterministic signal carries 

no information as H(x) will be zero. That is, no bits need to be spent to communicate 
the content of that signal. Also, signals that have values with a high probability of 
occurrence will have a lower entropy than signals that have a pdf that tends towards



2.2 Audio signal processing 28

a uniform distribution. The first order entropy of the signal sets the lower bound for 
the entropy code and it is the usual case that entropy codes perform at a rate that is 
worse than that expected from the calculation of H(x)  [GG92].

One of the best known entropy codes is the Huffman code [GG92], [GPS94]. The 
Huffman code allows the development of a code-book, with variable length codewords, 
that is decodable and associates the codeword length with the probable frequency of 
occurrence. The decodability of the Huffman code is due to it obeying the “pre-fix 
condition”, that is if the prefix of each codeword is unique then the variable length 
code can be decoded [GG92]. Actually, this condition limits the ability of entropy 
codes to reach the theoretical limit determined by H(x).

The process of designing a Huffman code is iterative. The initialization step 
involves listing the numbers to be coded in order of decreasing probability (with 
each number presenting a node in a tree). The two least probable numbers are then 
combined to produce a single node which has a probability equal to the sum of the two 
probabilities used to form it. This process is repeated until all the original numbers 
have been part of producing a node. Finally, each branch of the developed tree is 
labelled by a 1 or 0 [GPS94], [GG92]. The Huffman code can be extended to the 
coding of whole vectors [GG92], although this is a rather complicated extension of 
the algorithm.

An alternative entropy coding technique is arithmetic coding [WNC87]. Arith­
metic coding is based on the idea that if the decoder is provided with a unique real 
number in the range [0,1) and a model for the coded data, then it can obtain the 
original message which was used to generate that real number. Again, the process 
here is iterative in that the encoder repeatedly narrows the range of the real numbers
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according to the data encountered. Both encoder and decoder have access to a model 
which describes the pdf of the number set to be coded and how that pdf is distributed 
in the range [0,1). The final real number obtained determines the initial range that 
is smaller than [0,1) and thus the first number in the original set being coded. The 
decoder continues to sub-divide the initial range obtained from the model, with each 
sub-division corresponding to a number (or character) from the original number set 
until the final range is reached and the entire original message is extracted [WNC87].

Arithmetic coding has been shown to out-perform Huffman coding in many in­
stances [WNC87] and it does have the advantage of allowing the coding of variable 
length blocks of data (the data may be numbers or characters) unlike Huffman cod­
ing. Arithmetic coding may also result in a zero length code-word in its code-word 
set [WNC87], [GG92], something that is impossible in Huffman coding. However, 
arithmetic coding is only uniquely decodable if a unique End of File (EOF) character 
is used to indicate the end of the block being coded [WNC87].

The final entropy coding technique that will be described here is the Lempel-Ziv 
code [GPS94], [CT91]. The Lempel-Ziv code is currently a very popular data com­
pression algorithm (it is the basis of the famous zip program) because it is effective 
and it is fast [CT91]. The algorithm divides a given input string (which is usually 
binary) into unique substrings. This subdivision of the strings relates each of the sub­
strings such that there is a one bit difference between consecutive substrings [CT91]. 
The encoder transmits a pointer which tells the decoder which prefix to use as well 
as the state of the final bit of the substring. The Lempel-Ziv algorithm approaches 
the Shannon bound (given by H(x)) asymptotically [CT91]. Compression is achieved 
through the fact that the length of the substrings obtained will become longer than
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Figure 2.2: Perceptual quantization in transform audio coding

the length of the pointer information transmitted.
Entropy coding techniques play an important role in audio compression as ev­

idenced by their use in the MPEG audio coding techniques [QJ97], as well as the 
lossless compression algorithms [HS01]. Whilst entropy coding techniques are not 
usually applied directly to the audio signal, they are very useful in compressing data 
that is very important to maintaining the quality of the synthesized signal and hence 
must be coded with no loss, they are also applied directly to the error signal in loss­
less compression. This thesis deals with entropy coding through the use of the Set 
Partitioning In Hierarchical Trees (SPIHT) algorithm and its application to lossless 
audio compression.

Perceptual quantization
Human auditory perception allows the allocation of quantization bits in a manner that 
maintains a very high quality synthesized audio signal [Nol97]. The use of perceptual 
quantization in transform coding is illustrated by Figure 2.2.

Perceptual quantization is an implementation of adaptive quantization with the 
adaptation being controlled by the perceptual model. Human perception is the sub­
ject of Section 2.3 so a detailed discussion on the topic will not be given here. The bit



2.2 Audio signal processing 31

allocation algorithm varies in implementation, however, the aim is the same as other 
quantization algorithms, to minimize an error criteria with the available number of 
bits. The error criteria in this case is weighted such that components that are per­
ceptually more significant are allocated more bits than components that are not so 
significant. Such algorithms are employed in standardized coders such as the MPEG 
coders [BKSOO] as well as proprietary coders such as Dolby’s AC-3 [Dav99].

Perceptual bit allocation produces a coded stream that normally requires side 
information for successful decoding. This is where an entropy code can increase the 
compression of the overall algorithm, as the side information is usually critical to the 
sensible decoding of the main bit stream and should be obtained losslessly. This thesis 
focuses on schemes that utilize perceptual quantization techniques and a number of 
these techniques are presented and studied in detail in later chapters.

2.2.3 Audio signal models

Recently, audio compression has been approached from a signal model point of view 
[Goo97], [Lev98], [Ver99]. The reasoning being that a reformulation of the problem 
will lead to better coding results [HAT96]. The popular approach is based on the 
harmonic plus stochastic model which divides the signal into a sinusoidal (harmonic) 
signal and a noise-like (stochastic) signal [Goo97]. Figure 2.3 shows the idea of this 
decomposition.

This model has been made effective because of advances in both the sinusoidal 
modelling [GS92] and noise modelling [Goo97]. The model has been further extended 
in [Ver99] and [Lev98] to include a transient detection component. Figure 2.4 shows 
the extended model.
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Sinusoidal parameters

Figure 2.3: The harmonic and stochastic model of audio

Figure 2.4: The STN audio model
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The sinusoidal analysis allows the capture and modelling of the harmonic compo­
nents, whilst this can be applied with a high enough resolution such that the transients 
are detected, it is found to be an expensive coding approach to take [Ver99]. The 
transient detection focuses on the high frequency components of the signal that are 
inharmonic. Transients, because they have a high frequency, are not essential when 
the aim is the perceptual similarity between the original signal and the synthesized 
signal. However, the naturalness of the sound is degraded or even lost if the tran­
sients are missing. In other words, a very pleasant sound can be obtained without 
the transients but a better one is obtained with them. Finally, the noise component 
also adds to the wholeness of the synthesized audio.

A very attractive property of this approach to coding is that the model can ac­
commodate different types of signals more efficiently. The reasoning is simple; if a 
frame of a signal is very harmonic the sinusoidal model parameters are then given 
more prominence as they better model the signal. A frame with a large number of 
attacks cannot be expected to fit a harmonic model very well and so the transient 
model would be given prominence. Similarly, a frame that was more noise like should 
be modelled with a noise model once any harmonic component has been removed 
[Ver99].

This model has been developed with an eye for scalable audio compression [EPOO], 
[Ver99]. At the lowest rates the harmonic model components of the signal would be 
focused on, as the rates increase the noise and transient model would be gradually 
added. The noise model may in some sense be considered more important than the 
transient model because of the fact that transients may be roughly approximated and 
one would still maintain a perceptually similar sound, although the transients do add
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Analysis

Figure 2.5: Noise modelling through white noise shaping

to the naturalness of the sound. The noise model on the other hand effects the entire 
spectrum of the signal.

In order to model the noise so that a close perceptual approximation of the orig­
inal is obtained, Equivalent Rectangular Bandwidth (ERB) filters are used [SA99]. 
These filters model the Bark scale in the frequency domain (the Bark scale and other 
perceptual issues are the topic of the next section). The obtained original analysis 
noise e(n) is itself analyzed using the ERB filters, with the aim of modelling e(n) by 
the use of white noise and some gain terms [Goo97]. The concept is illustrated in 
Figure 2.5.

It has been shown in [Goo97] that the gains should be calculated by the use of 
the following equation:

9 1 =/ mV (2'2'33)
where N  here is the number of samples of the ERB band signals, eg. a2 is the variance 
of the white noise used in the synthesis and hg(k) is the kth filter coefficient of the i th 
ERB filter in the filter bank. Thus, the model is a coloring process of white noise. The
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gains, git are time varying and are updated once per frame. In the reconstruction 
of the noise signal, the sign of the actual samples is of no concern because of the 
ear’s lack of appreciation for the detail in broad band noise [Goo97]. Also, each gain 
coefficient is applied to all the white noise components in a given ERB and so the 
noise is shaped in a “step” manner. That is, there are hard boundaries between the 
noise components in adjacent ERBs.

The performance of coding systems built on this type of signal model [EPOO], 
[Ver99] is reportedly competitive with transform coding systems at low rates, and 
may be slightly better. One drawback of this model is its scalable range in that it 
is difficult to see how it can scale to lossless representation without introducing a 
different noise model. The presented STN model has been incorporated in scalable 
compression algorithms that produce perceptually lossless results at high medium 
rates (around the 80 kbps mark) in [Ver99].

2.3 P erception  and perceptual entropy
Having discussed the basic audio compression and signal processing techniques, it is 
clear that perceptual considerations play an important role in how audio is compressed 
and modelled. A discussion on human perception has been delayed to this point 
simply to create an idea of the need for a thorough understanding of this issue as well 
as to represent signal processing tools that are helpful in implementing methods that 
try to account for perception of audio by humans.
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OUTER EAR MIDDLE EAR INNER EAR
ossicles

Figure 2.6: A cross section of the human ear [ZF99]

2.3.1 The mechanics of sound perception

To understand how one perceives a sound, much research has been focused on the 
instrument that is used to receive the sound: the human ear [ZF99], [Moo97], [Moo96], 
[Hal99]. How we interpret these sounds and what they mean to us is a separate field 
of research. The purpose behind understanding the operation of the human ear is 
simple; if one understands the receiver and its limitations then the information that 
is sent to the receiver can be tailored such that it fits within those limitations. This 
directly leads to a reduction in the amount of information that must be transmitted 
[Hal99].

The ear can be divided into three sections; the outer, middle and inner ears 
[Moo97], [ZF99]. Figure 2.6 shows a cross section of the whole ear [ZF99].
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The outer ear is made up of the Pinna (the visible part) and the auditory canal. 
The pinna significantly modifies incoming sounds and helps in localizing sounds. 
Sound travels along the auditory canal and causes the ear drum to vibrate. These 
vibrations are transmitted through the middle ear by the Ossicles to the oval window. 
The Ossicles is the name of a group of three small bones. The individual names of 
these bones are the Malleus, Incus and Stapes. In terms of the functionality of the 
ear, the middle ear has a mechanical function as it transfers a sound from air to the 
fluids in the Cochlea by the use of impedance matching.

The inner ear, known as the Cochlea, is a spiral shaped structure. It is filled 
with incompressible fluids and has bony rigid walls. This part of the ear is extremely 
important to its functionality. The cochlea is divided by two membranes along its 
length, known as Reissner’s membrane and the Basilar membrane. The oval window 
that can be seen in Figure 2.6 is at the base of the Cochlea which is the first point 
that encounters a sound.

The apex of the Cochlea is the inner tip at the other end. The apex has a 
small opening called the Helicotrema through which fluid flows between the two main 
sections of the Cochlea. These sections are known as the Scala vestibuli and Scala 
tympani. Fluid flow around the Helicotrema results from inward movement of the oval 
window. This also causes an outward movement of the round window and membrane. 
The round window is a second opening in the Cochlea, below the oval window.

It is known that the basilar membrane’s vibrational shape depends on the fre­
quency of the stimulant [Moo97]. Pure tones (in psychoacoustic terms a tone is a 
sound that is capable of triggering a response from the auditory system) produce 
vibrations of the basilar membrane, which have maxima dependent on the frequency
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of the stimulant. That is, the ear produces a time to frequency transformation.
The basilar membrane has hair cells attached to it. The hair cells are part of the 

organ of Conti. The outer hair cells are those on the outside of the arch closest to 
the outside of the Cochlea. The outer hair cells are arranged in three rows with each 
cell having approximately 140 hairs. There are approximately 25000 outer hair cells 
in total. The inner hair cells are those on the other side of the arch and are arranged 
in a single row. There are approximately 3500 of these with 40 hairs each.

When the basilar membrane moves, the hair cells move. It is this movement of the 
hair cells that triggers the neural activity in the nerve cells connected to the hairs. 
Thus, the sound has been passed from air to the brain where it is processed and so 
perceived. The human ear is most sensitive to frequencies that match human speech 
frequencies, i.e. in the range 1 kHz - 5 kHz. It is worth noting that the perception of 
sounds outside of this range deteriorates with age whereas the perception of sounds 
that are inside this range is relatively unaffected with age [Moo97].

2.3.2 Modelling the human ear

Modelling the human ear involves the same steps as modelling any system. A known 
input is used and a model is produced that matches the output of the system being 
modelled given the same input. The input to the human auditory system must be a 
sound defined by an accurate measure. To establish a uniform measure of sound, the 
Sound Pressure Level (SPL) is defined and normally expressed in dB. Sound Pressure 
(SP) is described in terms of Pascals (Pa), the SPL of a sound is actually a normalized 
measure given by [ZF99]:
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SPL =  20 log10(— ) dB (2.3.1)
O T q

where SPq =  20^/Pa. The SPL of a sound can be objectively measured. However, this 
value does not describe how the ear hears the sound as the ear hears sounds with the 
same SPL with different loudness at different frequencies. To illustrate this, Figure 
2.7 [ZF99] shows equal loudness curves. The points on each curve are perceived to 
have the same loudness, yet there is a clear difference in the intensity of the sounds 
in dB (the curves are produced by the use of a sinusoid). Such curves may be used 
to map intensity to loudness (Loudness and its attributes will be discussed in Section 
2.4) and they can be used to determine the limits of the auditory system. The bottom 
curve in Figure 2.7 is the lower threshold of hearing, meaning that any (sinusoidal, 
or similar) sounds below that level have an extremely high probability of not being 
heard. This may not be the case for all humans as hearing varies between individuals 
but it has been found to be a very good description of the lower limit of hearing 
[ZF99], [Hal99]. The threshold shown is also the threshold in quiet, with an increase 
in noise that, threshold is actually significantly higher. The threshold of hearing in 
quiet can be approximated by [PS00] (where f is in Hz):

Thq =  3 . 6 4 ( ^ ) 0-8 -  6.5 exp - 0 . 6 ( ^  -  3.3)2 + 10“3( ^ ) 4 (SPL) (2.3.2)

In Section 2.3.1 it was mentioned that the ear acts like a mechanical time to 
frequency transform. As transforms may be looked at as a bank of bandpass filters, 
then it makes sense to model the ear transform as a bank of bandpass filters. However, 
the ear transform filter bank has been found to be highly overlapping [Moo97], [ZF99] 
with asymmetric filter responses. The filter shapes can be derived by the use of the
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Figure 2.7: Equal loudness curves of the ear [ZF99]

rounded exponential (roex(p)) model or the more general roex(p,r) model [Moo96]. 
The roex(p) model is given by [Moo96]:

P (ü>) = (1 + puj) exp -pCo (2.3.3)
In the above, Co =  is the normalized deviation from center frequency / 0, P{Co) 

is the magnitude of the filter response (not in dB) and p is a variable that effects the 
slope of the filter response. The higher and lower frequency slopes of auditory filters 
are different and so a different value of p is required for the high frequency slope to 
that used for the low frequency slope. The roex(p) model performs well except in 
situations where the threshold of hearing is approached [Moo96]. In such situations, 
it would be better to use the roex{p)r) model which is given by [Moo96]:

P{Cj) = (1 — r)(l -\-pCj) exp — puj + r (2.3.4)
In this case, r is a constant for both sides of the filter.



2.3 Perception and perceptual entropy 41

Figure 2.8: Frequency to Bark scale conversion

The use of highly overlapping filters to model the time-frequency transformation 
in the ear leads to the definition of critical bands, where each filter defines a band. 
Because of the overlapping bandwidths, the relationship between frequency and the 
critical band scale is non-linear and is given by [Hal99], [Moo96]:

z(f )  = 13 arctan ) + 3.5 arctan ( ^ ^ ) 2 Bark (2.3.5)

The critical band value that corresponds to frequency /  in Hz is denoted z in the 
above equation. Figure 2.8 shows the relationship graphically between the frequency 
scale and the Bark scale. The above equation implies that the relationship between 
critical band rate and frequency is continuous. Psychoacoustic data has only strictly 
defined 25 critical bands [ZF99], [Moo97] because of the definition that has been 
used to describe a critical band. A critical bandwidth is “that bandwidth at which 
subjective responses rather abruptly change” [Hal99]. Smooth changes within the
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Table 2 1: Critical bands with center frequency, lower frequency and upper frequency
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critical band will occur, however, those changes do not contribute a new band. Hence, 
L*(/)J gives the actual band number that the frequency falls in. The relationship 
between critical band number and bandwidth is given in Table 2.1.

In Table 2.1, the final upper frequency limit is not listed. One may interpolate 
and add more bands [Hal99] or may simply define the upper frequency limit as the 
Nyquist frequency for a digital signal (that is sampled above 31 kHz). In either case, 
there is only limited evidence that any sounds that are relevant to audio and speech 
applications contain perceptually significant components and such high frequencies 
[SA99], [Hal99].

Having modelled the structure of the human auditory system, psychoacoustic 
measurements allow the development of the idea of masking.
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2.3.3 Masking

Masking refers to the inaudibility of sounds due to the presence of other sounds 
[ZF99], [Moo97]. This observable property of the human hearing system is of high 
significance for audio compression purposes as it allows the identification of sounds 
that are likely to be missed and so are not necessary to code. The other way of 
viewing the use of masking in coding is that it defines the effect that broadband noise 
(the coding noise) will have on the perceptual quality of the signal [Hal99], [Moo96].

The three categories within masking are pre-masking, simultaneous masking and 
post masking. Pre-masking is probably more clearly described if the term backward 
masking is used [Hal99] as that implies a sound masking another sound that occurred 
earlier in time than the masker. It may seem odd that a sound may be masked 
by a masker that has not yet occurred in time. The explanation for this is related 
to the nature of sound perception. A sound’s loudness is developed by the hearing 
system, that is the hearing system acts like an integrator and takes time to build 
the loudness of the sound [ZF99]. The time required is in the range of 5-10 ms and 
so if another sound is encountered during that period which is significantly larger 
than the sound being processed, the development of the loudness is interrupted and 
so masking occurs. Backward masking is primarily a time domain phenomena, like 
post-masking or forward masking.

Forward masking refers to the masking of sounds by a sound that has already 
occurred. Loudness in the hearing system does not disappear as soon as the sound 
ends in the time domain. It has been observed that loudness decreases as a function 
of time, with a small proportion of the original loudness lasting more than 150 ms 
[Hal99]. The decrease in loudness resembles an exponential decay. If a sound was
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to occur in time after the end of another sound with an intensity that is sufficiently 
small so that it produces a loudness value below that of the decaying loudness then 
it will be masked [Hal99], [ZF99], [Moo97].

In order to take advantage of pre and post masking, the algorithm must operate 
(at least partially) in the time domain. On the other hand, simultaneous masking is 
primarily a frequency domain effect as it defines how two sounds occurring at exactly 
the same time may lead to one of them being masked. Simultaneous masking occurs 
when one of the sounds incident on the hearing system is sufficiently large that it 
develops a loudness value that is well beyond that of other incident sounds and so 
the other sounds are masked [ZF99], [Moo97].

There are two types of sounds considered when discussing masking, tones and 
noise. The interactions that are of interest are noise masking tone, tone masking 
tone and tone or noise masking noise [Hal99]. For the case of a tone masking a tone, 
masking is greatest when the frequencies of the tones are very close together. As the 
difference between the frequencies increases, the masking also^decreases. The masking 
pattern produced by the tone masker also tends to be asymmetric such that a higher 
level of masking is obtained at higher frequencies than it is at lower frequencies. 
The study of masking by the use of tone maskers is not very useful for compression 
purposes, although it has historical significance. The reason is that the coding noise 
resulting from the compression is not a tone. Also, the use of a tone masker in the 
actual study of masking leads to non-linear interactions in the auditory system that 
increase the difficulty of understanding the masking phenomena. This is why more 
recent studies on masking tend to use noise maskers [Hal99].

In the case of noise masking a tone, the masking results are similar to the case
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of tone masking tone in terms of masking pattern shape and asymmetry [Hal99], 
[ZF99]. However, in this case one can see the operation of the ear's critical bands as 
the masking pattern is significant for noise components that are in the same critical 
band as the tone and insignificant otherwise [Hal99], [ZF99]. This effect has been 
used in determining the bandwidth of critical bands [ZF99], [Hal99].

The final case of noise being masked by either tone or noise is not as thoroughly 
understood or studied as the other two cases [Hal99]. From an audio compression 
perspective, masking the coding noise (or being able to) would be attractive. The 
implementation of such a scheme would mean that not only perceptually relevant 
signal components are transmitted but also those components that allow the hiding 
of coding noise would be given preference. The masking patterns of a narrow-band 
noise being masked are similar in shape, but different in magnitude to those of a tone 
being masked [Hal99]. A wide-band noise component, that is a noise component that 
has a bandwidth wider than the bandwidth of the critical band in which the center 
frequency is located, appeal's to be very difficult to mask [Hal99]. It is also significant 
to note that if a tone masker is used, tones that have low frequencies produce a 
higher masking threshold than higher frequency tones when a noise component is 
being masked [Hal99].

The observed temporal and simultaneous masking effects have led to the develop­
ment of psychoacoustic masking models [Moo97]. [ZF99]. The simultaneous masking 
model is a frequency domain model which is dependent on signal energy and critical 
band analysis of the signal [Moo97], [ZF99]. [Joh88a]. On the other hand, the tem­
poral masking model is a time-domain sliding window model [Moo96]. The sliding 
window model acts like a low pass filter in the frequency domain and so leads to a
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smoothing of the time domain signal. The window widths used are related to the 
center frequency of the signal [Moo96]. The shape of the window is related to the 
temporal masking effects already discussed, components that are close to the middle 
of the window are multiplied by a factor equal to or close to unity. Components 
that are at the edges of the window are multiplied by a factor close to zero with the 
post-masking side of the window being longer than the pre-masking section of the 
window [Moo96].

The development of masking models has significantly improved compression rates 
[Nol97]. One of the earliest steps taken to introduce masking models to audio com­
pression lead to the development of the idea of perceptual entropy [Joh88b].

Perceptual entropy
Perceptual entropy is analogous to information entropy in that it describes the mean 
number of bits per sample required to faithfully represent the perceptual information 
in an audio signal. Perceptual entropy is calculated by first-calculating the masking 
threshold T/q (how to calculate the threshold is discussed in Section 2.3.4) at each 
component of the spectral representation of the audio signal. This threshold value is 
equated with the quantization noise of a scalar quantizer, i.e.

A2
T h  =  -jg (2-3.6)

If one assumes the use of a Fourier transform for the calculation of the spectrum 
of the signal, then the noise must be spread equally across the real and imaginary 
components. This is followed by determining the ratio of both the real and imaginary 
components to Thi in the respective domains and quantization of that ratio:
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NRe,im(u) =  |round(-^ e,lm )|
Thi

(2.3.7)
i R e . I m

If NRe or Njm is above zero then the number of bits required to transmit either 
NRe or Njm (or both) is calculated by using the log2(-) operation:

Rn — log2 (2NRe or im +  1) 
The perceptual entropy is then given by [Joh88b]:

(2.3.8)

_

p length(FFT)
(2.3.9)

In [Joh88b] it was found that most of the tested material had a perceptual entropy 
in the range [0.1, 2.1] bits per sample. The most probable entropies were observed to 
be between 1 and 2 bits per sample. At a sampling rate of f s =  44.1 kHz this means 
that the compressed audio files should range between 44.1 kbps and 88.2 kbps. As 
will be seen in Chapter 3, most current audio coders perform in that range. It should 
be remembered at this stage that Hp refers to the bits required to re-synthesize all 
the perceived information in the signal. The audio signal may be coded at lower rates 
and the noise shaped to create less annoying artifacts. The noise shaping approach 
may be viewed as parametric modelling the audio signal.

The development of Hp as a measure of bit rate required has shown, objectively, 
that for an audio coder to be of high quality and still have a low to medium bit rate, 
it must take perception into account [Vel92]. The reasoning is obtained by studying 
the calculation of Hp. In the worst case scenario, all of the spectral components are 
above the masking threshold by the same amount as they are above the threshold 
in quiet. However, this is simply the original signal representation. Hence, if the
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masking threshold is taken into account only a reduction in the number of bits per 
sample required is possible. Coding algorithms that do not take Hp into account can 
thus only perform at an average rate that is worse than similar algorithms that do 
take stock of Hp.

2.3.4 Calculating the masking threshold

In this section the details of how the simultaneous masking curve can be calculated are 
given. The early method of calculation is due primarily to Johnston [Joh88a]. This 
technique was adopted, with modifications, by MPEG in its perceptual transform 
coder [BKSOO]. The MPEG model produces a masking threshold value at each bin 
of the spectral representation of the audio signal. Johnston's early approach, in con­
trast, produces a single threshold value for each critical band in frequency. Our own 
informal experiments have shown that both models produce similar results, however, 
the MPEG model was observed to be more “aggressive” at the higher frequencies of 
the signal which leads to a slightly more muffled sound when the spectral components 
that are labelled perceptually insignificant are removed completely. These issues will 
be discussed further in the coming chapters. It should also be pointed out that the 
MPEG model being used here is the MPEG model 1.

Johnston’s algorithm
Johnston’s algorithm is diagrammatically given in Figure 2.9. The equations required 
for each stage are given below. •
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Figure 2.9: The generation of the Johnston masking curve 

Step 1- Calculation of the power in each critical band.
Uuj

Pj =  ' y i(R e{cy2 + Im(cw)2) (2.3.10)
Vlj

where cw is the Fourier transform coefficient at frequency oj

Step 2- Applying the spreading function across the whole spectrum.

Qi = SjtP j (2.3.11)

101og10 S(z) =  15.81 + 7.5(2 + 0.474) -  17.5yj(l +  (z +  0.474)2) dB (2.3.12)
In the above, z is the difference in critical band scale between the frequency compo­
nents j  and i.

Step 3- Offsetting the obtained threshold.

Oj = (a(14.5  +  j)  +  (1 -  q )5.5) (2.3.13)
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Figure 2.10: An example of the masking curve generated via Johnston’s technique

. ( SFMdB a = min{--- ——, 1)-60
SFMdB =  10/opio F geometric ( Pj ) 

F Arithmetic ( Pj )
Th'j = l0l°9loQj~^o

Step 4- Re-normalizing the obtained threshold.

Th" = Th'A- f  ),,E l
Qj

Step 5- Final threshold
Thj = max (TM .T hq)

(2.3.14)

(2.3.15)

(2.3.16)

(2.3.17)

(2.3.18)
where Thq is the threshold in quiet.

Figure 2.10 shows the final masking curve for an example audio frame obtained
by the use of the listed algorithm.
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M PEG model 1 algorithm

The MPEG model 1 algorithm is listed here to illustrate the difference between the 
models adopted by MPEG and the Johnston algorithm. Model 1 is recommended for 
use with MPEG-2 layers I and II. Model 2 is the recommended model for layer III, 
it has higher computational complexity for an improvement in overall performance 
[Dav95]. The whole algorithm is completed in 5 steps [PSOO]. The assumed sampling 
rate is 44.1 kHz.

Step 1- Normalize the audio signal to SPL scale and obtain the power spectrum 
using 512 samples per frame (11.6 ms) with an overlap of 32 samples. The Hann 
window is used in the spectral analysis. In the following equation, N is the length of 
the DFT and q is the number of bits used in quantization.

xspl —
x(n)

iV(29-!) (2.3.19)
N - l. v—> r 1 r .27T/C.,-. . . .2mk..0 .

P{i) =  90.302+10log10 | ^  {-[1 -  cos (— )]}xSPL(n) exp - j ( - ^ - ) | 2 0 < i <
k=0 (2.3.20)

Step 2- Identify the tonal and noise maskers using the following definitions:

Ctonal =  p(i) iff P(i) > P{i ±  1) AND P(i) > P(i ±  Ai) +  7 dB (2.3.21)

2 2 < i < 63
A¡ e < [2,3) 63 < i < 127 (2.3.22)

k [2,6) 127 < i < 256
Noise maskers are found from components that are not in the A* range of tonal

to| 
5;
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maskers, and the power of the tonal and noise maskers are computed using the fol­
lowing:

1
PLa,(i) =  10 log10 J 2  10p(i+fc)/1° dB (2.3.23)

k= -1

PLse(i') =  101oglo^ 1 0 p(^ 10 dB • i P { k ) 3 P ’onal{ i 4 ± l , i ± / \ i) (2.3.24)
k

here
u

i' =  ( k) i-u+i
k=l

Step 3- Reduce the number of maskers by discarding the maskers that are below 
the threshold in quiet Thq. Replace any two maskers (from the remaining set) that 
are within 0.5 Bark of each other by the stronger of the two. Finally, the remaining 
maskers are re-organized according to the following:

P'tonal,noise (k)

P'tonal,noise w
k

P<
tonal,noise (0

í i 1 < i < 48
< i +  (z77toc/2)49 < i < 96 (2.3.25)

 ̂ i +  3 — ((« — l)mod4)97 < i < 232
Step 4- Calculate the individual masking thresholds for both noise and tonal 

maskers. '

Thtonal(k ,j) =  P’onal(j) -  0.275z(j) +  S (k,j) -  6.025 dB (2.3.26)
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Figure 2.11: An example of a masking curve generated by MPEG's perceptual modell

In the above, z is the bark scale variable and S  is the spreading function given by:

S (k J )
17A z -  0AP'{j) +  11 -3  < A2 < -1
(OAP'(j) +  6)A2 - 1 <  A2 < 0
-17A 2 0 < A2 < 1
(0.15P \ j )  -  17)A2 -  0.15P \ j )  1 < A2 < 8

Thnoise(k J )  =  P'noise( j) -  0.175z(j) +  S {kJ ) -  2.025 dB (2.3.27)
Step 5- Calculate the global masking threshold by combining the I  tonal maskers

with the J  noise maskers in the following manner:
i  j

__ T h n ( k )  YTh{k) =  101og10 (10 10 r h t o n a I  ( k "i ) 
10 +E10T h nmsA—ill \ 10 ) dB (2.3.28)

¿ = 1  j  =  1

Figure 2.11 shows the masking curve obtained for a sample frame of audio using 
the above algorithm. Compared with the masking curve obtained by the use of the 
Johnston masking model, the major differences include the increase in resolution and
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the increased aggressiveness at high frequencies. The increased resolution is an ad­
vantage as it allows the quantization scheme more flexibility in bit allocation. The 
increased flexibility is the result of not having to define the quantization scheme ac­
cording to the critical band because each spectral component now has an autonomous 
masking threshold. On the other hand, the increased aggressiveness in masking at 
the higher frequencies may be a disadvantage for sounds that are more noise-like in 
nature because the higher frequencies add to the naturalness of the sound. A carefully 
designed coding scheme would take this into account.

2.4 Sensory pleasantness and its contributing fac­
tors

Sensory pleasantness describes the acceptability of a given sound to the human ear. 
The contributing factors to sensory pleasantness are sharpness, roughness, loudness 
and tonality. This section looks at sensory pleasantness factors from a coding per­
spective. The factors of loudness, roughness and sharpness are used to analyze the 
sensory effect that the coding noise has on the synthesized signal. To this end, an 
example analysis is presented where two well known speech codecs are analyzed by 
the use of these measures. The sensory pleasantness factors are utilized through out 
this thesis to aid in the development of the scalable perceptual algorithms that are 
presented.

Sharpness may be viewed as a measure of the density of loudness across the 
spectrum in different critical bands. Sharpness is most heavily influenced by the 
center frequency of the sound as well as the spectral content [ZF99]. The unit of
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sharpness is the “acum”. Sharpness increases for sounds with greater loudness spread 
across more critical bands, i.e. if the spectral envelope (which ultimately determines 
the loudness) is spread in significance across a large number of critical bands then 
the sound will be sharp. In order to model this effect, Zwicker and Fastel in [ZF99] 
proposed the following simple equation:

S =  0.11 J024 N'g(z)zdz 
Jo 4 N'dz

(2.4.1)

where S is the sharpness, N' is the loudness in the given critical band (called the 
“Specific Loudness’' ) 2 and g(z) is a weighting function. The weighting function is 
onfy plotted in [ZF99] but a close approximation is given by:

. . 1 0 < 2 < 16
g(z) =  <

{ 8 x 10"523-42 16 < 2 < 24
Loudness has been central to the discussion about perception and masking in 

the previous sections. It is measured in units of “phon” and is a relative measure 
indicating Sound Pressure Level (SPL) of a 1 kHz signal that would sound as loud 
as the given sound. Loudness is a sensation that is developed by the hearing system, 
that is, a sound incident to the hearing system will not be heard instantaneously. 
An interesting fact about loudness is that a sound consisting of two tones separated 
in frequency will be perceived to be louder than a sound of the same energy but 
consisting of a single tone. As the frequency separation is increased, the loudness 
increases. In [ZF99]. the loudness is modelled by the following equation:

a* 24

N =  N'd,1
Jo

(2.4.2)

The Specific loudness is not simply the excitation level at a given frequency in a
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band, although it is related to it. The equation relating the excitation level and the 
specific loudness is:

N' =  0.08 0.5+ 0.5—— — 1 Sone/Bark (2.4.3)
EtQJ

0.23

where Etq is the excitation at the threshold in quiet, Eq is the excitation as related 
to a reference intensity of Iq =  10-12 W/m2 and E is the excitation of the sound of 
interest.

Having described Loudness and Sharpness, the two remaining sensations that 
contribute to sensory pleasantness are Roughness and Tonality. Roughness describes 
the inability of the ear to distinguish tonal components. That is, a sound that is noise­
like sounds rough. As the ear begins to distinguish the tonal components of a sound, 
the roughness of the sound decreases. In this way Roughness may be considered as an 
opposite effect to Sharpness. The model proposed in [ZF99] for Roughness is based 
on the assumption that the hearing system is only capable of detecting changes in 
excitation as is by: '

(2.4.4)
In Equation (2.4.4) ALe is the change in the sensation level in dB, this is different 

to the change in excitation level but may be calculated from it (see [ZF99]). The term 
fmod  is the modulating frequency of the sound, where it has been assumed that an 
amplitude modulation model is sufficient to represent the sound.

The final sensation to look at when studying sensory pleasantness is Tonality. In 
[ZF99] it is suggested that tonality must be judged subjectively as no appropriate 
model exists. It is noted, however, that tonality decreases with increasing critical
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band rate spread, that is as the noise becomes more noise like it becomes less tonal. 
It should be noted here that the tonality of the sound can be approximated by using 
the Spectral Flatness Measure (SFM) [Joh88a]. In [Joh88a] it is suggested that as 
the SFM increases, the tonality decreases which matches what is reported in [ZF99].

Example analysis of speech coders
As an example of how the sensory pleasantness factors can be used in the analysis of 
speech and audio coders, the following experiment was carried out using the FS1016 
coder [JPC89] and the G729 coder [St98], both well known speech coders [RRBM02]. 
The aim is to determine how the coding techniques effect the psychoacoustic prop­
erties of the coded signals. In this experiment, ten files (five female and five male) 
of narrow band speech were used to compare the behavior of the four factor models. 
These files were extracted from the ANDOSL database [and], re-sampled to 8 kHz 
and bandlimited between 300 Hz and 3.4 kHz. The models presented in the previous 
section were then used to calculate the mean Loudness, Sharpness, Roughness and 
Tonality of each speech file (the original, FS1016 and G729 coded speech). The re­
sults obtained for the compressed versions of each file have been normalized to the 
results of the original file. As such, a relative measure is obtained showing how the 
compression techniques tested compare to each other and the original.

Figures 2.12 and 2.13 present the normalized mean loudness and sharpness of the 
compressed files while Figures 2.14 and 2.15 present the roughness and tonality values. 
It can be seen from Figure 2.12 that the G729 coder results in a louder synthesized 
sound than the FS1016 coder while Figure 2.14 indicates that the FS1016 coder 
produces the rougher sound, Figure 2.13 shows that the FS1016 coder also produces
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Figure 2.12: Normalized loudness of the coded narrow band speech

a sharper sound than the G729 coder. Finally, Figure 2.15 shows that the tonality of 
the synthesized sounds varies but tends to be higher than the tonality of the original 
sound.

The results show that the FS1016 coder is rougher and'sharper than the G729 
coder. According to [ZF99], as the roughness of a sound increases, the pleasantness 
decreases and similarly as the sharpness increases pleasantness again decreases. The 
results are in line with subjective results that suggest that the G729 coder produces 
synthesized speech of higher perceptual quality than the FS1016 coder [Cox95]. On 
the other hand, the loudness of the G729 coder is higher than that of the FS1016 
coder which suggests that the G729 coder is less pleasant than the FS1016 coder. It 
should be noted that the loudness result^ presented in [ZF99] show a considerable 
amount of scatter and the model presented is less accurate than the models presented 
for sharpness and roughness.
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Figure 2.13: Normalized sharpness of the coded narrow band speech

The inconclusiveness of the tonality result can be simply explained as a direct 
result of the fact that both coders utilize linear prediction and post filtering as the 
basis of speech coding. Linear prediction, by the use of an all-pole model generally 
increases the tonality of a signal and this is deliberately enhanced further by post 
filtering, hence the tonality of the synthesized speech appears to be higher than the 
original speech. Significantly, in a consistent manner between the speech files similar 
curve shapes result.

The previous discussion shows how the pleasantness contributing factors can be 
used to adjust a coding scheme so that it is tuned towards producing more pleasant 
coding noise. The aim is not to hide the noise or to mask it, it is to shape it so that 
the final result is a more acceptable sound.
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Figure 2.14: Normalized roughness of the coded narrow band speech

2.5 Audio quality assessm ent
The previous discussions about masking and pleasantness as well as the description of 
the use of masking in perceptual coding of audio raises the question of how should one 
assess the quality of the synthesized audio.. If a waveform matching algorithm is being 
used, one could reliably use the SNR as an indicator of the quality. However, when 
one considers the possible number of signal components that are actually masked, 
and hence coarsely coded, the SNR becomes inaccurate as an indicator of perceptual 
signal quality. For example, it is well known that signals that have an SNR of 13 
dB can still sound very similar to the original signal [BBT96]. When one compares 
this value with that of 38 dB used to indicate toll quality speech [NJ84], then the 
inaccuracy of the SNR becomes clearer.

Nevertheless, accurate audio quality assessment is very important. The reason
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Figure 2.15: Normalized tonality of narrow band speech

is that audio compression algorithms are part of large systems (such as broadcast 
systems or telephone systems) that have considerable commercial value. That com­
mercial value is enhanced when high quality material is delivered at low cost. Thus, 
it is necessary to use assessment techniques that result in an accurate indication of 
the quality of the transmitted or stored processed audio. To date, the most accurate 
assessment techniques have involved subjective testing [Ryd96], [PSOO]. The subjec­
tive tests aim to obtain an average value of the perceived coding noise for a particular 
algorithm. However, subjective tests are costly, time consuming and the results tend 
to be relevant only in the context of the conducted test [Ryd96]. These cons have 
given impetus to the development of objective perceptual measures that quantify the 
perceptual response of people to audio coded by the use of a particular algorithm 
[TtOO]. In the following, subjective test techniques will be described. This will be
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followed by an explanation of recent advances in objective quality assessment.

2.5.1 Subjective quality assessment

Subjective quality assessment is a multi-step process that beings with the design 
of the test to the statistical analysis of the results obtained [Ryd96]. Subjective 
audio assessment has been primarily based on the ITU-R Recommendation BS.116 
[Ryd96]. This recommendation specifies that the test should be a double-blind test, 
conducted with a trained set of listeners and involve a continuous scale between 1 and 
5 [Ryd96], [PSOO]. The term double-blind means that neither the person conducting 
the test nor the listener know the order of the material being played. The listener is 
given three sources: A, B and C. The reference signal (the one being compared to) 
is always at source A. The coded signal and the reference signal are then randomly 
assigned to sources B and C. The listener is asked to indicate on a scale form 1 to 
5 the impairment that is heard when comparing sources B and C with A. The scale 
is actually continuous and is divided as shown in Table 2.2: The listener is trained 
before the testing. The purpose of the training is to help reduce the variance of the 
results amongst different listeners rather than to instruct the listener on how they 
should vote [Ryd96]. The training of listeners has been found to be beneficial as 
different people allocate different importance to the impairments heard [PSOO]. The 
tests should also be performed with one subject at a time [Ryd96].

The analysis of the obtained results must be approached carefully. Straight sta­
tistical analysis techniques of ignoring optlying results should be avoided [Ryd96], 
rather, if any results are going to be ignored at all, all the results associated with
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Table 2.2: IT U -R  Ree. BS.1116 sm all im pairm ent scale
Perceived Impairment Difference grade Absolute grade

Imperceptible 0.0 5.0
Perceptible but not annoying -0.1 -> -1.0 4.9 -> 4.0

Slightly annoying -1.1 -X -2.0 3.9 -> 3.0
Annoying -2.1 -> -3.0 2.9 -> 2.0

Very annoying -3.1 -►  -4.0 1.9 -> 1.0

an individual subject should be ignored [Ryd96]. This practice is used because dif­
ferent people have different bias or preference to audio material and this preference 
will influence all of their judgements of audio quality. The number of subjects used 
affects the conclusions that may be drawn from the test. The larger the sample space, 
the more general the conclusions. A sample space of 20 subjects is usually deemed 
adequate [Ryd96]. However, one cannot simply compare coders across different tests 
with different subjects. If two coders are to be compared then ideally they should 
be included in the same test so that the same subjects rate the coders. Otherwise it 
has to be made clear that different groups of subjects were used to judge the coders 
[Ryd96], [PS00]. The reason for this is consistency, although if the tests are suffi­
ciently large in terms of number of subjects then one would expect that the results 
across different tests should be approximately the same. Finally, the score given to 
the coder using the BS.116 approach is an average difference grade (which is a neg­
ative number) . For a coder to be deemed transparent, none of the audio material 
tested should have a score below -1.00 difference grade. Very good quality coders 
score an average difference grade greater than -1.00.

The test described previously applies to audio coders that are of high quality and 
(usually) medium to high bit rate. This test is thus not very useful when testing
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Table 2.3: ITU -R  Ree. P80Q/P.830 scale
Quality Score

A much better than B +3
A better than B +2

A slightly better than B +1
A same as B 0

A slightly worse than B -1
A worse than B -2

A much worse than B -3

low rate coders which are guaranteed to introduce audible impairments. An alter­
native test is the ITU-R Recommendation P.800/P.830 which allows a seven grade 
comparison between two audio signals. The subjective results range from source A 
much better than source B to the opposite. The scale is not continuous, rather the 
subject has a choice between seven grades [PSOO]. This test is used for making a 
choice between available coders that are known to introduce artifacts into the audio 
signal. Table 2.3 shows the grading criteria of this test.

A similar subjective test that has been very popular in speech coder evaluation 
is the Mean Opinion Score (MOS) test [DPH93]. This test utilizes a scale similar to 
the 5-Grade impairment scale as suggested (shown in Table 2.4) in ITU-R Recom­
mendation BS.562-3 to judge the quality of the coded speech. This test results in a 
an average score, with very high quality coders scoring close to 4.5 which is the MOS 
for toll quality speech [NJ84].

Considering the effort that is required to produce acceptable test results, the use 
of subjective tests in the development phase of audio coders is an expensive and time­
consuming approach. It is also an imperfect approach, as much research is still to be 
done on how the results of such tests should be analyzed to reflect the true nature of
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Table 2.4: IT U -R  Ree. BS.562-3 scale (MOS)
Quality Score

Very annoying (close to noise) 1
Annoying 2

Slightly annoying 3
Perceptible (but not annoying) 4

Imperceptible 5

the perceived quality of the coder [Ryd96]. Subjective tests are highly influenced by 
factors that are not related to the audio coder itself. Besides the already mentioned 
individual tastes and bias, there is also the equipment bias and the environment bias 
[Ryd96]. The equipment on which such tests are conducted rarely matches consumer 
equipment and so such tests are not truly reflective of how consumers will assess 
such coders [Ryd96]. The environment in which such tests are conducted is also 
not reflective of every-day environments that often contain unpredictable noise and 
masking factors [Ryd96]. Having said that, subjective tests remain the only respected 
way of choosing audio coders [Ryd96], [PSOO].

2.5.2 Objective quality assessment

The time and financial cost of subjective tests make them impractical in a number of 
areas that require audio quality assessment [TtOO], [BBT96]. For example, the on-line 
assessment of audio quality cannot be carried out subjectively. Distributors of au­
dio over telecommunication networks (including television and telephone) need some 
way of determining the audio quality in a near instantaneous time frame. Complete 
subjective tests are also impractical in the development phase of audio compression
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algorithms. The prohibitive nature of subjective test costs lead to “informal” listen­
ing tests that quite often result in an inaccurate assessment of how test subjects will 
respond. This can lead to costly development errors. The existence of these require­
ments and others is the reason behind the interest in objective quality measures that 
correspond to the subjective quality measures already mentioned.

The first measure that will be mentioned here is the SNR and its derivatives. 
The SNR is a useful measure for waveform matching algorithms. It has already been 
pointed out that a low SNR does not necessarily mean bad signal quality, however it 
should be remembered that a high SNR does mean good signal quality, for obvious 
reasons. The SNR is rarely applied as a global measure when assessing sound signals 
as it can be heavily biased by impulsive sections of speech and audio, rather the Seg­
mental SNR (SegSNR) is normally employed [DPH93], [GG92], [NJ84j. The SegSNR 
is simply the average of the frame SNR value calculated for frames ranging in length 
between 15 and 25 ms (to maintain stationarity). The frames on which the SegSNR is 
calculated are not necessarily the same frames chosen in the,coding process, this can 
help produce a better indication of the global quality of the signal. Other objective 
measures used include the Itakura distance measure, frequency weighted SegSNR 
and the weighted spectral slope measure [DPH93]. All of these measures compare 
the spectral representation of the original signal with that of the processed signal. 
Various processing is applied to the original signal to obtain a representation of the 
underlying perceptual signal, although perceptual issues are not taken into account 
directly [DPH93].

The objective measures mentioned thus far have only had limited success with 
predicting the subjective evaluation of speech and audio signals. An attempt to
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Figure 2.16: An overview of the PEAQ scheme

capture the subjective evaluation by humans of audio quality is presented in [BBT96]. 
A very brief description of how this measure works would be to say that it compares 
the evaluated response to both the original signal and the processed signal and grades 
the result. Results presented in [BBT96] show that there is good correlation between 
the predicted results and actual subjective results. Note, however, that the system 
compares the original signal with the processed signal. This is reflective of popular 
audio assessment techniques but is not reflective of MOS testing (which does not 
always include the original). An objective model for speech quality assessment has 
been presented in [HKOO] with good correlation obtained between MOS scores and 
the presented objective measure. The objective measure presented in [HKOO] is a 
correlation factor between the original signal’s auditory response parameters and that 
of the processed signal, the higher correlation the expected MOS score.

The perceptual objective measures discussed thus far are only a sample of the 
work that has been conducted in this area [TtOO], as an exhaustive discussion of all 
the techniques proposed would be too lengthy to include here. However, one measure 
that demands some attention is PEAQ which is the ITU’s relatively new standard for
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objective audio assessment [TtOO]. Figure 2.16 shows the operation of this measure 
from an overview perspective. PEAQ includes a model for the human ear (which may 
be implemented by the use of a filter-bank or the FFT) which performs the time to 
frequency transformation of the original and processed signal. The transformed sig­
nals are used to calculate the excitation patterns, loudness and modulation patterns 
in a similar fashion to that mentioned in Section 2.4 and [ZF99]. These patterns are 
fed into a subjective model and a neural network which attempt to mimic human 
response to the given signals. The outputs of the whole system are a distortion index 
and an objective difference grade (the equivalent of the subjective distortion grade). 
Results presented in [TtOO] and [TSOO] show very good correlation between this mea­
sure and the subjective results. PEAQ does have two modes of operation, a basic 
mode and an advanced mode, the basic mode is the FFT based approach which in­
creases the computational efficiency of PEAQ. A simple analysis of the PEAQ system 
would imply a high computational complexity for the filter model based approach, 
this issue is not addressed in [TtOO], however the filter based model works consider­
ably better than the FFT based model indicating that a heavy computational load 
would have to be tolerated to obtain an accurate prediction of the subjective quality.

2.6 Summ ary and conclusion
This chapter has outlined the main concepts that form the basis of audio compression. 
Transform theory has been reviewed from the perspective of transforms that have been 
used in audio compression algorithms. The discussion has shown the evolution in the 
transforms used in audio coding; from block transforms to the lapped and wavelet
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transforms. Quantization was also looked at in a similar manner. Adaptive and non­
adaptive techniques were discussed where the adaptation is carried out based on signal 
statistics or perceptual measures. Recent signal models have also been discussed.

The perceptual concepts presented in this chapter have focused on explaining 
masking, its causes and applications. Sensory pleasantness was also presented, how­
ever, this is of more interest as an analysis tool than a coding tool. The example 
analyzed two speech codecs and allowed a discussion of the perceptual effects that 
the coding algorithms employed have on the synthesized speech. This led to the 
discussion about audio quality assessment, both objective and subjective.

It can be concluded from the presented discussions that the application of trans­
forms in audio compression should focus on lapped or wavelet style transforms, this is 
the case with current audio coders as will be seen in the next chapter. Signal models 
can be an effective way of dealing with audio compression, again the next chapter 
will show the current popularity of these models. Finally, it is noteworthy that the 
development of audio compression algorithms is streamlined by the availability of ef­
fective objective measures as reliable subjective tests are costly and time consuming. 
The pleasantness analysis presented has been shown to be of potential use in audio 
compression design.



Chapter 3
A R eview  of Perceptual Audio 
Com pression
This chapter presents a review of the audio compression literature that is relevant 
to this thesis. The chapter builds an overall picture of the most popular approaches 
to audio compression by focusing mostly on standardized as well as commercially 
successful techniques. This chapter will show the shift in perceptual audio compres­
sion from algorithms aimed at optimizing the perceptual results for a set bit rate to 
algorithms that can easily scale from low rates to high ratesT The growing interest in 
lossless audio compression is also discussed.

3.1 Introduction
Audio compression may be seen as beginning in earnest during the mid 1980’s [PSOO], 
previously much of the focus was on the compression of speech signals which have a 
significantly narrower bandwidth and are one specific component of the audio field. 
Since then, one of the most popular and successful approaches to audio compression 
has been transform coding [PSOO], [EEM+97]. This approach involves the conversion

70
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of the audio signal from the time domain into the frequency domain and the distri­
bution of the quantization bits across the frequency bins in some desirable manner. 
Another approach has focused on modelling the audio signal as either the sum of 
simpler signals or the combination of parametrically synthesized signals.

In this chapter a thorough review of audio compression techniques will be given. 
The focus will be on perceptual transform techniques as well as perceptual parametric 
techniques that have shown promising performance. To facilitate a more complete dis­
cussion of these algorithms, the starting point will be a general look at the principles 
behind these schemes.

It will be seen that audio coders tend to be medium rate coders or higher (that is, 
around the 40 kbps mark and above). Low rate coders (starting from as low as 6 kbps) 
will also be looked at. The scalable coders will be given more attention than others 
as the focus of this theses is on scalable perceptual audio compression. It will also 
be seen that the driving force behind the continuing research in audio compression is 
the best achievable quality at a given bandwidth.

The following section outlines the basic concepts of audio compression. This is 
followed by a description of specific audio compression standards, that is the MPEG 
audio standards, as well as the major commercial algorithms available including PAC, 
ATRAC and AC-2/3. Other coders will also be reviewed according to category, that 
is, whether they are transform based coders, parametric coders and hybrid coders.
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Figure 3.1: Transform coding of audio

3.2 Transform and sub-band audio com pression ba­
sics

Transform audio compression is diagrammatically described by Figure 3.1. Although 
transform coding is not the same as sub-band coding, the structure of the coding 
schemes are usually very similar. The most obvious difference between transform 
coding and sub-band coding is the division of the spectrum That each coding scheme 
applies. However, it will be seen that this distinction is quite often blurred in audio 
coders. The following subsections will discuss the major components of these schemes.

3.2.1 Frame selection

Transform coding is typically built to operate on a frame by frame basis, the frame 
length chosen depends on the algorithm used and it may be variable . At 44.1 kHz, 
frame lengths of 512 and 1024 samples are popular although other frame lengths 
may be used, for example a frame length of 882 samples is employed in MPEG-4 
[BKS00]. In terms of time, frame lengths between 15 ms and 25 ms are normally
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chosen to maintain the pseudo-stationarity of the audio segment and to ensure low 
delay with minimal perceptual effects. The issue of pseudo-stationarity is of more 
concern to parametric coding schemes because of the assumption that the probability 
distribution of the signal is independent of time, however, the other considerations 
of delay and perceptual effects are quite relevant to transform coding as well. The 
meaning of “perceptual effects” will become clearer in later sections of this chapter; 
here we shall only mention that the human perceptual system is time dependent. 
This means that some coding artifacts may be hidden by correctly spreading them 
in time. Dividing the audio signal into separate frames has the added advantage of 
allowing the editability of the audio signal [EPOO], whereby the signal may be changed 
by either changing its parametric or transform representations.

There have been a number of algorithms proposed that actually adapt the frame 
length [BKS00][Ver99][Lev98]. This variation in frame size is aimed at improving the 
perceptual performance of the coding algorithms. However, the uncertainty principle 
sets a limit on the performance of these algorithms. The uncertainty principle states 
that there is a trade-off between the time domain resolution and the frequency domain 
resolution. Mathematically, this trade-off is given by [Mer99]:

StSu, > \ (3.2.1)
where St and 5U are the resolution in time and in frequency respectively. The variation 
in the frame length is usually used as a tool for the reduction of pre-echo distortion 
[BKS00],[PS00] whereby the impulsive sections of the audio signal are coded by the 
use of shorter frame lengths than steadier sections. Pre-echo effects are an issue 
in transform coding as the quantization error in each bin of the frequency domain is
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distributed across the entire frame in the time domain. When an impulsive component 
of the signal occurs at the end of a frame, the frequency domain quantization errors 
cause audible errors in the time domain which occur before the synthesized impulsive 
section; i.e. they are heard before the impulsive section and hence the name ‘pre-echo’
[PSOO].

As a direct result of the uncertainty principle, the change of frame length in 
the time domain resolution leads to an opposing change in the frequency domain 
resolution. Thus, increasing the time domain resolution will lead to a decrease in 
the frequency domain resolution. This may result in undesirable frequency domain 
effects for the transform being employed, however, the perceptual gains are generally 
viewed as more important than this potential drawback; hence, the deployment of 
frame length varying algorithms [Ver99][Lev98][HJ97].

The frame selection algorithm in an audio compression scheme must also account 
for the overlap between the frames. Overlap between audio frames becomes neces­
sary when one employs a non-rectangular window to improve the frequency domain 
performance of the transform being used. The window of traditional choice is the 
Hamming window [GS92], however, the recent popularity of the Modulated Discrete 
Cosine Transform (MDCT) has lead to the deployment of PR windows which have 
better frequency domain properties whilst allowing the PR of the original audio signal 
[Mal92].

Windowing also necessitates overlap in order to avoid time and frequency domain 
aliasing of the original signal [RS78]. As the multiplication by a window in the time 
domain has a filtering effect in the frequency domain, the time-domain sampling of 
the frequency representation of the signal changes accordingly. In order to recover the
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original signal it is important to ensure that the frequency domain representation is 
evaluated in the time domain at twice the “time-domain bandwidth” of the window, 
just as it is equally important that the signal’s time domain representation is sampled 
at twice the frequency domain bandwidth of the signal [RS78]. In the case of a 
Hamming window, the shape of the window is defined by the equation:

0.54 — 0.46 cos jljPrr 0 < n < M
w(n) = <J 0 otherwise (3.2.2)

and the bandwidth of the window is given by:
2 f aW = M (3.2.3)

where W  is in Hz, fs  is the sampling frequency and M  is the length of the window. 
The sampling rate of the frequency domain representation is 2W. Thus, for a 44.1 
kHz sampled signal, if a window length of 1024 samples is used then W =  86 Hz and 
2W — 172 Hz. This gives the necessary condition of evaluating the frequency domain 
representation every 256 samples. Thus, the overlap for a Hamming window of length 
1024 samples would be 768 samples.

Other windows have been developed to specifically address the issue of time­
domain aliasing [Mer99] and so require a different overlap to the Hamming window 
to obtain a perfect reconstruction of the original signal. One such window is the sine 
window [Mal92] given by:

w { n )  =  7 M s i n { ( n  +  l ) i ) ° - n- f  (3-2-4)
In the case of the sine window, the overlap required is half the frame length. Under­

sampling of the frequency domain representation of a signal and maintaining PR is
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possible under special circumstances [RS78]. Perfect reconstruction is not generally 
the aim of an audio compression scheme, the main aim is usually perceptual perfect 
reconstruction where the synthesized signal and the original signal sound exactly the 
same without necessarily having zero error between them. In this thesis, however, 
one of the aims has been the development of a lossless compression scheme, in which 
case PR is a specified requirement.

3.2.2 The transform

The previous discussion on frame selection is related directly to the choice of trans­
form. At this point it is worthwhile mentioning the reasoning behind transforming 
a signal from the time-domain into another domain. Transforms are designed to act 
like decorrelating devices [Beu84], i.e., the correlation between the transform coeffi­
cients is meant to be much less than that of the original coefficients or samples. In 
this way, most of the energy of the signal will be concentrated in a few coefficients 
leading to a smaller error between the original signal and the reconstructed signal for 
a given bit rate [Mal92]. If one was to employ a scalar quantizer in both the time 
domain and the frequency domain, then the gain of transform coding is defined as 
the increase in Signal-to-Noise-Ratio (SNR) for transform coding over Pulse Code
Modulation (PCM). This can be calculated from the following equation [Mal92]:

1 1 2
t~\ __  M  2—j£=Q ^  ell

j_
f  ryM-l 2 1 M
( J U o  Gell)

In (3.2.5) the o f  s are the transform coefficient variances and T is the coding gain 
(M is the frame length).

It is necessary to point here to the different types of transforms that may be used

3.2.5)
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in transform coders. Using the equation for coding gain as a measure of optimality, 
the optimal transform that may be used in combination with a scalar quantizer is the 
Karhunen-Loeve transform [Mal92] [Mer99] as it minimizes the geometric mean of the 
transform coefficient variances (which happens to be the denominator of Equation 
(3.2.5)). However, currently, lapped transforms continue to be the most popular 
transforms in the proprietary and standardized coders [BKS00][Dav99][Nol97][PS00]. 
The wavelet transform is also quite popular as it allows the audio signal to be divided 
into non-uniform frequency bands that are hierarchical in nature [PS00][SJ96][ST93b]. 
Transforms that combine both time and frequency parameters have been used for the 
analysis of music signals [PWS96], although their use in audio compression is rare.

3.2.3 The perceptual model and quantization

Having transformed the audio frame, the obtained coefficients must be quantized for 
digital transmission or storage. The coefficients may not be quantized explicitly (im­
plicit quantization is used in integer-to-integer transforms for example) however, it is 
the usual case that they are [GG92]. Transform coders tend to employ scalar quan­
tizers with good results [GoyOO]. These scalar quantizers are usually adaptive as they 
take into account perceptual effects [BKSOO], [PSOO], [EEM+97]. Taking account of 
perceptual effects dictates that the more perceptually significant coefficients should be 
quantized using more bits than the other coefficients. Stated in another way, quan­
tization noise is shaped such that it corrupts perceptually insignificant coefficients 
rather than perceptually significant coefficients.

The perceptual model may operate in both the time and frequency domains. As an 
aside, this is a useful application of time-frequency transforms in audio compression
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as such transforms may allow the use of the total perceptual model to reduce the 
required bit rates. The perceptual model helps to identify the perceptually significant 
components of the audio signal, hence reducing the overall bit rate required for the 
perceptual reconstruction (and not necessarily the waveform reconstruction) of the 
original signal [Joh88a].

Transform audio compression is the core of the compression techniques presented 
in this thesis. The advantages that this technique offers are related to scalability and 
perception. The use of a transformation in compression allows signal reconstruction 
both partially and completely. This clearly helps when one is determined to allow 
scalability in the coding scheme. The disadvantage is that at low and very low rates, 
the quality of a transform coder tends to decrease at an increasing rate [KP95]. Also, 
at the higher rates, the quality increases at a decreasing rate (i.e. it saturates). The 
sharp decrease can be addressed by employing hybrid coding techniques which com­
bine both parametric and transform coding. On the other hand, the saturation may 
be addressed by designing the coder to scale to lossless compression. The saturation 
is not a concerning phenomena in low rate compression, simply because it is of general 
interest to have good quality at low rates and in doing so saturation is guaranteed, 
especially in terms of perception.

The parametric coders which are generally employed for low rate compression are 
the next focus of this chapter.
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Figure 3.2: Parametric audio coding basics

3.3 Param etric audio compression basics
Parametric signal compression is concerned with the description of the given signal 
by the use of some model. Figure 3.2 shows the basic components of current popular 
parametric audio coders. The fundamental difference between a transform coder and 
a parametric coder is the signal or source model component. A popular signal model 
for audio is the sinusoidal model [GS92] [EPOO] [PSOO] which defines the signal as a sum 
of sinusoids. The parameters of this model are the amplitudes, phases and possibly 
frequencies (depending on the implementation actually used). In order to generate the 
signal model a transform could be used as a tool. In the case of sinusoidal modelling, 
the Short Time Fourier Transform (STFT) was used to generate the original sinusoidal 
model [MQ95].

Another popular audio modelling techniques utilizes linear prediction. This is 
primarily used in speech compression as the speech production process is modelled 
by an a.ll-pole filter that is excited by colored noise [RS78]. The linear predictor model 
in audio compression has been applied extensively in lossless audio compression [HS01]
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but it has not enjoyed the same popularity in medium and low rate audio compression
[PS00].

Frequency Modulation (FM) has also been proposed as a possible model of audio 
[PS00] [Cho73]. Limited success has been reported, however the idea is a novel one and 
it is based on the observation that an FM signal spectrum in many ways resembles 
an audio signal spectrum [Cho73].

In terms of signal models for scalable coders, the Sinusoids plus Transients and 
Noise (STN) model has been shown to provide a tool for allowing smooth scalable 
compression [Ver99] [Lev98]. The STN model, as the name suggests, decomposes the 
audio signal into sets of sinusoids, transients and noise. The sinusoids are used in 
the same manner as in the sinusoidal model while the transients are added to the 
synthesized signal at higher bit rates to increase the similarity between the original 
signal and the synthesized signal. The noise is inserted at low bit rates, that is before 
the transients, and is used to color the spectrum of the synthesized signal. The reason 
behind using colored noise is that the sinusoidal model on it« own produces a highly 
tone like spectrum at low bit rates [Ver99]. The sinusoidal model is also inappropriate 
for a number of audio signals that have a noise like composition [Ver99]. The term 
“noise like” refers to the similarity between the spectrum of the audio signal and 
that of white noise, i.e., a flat spectral shape. For example, the Harpsichord tends to 
produce a noise like signal. Figure 3.3 shows the Power Spectral Density (PSD) of a 
tune played on a Harpsichord. The flatness of the spectrum is an indication that such 
a signal cannot be modelled by a sum of only a few sinusoids. Results presented in 
Chapter 4 will show the difficulty that a pure sinusoidal model has with representing 
such a signal.
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Normalized frequency (rad)

Figure 3.3: PSD of the Harpsichord signal

The term “noise model” is somewhat misleading, as most such models try to shape 
white noise by coloring it spectrally [PS00][Ver99][SA99]. The shaping of white noise 
may be carried out in a number of ways, and noise modelling is still a rich area of 
research [Ver99], [SA99]. Fundamentally, the techniques apply time-varying filters to 
a known white-noise sequence in order to obtain the color required.

Returning to Figure 3.2, one may notice that the signal model may be used in 
frame selection. The model determines the length and/or overlap of the frames. This 
is particularly true in the case of sinusoidal modelling[MQ95][GS92] where the frame 
length tends to vary depending on the pitch of the input signal. The variation in frame 
length aids some parametric coders in better representing the input audio signal.

Finally, a comment about the quantization schemes employed in parametric coders. 
Unlike transform coders that must quantize coefficients that are uncorrelated, para­
metric coders must efficiently represent groups of parameters. It is noticeable that



3.4 Scalable audio compression 82

Vector Quantization (VQ) is used in parametric coders more often than in transform 
coders [PSOO]. The reason is that parametric coders seek a high subjective similarity 
between the original and synthesized signal at low rates without being concerned with 
waveform matching. It is well known that in audio and speech compression there is 
only a small link between SNR and subjective quality [TtOO]. This means that the 
approach taken by subjective parametric coders will produce very good quality at low 
rates, however, this same property is also a hinderance in that scalability is limited. 
Throwing an increasing number of bits at a parametric coder improves the subjective 
quality up to the ceiling set by the parametric model used and is unlikely to improve 
the objective quality [KP95].

3.4 Scalable audio compression- why and how ?
To this point the discussion has been focused on the basics of a number of audio 
coding techniques; transform and parametric coding. The main aim of this thesis 
is the presentation of new scalable coding techniques that may have a wide variety 
of applications. Scalable compression should allow the extraction of different quality 
audio from the same bit stream. Alternatively, one may view a scalable compression 
technique as one that does not have to be altered to obtain higher quality for an 
increased bit rate. Possible applications of such schemes include preferential sale of 
audio, the advertising of good quality audio at the lower rates and so on.

The current direction of research in scalable audio compression tends to focus 
on the parametric compression approach [Lev98] [Ver99] [EPOO] [BKSOO]. The primary 
reasoning behind adopting such an approach is that it is possible to decompose the
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signal into a number of representations that may be combined together in an em­
bedded bit stream. A completely embedded bit stream should ideally add value for 
every bit transmitted, in the current available literature, the bit streams that are 
referred to as embedded actually add value for a defined number of bits together. 
Scalable transform coders tend to be rarer than their parametric counter-parts. A 
scalable transform coding scheme was presented in [JMN+99] where the MDCT was 
combined with TwinVQ quantization in a hierarchical manner to obtain scalability. 
Again, this scheme obtained tends to deliver large step scalability rather than fine 
grain scalability. A scheme presented in [LP98], which will become of increased rele­
vance in later chapters, utilizes a quantization technique that allows very fine grain 
scalability, although the actual coding scheme described in [LP98] was not presented 
as a scalable coder.

3.5 Lossless audio compression - why and how ?
Lossless audio compression enables the reproduction of the exact digital audio signal 
using a reduced bandwidth or memory. The current state of the art in lossless audio 
compression applies some kind of decorrelation tool to the time domain samples and 
codes an error signal by the use of an entropy code [HS01]. The decorrelation tool 
employed is usually a linear predictor, or less often, a transform [HS01],[LPN97]. 
Figure 3.4 illustrates the basic technique underlying lossless compression.

The reason behind lossless compression is very simple; if very high quality lossy 
compression requires a large bandwidth then that bandwidth would be more appro­
priately utilized if the resultant synthesized signal was an exact copy of the original.
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Figure 3.4: The concept of lossless audio compression

This is a logical argument, since early compression techniques (which were lossy) 
operated above the 100 kbps mark [PS00], i.e. at a compression ratio of 7:1. The 
current state of the art averages a 3:1 compression ratio [HS01]. Thus, if the loss­
less compression ratio were to be improved, one would find a high level of demand 
for such compression schemes. Chapter 6 will present a scalable to lossless scheme 
that actually maintains fine grain scalability. Hence, a more elaborate discussion on 
lossless audio compression will be deferred until then as here only the basic concepts 
behind different forms of audio compression are being introduced.

Having given a rather quick look at how digital audio compression is achieved, it is 
now appropriate to take the time to examine the state of the art in audio compression. 
A look at all the audio compression algorithms that have been developed over the 
complete history of audio compression would be impractical in a thesis such as this. 
Instead, the focus of the review of the state of the art will be on standardized audio 
coders as well as popular commercial products. The other coding algorithms will be
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mentioned, but only briefly.

3.6 Audio com pression standards
In the early 1990’s the International Organization of Standardization (ISO) started 
an audio compression standardization process through the setting up of the MPEG 
(Moving Pictures Experts Group) audio activity [Nol97]. The aim of the exercise was 
to standardize an audio coder that produced transparent audio at high compression 
ratios. The first standard produced, MPEG-1, was the first standard aimed at high 
quality audio compression. This has been followed by the development of MPEG-2 
and 4. MPEG-7 and 21 have also been developed, but these last two standards deal 
with content description and content delivery respectively.

3.6.1 MPEG-1

The first effort of MPEG-1 resulted in a coder that offered three layers of compression; 
layers I, II and III. Layer III being the famous MP3 coder [Nol97]. The three layers 
are organized in the order of increasing compression, complexity and quality. Table
3.1 lists the compression bandwidths required to achieve transparent compression for 
stereo signals using the MPEG-1 coders. Mono signals require rates slightly greater 
than half of the rates listed as the compression of a stereo signal has the advantage 
of reducing inter-channel redundancy.

Figure 3.5 shows the block diagram representation of MPEG-1 layers 1 and 2. 
Figure 3.6 illustrates the MPEG-1 layer 3 coder. As can be seen from both figures, 
MPEG-1 relies on the sub-band analysis of the original audio signal by the use of
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Figure 3.5: Block diagram of the MPEG-1 layer 1 and 2 codec
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Figure 3.6: Block diagram of the MPEG-1 layer 3 codec

either a filter bank (layers 1 and 2) or the MDCT (layer 3). Two psychoacoustic 
models were defined for MPEG-1 (with different accuracy and complexity). MPEG 
model 1 is utilized for layers 1 and 2 whilst MPEG model 2 is utilized by layer 3. All 
three layers use the defined psychoacoustic model to determine how the frequency 
domain representation of the original signal should be quantized. This means that 
side information is produced to enable the decoder to correctly synthesize the coded 
signal. This method of using the psychoacoustic model is quite popular, although not 
very efficient, as noted in [LJ02].

For increased compression MPEG-1 layer 3 relies on an entropy coding scheme 
of the coder bitstream. This approach, whilst an effective compression method, does 
result in a variable rate scheme which could be unattractive when only a constant 
bandwidth is available. To counter this problem, MPEG defined a bit reservoir scheme
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Table 3.1: Mean rates for transparent audio compression in MPEG-1 stereo
Layer Mean bit rate (kbps)

I 384
II 192
III 128

that maps the variable rate bitstream into a constant rate stream limiting the bit rate 
to the reservoir’s maximum level [Nol97].

3.6.2 MPEG-2

MPEG-1 has been a widely applied standard [BKSOO], [Nol97]. The major step 
forward in terms of lower rate audio compression in MPEG-2 is embodied in the 
Advanced Audio Coder (AAC) which is not backward compatible with MPEG-1. 
Figure 3.7 shows the layout of the AAC coder. The filter bank used in AAC is a 1024 
line MDCT (thus a frame length of 2048 is used). The perceptual model is MPEG 
model 2. The other significant tools in AAC for all audio signals (that is mono, stereo 
and multichannel) include the Temporal N,oise Shaping (TNS) tool and the backward 
prediction tool. The TNS allows the shaping of time domain noise in order to reduce 
pre-echo distortion as well as improve the overall perceptual quality.

The AAC coder has three modes of operation; the main profile full AAC coder, 
the low complexity profile and the sampling rate scalable version. The low complexity 
profile does not use the TNS or backward, prediction tools whilst the sampling rate 
scalable version allows different sampling rates through the use of a hybrid filter 
bank. MPEG-2 offers high audio quality for five channels at 320 to 384 kbps [Nol97]. 
MPEG-2 can handle up to 46 channels and it has a simulcast mode, allowing the 
transmission of both MPEG-1 and 2 bit streams for backward compatibility.
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Figure 3.7: The MPEG-2 AAC coding scheme
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3.6.3 MPEG-4

The most recently completed compression standard in the MPEG series is MPEG-4 
(Note that MPEG-7, which is a more recent standard, deals with content description 
and MPEG-21, which is being developed deals with content delivery). The main 
theme of MPEG-4 was the development of audio compression objects [BKS00]. This 
allowed MPEG-4 to include techniques for scalable audio compression. The MPEG- 
4 activity did not find that any single audio compression algorithm submitted for 
consideration could scale from low to high bit rates with satisfactory results [BKS00]. 
This meant that MPEG-4 adopted different audio compression algorithms for different 
bit rates. At the lowest rates, text to speech tools were adopted. At the next level 
of bit rates it is recommended that the HVXC low rate clean speech coder is used. 
The CELP telephone speech coder comes next and the General Audio (GA) coding 
tool (shown in Figure 3.8) is defined to operate from the CELP region (12 kbps to 
24 kbps) to higher rates. Scalability is achieved by the transmission of a base layer 
followed by refinement layers if the bit rate permitted is sufficient. The base layer 
could be generated by any one of the coders adopted. The same is true for the 
refinement layers. However, the refinement layers should only contain information 
that will improve the quality provided by the base layer and not retransmit previously 
transmitted information [BKS00].

The MPEG-4 GA tool introduces the use of Perceptual Noise Substitution (PNS) 
and TwinVQ to the MPEG standards. PNS is based on the idea that signal compo­
nents that are noise-like may be replaced by other, similarly noise-like, signals [Nol97]. 
The definition of this tool is consistent with the object oriented approach to audio 
compression that MPEG-4 adopted.
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Figure 3.8: The MPEG-4 General Audio coder
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As for the TwinVQ, it is aimed at increasing the quantization efficiency of the GA 
tool at lower rates. The TwinVQ [IMM95] coding scheme utilizes the MDCT to an­
alyze the incoming audio signal as well as linear prediction to approximate the linear 
redundancy in the signal. The linear prediction spectral envelope is used to divide 
the MDCT coefficients and hence obtain a frequency domain residual signal. This 
residual is further whitened by the use of a fine structure predictor whose spectral ap­
proximation is again used to divide the calculated residual of the MDCT coefficients. 
The fine structure envelope is determined by the use of three previous frames’ fine 
structure envelopes. The normalized coefficients obtained following the fine structure 
division are split into equal length vectors whilst being interleaved as described in 
[MH88], where the coefficients are decimated by a factor equal to the number of sub­
vectors to be produced and allocated to the sub-vectors such that the sub-vectors 
each have an approximately equal number of low and high frequency coefficients. A 
perceptual weighting is applied to the sub-vectors (before being quantized) by weight­
ing each sub-vector by a transformed version of its linear predictor envelope. It has 
been reported that TwinVQ outperforms MPEG layer II for 48 kHz sampled signals 
coded at 64 kbps, and MPEG layer I for 32 kHz sampled signals at 32 kbps [PSOO].

The foregoing discussion about the MPEG standards highlights the need for an 
embedded bitstream scalable coder. Whilst the defined method of scalability attempts 
to achieve harmony between a number of compression algorithms, it lacks control 
over every bit transmitted. Instead, sections of bits are grouped together to produce 
a base layer and enhancement layers. This thesis proposes compression algorithms 
in Chapters 5 and 6 that enable the control of every bit used in the compression 
algorithm.
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The MPEG coding standards have come about as a result of the co-operation of 
a number of commercial enterprizes [Nol97]. The contribution of large commercial 
enterprizes such as AT&T Bell and Dolby were primarily based on coding algorithms 
that each had implemented as a product. The following review of popular commer­
cial products should clarify the similarities between those products and the coding 
algorithms adopted by MPEG.

3.7 The D olby AC series o f coders
The AC-2 and AC-3 series of coders were designed to be low complexity transform 
audio coders [FBD+96] to address commercial entertainment services such as cinema 
audio and digital television audio. The AC coders TDAC transforms (such as the 
MDCT). AC-2 and AC-3 adopt a similar overall approach to the coding of audio with 
differences in the detail. The commonalities between AC-2 and AC-3 are shown in 
Figure 3.9 which shows the structure of both encoders with the dashed lines indicating 
paths that are only applicable to AC-3.

As indicated by Figure 3.9, quantizing the frequency domain representations in 
both AC-2 and 3 involves the approximation of the spectral envelope. The AC-2 
spectral envelope encoding picks the peaks in the critical bands and quantizes them. 
These values are used as gain factors in the quantization of the remaining spectral 
components. The approximated spectral envelope is transmitted to the decoder and 
it is used at both the encoder and decoder to approximate the masking threshold 
of the signal, avoiding the transmission of perceptual side information [FBD+96] 
[Dav99]. AC-2 embodies four algorithms with varying delay and bit rate (as well 
as quality). The frame length used for the analysis of the audio signal also varies
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Figure 3.9: The AC-2 and AC-3 encoding schemes

according to the algorithm used. The lowest delay algorithm uses a 128 sample frame 
length at 48 kHz sampling, to produce a coded bit stream at 192 kbps with 7 ms 
total delay. The coding delay may be increased to 12 ms by the use of the second 
AC-2 algorithm which also produces a 192 kbps bit stream! The increased delay is 
the result of consecutive 128 sample frames sharing information and hence using the 
allocated bandwidth more efficiently leading to increased quality. The third AC-2 
algorithm requires 512 sample frames and operates at 128 kbps with the cost of the 
delay increasing to 45 ms. The fourth AC-2 algorithm, named AC-2A, allows the 
adaptation of frame length between 512 samples and 128 samples depending on the 
signal characteristics. The adaptation of frame length is used to localize transients 
more accurately and so improve the perceptual performance of the coder.

In contrast, AC-3 spectral envelope encoding utilizes a finer resolution than the
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AC-2 envelope encoding. In AC-3, rather than grouping together spectral coeffi­
cients according to the critical band to which they belong, the coefficients are lumped 
together in groups of ones, twos or fours. These new “bands” are grouped with cor­
responding bands from up to five other frames in time before transmission. This 
introduces a delay in the AC-3 coding algorithm [FBD+96]. AC-3 also uses a more 
complete masking model to determine the masking threshold, whilst maintaining 
frame length variability according to signal characteristics. AC-3 produces high qual­
ity audio compression at a stereo rate of 192 kbps and a surround sound (5.1 channels) 
rate of 384 kbps [Dav99].

3.8 AT&T Perceptual Audio Coding (PAC)
The origins of the PAC coder can be found in [Joh88a], [Joh88b] and [Joh89]. PAC 
is a popular commercial product that is built with a hierarchical paradigm in that 
a core coder is used for all modes of PAC and various enhancements are added to 
this core coder depending on the required application [SJDQ99]. Here our concern is 
with the mono PAC, and so it is illustrated in Figure 3.10. PAC uses 2048 sample 
frames which are transformed by the use of the MDCT. This was found to be the 
optimal frame length in terms of coding gain in a study conducted during the design 
of PAC [SJDQ99]. The perceptual model provides the masking threshold to the bit 
allocation algorithm which tries to hide the quantization noise.

Similarly to the other products and standards discussed thus far, window switching 
is used in PAC to address the differences between transient and stationary regions. In 
a more recent redesign of PAC (named EPAC or Enhanced PAC) window switching is 
replaced with transform switching. The MDCT is switched to the wavelet transform
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Input

Figure 3.10: The mono PAC encoder

which allows a higher time resolution for transient signal segments. This switching 
between the MDCT and the wavelet transform is possible because of the link between 
lapped transforms and the wavelet transform as discussed in [Mal92].

Once the frequency domain representation has been perceptually quantized, the 
quantized representation is entropy coded to allow a lower bit rate, albeit a slightly 
variable one. The bit rates of PAC vary between 16 kbps of mono signals up to 1024 
kbps for surround sound signals, whilst stereo signals are transparently coded at rates 
close to 128 kbps [SJDQ99][JSDQ96].

The similarities between the PAC coding paradigm and that adopted by MPEG 
are noteworthy. Two similarities that seem to standout are the use of a core coder with 
enhancement layers as well as entropy coding. As discussed previously, whilst these 
techniques are effective audio compression techniques, the scalability and bitstream 
control that these schemes offer is limited, i.e., the scalability tends to be coarse and 
the variable rate bitstream means that it has to modified for transmission over a
constant bandwidth channel.
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3.9 Sony’s ATRAC
The Adaptive Transform Acoustic Coder (ATRAC) was designed with a very specific 
performance aim, namely to deliver a compression ratio of approximately 4.8 : 1 whilst 
maintaining a simple enough implementation to allow its installation in small devices 
[AKY+99], [TSS+96]. The structure of ATRAC is shown in Figure 3.11. The time 
to frequency transformation is performed on 512 sample frames by the use of QMF 
filter banks compounded with the MDCT for increased frequency domain resolution 
in each of the sub-bands. The time to frequency transformation actually utilizes three 
sub-bands and each sub-band’s signals are applied to an MDCT. This sub-band and 
transform compounding (which is similar to that in the MPEG standards) results in 
52 bins in the frequency domain. The spectral component quantization is carried out 
according to some of the masking behavior of the incoming signal which like all the 
schemes reviewed thus far allocates bits in a noise hiding exercise. Also, in a similar 
manner to the compression techniques reviewed thus far, window switching is used 
to handle transient regions of the time domain audio signal. In the case of ATRAC, 
the frames used may be as small as 1.45 ms [SJDQ99].

As mentioned previously, ATRAC compresses mono audio signals at a rate of 146 
kbps. This has been improved upon by the design of ATRAC2 which allows compres­
sion of such signals at 64 kbps. This has been achieved by a more parametric approach 
to signal compression, where the tonal component of the signal is separated from the 
signal spectrum and coded separately [AKY+99]. This approach is quite unique to 
ATRAC as a commercial product, and is in some ways similar to the approach taken 
in MPEG-4 to low rate audio compression [EPOO]. Having separated the perceptu­
ally significant tonal components from the less significant noise components, they are
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(Optional)

Figure 3.11: Sony’s ATRAC

quantized separately as shown in Figure 3.12. Both the tonal components and the 
noise components are Huffman encoded after quantization to reduce the overall bit 
rate. Finally, the pre-echo distortion control of ATRAC2 is worth mentioning as it is 
also slightly different to the other schemes mentioned thus far. In ATRAC2, pre-echo 
distortion is reduced by increasing the magnitude of signal components just before a 
transient section to better distribute the quantization bits.

Before discussing other transform based coders that have been presented in the 
literature, it is worthwhile to consider the similarities of the commercial coders just 
presented. In an overview comparison, the coders are quite similar. Their difference 
lie more in the detail. However, all of the coders presented are fundamentally trans­
form based and require the transmission of quantization information as well as the 
quantized, or coded, information. Also, the coders presented determine both sets of 
information separately before combining them into a single bitstream. This means 
that the bitstream produced can not be referred to as embedded. The advantages of 
an embedded bitstream are scalability and increased error resilience, as only part of
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Figure 3.12: Second generation ATRAC encoding

the bitstream may be used to reconstruct some meaningful (although perhaps noisy) 
representation of the original signal.

To this point, the coders reviewed have either been standardized or are popular 
commercially. Naturally, there are many other audio coders that do not fit- into those 
categories. In the following a look will be taken at such coders that have been found 
in the literature. The first group of coders looked at will be the transform and sub­
band coders. These have been grouped together because, as the forgoing discussions 
about MPEG, AC-2, AC-3, PAC and ATRAC have shown, these coders tend to be 
very close in concept and structure.



3.10 Other transform and sub-band coders 100

3.10 O ther transform  and sub-band coders
As mentioned previously, the development of PAC started with the development of 
the perceptual transform coder [Joh88a] which used a 2048 point FFT combined with 
128 sub-band quantizers to achieve good quality audio at around the 90 kbps mark. 
This has been improved upon by the hybrid coder proposed in [BJ90] which utilized 
a filter bank that more closely resembles the auditory filters. The improved time and 
frequency resolution is implemented by the use of a QMF filter bank to obtain four 
octave sub-bands, each sub-band is further divided by the use of a uniform transform. 
This allows higher frequency resolution for the lower frequencies and increased time 
resolution for the higher frequencies. The main disadvantage of this scheme was the 
increased complexity, however, this coder formed the structure of MPEG’s layer III 
(mp3) coder.

A DFT based system that utilized redundancy across signal frames was proposed 
in [MC89]. This approach produced high quality audio at 96 kbps for signals bandlim- 
ited to 15 kHz. However, this coder had difficulty handling signals with substantial 
harmonic content [PS00]. Linear prediction is utilized in the coding scheme which 
quantizes spectral magnitudes and differential phase to achieve the high quality re­
ported. This coder is very similar to the AAC coder introduced in MPEG-2. The 
use of the MDCT in the AAC has resulted in high quality audio being achieved at 
significantly lower rates (around 64 kbps). A coder that appears to combine the 
properties of the previous three coders mentioned was proposed in [BHJ+91]. This 
coding scheme also utilized the MDCT and achieved good quality audio at 64 kbps. 
The coder in [BHJ+91] also used dynamic window switching to address the issue of 
pre-echoes.



3.10 Other transform and sub-band coders 101

In an attempted improvement to PAC, a differential coding scheme (DPAC) was 
introduced in [PM95]. DPAC operates on the same principle as key frame extraction, 
where frames that are judged to be significant according to a perceptual criteria are 
coded with a greater number of bits to frames that are judged to be insignificant. 
This is achieved by coding the significant frames and only coding the difference be­
tween the coded significant frames and the insignificant frame. The MDCT is the 
transform chosen in this coder, and transform coefficients that are deemed to be of 
high perceptual significance in an insignificant frame are coded in the same way as 
the coefficients of a significant frame. This coder is reported to have outperformed 
the coder of [Joh88a] for some types of audio below the 88 kbps mark. As such, this 
may be viewed as a low rate perceptually lossy alternative to the coder of [Joh88a]. 
Another technique for improving the perceptual performance of perceptual transform 
coders was outlined in [Sch96], where noise substitution was proposed for noise-like 
sections of the audio spectrum. The noise-like sections of the spectrum are replaced 
by noise signals that have the same average power, temporal envelope and frequency 
range. The DFT is used in this process, as it allows spectral magnitude shaping that 
is separate from the phase (which is deemed irrelevant in this process). The idea of 
noise substitution has found its way into the MPEG-4 standard (as mentioned earlier) 
however it is a technique of significant complexity.

Whilst scalar quantization remains a popular choice in transform and sub-band 
audio coders, vector quantization alternatives have been proposed in [CG90] and 
[IMM95]. In [CG90], VQ was combined with the DCT to compress 15 kHz ban- 
dlimited signals. Frame lengths of 512 samples were used with a simplified masking 
model and the DCT coefficients were combined into 29 groups before being applied to
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a multi stage VQ process. The scheme proposed resulted in a variable rate coder that 
delivers good audio quality at rates between 55 and 106 kbps. The scheme in [CG90] 
applied VQ directly to the DCT coefficients, in contrast the TwinVQ scheme proposed 
in [IMM95] applies weighted interleave VQ [MH88] to residual transform coefficients. 
This scheme has already been briefly described in the discussion of MPEG-4. The 
TwinVQ scheme has been found to outperform the A AC only at rates below 16 kbps 
[PS00]; nevertheless, it has been included in the MPEG-4 standard because of its 
error resilience and performance at low bit rates.

A “Masking Pattern Adapted Sub-band Coding” scheme was proposed in [TSL87]. 
In this scheme a 24 non-uniform filter bank was used to mimic the operation of 
the critical bands in the human auditory system. The filters had 64 taps and the 
sub-band samples were processed in 2 ms frames. The bit-allocation is carried out 
using a simplified masking model for simultaneous masking as well as temporal post- 
masking. For 15 kHz band limited signals, the coding scheme delivered high quality 
audio for bit rates ranging between 80 and 100 kbps. The MUSIC AM scheme 
[DLU91], which was adopted as the basis for MPEG-1 layers I and II, is another 
sub-band coding scheme. MUSIC AM analyzes the audio signal with a 32 band filter 
bank and processes the sub-band samples in 8 ms frames. A 1024 FFT is used in 
parallel with the sub-band analysis to obtain a high resolution spectral analysis for 
the application of a psychoacoustic model that is very similar to the MPEG-1 model 
1. MUSIC AM achieved near transparent compression at 96 kbps for mono signals, 
but this performance suffered when sharp attacks were encountered. This coder has 
also been shown to have high error resilience.

Transform and sub-band coding have become more interleaved with the injection
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of the wavelet transform into audio compression algorithms. A globally optimized 
and applied wavelet coding scheme was proposed in [ST93a] where wavelet packet 
signal analysis was combined with VQ and perceptual masking to achieve near trans­
parent CD-quality audio compression at rates between 48 and 64 kbps. A total of 29 
sub-bands were used to mimic the time to frequency transformation of the auditory 
system. During the analysis of each frame, the wavelet basis functions are chosen to 
minimize the bit rate for a given distortion. This scheme is referred to as “global” 
because the same wavelet chosen in the optimization is applied to all the sub-bands 
[PS00]. The wavelets belong to the Daubechies family of wavelets.

A scalable DWT coder has also been proposed in [SJ98] where the wavelet tree 
structure is varied to reduce the perceptual entropy of the signal in each of the sub­
bands. Zero-tree coding is applied to achieve very good quality for most of the tested 
signals at 45 kbps. Yet another wavelet based compression scheme was proposed in 
[LP98]; this scheme will be the subject of further discussion in Chapter 5.

The wavelet based schemes have shown considerable promise because of the tem­
poral and frequency resolution that can be achieved for high and low frequency com­
ponents respectively. To further improve the analysis of audio signals, sinusoidal and 
wavelet hybrid schemes have been proposed in [HAT96], [BD98] and [PSP96]. In 
[HAT96], the signal decomposition was based on the idea that an audio signal is a 
combination of tonal, transient and noise components. As such, the tonal components 
have been represented by the use of sinusoids whilst the transient components are 
analyzed by the wavelet transform. Sinusoidal amplitudes are quantized to satisfy 
masking threshold requirements whilst the phase components are uniformly quan­
tized. The sinusoidal components are used to represent the low frequencies in the
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audio signal. Wavelet transform components are quantized in two ways; if they fall 
below 11 kHz they are quantized individually otherwise a parametric representation 
is used. The noise components are represented in terms of mean, variance and de­
cay constants rather than being quantized directly. This scheme achieved very good 
quality at rates in the range of 44 kbps. The scheme proposed in [BD98] operated on 
similar principles but utilized least squares linear prediction for the sinusoidal extrac­
tion. The scheme in [BD98] is reported to have achieved quality to MPEG-1 layer 
III at rates ranging between 60 and 70 kbps. Finally, the coder of [PSP96] adapted 
the analysis frame to achieve better perceptual quality. A unique masking threshold 
shifting was used in [PSP96] to determine the perceptual bit allocation at varying 
rates.

Good quality audio compression has also been reported by the use of time vary­
ing filter banks in [SJ96], [PJ95], [HJ97] and [PN96]. In [PJ95] better quality audio 
compression than the MPEG-1 layer III coder at 48 and 64 kbps was reported. The 
adaptation is achieved by applying a second stage filter bank depending on the re­
quired time-frequency representation. Scalar quantization is applied to the sub-band 
coefficients in a perceptual manner to achieve the performance mentioned. In compar­
ison, the coder proposed in [PN96] adapts the wavelet decomposition in both depth 
(number of stages) and breadth (bandwidth) to achieve a minimum bit rate criteria. 
This coder has achieved high quality compression at 55 kbps.

Another form of hybrid coding involves the use of sub-band coding with linear 
prediction. Recently, one such scheme has been proposed in [YK02] where a warped 
LP filter is used for the pre and post processing of the audio signal. It is argued that 
this approach will distribute the noise in the sub-band domain in such a manner that



3.10 Other transform and sub-band coders 105

the synthesized sound should be better perceptually. It is shown that the perceptual 
entropy in the sub-bands is less than the perceptual entropy of the original signal 
and hence the excitation of the WLP filter is quantized in the sub-band domain. 
Essentially the idea is to perceptually decorrelate the audio signal by the use of an 
LP filter. The warped spectrum is used to better match the ear’s own decorrelation 
process. The results showed improved perceptual performance at 56 kbps over the 
MPEG-1 layer II coder at the same rate. A similar approach has been taken in [ND01] 
except for the use of the wavelet transform for the sub-band filtering phase, the other 
significant difference with the scheme in [YK02] is the way that the quantization is 
carried out.

It is also worth mentioning in the completion of this subsection a number of 
papers that have appeared recently that address quantization issues in transform 
coders. In [RT00] a backward adaptation scheme is presented that is similar in a 
sense to adaptive delta modulation and similar in concept to the backward adaptation 
adopted in MPEG-4. The scheme adapts the perceptual model on a sample by sample 
basis, thus changing the quantization resolution of the sub-band filters. Entropy 
coding is applied to the output of the adapted quantizers to reduce the overall bit 
rate. In [NK00J, a study of quantization bit allocation schemes is presented. One of 
the schemes is Signal to Masker Ratio (SMR) based and the other is energy based 
(that is the energy above the masking threhold). It is found that the SMR scheme 
performs better perceptually and should be the one employed for low rate coding. 
It is also concluded that a combination of the two schemes would probably be more 
advantageous than either scheme on its own. A variable size vector entropy code­
book design algorithm is presented in [ShoOl] to address the issues of complexity
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in design. The vector entropy scheme is similar in some ways to the Lempel-Ziv 
algorithm [GPS94] and it does result in a compression gain of approximately 37% on 
the Huffman entropy coding scheme of audio and speech material. Finally, in [RonOO] 
both vector and scalar quantization are combined in a hybrid quantization scheme 
for sub-band audio compression by obtaining the MNR (Mask to Noise Ratio) for 
both the scalar and multistage vector quantizer. The quantizer that provides the 
best MNR is chosen for use. This approach tries to deliver a balance between the 
complexity in design and training of VQ and the transform coding performance of 
scalar quantization. The coding scheme mentioned reportedly outperformed MPEG-1 
layer II at 56 kbps.

3.11 Param etric audio coders
The focus of this section thus far has been on transform and hybrid coding algo­
rithms. This is simply an indication of the popularity of transform coding in audio 
compression. Yet there have been a number of compression algorithms presented that 
attempt to model the audio signal. These algorithms are different to the speech cod­
ing algorithms which attempt to model the production process of the sound, rather, 
these algorithms attempt to divide the audio signal into a number of simpler signals 
that can be more efficiently coded and transmitted. The basics of the algorithms pre­
sented here have already been discussed in Section 3.3 and so only brief summaries 
of each approach will be presented in this section.

Sinusoidal modelling of audio signals was thoroughly studied in [GS92] where an 
analysis by synthesis method of sinusoidal extraction was proposed. This technique 
has been adopted by coders presented in [EP98] and [EP00], where the sinusoidal
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components are extracted according to their perceptual significance. This means that 
a scalable coder is made possible as more significant components are extracted first 
whilst less significant components are extracted at a later stage. The coder described 
in [EP00] and [PM00] has been adopted in the MPEG-4 audio coding standard for low 
rate scalable audio compression (ranging from about 6 kbps to 24 kbps). The results 
presented for this coder did not show a significant improvement over the MPEG-4 
A AC coder at similar rates, however its scalable structure makes it a useful coder.

The sinusoidal model remains popular for audio signals, and a significant number 
of papers continue to be published about improvements to the model. In [PS01], 
a scheme of sinusoidal component selection is reported whereby the sinusoids are 
chosen according to their contribution to the excitation of the human auditory system 
rather than their SMR. The reported results show a perceptual improvement. This 
approach highlights the difference between SMR and the auditory excitation pattern. 
The calculation of the excitation pattern is presented in detail in [ZF99] and has been 
used in the calculation of the pleasantness parameters in Section 2.4. In a way, the 
approach of [PS01] is a mix between sinusoidal modelling and noise shaping as it tries 
to get a more complete sinusoidal representation. Noise shaping has been discussed in 
2.2.3, and recently the work reported in [VDkOl] has shown that an efficient solution 
to the shaping of re-quantization noise that is perceptually dependant is possible. 
Whilst re-quantization noise is not the same as coding noise, the fact that one can 
shape a noise component perceptually is encouraging for audio compression purposes.

Modifications to the original sinusoidal model (described in [MQ95]) have been 
proposed recently in [VHK01], [VHvdPKOl], [NHD98] and [JKOOb]. The work in 
[VHK01] and [VHvdPKOl] proposes to modify the original signal by shifting the
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transients such that they are located at the start of an analysis frame. The main 
reason behind this is the well documented problems that the sinusoidal model has 
with efficiently modelling transients. This problem was addressed in [NHD98] by the 
application of exponentially modulated amplitudes to the sinusoidal model. However, 
this modification still suffered from modelling transients that were far from the start 
of the analysis frame. It is reported in [VHvdPKOl] that the shifting of the transients 
so that they are at fixed positions with regards to the framing method used does not 
alter the perceptual content of the audio signal, but it does significantly improve the 
modelling efficiency of the exponentially modulated sinusoidal model. With the same 
aim of increasing modelling efficiency, the work reported in [JKOOb] proposes the use 
of a small number of frequency harmonics and a time-varying fundamental frequency. 
This method provided some encouraging results.

Other parametric coding approaches have involved Frequency Modulation (FM) 
coding [Cho73] and linear prediction [Sin90], [BD98], [CW96], [HLK96]. In FM mod­
elling, the spectrum of the audio signal is approximated by that of an FM signal. The 
search for a good match is carried out iteratively until the residual signal is below the 
masking threshold. FM modelling seems to work very well for sounds with a single 
fundamental frequency (that is for single instrument sounds) but has difficult mod­
elling multi-instrument material [PS00]. Improvements to this model are required 
before it can become a mainstream audio model.

The linear prediction coder of [Sin90] utilizes a multi-pulse excitation approach. 
The linear predictor used was a 24th order predictor. The pulse positions and mag­
nitudes are derived by the use of a perceptual optimization weighting criteria. This 
coder achieved good quality audio at rates around the 128 kbps mark. In contrast,
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the LP coder of [CW96] used sinusoidal modelling of the excitation to obtain good 
quality audio at around the 96 kbps. The excitation of the linear predictor is modelled 
by the use of seven sinusoids. This approach seems slightly counter-intuitive as one 
would expect a residual signal to be closer to noise than the original, and it is well 
known that a noisy signal is not efficiently modelled by the use of a sinusoidal model. 
However, in LP based coders, it is the position and magnitude of the pulses in the 
excitation which influence the quality of the synthesized signal, and one can expect 
a sinusoidal model to be able to model such pulses. In a similar manner, the coder 
reported in [BD98] transform coded the LP residual using a three level wavelet trans­
form. Finally, warped linear prediction was used in [HLK96] for audio compression. 
Frequency warping allows the linear predictor to analyze the audio on a scale that is 
closer to the bark scale and so provides a more perceptually accurate representation.

3.12 Scalable audio coders
In the previous discussions about transform and parametric coders, some scalable 
audio coders were mentioned. This is simply because scalable audio coders can fall 
into either category, or a hybrid category. However, it should have become clear that 
the majority of audio compression techniques proposed operate at an optimal bit 
rate for which they were defined. The case for scalable audio coding is quite simple; 
different quality audio should be available at different rates whilst maintaining the 
relationship that as the bit rate increases so does the quality of the synthesized audio. 
However, bit rate scalability is only one form of scalability; another is complexity 
scalability. A good example of this is the MPEG-1 standard, (described previously) 
which achieves higher quality and higher compression with increasing complexity. Yet
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another form of scalability is bandwidth scalability, which means the ability to code 
wider band signals as the bit rate increases.

Most of the scalable coders found in the literature adopt the MPEG-4 method of 
bit rate scalability, where a base layer is coded by the use of an efficient scheme and 
the residual produced between the original signal and the base layer synthesized signal 
is coded by the use of a similar or completely different scheme. This is certainly the 
case for the scalable coder presented in [KS96] where scalable compression is achieved 
by combining the wavelet transform with entropy coding in a multi-layer system. The 
bottom layer is treated as the low quality layer and the second layer is the enhanced 
quality layer. As the bit rates of the bottom layer increases, the necessary bit rate 
of the second layer decreases because the residual signal decreases in dynamic range. 
The coder presented in [CL01] applies the same principle of multi-layer scalability 
with the enhancement layer being coded by the use of zero tree coding [Sha93]. The 
nature of zero tree coding implies scalability because more significant coefficients are 
transmitted first. A similar wavelet/zerotree approach was^also taken in [ACRG99] 
where the wavelet transform employed was' adapted according to a perceptual criteria. 
The output of the wavelet transform was quantized perceptually and mapped to a 
zero tree, resulting in variable rate compression of audio signals at 1.5 to 2.5 bits per 
sample. Zero tree coding was also used in [DWJ00] which presented a complexity 
scalable algorithm that achieved better audio quality with increasing complexity.

The multi-layer approach to scalable compression has also been used with an LP 
based coder in [JKOOa]. The algorithm presented was based on low-delay CELP. The 
coder presented operates in a number of modes, with increasing delay. The scalability 
of the coder was set in integer multiples of the base layer, which varied between 2.66
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kbps and 10.67 kbps depending on the mode used. In a similar fashion, a bandwidth 
scalable coder was presented in [KCG00]. The base layer was encoded by the use 
of the standard G.729 coder whilst the enhancement layer was coded by the use 
of CELP. The coder reportedly achieved better quality than the 16 kbps MPEG-4 
CELP coder at the same rate. Here bandwidth scalability means that the base layer 
produces a signal that is narrower in bandwidth than the base plus enhancement 
layers synthesized signal.

In an alternative approach to the schemes already discussed, the coder presented 
in [VA01] utilizes a two-dimensional transform that first transforms the time domain 
signal to a time-frequency representation and then transforms the time frequency 
representation into a frequency-modulation frequency representation. TDAC trans­
forms are used for the first stage and then a similar method to the TDAC transform 
is applied to the magnitude time-frequency spectrum to obtain a very small number 
of effective coefficients. Huffman entropy coding plus scalar quantization is applied 
to the phase and magnitude of the final representation. Only the phase of the first 
5 kHz of the complete bandwidth is transmitted and noise substitution is used for 
insignificant magnitudes. The coder shows very good performance at 32 kbps and 
allows scalability because of a priority of transmission of components based on the per­
ceptual significance of each component. Although very effective, this coding scheme 
seems to be more of an off-line coding scheme because of the delay required by the 
time-frequency transformation in the first stage.

An object oriented approach to scalable compression has been taken in [JMIM01] 
and [JMN+99] where a hierarchical scheme is developed based on a TwinVQ coding 
block. Each layer or ‘block’ adds to the quality of the coded audio as it codes the
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residual that remains from the previous layer. This scheme is unique in that the same 
coder is applied at each stage creating the impression of an object oriented coding 
scheme. However, because of this object hierarchy, the scalability achieved in large 
step scalability with each enhancement layer adding 8 kbps to the overall bit rate. 
This coder was shown to outperform the MPEG-4 AAC at 8, 16 and 24 kbps for 24 
kHz sampled audio and so it has been adopted by MPEG as part of the MPEG-4 
standard.

Yet another approach to scalable compression has been the signal model approach 
of [VMOO], [VMOO] and [EPOO]. This approach has been discussed in some detail in 
a number of preceding sections (see Sections 2.2.3 and 3.11) and so they will not be 
elaborated on any further.

3.13 Lossless audio coding
The final group of coders that will be considered in this chapter are the lossless audio 
coders. The discussion here will only be, a brief; relevant aspects of lossless audio 
compression that need to be elaborated upon will be addressed in Chapter 6.

Lossless audio compression aims to recreate an exact copy of the original signal 
whilst using a lower rate to the original. Currently, lossless audio coding is being 
approached from a signal model perspective [HS01][CL97][BOvdV96][Qui01]. The 
signal is typically modelled using a linear predictor, which may either be FIR or, as 
in the case of [CL97], IIR. The aim of using a linear predictor is the decorrelation 
of audio samples in the time domain and the reduction of the signal energy that 
must be coded [HS01]. The coefficients of the linear predictor are coded as well as 
the excitation of the predictor, which is typically coded using an entropy code. The
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combination of the linear predictor with the variable length entropy code leads to 
a perfect reconstruction of the audio signal. The typical compression ratio of such 
coders typically depends on the nature of the audio signal being coded and may range 
between 1.4 and 5 [HS01].

Another approach to lossless compression of audio signals involves the use of 
transform coding as presented in [LPN97]. This approach is actually very similar in 
nature to the linear prediction approach as it utilizes a transform coder to produce a 
lossy compressed version of the original signal and an entropy code to compress the 
generated error signal between the lossy compressed signal and the original signal. 
The use of the transform coder decorrelates the audio samples and hence the transform 
coder operates on the same basic principles of decorrelation and entropy coding as 
the linear prediction based lossless coders [HS01]. The compression ratios reported in 
[LPN97] again varied with the nature of the input audio signal and ranged between 
2.2 and 3.2.

An approach of interest to this thesis was taken in [MIJMOO] where a lossy coder 
was combined with an entropy coding scheme to achieve lossless compression. This 
means that the one bit stream may be decoded to either obtain a lossy version of the 
original signal or a lossless version of the original. However, the gap between the lossy 
and lossless performance is not smoothly transitioned. At the time of writing this 
thesis scalable to lossless coders were reported in [GHKB02] and [LJ02]. The work 
in {LJ02] proposes a scalable to lossless scheme that would be expected to be more 
smoothly scalable because of the compression algorithm used. Granularity is claimed 
to eight bits, the issue of scaling from a lossy to a lossless scheme is a growing held 
of interest and is the subject of Chapter 6.
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3.14 D iscussion and conclusions
This chapter has focused on the state of the art in audio compression. The majority 
of the audio compression techniques reviewed have been found to be transform coding 
techniques, however, parametric coding techniques are becoming more popular with 
the increasing interest in very low rate audio and scalable audio compression. It has 
been shown that a number of hybrid schemes have achieved very good quality at 
reasonable bit rates, these schemes try to combine the advantages of both parametric 
and transform coding. These hybrid techniques can also be seen in the recent audio 
coding standards that use techniques such as noise substitution (which is primarily a 
parametric idea) to achieve better perceptual quality at lower rates.

Improving quality at current rates will remain of interest in the near future how­
ever the direction of audio compression seems to be towards high quality scalable 
schemes that allow different audio quality at different rates with a smooth increase 
and decrease in quality. The Internet has a vital role to play in the development of 
such coders because of the highly variable channel capacity. If the channel capac­
ity on such networks is to be stabilized then these types of coders will become of 
less interest, however, this is unlikely in the near future. On the other hand, recent 
increases in channel capacity on cellular and wireless networks has meant that it is 
now possible to transmit a very high quality audio signal to mobile customers. This 
will increase the interest in lossless audio compression. The interest in lossless audio 
compression has also been driven by popular consumer products such as DVD enter­
tainment systems. At this stage there is no existing smoothly scalable coder that can 
scale to lossless quality with single bit granularity.

It must also be remembered that whilst the focus of this chapter has been on
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compression schemes that are applied mainly to mono signals, audio is very much 
a scenic experience and so interest in compression schemes for multi-channel audio 
signals will remain an area of research.

As a result of the presented review of the current literature, this thesis addresses 
the development of scalable compression schemes that are both perceptually and 
objectively scalable. The development of a smoothly scalable scheme from lossy 
compression to lossless compression with fine grain scalability is also addressed.



Chapter 4
Perceptually Scalable Sinusoidal 
Com pression o f A udio

This chapter introduces a perceptually scalable sinusoidal coder for full band audio. 
The sinusoidal representation of the audio signal is obtained by the use of the Short 
Time Fourier Transform (STFT) and re-arranged in such a manner that the most 
perceptually significant parameters are transmitted first, using the limited available 
bandwidth in a perceptually efficient manner. Other schemes of obtaining the sinu­
soidal coefficients are also discussed and compared to the scheme employed. Finally, 
the output of the coder is analyzed using sensory pleasantness measures in order to 
quantify the noise introduced due to the compression in an objective perceptual man­
ner. Thus, this chapter deals with the scalable sinusoidal coding contribution of this 
thesis which is also described in [RB01] and [RBM01].

4.1 Introduction
Sinusoidal compression of audio and speech signals involves two steps; first the deriva­
tion of sinusoids that, when summed together, reconstruct the original signal and
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secondly the quantization of the parameters that define the sinusoids [MQ95]. In 
this way, Sinusoidal compression may be viewed as an application of the Fourier 
Transform to audio signals and the quantization of the transform coefficients in an 
efficient manner. However, the representation of a signal as a sum of sinusoids does 
not necessarily have to be based on the Fourier Transform. The work in [GS92] 
shows how sinusoids may be extracted from the original signal in an iterative man­
ner. Further, it has been shown that sinusoids may be removed in such a way that 
perceptually significant sinusoids are extracted before the perceptually insignificant 
sinusoids [EPOO, PMOO].

Sinusoidal coders are normally considered parametric coders, in that the sinu­
soidal parameters are the coded components for transmission [MQ95]. Compression 
is obtained in such coders by realizing that in a given sound there will only exist 
a small number of sinusoids that contain significant information [MQ95]. Here, the 
word ‘small’ is used in a relative context to the number of sinusoids that are required 
to reconstruct the audio or speech signal in order to acquire a high Signal to Noise Ra­
tio (SNR). This chapter describes sinusoidal coding according to the work of [MQ95] 
and [GS92] in some detail in the next section. The contribution of [GS92] is further 
discussed as it applies to the work on the HILN coder in [EPOO].

The work of [GS92],[MQ95] and [EPOO] is used as background material for the 
development of a sinusoidal compression scheme that allows scalability. Two versions 
of the compression scheme are presented, the first is a variable rate coder that has 
been developed for compression at medium rates and the second version is the scalable 
version which may be used from low to high rates. Both versions of the coder are 
based on sorting perceptually significant coefficients to allow the transmission of those
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coefficients first. Objective results are presented, in terms of the Segmental Signal to 
Noise Ratio (SegSNR) and sensory pleasantness parameters. Informal listening tests 
have shown that both versions of the coder perform acceptably well when compared 
to the MPEG-4 AAC coder.

4.2 Sinusoidal C om pression of Speech and Audio
4.2.1 The Short Time Fourier Transform (STFT) Approach

The work of [MQ95] describes the original sinusoidal compression scheme developed 
for speech compression. The original speech signal s of length N is approximated by 
the model

L
s[n\ = 'Ŝ A i cos (c^n-f-</>*) n = 0 , . . . ,  N — 1 (4.2.1)

i = 1

L is the total number of sinusoids used in the synthesis and is time varying. It 
has been reported in [MQ95] that to obtain a good quality narrow-band synthesized 
speech signal, as many as 80 sinusoids may be required. To develop a low rate 
sinusoidal coder, it was recognized from an early stage that the sinusoidal model 
must be reduced to a model that is describable by a few parameters [MQ95]. As a 
result the sinusoidal model is generally reduced to a harmonic model given by:

L(w0)
sH[n\ =  E A i  COS (ÌUJqTI +  (pi)

i= 0
(4.2.2)
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From Equation 4.2.2 it can be seen that the STFT can be used to derive the 
harmonic sinusoidal model, as all the frequencies involved in the model are multiples 
of one frequency. The frequency chosen as lj0 is the pitch frequency of the original 
signal, which may be obtained by the use of a number of well known algorithms 
[Ram95][RS78]. In [MQ95] a pitch estimation algorithm is proposed that fills the 
requirements of sinusoidal coding well.

The overall sinusoidal coding of speech system is illustrated in Figure 4.1. As 
has been described thus far, the analysis involves the determination of the sinusoidal 
parameters by the use of the STFT. The Figure shows that only the peaks of the 
amplitudes are actually selected for use in the model, this is to allow further com­
pression by generating an amplitude envelope and representing that efficiently instead 
of dealing with each individual amplitude. The amplitude peaks are selected by the 
use of the SEEVOC algorithm (which is described in detail in [MQ95]). SEEVOC 
basically selects the peaks of the amplitudes in search intervals defined by multiples 
of the pitch frequency. The amplitude envelope is then generated by using linear 
interpolation between the selected amplitudes, although other interpolation methods 
may be used (for example cubic spline interpolation).

As the STFT is being used for the analysis of the speech signal on a frame by 
frame basis, side-lobe leakage must be addressed. In the original system developed 
by [MQ95], the Hamming window is used to reduce the side-lobe leakage. This 
naturally widens the main-lobe, which is a problem in this case because the peaks 
of the obtained spectrum (that is the STFT generated spectrum) are being used to 
approximate the sinusoidal amplitudes. To justify such an approximation it has been 
reported that the frame length used for analysis should be set at 2.5 times the pitch
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Figure 4.1: The sinusoidal model based on the STFT

length [MQ95]. In unvoiced speech, the frame length is kept equal to the last voiced 
speech frame or extended to 20 ms if it is smaller than that.

To synthesize the speech signal after analysis, the overlap-add method is used. 
This allows the elimination of discontinuities between frames, whilst avoiding the 
use of sinusoidal tracks. Sinusoidal tracks are sometimes used in sinusoidal coding 
to avoid discontinuities at frame boundaries. The designers of the original sinusoidal 
coder argued for the overlap-add method ahead of sinusoidal tracks primarily because 
of simplicity of implementation.

Having obtained the pitch of the signal, and the amplitude envelope the final step 
towards achieving a low-rate implementable system is to adequately model the phase. 
The phase may be modelled by using a technique described in [MQ95] which relies on 
the cepstral coefficients of the original signal. The cepstral coefficients are obtained 
by taking the log magnitude of the STFT coefficients followed by the inverse STFT. 
To achieve good quality at low rates, an all-pole model is used to code the magnitude
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envelope, the signal is assumed minimum phase and only harmonic frequencies are 
used. Good quality has been reported at 4.8 kbps [MQ95] and reasonable quality at 
2.4 kbps. Formal listening tests conducted by [Pri95] show that the sinusoidal coder 
at 2.4 kbps performs as well as the 4.8 kbps STU-III CELP coder in quiet and slightly 
better in the office environment.

4.2.2 The Analysis By synthesis Approach (A-by-S)

A considerable number of researchers have used the analysis by synthesis approach to 
sinusoidal modelling of an audio or speech signal [GS92][EP00][PM00]. This approach 
is summarized simply by stating that it decomposes a given signal into a sum of 
sinusoids by extracting individual sinusoids one at a time. The Mean Squared Error 
(MSE) between the original signal and the synthesized signal is minimized in each 
iteration and so the sinusoids are extracted in order of energy significance.

Modifications to this system have been proposed in [PMOO, EPOO] where the ” Har­
monics and Individual Lines plus Noise) (HILN) is described. The change introduced 
focuses on the extraction of the sinusoids in a perceptually significant manner. The 
HILN scheme is illustrated in Figure 4.2.

An important feature of the A-by-S scheme is the incorporation of u[n], the win­
dowed time domain envelope of the original signal. This is important because it 
shapes the “sinusoids” in such a way that significantly fewer sinusoids may be needed 
to closely approximate the original signal. The envelope may be obtained by low 
pass filtering the input signal [GS92] or by using the Hilbert transform [EPOO], as 
the envelope of the input signal may be defined as the magnitude of the sum of the
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Figure 4.2: The HILN scheme

original signal and the imaginary component of the Hilbert transform. That is,

v[n] = yjs2[n\ + {iL(s[n])}2 (4.2.3)

In Equation (4.2.3) {H(s[n])} is the Hilbert transform of s[n\.
There are a number of clear advantages to this to this approach. Firstly, scalability 

is possible because individual sinusoids are being extracted one may extract up to a 
pre-defmed limit (in terms of MSE, or SNR) and the quality of the synthesized signal 
increases proportionally. This advantage has helped HILN be installed as part of the 
MPEG-4 standard for scalable audio compression.

Edit ability (that is, ease of editing the synthesized signal) is also an advantage of 
this scheme [PMOO]; since individual sinusoids may be varied, the resultant signal is 
editable from its very basic components. This immediately implies a good synthesis 
technique for general sounds and music especially. Also, the use of the envelope in
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the Analysis-by-Synthesis loop leads to the system being adequate for both harmonic 
and inharmonic systems [GS92].

The actual extraction algorithm is iterative with the initial synthesized signal 
being zero. For a given frequency u (which is chosen from a uniformly sampled set 
of frequencies ^  i =  0 , . . . ,  N/2) sinusoidal parameters are extracted such 
that the MSE is minimized. To achieve this, the following set of equations must be
used [GS92]:

Ai — \J 0% + b2 (4.2.4)
, bi 

<Pi = — arc tan  — (4.2.5)
72201 -  71202 ^ 7 l l0 2  -  7l2'01

A 1 ~~ A (4.2.6)
A = 711722 -  712 (4.2.7)

Ei = Ei_1 -  diip 1 -  biip2 (4.2.8)
N

0 i  = e i - i [ n \ v ' [ n \  s in c r i
n = —N

(4.2.9)
N

'0 2 — e i - i [ n \ v ' [ n \  c o s u i n

n = - N

(4.2.10)
N

7 n  = v , 2 [n] cosce i n 2

n = —N

(4.2.11)
N

y 12 = v ' 2 [n] coscj n̂  sin
n ——N

(4.2.12)
N

722 = ^ /2N  s i n ^ n 2
n = - N

(4.2.13)

v '[n \  = (4.2.14)
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In Equations (4.2.4) to (4.2.14), Ei is the sum of the squared error for the ith 

frequency component, e*[n] is the actual error between the windowed input and the 
synthesized signal and v[n] is the time domain envelope of the signal being modelled. 
In [GS92] the window used Wa is the Hamming window, whereas the window used 
in [EPOO] was a perfect reconstruction cosine window. The frequency ui is the one 
chosen for which Ei is minimum. In the case of HILN, the above set of equations are 
weighted perceptually in order to extract the significant perceptual as well as energy 
sinusoids.

The most noticeable disadvantage of the Analysis-by-Synthesis technique is that 
the computational load of extracting individual sinusoids is quite heavy. Both [GS92] 
and [EPOO] propose techniques which reduce the computational burden of individual 
sinusoidal extraction, and both utilize the frequency domain to do so. The frequency 
domain A-by-S technique proposed in [GS92] moves the calculations from the time 
domain to the frequency domain through the use of the Fourier transform. The 
equations all have their equivalent frequency domain equations and the procedure 
gains speed of computation by the calculation of sinusoidal components in groups.

The fast HILN algorithm relies heavily on the Matching pursuit algorithm in the 
frequency domain [EPOO]. The matching pursuit algorithm allows the decomposition 
of a signal into a sum of its underlying components. The components are chosen from 
a “highly redundant” code book or dictionary. In the case of HILN, the components 
are sinusoids. Once the sinusoidal components have been extracted they are sorted 
with the aid of a perceptual model and hence the perceptually significant sinusoids 
are extracted from the system first.

Finally, a note about the coding techniques used in both [GS92] and [EPOO, PMOO].
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The work presented in [GS92] focused on the decomposition into signal components 
through the use of A-by-S and so no coding (i.e. quantization for transmission) issues 
were addressed. On the other hand, the work in [EPOO] focused on developing a coder 
and so the quantization techniques have been described, they are only summarized 
here. ..

The sinusoidal parameters are quantized by first grouping them into “new” si­
nusoids and “continuing” sinusoids, meaning those sinusoids that are tracked from 
a previous frame. The new sinusoidal amplitudes are coded by the use of a relative 
quantization technique; that is, relative to a maximum amplitude previously trans­
mitted. The new frequencies are transmitted by the use of a “sub-division” code, 
that is one that continuously sub-divides the region where the frequency may be lo­
cated. For continuing parameters, the changes in the parameters are transmitted. 
The envelope is modelled by a linear predictor and the LPC parameters are coded 
using Logarithmic Area Ratios (LAR). As mentioned previously, HILN is scalable 
and tends to use a bandwidth that varies according to the bit rate. More details of 
this coding technique will be described in latter sections of this chapter.

4.3 A new scalable sinusoidal coder
4.3.1 Motivation

Representing an audio signal as a sum of sinusoids has the attraction of building 
complex signals from a set of simple signals. The original work on compressing 
speech signals by the use of such a representation was aimed at low rate applications, 
as explained in the previous section. This aim limits the scalability of the coder as it
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forces it into the. parametric coding paradigm.
On the other hand, the coder presented as part of MPEG-4 (HILN) does allow 

scalability, even perceptually, although the extraction of the sinusoids one at a time is 
computationally cumbersome. This technique is made less computationally demand­
ing by the use of the matching pursuit algorithm leaving the performance of such a 
scheme dependant on the design of the code-book. The scheme, like the parametric 
sinusoidal coder, also works with a variable bit rate. This variation in bit rate results 
primarily from using a varying frame length, that is dependant on the pitch estimate 
of the input signal. Having a variable rate coder may not be desirable in some circum­
stances, especially if the rate is governed primarily by the content of the signal. If the 
frame length was to be fixed, the variability in the rate may be reduced, depending 
on what is implemented at the quantization stage. Similarly, the development of a 
scheme that utilizes a fixed frame length allows a simpler implementation.

The adoption of frequency domain sinusoid extraction has helped reduce the com­
plexity of the HILN scheme significantly [PEF98]. This indicates that the combination 
of the extraction method with a fast transform would be useful in terms of reduction 
of complexity.

Finally, a perceptual sinusoidal model is of more interest than a straight waveform 
matching model, simply because it allows greater compression and the identification 
of signal components (i.e. sinusoids) that are significant to the human ear.

The possible combination of computationally efficient components into a scheme 
that was scalable perceptually and objectively motivated the development of the 
scalable sinusoidal coder presented in the following sub-sections. The coder may be 
implemented as either a variable rate scheme or as a scheme that is scalable to a
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maximum allowable rate. The next sub-section gives an overview of the scheme.

4.3.2 System Overview

The block diagram representation of the designed sinusoidal coder is shown in Figures 
4.3 and 4.4. The proposed architecture is built around the sorting of the amplitudes 
according to both energy content and perceptual significance. To obtain the sinusoidal 
model in this case, the short-time Fourier transform is utilized, however, a short fixed 
frame length is used meaning that the frame length is independent of the pitch of the 
signal. The frame size was chosen to be equal to the GSM speech coder size of 20 ms 
[EV99]. Generally, the frame size used in speech and audio coders must take a number 
of considerations into account. Amongst these considerations are delay, perceptual 
effects, statistical stationarity of the signal and time frequency localization.

The delay introduced in a speech or audio coder that is aimed at operating “on­
line” (that is, much like today’s cellular phone speech compression algorithms [EV99]) 
must be small enough to not cause problems with regards to transmission and echo 
[EV99]. The proposed scheme has no algorithmic delay besides the initial frame size, 
and 20 ms is sufficiently small to avoid transmission problems [EV99].

Perceptual effects that must be taken into account include the pre-echoes that 
may result from transform representations [PS00], although this does not appear to 
be a problem in parametric coders. The length of the frame does effect the existence 
of pre-echoes, as discussed in [PS00] . As for statistical stationarity, it is well known 
in speech compression that frame sizes of 15 to 25 ms show pseudo-stationarity, longer 
frame sizes lose this quality [RS78]. Stationarity allows the modelling of signals by 
the use of linear prediction and other techniques.
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Figure 4.3: The sinusoidal encoder proposed
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Figure 4.4: The scalable sinusoidal decoder

Overall, a frame size of 20ms provides a compromise for all of the mentioned 
issues. Compared with other standardized coders [BKS00] a constant frame size of 
20 ms is slightly smaller than that normally used. At 44.1 kHz, 20 ms corresponds to 
882 samples. The frame selection is carried out by the use of overlapping windows. 
As mentioned previously, sinusoidal based coders tend to use the Hamming window 
[MQ95]; however, HILN uses the cosine window [EP00, PM00]. In this work a perfect 
reconstruction sinusoidal window is used [Mal92]. Figure 4.5 shows a comparison 
between the Hamming window and the sinusoidal window in the time domain, Figure 
4.6 shows the comparison in the frequency domain. Also included in both figures is 
the proprietary AC-3 window. The aim of using a window is to reduce the frequency 
leakage when using a transform , it can be seen from the presented figures that all 
three windows perform similarly in the frequency domain. The AC-3 window and 
the sinusoidal window both perform better than the Hamming window and both
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Figure 4.5: The Sinusoidal window, AC-3 window and Hamming window

allow perfect reconstruction with only 50% overlap. The overlap is of little concern 
since in the original sinusoidal coding scheme overlap-add was used to remove the 
need for sinusoidal tracking, that is, the use of the sinusoidal window fits well with 
the general sinusoidal coding scheme. The fact that the sinusoidal window is perfect 
reconstruction also means that the original signal may be losslessly synthesized should 
an appropriate coding scheme be utilized. Lossless audio compression is the subject 
of Chapter 6 of this thesis.

Once a frame has been selected, the sinusoidal model is generated by the use of 
4.2.1. The parameters are input to a perceptual model, which acts in a manner best 
described as a perceptual entropy filter in that perceptually insignificant coefficients 
parameters are removed from the full set of parameters. The new set of parameters are 
then sorted according to energy content. The sorted set of parameters are quantized 
using various techniques, depending on the implementation required, and a gain factor
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Figure 4.6: The Sinusoidal window, AC-3 window and Hamming window in the fre­
quency domain

is included to improve the quality of the synthesized signal. The aforementioned is a 
summary of the main body of the encoder, the following sub-sections will elaborate 
on each component.

4.3.3 The Perceptual Model

Perception and perceptual models have been discussed in detail in Chapter 3. As 
mentioned in that chapter, simultaneous masking is an effect that can be modelled 
in the frequency domain by the calculation of the masking curve. The masking curve 
was originally presented by Johnston [Joh88b] as a way of calculating the perceptual 
entropy of a signal. The term entropy was used because of the strong similarity with 
the information theoretic definition of entropy in that the greater the entropy (both 
perceptual and informâtic) the more the resources required to faithfully represent it.
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In the coding scheme presented here, the masking model is used to calculate 
the perceptual entropy contribution of the sinusoidal components in the sinusoidal 
representation across the critical bands. Thus, by adopting the Johnston technique 
an average value for the frequency domain masking in each critical band is obtained. 
The sinusoidal components that fall below this value are considered perceptually 
redundant. In other words, these components do not contribute to the perceptual 
entropy of the signal and these components can thus be removed by giving them a 
weighting of zero.

This application of the masking model differs from the technique used in, for ex­
ample, MPEG-4 and AC-3 where the method determines a limit for the quantization 
noise. In those techniques the frequency components are given a weighting that deter­
mines the distribution of the quantization bits across the bandwidth of the signal. In 
our case, the perceptually redundant components are removed to allow the synthesis 
of a perceptually equivalent signal in a step-by-step fashion. To facilitate the devel­
opment of this signal in a step-by-step fashion, the remaining sinusoidal components 
are then sorted according to energy content.

4.3.4 Sorting the Parameters

Prom Equation (4.2.1), it is clear that the energy content of each of the samples in a 
frame is determined by the sum of the square of the magnitudes of the amplitudes. 
As this is the case, the amplitudes are sorted in order of decreasing magnitude. The 
sorting of these amplitudes allows the coder to concentrate on the parameters that 
contribute most to the reconstruction of the perceptually equivalent signal. The 
sorting also provides the added advantage of producing a monotonic relationship
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Figure 4.7: Comparing the SNR between the sorted set of sinusoids and the unsorted 
set used for synthesis

between the ordered amplitude magnitudes. This relationship is exploited through 
the modelling of the sorted amplitudes by the use of either a monotonically decreasing 
function or by the use of interpolation. This is unlike other sinusoidal schemes and 
provides a mechanism to obtain a smoothly scalable audio coding scheme.

When the sinusoidal components are sorted, and the signal is reconstructed from 
the sorted sinusoidal components it was found, through informal listening tests, that 
50 components may be used to produce good quality audio; significantly less than 
the reported 100 in [MQ95]. Thus, the sorting leads to a quite significant reduction 
in the number of sinusoids that should be used to obtain a good quality synthesized 
signal.

Figures 4.7, 4.8, 4.9 4.10 have been included to further illustrate this point. Fig­
ure 4.7 gives the Signal to Noise Ratio (SNR) between the original signal and the
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Figure 4.8: Comparing the Roughness between the sorted set of sinusoids and the 
unsorted set used for synthesis

reconstructed signal as more sinusoids are added. The advantage gained by sorting 
the sinusoids can be clearly seen. Figure 4.8 shows the relative roughness between 
the original and reconstructed signal for both sorted and unsorted sinusoids. The 
roughness, as explained in Chapter 2, is a pleasantness contributing factor which is 
used in this work along with other indicators to determine in an objective way the 
subjective effects of the coding scheme on the original sound. The closer the relative 
roughness values are to 1 the more like the original signal is the synthesized sound. 
Figure 4.8 shows an interesting result in that for a small number of sorted sinusoids 
the roughness appears to be closer to the original than for a larger set (eventually 
the error in the roughness decreases again). This result requires some explanation. 
The roughness is effected by the modulation frequency of the signal as well as the 
excitation. The modulation frequency is derived from the envelope which is usually 
effected primarily by the low frequencies. The selection of the amplitudes according
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Figure 4.9: Comparing the Loudness between the sorted set of sinusoids and the 
unsorted set used for synthesis

to amplitude magnitude may (as in this case) lead to some higher frequencies being 
selected at the expense of lower frequencies; thus altering the envelope information 
more than the excitation information leading eventually to a divergence of roughness 
values. To show that the excitation is not the contributing factor to this effect Fig­
ure 4.9 has been included, the benefit of the sorting in this case is clear. The same 
conclusion may be drawn from Figure 4.10 where the sorting of the amplitudes aides 
in the reproduction of a similar sharpness value.

However, the presented results do not take into account the masking encountered. 
Figures 4.11 and 4.12 show the same set of results for the roughness and sharpness 
with the masked components removed. The objective here is to observe whether the 
masking model used has a detrimental effect on the psychoacoustics of the synthesized 
signal when combined with the sorting. It can be seen from both figures that in some 
instances there is even a gain in using the masking model with the sorting rather than



4.3 A new scalable sinusoidal coder 136

Figure 4.10: Comparing the Sharpness between the sorted set of sinusoids and the 
unsorted set used for synthesis

a loss in reproducing the psychoacoustic effects of the original signal.

Com paring Synthesis by Sorted Com ponents w ith A-by-S

Both the A-by-S technique and the sorted sinusoidal components approach aim to 
reduce the number of sinusoidal components required for a faithful reconstruction of 
the original signal. As such, it is appropriate, having presented both techniques, to 
compare (objectively) the relative performance of the two; The important measure is 
the number of sinusoids required to faithfully reconstruct the signal. Sixteen different 
files were used in this experiment (the files listed in Table 4.2) and a sampling of the 
results are shown in Figures 4.13 to 4.15. The results chosen are for files xl, x2 and 
x5. i.e., a signal that has both harmonic and noise properties, an extremely harmonic 
signal and a signal with a highly noise like structure. The results are given in terms of 
Mean Squared Error (MSE) versus the number of sinusoids used in the reconstruction.
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Figure 4.11: Comparing the Sharpness between the sorted set of sinusoids and the 
unsorted set used for synthesis with the use of a masking model

Figure 4.12: Comparing the Roughness between the sorted set of sinusoids and the 
unsorted set used for synthesis with the use of a masking model
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Figure 4.13: Comparing the ABS approach to the STFT approach for xl

The presented results show that the difference between the ABS approach and the 
sorted STFT sinusoids approach is small, with the ABS only holding a clear advantage 
for a limited number of sinusoids in all cases. The ABS approach does possess a higher 
advantage for the most noise like signal than the less noise like signals, however one 
cannot say that there is a significant difference between the two approaches in terms 
of MSE (compared with the original signal).

The results presented clarify a trade-off that may be made between the perfor­
mance and complexity of the two schemes. The sorted sinusoids approach under­
performs the A-by-S approach only when very few sinusoids are being used for recon­
struction. yet it can be inferred (from the presented algorithms for both approaches) 
that it is more efficient in comparison to the A-by-S. In this work, the trade-off men­
tioned has been made in favor of the computational complexity as the MSE gain is 
quite small.
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Figure 4.14: Comparing the ABS approach to the STFT approach for x2 

4.3.5 Frequency Domain Gains

As only a relatively small number of sinusoids is being utilized in the synthesis of 
the audio signal, the energy of the synthesized signal in each critical band may be 
considerably less than the original. This change in energy is translated into a change 
in the masking curve level, as the masking curve is primarily a function of the energy 
in each critical band [Joh88a]. In order to counter significant energy loss, twenty five 
frequency domain gains are used, each corresponding to a critical band. These gains 
adjust the average energy of the synthesized signal .in each critical band to ensure 
the energy in each band is approximately the same for the synthesized and original 
signal.

It was found experimentally that more weight should be applied to the low fre­
quency gains than the high frequency gains. The experiments simply involved lis­
tening to the resultant synthesized signal. Without this weighting high frequency
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Figure 4.15: Comparing the ABS approach to the STFT approach for x5

“scratches” (i.e. sounds that sound like a scratch) may occur in the synthesized au­
dio when the gains are quantized. The weighting is actually applied in the log domain, 
this makes sense as the calculation of the original masking curve is carried out in that 
domain. This is equivalent to the use of a power law on the actual calculated gains. 
The un-quantized gains are given by:

Pol 0 < £ < 24 (4.3.1)

where 7  ̂ is the gain in a given band, P0£ is the power of the original signal in the 
critical band £ and PS£ is the synthesized signal power in that band. The gains are 
weighted by the use of the following equation:

7ft = (7ii)Xl 0 < £ < 24 (4.3.2)

7 and 7 ii are the final and initial gains respectively and x is a weight varying 
between 0 and 1. An example of a weighting vector is shown in Figure 4.16. The
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Figure 4.16: An example weight vector used in the described coder

power law technique allows the gains to be adjusted between their original value and 
1. This permits the adjustment of sinusoids belonging to the low frequency band 
whilst leaving others unchanged. The critical band gains have been found to improve 
the perceived quality of the synthesized signal in informal listening tests.

4.3.6 Quantization

The sorting of the sinusoids according to energy content allows preferential trans­
mission of the parameters as well as the exploitation of the relationship between 
consecutive amplitudes. Scalar quantization is used for the quantization of most of 
the parameters in this work. This may seem wasteful, but, as will be explained later, 
scalar quantization is necessary for some parameters and sufficiently efficient for the 
quantization of other parameters.
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Figure 4.17: An example of a set of sorted amplitudes

Quantizing the Amplitudes

The sorted amplitudes have a monotonic relationship. An example set of sorted 
amplitudes is shown in Figure 4.17. The gradient of the amplitude magnitudes is 
related to the signal being coded, with tonal signals having a much higher rate of 
decrease than non-tonal signals.

Two approaches for quantizing the amplitudes have been considered. The first 
models the amplitudes by the use of a smooth function, such as an exponential, and 
the second uses spline interpolation. In the case of the exponential modelling, the 
amplitude curve is modelled by attempting to fit an exponential to it that has the 
form:

A = /?exp(m) (4.3.3)
where A is the set of approximated amplitudes, [3 and a are coefficients that are
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Figure 4.18: An example of spline interpolating between selected sorted amplitudes

determined adaptively to minimize the MSE of the model and i is the sorted index of 
the amplitude. On the other hand, the interpolation technique involves the selection 
of a number of amplitudes, quantizing those amplitudes and using a spline interpo­
lator for points between those amplitudes. Figure 4.18 shows an example of a sorted 
set of amplitudes from which ten amplitudes have been transmitted corresponding to 
positions {1,2,3,4,6,8,11,15,25,50}. The greater the number of amplitudes transmit­
ted, the less distortion that is encountered. This feature allows the coder to scale, 
something that the exponential model cannot do. However, this technique does rely 
heavily on the accurate quantization of the transmitted amplitudes.

Finally, Figure 4.19 shows a comparison between the performance of the exponen­
tial model of the amplitudes and the spline interpolated result. The test has been 
conducted using 50 sorted sinusoids of an audio signal. The exponential result is 
shown as being constant as it has been obtained for the modelling of 50 amplitudes.
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Figure 4.19: A comparison of exponential interpolation and spline interpolation in 
terms of MSE

The spline interpolator’s performance improves at a decreasing rate with an increase 
in the number of amplitudes transmitted. Note that the knee point of the interpolator 
is around the 10 amplitude mark. Ten amplitudes are normally transmitted in the 
non-scalable version of this coder. In the scalable version, the number of amplitudes 
varies according to the available bit rate.

Quantizing the Phase

As mentioned previously, to obtain a low rate coder one finds it necessary to model 
the phase as in [MQ95]. This is not an ideal solution, yet it produces good results at 
low rates. The coding scheme being presented here has not been specifically aimed at 
low rates, it is a medium rate coder when implemented in its non-scalable form, and a 
medium to high rate coder when implemented in its scalable form. As such, the phase
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information has been maintained. Maintaining the phase has been acknowledged in 
[MQ95] as necessary to achieve a high quality synthesized sound. In the work in­
volving A-by-S [GS92],[EP00] modelling, the envelope of the original signal implicitly 
captures the phase information of the sinusoidal model and so is quite important to 
the overall quality of the synthesized audio [EPOO].

In the non-scalable coder being described here, the phase is quantized using 
weighted scalar quantization; where the amplitudes are used as the relative weights. 
That is, phases associated with large amplitudes are quantized more accurately than 
phases associated with smaller amplitudes. The scalable version of the proposed coder 
used in this work utilized a uniform scalar quantizer for the phase to allow simpler 
coder implementation.

Quantizing the Indices
The indices indicate the spectral position of the sinusoids before sorting. As the 
sinusoids have been re-arranged, the indices are required by the decoder for correct 
synthesis. It has been found experimentally, that even a small level of distortion in the 
indices leads to annoying artifacts in the synthesized signal. Thus, it was decided that 
to avoid the potential of having such artifacts the indices would be coded losslessly.

For a frame length of 880 samples, 441 sinusoids are possible using the STFT 
method. Thus, nine bits per index would be required for fixed length lossless coding. 
In the scalable implementation of this coder a fixed length scalar quantizer is used. 
However, it was found that the first order entropy of the indices collected over many 
experiments was 4.24 bits per index.

Thus, the theoretical limit for coding the indices losslessly is 4.24 bits per index.
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Table 4.1: The ten most probable frequencies and their Huffman codes
Index value Frequency (HZ) code word Prob. of occurrence

7 350 11101 0.257
8 400 11111 0.2539 450 11110 0.252
10 500 11011 0.251
6 300 11010 0.24911 550 11001 0.248
5 250 11000 0.24812 600 10001 0.242
4 200 10011 0.238
13 650 10010 0.236

Using this result, a Huffman code was designed for the indices based on the probability 
of appearance in the most energetic 50 sinusoids. A Huffman code allocates more bits 
for indices that have a low probability of appearance. The code is a prefix code 
[GG92] in that the prefix of each code word is unique and thus the code is decodable. 
The code is loss-less and variable in length. The most probable 10 indices and the 
equivalent code are given in Table 4.1. Other loss-less variable length codes may be 
used, such as arithmetic coding [WNC87], or a Lempel-Ziv style code [GPS94]. The 
Huffman code designed resulted in a variable length code set for the indices with a 
mean length of 6.089 bits per index, a reduction of 32 % on the fixed length code.

Quantizing the Gains
To quantize the frequency domain gains, vector quantization was employed. Vector 
quantization (VQ) allows whole vectors to be coded with a single codeword [GG92]. 
Each code word represents an entry in a pre-defined code book. In this work a 10 
bit code book (1024 entries) was trained to quantize the gains with each gain vector 
having 25 elements. The use of this code book, in combination with the weighting of



4.4 Results 147

the gains, produced insignificant distortion in the synthesized audio.

4.4 R esu lts
In this section two sets of results will be presented; both objective and subjective 
(the focus of the results will be on the scalable scheme rather than on the variable 
rate scheme. The reason for this is that the variable rate scheme is not as versatile as 
the scalable scheme). Comparing the two schemes, one can say that the variable rate 
scheme performs better than the scalable scheme at around the 40 kbps, which is the 
rate for which the variable rate scheme was designed for. However, by just listening 
to the synthesized audio it was found that the difference is not significant enough 
to warrant a complete subjective comparison of the two schemes. Instead, only the 
objective results of the variable rate scheme will be given. As for the subjective 
results, the scalable scheme is compared to the MPEG-4 AAC transform coder at 
four rates; 16, 32, 42 and 64 kbps. Also, pleasantness factors (Loudness, Sharpness 
and Roughness) are given for some of the test material at those rates to illustrate the 
objective perceptual scalability of the sinusoidal coder. .

The test material used is listed in Table 4.2 and was obtained from [mpe]. This 
same test material is used throughout this thesis.

The first set of results included here are segmental signal-to-noise-ratio (SegSNR) 
results. As these results are not related to a perceptual measure they require normal­
ization. To allow the comparison of the SegSNR results Table 4.3 lists the SegSNR of 
the original signals with only the perceptually irrelevant material removed, i.e., signal 
components that were deemed to have zero perceptual entropy were not coded. The 
resultant sound is transparent, yet the SegSNR is quite low; in fact, in none of the
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listed test files does the SegSNR reach 30 dB, which is 8 dB below the toll quality 
definition of speech [NJ84]. This is an expected result [Ryd96], and by comparing the 
rest of the SegSNR results presented here to those in Table 4.3 one can approximate 
how close the synthesized signal is to the perceptually significant signal.

4.4.1 Variable rate coder objective results

Table 4.4 lists the results obtained for the variable rate coder. One can see a clear 
difference between the SegSNR values listed in Tables 4.3 and 4.4 indicating a loss 
in perceptual quality. The variable rate coder operated at an average rate of 38.9 
kbps and by simply listening to the synthesized audio one can tell that the coder is 
not transparent at that rate. However, the coder sounded much like the MPEG-4 
AAC transform coder (Verification Model or VM) operating at 42 kbps (which is also 
not transparent at that rate). The quality of the coder can be increased with an 
increase in rate by using, for example, finer quantization of the amplitudes and less 
interpolation. It would be expected that the SegSNR would then approach that listed 
in Table 4.3. It must also be pointed out that Table 4.3 lists SegSNR results without 
any quantization, i.e., none of the perceptually significant parameters are quantized, 
and that must be taken into consideration when comparing the results listed in the 
two tables.

4.4.2 Scalable rate coder objective results

The scalable set of results are shown in Figures 4.20 to 4.23. Each figure shows the 
SegSNR of the synthesized files at the given rates. All of the files surpass the variable 
rate version by the 64 kbps mark, and most of the files show clear scalability. The
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Table 4.2: The Signal Content
Signal Name Signal Content Signal Name Signal Content

xl Bass x9 English Female Speech
x2 Electronic Tune xlO French Female Speech
x3 Glockenspiel xl 1 German Female Speech
x4 Glockenspiel xl2 English Male Speech
x5 Harpsicord xl3 French Male Speech
x6 Horn xl4 German Male Speech
x7 Quartet xl5 Trumpet
x8 Soprano xl6 Violoncello

Table 4.3: SegSNR of the perceptually significant signals
Signal SegSNR (dB) Signal SegSNR (dB)

xl 22.3 x9 20.4
x2 15.5 xlO 20.8
x3 22.7 xl 1 17.3
x4 29.1 xl2 18.0
x5 10.53 xl3 16.9
x6 26.7 xl4 17.9
x7 26.5 xl5 28.9
x8 25.9 xl6 17.1

Table 4.4: SegSNR results for variable rate coder
Signal SegSNR (dB) Signal SegSNR(dB)

xl 13.4 x9 10.9
x2 10.7 xlO 10.6
x3 15.3 ' xl 1 9.6
x4 16.9 xl2 10.7
x5 7.3 xl3 9.1
x6 17.3 xl4 9.6
x7 14.1 xl5 16.4
x8 16.3 xl6 12.5
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Figure 4.20: SegSNR results for the scalable sinusoidal coder for signals xl to x4

files that do not show scalable behavior are highly tonal files which are modelled quite 
well at 16 kbps, with the given limitations of quantization noise and limited phase 
representation discussed earlier. The worst performing files in terms of SegSNR are 
the files that have strong resemblance to noise, in terms of Power Spectral Density 
(PSD) representation. The Harpsichord signal (x5)is one such signal. The deficiency 
of the sinusoidal model for noise like signals is well documented (see [Goo97] for 
example) and these results clearly display this effect.

Another objective method of analyzing the results of the scalable coder has been 
described in Chapter 2 , where the sensory pleasantness parameters were shown to 
allow a psychoacoustic analysis of the synthesized audio signal. In this case (for a 
scalable coder) one would require that a smooth transition in pleasantness be achiev­
able. It has already been noted that a decrease in roughness, sharpness and loudness
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Figure 4.21: SegSNR results for the scalable sinusoidal coder for signals x5 to x8

Figure 4.22: SegSNR results for the scalable sinusoidal coder for signals x9 to x l2



4.4 Results 152

Figure 4.23: SegSNR results for the scalable sinusoidal coder for signals xl3 to x l6

would mean an increase in sensory pleasantness. Figures 4.24 to 4.27 show the men­
tioned pleasantness factors for the scalable sinusoidal coder for four of the sixteen 
test files. The plotted results are given in terms of mean variation from the original 
value as a percentage. This means that if the plotted values are heading towards zero 
then the synthesized signal should be heading towards having the same psychoacous­
tic properties as the original signal. When this is combined with a positive signal to 
noise ratio then one can state that the perceptual properties of the synthesized sound 
and the original sound should be the same.

It can be seen that the sinusoidal coder does scale relatively smoothly when an­
alyzed using the loudness (TV), sharpness (S ) and roughness (R). The percentage 
variation decreases significantly for most of the files shown as the bit rate increases. 
It can also be seen that each file varies in terms of which psychoacoustic factor is 
most accurately produced; this is related to the content of the file. In this case, four
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quite different files have been presented (in terms of content as well as spectral rep­
resentation), hence one would expect different psychoacoustic factors to be distorted 
differently by the coding process.

More insight can be gained by considering the obtained results individually. For 
xl, a low frequency dominated original signal, this is well matched by the sinusoidal 
model and so the scalable coder displays a smooth reduction of psychoacoustic vari­
ation between the synthesized signal and the original to within 10% of the original 
signal’s value. In the case of x5, a much noisier type of signal, one observes a similar 
reduction in the variation of psychoacoustic parameters except that the starting point 
is significantly higher than that for signal xl. As for x6, it is a very harmonic type 
of signal and so it is modelled well at low rates (resulting in low mean variations to 
begin with) with slightly decreasing variation as the rate increases. The roughness 
seems to show a somewhat odd behavior in that it stays significant beyond the 32 
kbps mark. This is an indication that the envelope of the synthesized signal is not 
being improved upon because the contributing factors to abounds roughness are its 
excitation level and its modulation frequency. The excitation level is the primary 
indicator of the loudness and as that is clearly improving then the gap in roughness 
must originate from the modulation frequency. However, the modulation frequency 
is approximated by the frequency of the envelope of the signal. Thus, the envelope 
of the synthesized signal is not being improved for higher rates.

In the interest of comparing the scalable sinusoidal coder with an existing popular 
coder, the same files were coded using the MPEG-4 AAC transform coder at the rates 
16, 32, 42, 54 and 64 kbps. The aim was to observe the effect that this coder has 
on the psychoacoustic measures and compare it with the scalable sinusoidal coder.
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Figure 4.24: Pleasantness factors results for the scalable sinusoidal coder synthesized 
file xl

Figure 4.25: Pleasantness factors results for the scalable sinusoidal coder synthesized 
file x5
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Figure 4.26: Pleasantness factors results for the scalable sinusoidal coder synthesized 
file x6

Figure 4.27: Pleasantness factors results for the scalable sinusoidal coder synthesized 
file x9
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Figure 4.28: Pleasantness factors results for the MPEG AAC coder synthesized file 
xl

Figure 4.28 shows the psychoacoustic measures for signal xl. It can be seen that the 
variation is inconsistent across the bit rates, i.e., the measures neither increase nor 
decrease consistently as the rate increases. It is interesting to note that the loudness 
and roughness seem to follow the same pattern until the 42 kbps mark. As has 
been mentioned, both loudness and roughness are functions of the excitation pattern 
in the human auditory system. However, roughness has the contributing factor of 
modulation frequency. The divergence of the loudness and roughness indicates a 
different approach in compression for rates below 42 kbps to those above 42 kbps. 
This is not a surprising result when one considers the MPEG-4 AAC coding scheme, 
in which more auditory ‘objects’ are added as the bit rate increases, this coder was 
discussed in detail in Chapter 3.

Figure 4.29 shows a smooth decrease in all of the measures as the rate increases.



4.4 Results 157

Figure 4.29: Pleasantness factors results for the MPEG AAC coder synthesized file 
x5

Recall that x5 is a very noise like signal and when listening to the AAC synthesized 
file, one can hear a very good reproduction of the original sound from low rates. This 
is testament to the noise substitution procedure that is applied in the AAC coder. 
Similarly, Figure 4.30 shows that the pleasantness factors decrease with increasing rate 
for file x6 , however, the starting point of the factors indicates a massive variation. 
This was verified by listening to the file synthesized using 16 kbps. Figure 4.32 has 
been included to illustrate the effect that the AAC coder had on x6 at 16 kbps, 
the difference in the psychoacoustic factors generated for each signal becomes more 
understandable by studying this figure. The file that shows the oddest behavior is x9 
with an increasing variation in sharpness and loudness and a decreasing variation in 
roughness with an increasing rate. This file is a female speech file and by listening 
to the coded results it is easy to pick the difference between the original and the
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Figure 4.30: Pleasantness factors results for the MPEG AAC coder synthesized file 
x6

synthesized file, the better roughness performance seems to be due to more attention 
being paid to the envelope of the signal, this may be due to the temporal noise shaping 
tool that is used in the AAC coder. Although this is primarily a tool for the control 
of pre-echo effects, it does so by shaping the “noise” so that it better matches the 
envelope of the original signal.

A  comment about the scalable objective results

The objective results presented have been chosen to illustrate the performance of the 
scalable sinusoidal coder in comparison with the AAC for files that are both diffi­
cult and easy to code for both coders. It is notable that the sinusoidal coder does 
scale more smoothly than the AAC coder, this can be explained by the structure of 
both coders and this has been the focus of the previous discussions. However, the 
results presented do not show whether the psychoacoustic measures are increased or
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Figure 4.31: 
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Figure 4.32: 100 frames of the coded x6 file using AAC at 16 kbps
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decreased by the coding process. Instead the results have been focused on an absolute 
error between the original and synthesized. In the interest of completeness, Figure 
4.33 is included. This figure shows the mean variation from the original x9 signal 
without the use of the absolute error, i.e., both positive and negative variations are 
taken into account. It can be seen that the loudness of the coded file is typically 
below that of the original, whilst the sharpness and roughness are usually above the 
original. Both of those observations can be heard on the coded file. It is interesting to 
note that both the sharpness and the roughness head towards the original sharpness 
and roughness indicating that the distribution between positive and negative errors 
becomes more equal as the rate increases, causing the absolute error to remain high, 
while the non-absolute error decreases on average. This result indicates a psychoa­
coustic correcting behavior, where the psychoacoustics of the coded file vary between 
higher and lower values than the original regularly. This would explain the increase 
in perceptual quality whilst the psychoacoustic measures continue to show a clear 
difference.

In comparison, Figure 4.34 shows the same type of results using the scalable 
sinusoidal coder. It is immediately clear that the type of distortion introduced by 
the sinusoidal coder is much more consistent than that introduced by the MPEG-4 
AAC coder. This is not strange as the AAC coder tends to be more signal adaptive 
than the sinusoidal coder, however, there is a certain advantage in the consistency of 
an injected psychoacoustic error in that it is possible to devise techniques to counter 
this distortion.
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Figure 4.33: Psychoacoustic factor real mean percentage variation for AAC coded x9

Figure 4.34: Psychoacoustic factor real mean percentage variation for the scalable 
sinusoidal coder coded x9
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Table 4.5: Complete Relative Quality Scale
score Relative quality

5 A much worse than B
4 A worse than B
3 A same as B
2 A better than B
1 A much better than B

4.4.3 Subjective scalable results

Subjective tests have been organized to compare the quality of the scalable sinusoidal 
coder to the MPEG-4 A AC. The files used in the tests were all those listed in Table 
4.2 bar the non-English speech files. The test was such that the A AC coded files were 
played first but the subjects were not told of the order of the files. The scale used 
to compare the files was a five point scale, which is a modification of the seven point 
large impairment scale used to compare coders by the ITU [PSOO]. The reason for 
the modification was one of practicality rather than test performance. Table 4.5 lists 
the scores and the corresponding relative quality between the two files. According 
to Table 4.5, a score of 3 would mean that the two sounds sounded the same, scores 
above 3 mean that the sinusoidal coder performed better than the AAC coder whilst 
scores below three mean that the opposite is true.

The group of test subjects was made up of 25 participants who were mostly in 
their early twenties and mostly male (as the tests were carried out at the Electrical 
Engineering school the choice of subjects is rather limited in terms of gender and 
age). The over-all mean score was found to be 2.51, that is the AAC coder slightly 
outperformed the sinusoidal coder across all rates and files. A break up of this mean 
according to each of the twelve files is shown by Figure 4.35. Figure 4.35 shows that 
the harmonic files (x2,x3,x4 and x6) are better coded subjectively by the scalable
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Figure 4.35: The mean score for each file across all the rates

sinusoidal coder, all the other files are better coded by the AAC coder.
A finer division of the results is shown in Figure 4.36, where the mean scores of the 

files at each rate are given, the bars in the figure are organized such that the leftmost 
bar represents xl in each grouping of bars. It is clear from this break up of the results 
that the harmonic files are coded well by the sinusoidal coder for all the tested rates. 
The performance of the sinusoidal coder as compared with the AAC varies for the 
other files, however one can see a trend that the scalable sinusoidal coder performs 
better compared to the AAC coder for rates 16 and 32 kbps than it does for the 42 
and 64 kbps. This is with the exception of file xl, for which the sinusoidal coders 
performance clearly improves as the rate increases.
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Figure 4.36: The mean score for each file at each rate 

Discussion of the subjective results

The testing methodology used to compare the subjective performance of the A AC 
coder to the scalable sinusoidal coder can at best be described as informal. However, 
with the number of subjects used one can confidently state that the results do show 
consistency which is important in this type of test. The scale used deprived the 
subjects of the option “slightly” better or worse which has probably affected the 
results as indicated by the average score of 2.51 which lies almost exactly between 
scores “same” and “better”. The performance of the scalable sinusoidal coder when 
dealing with strongly harmonic signals is clearly an advantage to this approach to 
scalable coding. The performance of the scalable sinusoidal coder at low rates is also 
encouraging.

The results presented here must be kept in perspective, the scalable sinusoidal
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coder is fundamentally a single paradigm scheme whereas the AAC coder is a multi­
paradigm scheme where the quality of the coded signal is contributed to by a combina­
tion of signal modelling, noise shaping and transform coding. When this is taken into 
consideration, the relative performance of the scalable sinusoidal scheme is definitely 
encouraging.

4.5 D iscussion and conclusion
This chapter has presented the design of two perceptual sinusoidal coders. A variable 
rate coder that operated at an average rate of 38.9 kbps and a scalable rate coder. 
Both coders rely on the sorting of sinusoidal amplitudes to achieve high compression. 
It is the sorting of the perceptually relevant amplitudes that allows the changing of 
the variable rate coder to a scalable coder.

The scalable coder has been analyzed in more detail than the variable rate coder 
with subjective results suggesting that the scalable coder performs reasonably well 
when compared to the MPEG-4 AAC coder at the same rates. The scalable coder 
has been analyzed using psychoacoustic measures, as was the AAC coder. It was 
observed that the scalable sinusoidal coder contributes a decreasing distortion to 
the psychoacoustic measures used at increasing rates. This is not the case for the 
AAC coder. It was also noted that the sinusoidal coder’s distortion tends to be of a 
consistent nature as opposed to the fluctuating nature of the AAC distortion. It can 
also be concluded that one of the major differences between the scalable sinusoidal 
coder and the AAC coder is the application of noise modelling and shaping in AAC. 
This is supported by subjective listening test results that have shown that the scalable 
sinusoidal coder performs well in comparison with the AAC for harmonic signals but
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performs poorly for noise like signals.
Overall, the results for the scalable sinusoidal scheme have been encouraging. This 

scheme does have the advantage of using one paradigm across many rates. However, 
the scheme presented needs to have pre-defined information for the intended rates. 
For example, one would need to pre-define the interpolation grid for the amplitudes 
at each rate. Also, this scheme does not allow partial transmission of quantized 
parameters instead either whole parameters need to be transmitted. Finally, although 
the sinusoidal model is efficient in terms of producing a perceptually similar signal, 
it is difficult to extend the scalability towards lossless compression without paying a 
price at the lower rates. The exact reproduction of the original signal is of interest in 
this thesis.

Because of the mentioned drawbacks, this scheme is not developed any further, 
instead the concept of parameter perceptual sorting is taken to a new level by the 
adoption of the Set Partitioning in Hierarchical Trees (SPIHT) algorithm in coding 
schemes that are developed and presented in the following chapters.



Chapter 5
Set Partitioning In Hierarchical 
Trees (SPIH T ) For Audio Coding

The work described in this chapter utilizes the coding and transmission algorithm 
known as the Set Partitioning In Hierarchical Trees (SPIHT) algorithm [SP96]. This 
is a popular image coding algorithm because it provides a significant improvement 
over the zero tree coding technique that was proposed by Shapiro [Sha93]. This 
chapter presents a study of the application of SPIHT to audio, it introduces a new 
method of defining the coefficient sets and lists that are important to the successful 
operation of the algorithm and it develops a perceptual scalable coding scheme that 
is based on SPIHT. A modification is also made to the original SPIHT algorithm to 
allow it to better cope with the unfamiliar situation of insignificant coefficients (due 
to masking) at frequencies of significant energy.

The contributions of this thesis addressed in this chapter include the proposal 
of a fine grain scalable perceptual compression scheme, a comprehensive study into 
the use and application of SPIHT to audio compression and the introduction of a 
perceptually inspired modification to SPIHT. These contributions are described in 
[RMB02c] and [RMB02b].

167
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5.1 Introduction
The SPIHT algorithm was initially proposed as an image compression solution in 
[SP96] but it is general enough to have been applied to audio and electrocardio­
gram (ECG) signal compression, in combination with the Wavelet transform, as well 
[LP98][LKP00]. The SPIHT algorithm aims at performing an ordered bit plane trans­
mission and sorts transform coefficients in an efficient manner allowing more bits to 
be spent on coefficients that more heavily contribute to the energy of the signal. Ef­
ficient sorting is achieved by continuously updating a predefined order of coefficients. 
The attractiveness of SPIHT lies in the combination of this implicit sorting with the 
partial bit-plane transmission.

This chapter first introduces SPIHT and describes how it can be applied to au­
dio. This is followed by a study into the combination of SPIHT with a number of 
transforms, specifically the Discrete Wavelet Transform (DWT) (which is the basis 
of the scheme described in [LP98]), the Discrete Cosine Transform (DCT), the sinu­
soidal model (based on the Short Time Fourier Transform) and finally the Modulated 
Lapped Transform (MLT). It is shown that significant compression ratio differences 
are achieved depending on the transform that is used. To this end, the results pre­
sented will show that the MLT achieves the highest compression ratio. The degree of 
compression obtained is enhanced by the use of a masking model. Further improve­
ments are obtained by using a modified version of the SPIHT algorithm proposed in 
this chapter. The modification tests for absolutely insignificant coefficients (that is 
zeros or coefficients below a given threshold) and removes those coefficients from the 
sorting and transmission process completely.

The chapter is organized such that Section 5.2 introduces SPIHT in more detail
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and presents results of combining SPIHT with a number of popular transforms. Sec­
tion 5.3 discusses how the degree of compression may be improved by the use of a 
masking model and by modifying SPIHT. A discussion of the presented results and 
conclusions are presented in Section 5.4.

5.2 A study of SPIH T  w ith current audio coding  
transform s

5.2.1 Set Partitioning In Hierarchical Trees

The Set Partitioning In Hierarchical Trees algorithm (SPIHT) was introduced by Said 
and Pearlman in [SP96]. The complete algorithm is listed in [SP96] as Algorithm II 

and is presented in this chapter in Section 5.3.2 with an added modification. In this 
section, we consider the operation of the algorithm and its characteristics.

The algorithm is built on the principle that spectral components with more energy 
content should be transmitted before other components; thus the most relevant infor­
mation is sent first. This is the same principle that has been applied already in this 
thesis in Chapter 4. SPIHT sorts the available transform coefficients and transmits 
both the sorted coefficients and sorting information. The algorithm is provided with 
an expected order of the coefficients defined in the form of trees; those coefficients 
closer to the roots of the trees are expected to be more significant than those at the 
leaves. The transmitted sorting information is used to modify this pre-defined or­
der. The algorithm tests available coefficients and sets of coefficients (where a set of
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coefficients refers to a group of related or linked coefficients) to determine if those coef­
ficients are above a given threshold (which decreases in a base 2 logarithmic fashion). 
The result of the test is transmitted and the coefficients are deemed significant or 
insignificant relative to the current threshold. Significant coefficients are transmitted 
bit plane by bit plane (a B bit quantized coefficient is said to contain B bit planes).

As SPIHT includes the sorting information as part of the partial transmission of 
the coefficients, it produces an embedded bit stream that may be truncated at any 
point. This characteristic of SPIHT makes it very useful for scalable coding, as an 
increase in the bandwidth available will lead to an improvement in the quality of 
the reconstructed signal. The results presented in [SP96] stress the scalability of the 
algorithm. In the context of audio compression, it has been seen from the literature 
reviewed in Chapter 3 that currently no audio algorithm defines an enhancement layer 
down to one bit per frame. Because of the bit plane transmission process of SPIHT, 
it is possible to define the enhancement layer down to a single bit. The perceptual 
significance of that bit depends on the perceptual significance of the coefficient that 
it is apart of and how close it is to the most significant bit of that coefficient.

The pre-defined order of the coefficients is important to the performance of the al­
gorithm; this will be demonstrated in the later sections of this chapter. In [SP96] the 
SPIHT algorithm used a pre-defined order that linked sub-band coefficients together 
in trees (with each tree being made up of a number of sets). The trees follow the nat­
ural sub-band progression of a dyadic wavelet transform having the lower frequencies 
located at the base of the trees [SP96]. In the audio coding related work reported in 
[LP98] and [LKP00], the wavelet transform was used, and so a similar way tree struc­
ture was used.as in [SP96]. The defined trees group the low frequency components
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in small sets whereas the high frequency components are grouped in large sets. The 
reasoning being that low frequency components tend to contain more energy than the 
high frequency components, and so by grouping coefficients that are expected to be 
insignificant in large groups early, the sorting can be concentrated on a smaller set of 
coefficients.

In the following sub-sections the application of SPIHT to audio compression will 
be demonstrated by combining the SPIHT algorithm with a number of popular audio 
compression transforms. The aim is the determination of the transform that should be 
combined with SPIHT for audio compression as the work presented in [LP98] simply 
assumed that the wavelet transform was best suited for the operation of SPIHT. 
This assumption was based on the sub-band coding environment for which SPIHT 
was originally developed [SP96]. It will be seen, however, that this choice is not 
necessarily the best one.

5.2.2 Audio compression using wavelets and SPIHT

The compression scheme presented in this sub-section is based on that developed 
by Lu and Pearlman in [LP98]. The attractive property of the wavelet transform is 
the fact that the transform is implemented in a sub-band manner and so the tree 
structure defined in [SP96] could still be used. The filter pairs used in [LP98] are the 
20-length Daubechies filter pairs.

The tree structure required by SPIHT is illustrated in Figure 5.1, which is similar 
to that presented in [LKPOO]. The numbers in the boxes of Figure 5.1 indicate the 
wavelet coefficient number starting at 1. Figure 5.2 illustrates how the coefficients are 
related in the time frequency plane. The arrows linking the coefficients indicate the
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Figure 5.1: Constructing the lists

offspring of each coefficient. Coefficients without arrows emerging from them have no 
offspring. The set of descendants of each coefficient is obtained by finking all of the 
offspring obtained at every level together. The linking of the offspring for each tree 
node leads eventually to the definition of four sets used by SPIHT; the roots set (which 
in the case illustrated in Figure 5.1 would contain {1, 2, 3, 4}), the offspring set (which 
in the illustrated case would contain {5, 6} for node 3), the complete descendants set 
(finking all of the. offspring of a node together and would be {5,6,9,10,11,12,...} 
for node 3 in this case) as well as the non-direct descendants (i.e. the descendants 
that are not classified as offspring). The manner in which SPIHT utilizes these sets 
will become clearer when the complete modified SPIHT algorithm is presented in
sub-section 5.3.2.
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Figure 5.2: Constructing the lists in the time-frequency plane

The audio coding scheme based on the wavelet transform is diagramatically rep­
resented by Figure 5.3. In the scheme shown, the psycho-acoustic model determines 
the bit allocation that should be used in the quantization of the wavelet coefficients. 
This requires side information to be transmitted. SPIHT also needs to be modified 
to handle the different thresholds as each set of coefficients would be quantized at a 
different resolution. In the Lu/Pearlman 'implementation this scheme was used for 
the coefficients in the frequency band 0-3.4 kHz which corresponds approximately 
to the first 17 critical bands of the hearing spectrum [LP98]. The remaining higher 
frequencies were transmitted by the use of a “Reverse sorting and coding scheme” 
[LP98], the details of which will not be described here. The results presented by 
Lu and Pearlman indicated that imperceptible distortion in the synthesized signal 
could be obtained at bit rates between 55-66 kbps, which is competitive with current 
standardized coders.

The frequency band division of the spectrum was chosen as in [LP98]. This division
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Figure 5.3: The wavelet based coding scheme

uses 29 critical bands instead of the usual 25 [Moo89][Nol97]. The MPEG model 1 
(which has been described in Chapter 2) of allocating the number of bits per band 
was used to distribute the total number of bits in a way that ensures no more than 
16 bits are allocated to a single coefficient in any band. The frame size used is 1024 
samples, which corresponds to 23.2 ms when the sampling rate is 44.1 kHz.

As an indication of how SPIHT reduces the number of transmission bits required, 
Table 5.1 lists complete reconstruction results, where the distortion is solely due to 
(perceptual) quantization noise in the frequency domain (which is spread across all 
samples in time), for the sixteen test signals used in this work. The test signals 
are the same Sound Quality Assessment Material (SQAM) signals obtained from the 
MPEG web site [mpe] and used to analyze the performance of the scalable sinusoidal 
coder presented in Chapter 4. The results given are in terms of average bit rates
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Table 5.1: Coding Results using the Wavelet Transform.
Signal SegSNR

(dB)
Mean

Rate (kbps)
Signal SegSNR

(dB)
Mean

Rate (kbps)xl 46.1 167 x9 35.8 200x2 50.9 71 xlO 32.5 227x3 46.6 180 xl 1 33.6 204x4 44.4 201 xl2 37.1 190x5 31.1 227 xl3 34.1 202
x6 48.0 94 xl4 34 204
x7 43.2 174 xl5 50.7 175x8 43.7 162 xl6 42.8 187

per frame and should be compared to 706 kbps which is the CD rate and means 16 
bits per coefficient. The sound quality of the audio reconstructed with this wavelet 
based coder operating with the complete set of quantized coefficients is perceptually 
indistinguishable from the original. Some objective results are given in Table 5.1 in 
terms of the Segmental Signal to Noise Ratio (SegSNR).

The usefulness of the MPEG masking model becomes clearer at lower rates. This 
is illustrated in Figure 5.4. The figure shows the SegSNR results, as well as the mean 
bits used per frame for uniform quantization of the wavelet coefficients at 8, 9, and 10 
bits as well as for uniform quantization using the bit distribution of the MPEG model. 
It can be clearly seen that far better SegSNR results may be obtained when using the 
10 bit quantization without the use of the MPEG model for a lower number of bits. 
This means that the application of the MPEG bit allocation process is rather costly 
when one intends to compress the audio at a relatively high rate with the use of the 
complete set of coefficients. However, this result cannot be generalized to the lower 
rates as the MPEG bit distribution does result in better sounding audio synthesized 
from an incomplete set of coefficients. This means that the use of the MPEG bit
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Figure 5.4: The MPEG model based perceptual quantization compared with straight 
scalar quantization

distribution should be weighted against bandwidth available and the computational 
cost of the scheme.

The significance of the results presented in Figure 5.4 will become more obvious 
in Chapter 6 where the dynamic range of the transform coefficients will be shown to 
play an important role in determining the lossless compression obtainable by the use 
of SPIHT.

The SQAM files were also coded at 16, 32, 42, 64 and 128 kbps, to give a demon­
stration of the scalability of the SPIHT algorithm. The resulting synthesized audio 
had almost no perceived distortion between 42 and 64 kbps which roughly coincides 
with the results presented by Lu and Pearlman [LP98]. The quality observed at dif­
ferent bit rates relied heavily on the nature of the sound being coded. As in the case 
of the sinusoidal coder, sounds that were narrow bandpass type signals (i.e closer to 
being tonal) were coded very efficiently with very few bits. This is because SPIHT
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labels large sets that are insignificant as a single entity and tests for the whole sets 
significance. Thus, narrow bandpass type signals will have their significant coeffi­
cients located after only a few tests and refinement bits will be transmitted for the 
significant coefficients instead of the testing of insignificant coefficients. As pointed 
out in [SP96], this is the main difference between the SPIHT algorithm and the zero 
tree coding technique which tests each coefficient individually for significance.

Having described experimentally the use of SPIHT with the wavelet transform (i.e. 
in a sub-band audio compression scheme), a study of SPIHT in M-band transform 
based schemes would be a significant contribution to the understanding of how this 
set sorting algorithm should be applied to audio compression. This will ultimately 
determine the transform that should be combined with SPIHT for audio compression.

5.2.3 The M-Band Transform Based Codec

The general codec based on the combination of uniform short-time transforms and 
SPIHT is shown in Figure 5.5. In Figure 5.5, the audio signal is divided into over­
lapping frames and a transform is applied to each frame. The obtained coefficients 
are quantized and transmitted by the use of SPIHT. At the decoder, SPIHT is used 
to decode the bit stream received and the inverse transform is used to obtain the 
synthesized audio. The Figure does not explicitly show an overlap/add procedure, 
although one may be used (depending on the transform applied).

In applying SPIHT to M-band transform coding, the trees that were used for 
the wavelet based coding scheme no longer describe the relationship between the 
transform coefficients as they did in the wavelet based implementation. Nonetheless, 
tree-structured sub-band based trees were used for a uniform M-band based transform
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Figure 5.5: The general codec used for the M-Band Transform experiments

image compression in [TN98] with very good results. This indicates that as long as 
the trees define large sets of insignificant coefficients and small sets of significant 
coefficients, SPIHT will not use an excessive number of bits to carry out the sorting. 
The reason behind this result is that SPIHT sorts large sets as a starting point. The 
sorting then concentrates on smaller sets within those large sets. In order to reduce 
the cost of the sorting process as many insignificant coefficients as possible should be 
placed in one set, allowing all of those coefficients to be labelled insignificant with 
one test.

In the following new SPIHT sets that link together the frequency domain coeffi­
cients for a given frame are defined. At this point it should be realized that the sets 
may be defined in an arbitrary manner, i.e. there is no absolute need to define sets 
according to spectral content expectation for the correct operation of SPIHT. How­
ever, the compression provided by SPIHT is related to the grouping of insignificant 
coefficients into large sets early. In this way at each iteration of the algorithm only 
one bit need be used to determine the insignificance of such sets (see the algorithm
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listed in sub-section 5.3.2). For example, if a set of 32 coefficients (say) had no signif­
icant coefficients (at the given SPIHT iteration) in it then not one bit of the binary 
representation of those 32 coefficients would be transmitted, instead a single 0 would 
be transmitted as the test result and all 32 coefficients ignored. On the other hand, 
if only a few of the 32 coefficients were significant, SPIHT would have to decompose 
the set into smaller sets according to the initial set definition provided and test each 
to determine where the significant coefficients are. It must also be remembered that 
SPIHT tests sets that are closer to the roots first. Knowing these facts about the 
operation of SPIHT, and the desire to obtain the best possible performance at the 
lowest rates, leads to the definition of sets in a tree structure whereby the roots con­
tain more significant coefficients than the leaves. In our case the interest is in audio, 
which tends to have more significant energy at the lower end of the spectrum (partly 
because of the human hearing mechanism) and so it is logical to define sets that have 
their roots close to the low end of the audio spectrum and leaves that are at the 
high end of the audio spectrum. Thus, the sets we define link together coefficients in 
the frequency domain in an order that fits the expectation that the lower frequency 
coefficients should contain more energy than the higher frequency coefficients. This 
ordering is similar to, although not the same as, the sets defined in [SP96].

In this implementation the sets are developed by assuming that there are N roots. 
One of the roots is the DC-coefficient and because it is not related to any of the other 
coefficients in terms of multiples of frequency, it is not given any offspring. Each of the 
remaining N —1 roots are assigned N offspring. In the next step each of the offspring 
is assigned N  offspring and so on, until the number of the available coefficients is 
exhausted. The offspring of any node (i) where (i) varies between 1 and M  -  1 (M
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is the total number of coefficients and i =  0 is the DC coefficient), are defined as:

0(i)  = TTV + {0, TV — 1}. (5.2.1)
where {0, — 1} is the inclusive set of integers between 0 and TV -  1. Any offspring
above M  — 1 are ignored. The descendants of the roots are obtained by linking 
the offspring together. For example, if TV = 4, node number 1 will have offspring 
{4, 5, 6, 7}, node 4 will have offspring {16,17,18,19} and the descendants of node 1 
will include {4, 5, 6, 7,16,17,18,19,...}.

As part of the development of the M-band transform plus SPIHT coding system, 
a number of experiments were conducted to determine if the size of TV affects the 
performance of the coder. Figure 5.6 shows the results of some of these experiments. 
Figure 5.6 indicates that the use of TV = 4 is better than or equivalent to the use 
of any other value. This result was found to be consistent over the entire set of 
SQAM audio files used. Based on this result TV was set to 4 for the remaining coding 
experiments, the results of which are presented in sub-section 5.2.4.

One may also analytically determine that, for the previously defined tree structure, 
TV = 4 is a near optimal choice. To show this, assume that in a given group of M  

coefficients there is only one that is significant at a given bit plane. Also assume that 
this coefficient is in the descendant set of root j  and let r be the number of iterations 
of SPIHT at the given bit plane. Now, for the given offspring definition, the size of 
the descendant set D after p offspring stages is given by:

N(NP -  1)
size(D) = TV -  1 (5.2.2)

Also, with (TV — 1) roots, the total number of coefficients covered by all of the 
descendant sets in this case is N(NP -  1). Now, referring to the SPIHT algorithm
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in Section 5.3 (and ignoring the modification) or to the original SPIHT algorithm 
in [SP96], if the algorithm was to search for a single significant coefficient then each 
iteration at the given bit plane would add (2N  + 1) bits to the cost of the search. 
There are also N  coefficients added to the list of insignificant coefficients (LIP) which 
means a future cost as the algorithm continuously tests LIP coefficients. However, 
as N  also determines the size of the descendant set covered in the search, the actual 
cost of the search in a given bit plane is given by :

v
R  =  ^  ( 2 N  +  1) (5.2.3)

r=1
Table 5.2 lists the calculated cost for varying N  to cover sets M =  256 and 512. 

It can be seen that N =  4 is the best choice for M  = 256, however this result does 
not hold for M =  512 and because of Equation (5.2.3), as M  increases the choice of 
N = 2 becomes more attractive. In our case, though, audio is being coded with a 
frame length of 20 ms at a sampling rate of 44.1 kHz. This means that if the MLT was 
used then the first 256 coefficients would cover more than 11 kHz of bandwidth. As 
it is highly unlikely that significant coefficients would be found at higher frequencies 
(especially early in the coding process), N = 4 appears as the best choice for the 
application at hand. This analysis also sheds some light on why the curves of Figure 
5.6 have the illustrated shape. It must also be pointed out that the foregoing analysis 
is significantly simplified by not accounting for multiple significant coefficients and 
their relative locations in frequency. Consider, for example, 2 significant coefficients 
located in different descendant sets at similar positions in each set. In this case 
approximately twice as many bits would be required to locate both coefficients as 
would be for a single coefficient in the same position. The effect of the relative
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Table 5.2: R as a function of N and M
N M  =  256 M =  512

P LIP growth R P LIP growth R
2 7 14 35 8 16 40
4 3 12 27 4 16 36
8 2 16 34 2 16 34
16 1 16 33 2 32 66

Figure 5.6: The mean number of bits required as functions of N

positions of significant coefficients can only be completely appreciated if the signal 
statistics are taken into account in the definition of the sets. This could mean different 
sets for different frames which would in turn mean overhead or side information. In 
this case we avoid the use of such an approach.
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Table 5.3: Coding Results using the Discrete Cosine Transform.
Signal SegSNR

(dB)
Mean

Rate (kbps)
Signal SegSNR

(dB)
Mean

Rate (kbps)
xl 52.9 216 x9 50.2 271x2 62.4 47 xlO 48.2 331
x3 47.5 86 xl 1 45.2 267
x4 52.0 167 xl2 52.2 273
x5 43.1 285 xl3 47.9 260
x6 59.4 99 xl4 43.1 273
x7 52.0 275 xl5 48.9 150
x8 51.1 196 xl6 44.9 183

5.2.4 M-Band Transform Coding Results 

Using the DCT with SPIHT
The Discrete Cosine Transform of Type II has been defined in Chapter 2, and it is 
this definition of the DCT that is used in this experiment. In combining the DCT 
with SPIHT as illustrated in Figure 5.5, the selected frame, in this case of length 880 
samples (approximately 20 ms), is windowed using a perfect reconstruction window 
before applying the transform. The window used is the PR sine window that has 
been described earlier in this thesis. ‘

Using the lists developed with the system built around SPIHT and the DCT, 
complete reconstruction results were obtained, without the use of masking and are 
given in Table 5.3. An analysis of the results presented can be found in Section 
5.2.5. The results listed in bold font indicate the files for which the DCT based codec 
out-performed the Wavelet based one in terms of signal compression.
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Combining Sinusoidal coding with SPIHT
As the sinusoidal model is a popular audio coding model, it is important to include 
it in this comparative study of transforms combined with SPIHT. Although the sinu­
soidal model is not most accurately described as a transform, when the STFT method 
is used to derive it, then the parameters of the sinusoidal model (amplitudes, phases 
and frequencies) become another manifestation of the STFT coefficients. Here, it 
is assumed that unlike the traditional sinusoidal model [MQ95], the amplitudes are 
calculated directly from the STFT and not from an envelope approximation of the 
spectral amplitudes. To allow the STFT of the signal to be performed, the signal is 
divided into frames and each frame is windowed. In this particular implementation, 
the frame length is kept constant and rather than using the Hamming or Hanning 
windows (as is usually the case for sinusoidal coders [MQ95, GS92]), the same perfect 
reconstruction window used in the DCT case is also used with the sinusoidal model.

The sinusoidal model presented here requires one amplitude and one phase param­
eter for each sample in the time domain. Experimental work carried out and reported 
in [RB01] also suggests that the phase is relatively important. In [RB01] and Chap­
ter 4 it was stated that the importance of the phase is related to the significance of 
the amplitude and so phase parameters that are related to small amplitudes may be 
quantized using coarser resolution than other phase parameters.

To combine the Sinusoidal model with SPIHT only the amplitudes of the model are 
transmitted partially. That is, the phase is transmitted as a scalar quantity in place 
of the sign bit that would be transmitted for other transforms such as Wavelet, DCT 
and MLT. This means that the partial transmission, prominent in SPIHT, is not used 
to full advantage as there are a minimum number of bits that must be transmitted, i.e.
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Table 5.4: Coding Results using the Sinusoidal model.
Signal SegSNR

(dB)
Mean

Rate (kbps)
Signal SegSNR

(dB)
Mean

Rate (kbps)
xl 27.5 111 x9 27.7 216
x2 29.9 24 xlO 27.1 278
x3 26.0 65 xl 1 26.1 226
x4 26.6 90 xl2 27.9 196
x5 27.5 222 xl3 26.8 252
x6 26.8 50 xl4 25.7 229
x7 26.3 128 xl5 26.5 105
x8 26.4 96 xl6 27.6 133

the phase bits. In this implementation, 8 bits were used to represent each amplitude 
and 5 bits to represent each phase component, in a similar bit distribution to that 
used in the scalable sinusoidal coder presented in Chapter 4.

Table 5.4 lists the results of combining SPIHT with the sinusoidal model. As was 
the case for the DCT, the results listed are in terms of the mean bit rate required 
per frame for complete reconstruction, i.e. all of the parameters are coded and trans­
mitted. As was the case in Table 5.3, Table 5.4 lists the results where the sinusoidal 
based codec out-performed the Wavelet based codec in terms of mean bit rates in 
bold font.

The Modulated Lapped Transform (MLT) combined with SPIHT
The MLT is one form of the Lapped Orthogonal Transform. In traditional block 
transform theory, a signal x(n) is divided into blocks of length M  and is transformed 
by the use of an orthogonal matrix of order M. On the other hand, lapped transforms 
take a block of length L and transform that block into M  coefficients, with the 
condition that L > M  [Mal92]. In order to perform this operation there must be an
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Table 5.5: Coding Results using the MLT.
Signal SegSNR

(dB)
Mean

Rate (kbps)
Signal SegSNR

(dB)
Mean

Rate (kbps)xl 55.5 145 x9 52.9 177x2 64.2 31 xlO 51.5 216x3 49.4 60 xl 1 50.1 173x4 54.1 110 xl2 54.9 179x5 45.8 183 xl3 50.4 I 170x6 61.1 68 xl4 49.4 174x7 55.5 180 xl5 51.7 101x8 54.2 140 xl6 47.2 131

overlap between consecutive blocks of L — M  samples [Mal92]. This means that the 
synthesized signal must be obtained by the use of consecutive blocks of transformed 
coefficients. The MLT produces one coefficient per synthesized audio sample and 
this has been achieved by forcing the samples synthesized to be constructed from 
contributions of consecutive sets of coefficients. The MLT has been described in some 
detail in Chapter 2.

Table 5.5 shows the obtained results for the MLT based scheme. The coding was 
performed using 17 bit quantized MLT coefficients (16 for the amplitude and 1 for the 
sign). The bold font results indicate a better performance than the Wavelet based 
scheme.

5.2.5 Discussion of the M-Band Transform coding results

A quick scan of Tables 5.1, 5.3, 5.4 and 5.5 shows that the lowest mean rates are 
achieved when the MLT is used in combination with SPIHT, this despite the fact 
that for most of the coefficients of the MLT the quantization resolution is greater 
than that used for the DWT and the sinusoidal model. The results presented thus far
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are slightly biased towards the Wavelet based scheme because of the perceptual model 
used in the Wavelet codec. Yet even with such bias the MLT codec out-performs the 
Wavelet codec for the majority of the SQAM hies used.

Comparing the results presented for the DCT and the Sinusoidal model codecs, 
the Sinusoidal model appears to have a greater degree of compression than the DCT. 
This degree of compression is still less than that achieved by the use of the Wavelet 
transform. The advantage of the Wavelet transform in this instance is that it requires 
one transform coefficient for each synthesized audio sample. In contrast, the DCT in 
this implementation requires two coefficients for a single synthesized audio sample. 
This is not necessarily the implementation that one would employ. For instance, 
a different window may be used in combination with the DCT, one that requires 
less overlap for PR. However, such windows may not have the frequency selectivity 
desirable which would result in poor synthesized audio quality when only some of 
the coefficients are used. Regarding the sinusoidal model, the major disadvantage 
encountered is the transmission of the phase parameters as .scalar quantities without 
taking advantage of the partial transmission available with SPIHT. Despite this, the 
sinusoidal parameters require a lower mean rate for most hies than the DWT based 
codec. It is interesting to note that the speech hies had the worst performance when 
the sinusoidal model was used. This is primarily because complete reconstruction of 
the quantized parameters is sought in this case resulting in the transmission of all of 
the phase parameters.

In the following section two methods for improving the performance of the M-Band 
based schemes are presented. The hrst method incorporates masking into the coding 
scheme and the second modihes SPIHT in order to improve its sorting efficiency.
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5.3 Im proving the com pression ratio o f the M- 
Band SPIH T  coder

5.3.1 The use of masking

The perceptual model and perceptual redundancy
Human hearing is based on the ear receiving sound waves and the brain interpreting 
those waves as sounds, as has been described in Chapter 2. The two well known 
techniques for determining the masked and masking components in the frequency 
domain are the Johnston model (first proposed by Johnston in [Joh88a]), and the 
MPEG model 1 (as described in [PSOO]). Both methods lead to the development 
of a masking curve for the entire spectrum of an audio signal. The major difference 
between the two is that the Johnston model specifies a masking value per critical band 
[Joh88a] whereas the MPEG model 1 specifies a masking value for each frequency bin 
used to describe the signal in the frequency domain (assuming that there are more 
frequency bins than critical bands), as has been shown through example in Chapter 
2.

In the Johnston model, the simultaneous masking curve is based on the Discrete 
Fourier Transform (DFT). The DFT coefficients are used to calculate the power in 
each of 25 critical bands, as described in [Joh88a], [PSOO] and [Moo89]. The calculated 
power in each band is modified by the use of a spreading function to include power that 
spreads from surrounding bands [Joh88a]. This spread power is offset by a value that 
is related to the content of the signal segment through a Spectral Flatness Measure 
(SFM) which indicates numerically how noise-like or tone-like is the signal segment.
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The spread and offset power values are renormalized and the resulting masking curve 
is compared to the absolute threshold of hearing [Moo89], which acts as a minimum 
level for the masking curve. The resultant curve is the final masking curve and any 
spectral components that fall below this curve are deemed masked.

The MPEG model is also based on the DFT [PSOO]. After the windowing, normal­
ization and power spectral density calculation tonal and noise maskers are selected 
according to the criteria specified in [PSOO]. The power of the tonal and noise maskers 
are calculated and those maskers are decimated and re-arranged at different rates in 
different critical bands, a detailed description of how this is achieved has been given 
in Chapter 2. Next, tonal and noise masker thresholds are calculated for each tone 
and noise masker. This involves adjusting the previously calculated power values to 
include a spreading function. The spreading function of the tonal maskers differs 
slightly to that of the noise maskers [PSOO]. Finally, a global masking threshold is 
calculated by using the tonal and noise masker thresholds as well as the absolute 
threshold of hearing. _

The traditional way of using the masking curves has been to provide information 
on how much noise may be allowed in a given frequency band [PS00][Nol97][Dav99] 
[Joh88a], or how accurately a given band needs to be quantized for transmission. For 
this purpose, a calculation of the mask-to-noise ratio in each critical band is carried 
out and more bits are allocated to the band with the lowest mask to noise ratio. An 
iterative procedure is employed where bits are assigned according to some distortion 
criteria [PSOO]. This technique is used in the MPEG and Dolby AC transform coders 
[Nol97][Dav99]. This technique was also used in the wavelet based coding scheme 
that has been already described in this chapter.
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Another way of using the masking curves is to ignore all spectral components 
below the curve, which is the technique used in Chapter 4 . As was mentioned in 
Chapter 2, our informal listening tests showed (these tests simply involved recon­
structing the perceptually significant signal and comparing it to the original) that 
if the Johnston technique is used in this manner the audio reconstructed from non­
masked components sounds the same as the original audio, which is not the case for 
the MPEG model 1. The masking curve produced by the MPEG model was found 
to be too aggressive for this type of use, as the resulting synthesized audio takes on 
a characteristic similar to low-pass filtering the original audio signal.

The M-band transform codecs presented in this chapter use the Johnston model 
to reduce the number of coefficients that must be dealt with. The structure of the 
M-band transform coder is modified as shown in Figure 5.7. The Wavelet based 
codec makes use of the MPEG model 1 in order to keep the coder’s structure close to 
that described in [LP98]. In the following Sub-sections the results of combining the 
M-band transform codecs with SPIHT and masking are listed.

The M-band Transforms combined with masking and SPIHT
The combination of the masking scheme with the DCT and MLT simply requires the 
determination of the signal’s power spectral density from those transforms as it is 
the power distribution in the frequency domain of the signal being processed that 
determines the frequency components that are masked [Joh88a]. Table 5.6 lists the 
results obtained when SPIHT is combined with the DCT based scheme with masking 
utilized. Likewise, Tables 5.7 and 5.8 list, respectively, the results of combining the 
sinusoidal model and the MLT with masking and SPIHT. The bold font results once
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Figure 5.7: The General codec used with masking

again indicate a lower mean rate than the Wavelet based scheme and the underlined 
results indicate a lower mean rate than the original, relevant, M-band based scheme. 
A combination of bold font and underlining indicates a lower mean rate than both 
the Wavelet based scheme and the original M-band scheme.

Table 5.6: Coding Results using the Discrete Cosine Transform with masking.
Signal SegSNR

(dB)
Mean

Rate (kbps)
Signal SegSNR

(dB)
Mean

Rate (kbps)
xl 20.3 185 x9 22.4 214
x2 23.9 48 xlO 22.3 242
x3 19.8 80 xl 1 19.7 203
x4 26.3 155 xl2 20.9 220
x5 9.1 223 xl3 19.9 203
x6 24.5 99 xl4 20.6 207
x7 24.5 223 xl5 27 145
x8 24.0 162 , xl6 14.9 157



5.3 Improving the compression o f the SPIHT coder 192

Table 5.7: Coding Results using t
Signal SegSNR

(dB)
Mean

Rate (kbps)
Signal SegSNR

(dB)
Mean

Rate (kbps)
xl 19.2 102 x9 20.6 126
x2 19.1 50 xlO 19.8 141
x3 17.1 49 xl 1 18.2 126
x4 21.9 74 xl2 19.5 141
x5 8.9 149 xl3 18.2 137
x6 21.8 85 xl4 19.1 131
x7 22.0 134 xl5 23.0 88
x8 21.6 131 xl6 14.5 121

le Sinusoidal model with masking

Table 5.8: Coding Results using the MLT with masking.
Signal SegSNR

(dB)
Mean

Rate (kbps)
Signal SegSNR

(dB)
Mean

Rate (kbps)
xl 16.7 53 x9 16.0 55
x2 19.2 14 xlO 15.8 62
x3 17.9 25 xl 1 15.2 54
x4 21.8 47 xl2 14.8 58
x5 7.6 M xl3 13.1 54
x6 23.3 33 xl4 13.7 57
x7 20.1 65 xl5 21.7 44
x8 21.4 47 xl6 14.1 42
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Discussion on M-band transform with masking results
The results presented in Section 5.3.1 indicate that compression gains achieved by 
incorporating the masking with the M-band transform coders vary according to the 
transform used. An examination of the results leads to the conclusion that the MLT 
is the most suitable transform to be used in the coding scheme tested. This may be 
explained by studying the properties of the MLT and SPIHT. The MLT utilizes filters 
that have high stop band suppression (due to the sine window employed), leading to 
a reduction in leakage between the bands and hence a better identification of masked 
and masking components. As such, when the masking model is applied to the MLT 
based scheme more coefficients are removed. The removal of the masked coefficients 
leads to more efficient SPIHT coding.

The incorporation of the masking with the sinusoidal model and the DCT also 
lead to significant compression gains. The disadvantage of the DCT as compared to 
the MLT is the redundancy in the signal transform representation. The redundancy 
results from the use of twice as many analysis coefficients as synthesized samples which 
is an implementation draw back; the solution is the use of the MLT. In contrast, the 
sinusoidal model does not have this disadvantage, however, the need to transmit the 
phase as a scalar quantity while using SPIHT is the main handicap of the sinusoidal 
model in the coding system used.

As the use of the MLT combined with masking produces impressive results, it 
is appropriate to examine the subjective quality of the MLT-SPIHT coding scheme. 
The following Section does so. ,
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Table 5.9: Subjective test score guide [Ryd96]
score Sound Quality

1 Very annoying distortion heard
2 Annoying distortion heard
3 Slightly annoying distortion
4 Some perceptible distortion heard, but its not annoying
5 No distortion can be heard

Subjective quality test results
A set of informal listening tests have been conducted to determine the subjective 
quality of the MLT-SPIHT coding scheme when masking is employed. The tests 
consisted of all of the SQAM files listed in Table 4.2 and nineteen subjects. The 
subjects varied in gender and age group. The subjects were asked to listen to the 
original signal and the synthesized signal and judge the similarity of the two signals 
by allocating a score between 1 and 5. The subjects were also asked to award the 
scores according to Table 5.9 [Ryd96].

The test results obtained showed that in 63.5% of all test cases no distortion could 
be heard, in other words, the score allocated was a 5. Also, in 90.1% of all test cases 
any distortion heard was judged to be not annoying, that is, the score allocated was 
either a 4 or a 5. Finally, the overall mean of the scores given for the MLT-SPIHT 
coding scheme with masking was 4.52. The results of the subjective test indicate 
that high quality audio is obtained by the combination of the MLT with masking and
SPIHT.



5.3 Improving the compression of the SPIHT coder 195

5.3.2 Modifying SPIHT

Table 5.7 indicates that two signals required a higher mean rate when the masking 
was introduced in combination with the sinusoidal model; the signals being x2 and 
x6, both of which are very tonal in nature. The reason behind this occurrence is 
the labelling of some parameters insignificant when SPIHT expects those parameters 
to be significant. SPIHT expects the parameters closer to the roots of the trees to 
be more significant than those at the leaves. In the frequency domain this trans­
lates to the expectation that lower frequencies hold more significant information than 
higher frequency components. The introduction of the masking creates a represen­
tation whereby a number of lower frequency parameters are deemed masked and 
thus insignificant. This representation in turn leads to a less efficient application of 
SPIHT. In this Section a modification is introduced into SPIHT to account for such 
‘unexpected’ representations.

In combining the masking model with the M-band transforms, masked coefficients 
are set to zero. If a masked coefficient is expected to be non-zero (through its position 
in the SPIHT trees) then SPIHT will test that coefficient a number of times for 
significance. Since a zero coefficient will never be significant and so will not be 
transmitted by SPIHT, a number of test bits are wasted on these significance tests. 
The effect of these wasted bits on the overall bit rate depends on how divergent the 
transform representation of the signal is from the expected representation.

As a remedy, another test was introduced into SPIHT. The new test determines 
if a given amplitude is significant enough That it may ultimately be included in the 
transmitted amplitudes. If the amplitude is significant, the algorithm proceeds as
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before, otherwise that particular entry is removed from the list of insignificant am­
plitudes and is no longer tested for significance. Although this test adds one bit per 
amplitude to the cost of the algorithm, the savings made by removing insignificant 
amplitudes from the sorting process are usually greater when the masking model is 
applied. This saving, however, varies from signal to signal as the properties of the 
signal vary.

The following is the complete modified SPIHT algorithm. The quantities H,0,D 

and L are the sets of tree roots, offspring, descendants and non-immediate descendants 
respectively as given in [SP96]. LIS, LSP and LIP are the lists of insignificant sets, 
significant points and insignificant points respectively. The test for significance is 
given by Sn. The modification introduced in Step 2.2.1) has been highlighted for 
clarity. The new test Tn(k) determines if (k) is above a set threshold.
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Algorithm SPIHT (modified):

1) Initialization: output n = [log2(maXi\ci\)\;
set the LSP as an empty list, and add the coordinates 
(z) G  H to the LIP, and only those with descendants 
also to the LIS, as type A entries.

2) Sorting Pass:
2.1) for each entry ( i )  in the LIP do:

2.1.1) output Sn(i);
2.1.2J Sn(i) =  1 then move (z) to the LSP 

and output the sign of cp

2.2) for each entry (z) in the LIS do:
2.2.lij the entry is of type A then

• output Sn(D(i));

• if Sn(D(i)) =  1 then
* for each (k) G  O(i) do: 
output Tn(k)
O if Tn(k) =  1

• output Sn(k);
• if Sn(k) =  1 then add (k) to the

LSP and output the sign of Ck;
• if Sn(k) =  0 then add (k) to the 

end of the LIP;
* if L(z) 7̂  0 then move (z) to the

end of the LIS as an entry of type B ,
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and go to Step 2.2.2); otherwise, remove 
entry (z) from the LIS;

2.2.2) if the entry is of type B then
• output Sn(L(i));
• if Sn(L(i)) =  1 then

* add each (k) £ 0 ( i ) to the end of 
the LIS as an entry of type A;

* remove (i) from the LIS.
3) Refinement Pass: for each entry (i) in the LSP,

except those included in the last sorting pass (i.e., with 
same n), output the nth most significant bit of |q |;

4) Quantization-Step Updateidecrement n by 1 and go
to step 2.

The effect of this modification is depicted in Figures 5.8, 5.9 and 5.10 for the 
schemes using the DCT, Sinusoidal model and MLT respectively. All three figures 
show that both the masking and the modification lead to savings in the number of bits 
required to compress each of the SQAM files. It is also noteworthy that the savings 
vary according to the properties of the signal being compressed. The modification 
does not effect the quality of the synthesized audio signal as coefficients that are not 
received by the decoder are set to zero by default. Thus, this simple modification 
significantly improves the compression obtained from SPIHT.

Figure 5.10 is a clear illustration of not only the usefulness of the modification 
but also of the effectiveness of the MLT. Combining the MLT with simultaneous
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Figure 5.8: Using the DCT

Figure 5.9: Using the Sinusoidal Model
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Figure 5.10: Using the MLT

masking leads to savings much more significant than obtained by using any of the 
other transforms. The main reason for this result is the frequency response of the 
filters used to obtain the MLT coefficients. The result illustrated in Figure 5.10 has its 
counterpart in image coding where it was shown that a general Lapped Orthogonal 
Transform has the potential to outperform the wavelet transform when combined 
with SPIHT [TN98].

This modification is specifically aimed at schemes that introduce insignificant 
coefficients at spectral locations where usually significant coefficients are expected 
and so it would not apply to the scheme based on the DWT, as that particular 
scheme simply used lower quantization resolution rather than reducing the number 
of coefficients requiring processing.
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Table 5.10: Subjective Test Scores for the 64 kbps and 54 kbps codecs
Results 54 kbps 64 kbps
Overall mean
% No distortion heard
% No annoying distortion heard

4.24 4.44 
47.4 57.2 
80.9 88.5

5.3.3 Limited bit rate implementation of the MLT-SPIHT 

based coder

In the preceding sections no limit was placed on the number of bits that may be 
used to code any frame. Hence, the results tables list only mean bit rates. A more 
practical scheme is achieved when bit limits are imposed. The use of SPIHT makes 
this quite simple in that the first so many bits of the produced bit stream are used 
and the rest are discarded.

Using the MLT-SPIHT based coder with masking and the modification described 
in Section 5.3.2 a 54 kbps codec and a 64 kbps codec were produced. Both of these 
coders were tested using the same methodology described in Section 5.3.1, i.e. the 
synthesized audio at those rates was compared to the original audio and an indication 
of the distortion present determined. Table 5.10 lists the results of those subjective 
tests.

The results listed in Table 5.10 show that very good quality audio may be obtained 
by using the MLT-SPIHT based coder with masking at rates between 54 and 64 kbps. 
More than 80% of all test cases indicated that no annoying distortion can be heard 
for both the 54 and 64 kbps cases. Table 5.10 also shows that the test subjects 
distinguished between the two bit rates, indicating little or no saturation in terms 
of quality even at relatively high rates as a result of the use of a scalable coding 
algorithm such as SPIHT.
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5.4 C onclusion
This chapter has presented a comparison of a number of compression methods built 
around the Set Partitioning In Hierarchical Trees algorithm. Masking models were 
used to increase the compression ratio achievable. This compression ratio was further 
improved by the introduction of a modification to SPIHT.

The Wavelet-SPIHT scheme was shown to be out-performed by the MLT-SPIHT 
scheme when complete reconstruction was sought after even without the use of a 
masking model. The other M-band transform based schemes required the introduction 
of a masking model to match the Wavelet based scheme.

The introduction of masking to the MLT based scheme produced significant sav­
ings in the complete reconstruction case (that is, reconstruction of all unmasked 
components). The subjective tests verified that the use of this scheme produced au­
dio that was almost identical to the original. The introduction of the modification 
to SPIHT allowed further improvements with no loss of quality. The limited rate 
implementations of the MLT based scheme were shown to also perform very well in 
terms of subjective quality. The over all mean score of the MLT based coder at 54 
kbps was above 4, indicating high quality audio being synthesized.

This chapter has demonstrated the application of SPIHT to audio compression, 
allowing the development of a scalable audio compression algorithm with fine grain 
scalability. In comparison with the sinusoidal based scheme presented in Chapter 4, 
the advantages are clear, that is fine grain scalability that is smooth from low to high 
rates as well as ease of implementation, in terms of the design of one coder that can 
produce a bit stream that represents the complete signal. That one bit stream can be 
accessed fully or partially, depending on performance considerations and on channel
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capacity. It is possible to implement this scheme such that it changes rate from frame 
to frame, in the cases discussed here the frame lengths were 20 ms with 10 ms overlap, 
meaning that the rate of the coder can change every 10 ms.

Comparing the scheme to the existing scalable methods discussed in Chapter 3, 
again the advantages can be simply stated. Firstly, the enhancement layer of the 
MLT-SPIHT scheme can be considered as low as a single bit. Secondly, this scheme 
is not an off-line scheme, unlike the scheme presented in [Ver99] and others which 
have to either modify the signal to be coded or to analyze large segments of the 
signal resulting in considerable delay. Unlike other scalable schemes, entropy coding 
is not used in the MLT-SPIHT scheme and so it is not necessary to design entropy 
codes to insert into the compression algorithm that are audio specific. It should 
be noted however, that it is possible to entropy code the bit stream produced by 
SPIHT to further reduce the bit rate used. This approach was taken in [SP96] where 
arithmetic coding was used and is a popular method in image processing.

This chapter has not analyzed the synthesized audio by using the same techniques 
as in Chapter 4. Such analysis has been deferred to the next chapter, where a scalable 
to lossless scheme is designed, implemented and analyzed in some detail.



Chapter 6
Scalable To Lossless Audio  
Com pression

In this chapter, the lossy scalable audio compression scheme described in Chapter 5 
is extended to allow lossless audio compression at rates competitive with the current 
state of the art in lossless audio compression. The attraction of this scheme is that 
it allows objective scalability from low rates (such as 16 kbps) to high rates (such 
as 320 kbps) with a smooth increase in quality. At the highest rates, lossless audio 
compression is achieved. This chapter also investigates the use of integer transforms 
for scalable audio compression as those transforms allow the lossless reproduction 
of the original signal. SPIHT (as described in Chapter 5) is also modified in this 
chapter to produce PSPIHT or (Perceptual SPIHT), an algorithm that allows scalable 
perceptual compression as well as lossless compression.

. This chapter thus deals with the scalable to lossless compression contributions of 
this thesis, which are also described in [RMB02aj and [RMB03].

204
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6.1 Introduction
With the introduction of third generation cellular phone systems and the possible 
expansion of those systems, digital cellular phone users may in the near future have 
access to data rates above 144 kbps [RicOO]. This is a considerable increase on the 
rates that the second generation of mobile telephony achieved (e.g. GSM [RicOO, 
EV99]), which in most implementations only provides users access to 9.6 kbps of data 
[RicOO]. Such an explosion in the possible bit rate, and the nature of the proposed bit 
streams means that multimedia compression schemes may be adjusted to allow for 
increased quality of the delivered product to the user. The other well known medium 
of multimedia delivery, the Internet, is also experiencing an increase in possibilities 
with the introduction of broadband technology.

The increase in bit rates means that audio compression algorithms with higher 
bit rates than those currently used (such as MPEG’s MP3 [BKS00]) can be used 
to obtain higher quality. However, the new increased data rates are not necessarily 
constant; this is especially the case when considering the Internet. This is one of 
the main reasons why scalable and lossless schemes have become interesting from an 
application point of view.

Lossless audio compression may be viewed as an adaptation of more general loss­
less coding schemes such as ‘Lempel Ziv’ [GPS94] and ‘zip’ which attempt to reduce 
the storage capacity required for a given set of samples. However, it has been found 
that such algorithms only produce a small amount of compression when applied to 
PCM audio signals [BOvdV96]; hence it is necessary to use algorithms that take ad­
vantage of the nature of the audio signal. As was mentioned in Chapter 3 the most 
popular approach to lossless audio compression is to initially use a linear predictor to



6.1 Introduction 206

produce a residual signal that has a smaller dynamic range and is more white noise 
like than the original. Then the predictor coefficients and the residual are coded by 
the use of entropy coding techniques [HS01]. The residual signal may be generated 
in other ways; for example, a transform coder was used in [LPN97]. A more generic 
scheme was proposed in [MIJM00] where a lossy coder was used to approximate the 
original signal and an entropy code applied to the residual, producing a lossy to 
lossless coding scheme. Thus, lossless compression usually takes on the form that is 
proposed for scalable compression in MPEG-4, namely the division of a signal into 
different quality layers where, in this case, the term quality refers to the waveform 
matching of the original signal. However, none of the schemes found to date in the 
literature allow scalability from lossy to lossless compression whilst allowing scalable 
lossy compression and a smooth transition in obtained quality between the lossy and 
lossless sections of the coder.

Having described the advances in the bandwidth availability for cellular tele­
phones, and that for Internet users, it is clear that a compression scheme that allows 
smooth scalability from low rates to lossless rates is of interest and potential use. 
MPEG have started a process of standardization for such a scheme [Mor02]. SPIHT 
provides an important tool in the development of such a coding scheme because of 
its set sorting and partial transmission of coefficients or samples. However, there 
is the important question of how to best utilize this powerful tool for such a task. 
This chapter provides experimental methods and techniques that help answer this 
question. As a first step, the MLT-SPIHT scheme that was described in the last 
chapter is used to produce lossless compression. This scheme is then replaced by an 
integer transform combination with SPIHT as an experiment into the potential use
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of these transforms in audio compression. A solution to the overall problem at hand 
that produces both smooth scalability and competitive lossless compression results 
is then proposed. This solution is extended further to allow perceptual scalability 
whilst maintaining the objective scalability between lossy and lossless compression.
To achieve this a new algorithm is proposed, called Perceptual SPIHT (PSPIHT), 
which is based on the SPIHT algorithm.

6.2 Achieving lossless compression with M LT-SPIHT
As a starting point in our discussion about lossless compression it is important to 
clarify what is exactly meant by achieving lossless compression. Assuming that the 
original audio signal x(ri) is PCM coded and consists of a sequence of integers, it 
is sufficient for perfect reconstruction that a synthesized audio signal x(n) can be 
generated that satisfies

\x(n) — x(n)\ < 0.5 (6.2.1)
for all n, because then a rounding operation allows us to recover x(n) from x(ri) 

without error. In other words, the linear synthesis part of an audio coder does not 
necessarily need to produce an error free reconstruction. It only needs to bring x(n) 

close enough to x(n) so that the nonlinear rounding operation finally yields perfect 
reconstruction.

The MLT-SPIHT scheme was described in the last chapter as a scheme that 
combines the MLT with SPIHT for audio compression. It was also explained in 
the last chapter that SPIHT allows one to specify the accuracy to which the given
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coefficients or samples are coded. It is also possible to precisely define the total bit 
rate that can be used for coding. When considering these facts with the knowledge 
that the condition for lossless representation is given by (6.2.1). it can be deduced 
that with a high enough coding resolution of the MLT transform coefficients one 
can achieve lossless compression. To show that this is indeed possible, a number of 
experiments were conducted where the coding resolution used (for the quantization of 
the MLT coefficients) was varied between 10 and 25 bits at various limiting maximum 
bit rates.

The frame length used in this study is 1024 samples, with 512 samples of overlap. 
That corresponds to 23.2 ms a frame at a sampling rate of 44.1 kHz. The maximum 
bit rates were set at 192 kbps. 353 kbps and 512 kbps, respectively. The similarity 
of the synthesized audio to the original was estimated through the calculation of the 
first-order entropy of the error signal c(n) — x(n) — x(n). where x{n) — round(x(n)) 
denotes the rounded output signal of the MLT synthesis bank.

The test material that has been used in this work is the same as that used through­
out this thesis. In the following results are presented that were obtained using file 
xl as thev are sufficient to demonstrate the conditions under which SPIHT combined 
with the MLT will reach lossless compression. Figure 6.1 shows the results of the 
experiment. There are a number of points to note from the figure: first, given a high 
enough rate and coding resolution the MLT-SPIHT system does produce an exact 
copy of the original as indicated by the entropy reaching zero. Secondly the max­
imum rates defined do not affect the entropy result until at least 15 bits are being 
used for the quantization. This illustrates how the two factors of limiting rate and 
quantization resolution interact to affect the quality of the synthesized signal. One
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Figure 6.1: The entropy of the error signal using different SPIHT resolutions at three 
maximum rates.

can say that above a certain coding resolution the limiting rate is the important 
factor for the quality of the synthesized signal. The presented results also allow for 
a comment about the expected lossless rate when coding the error with an entropy 
code. For example, at a coding resolution'of 20 bits and a lossy rate of 192 kbps the 
final lossless rate should be approximately 345 kbps (assuming an entropy code that 
codes at first-order entropy and reading from the figure that at 20 bits and 192 kbps 
maximum rate the entropy is approximately 3.5 bits per sample). Note that this rate 
is well below the 512 kbps rate which achieves approximately zero error entropy at 23 
bits coding resolution using the straightforward MLT-SPIHT coder. This observation 
is very important for the scheme proposed here as it shows that a lossy scheme based 
on SPIHT combined with a lossless scheme will produce a better lossless compression 
ratio than the MLT-SPIHT scheme alone.



6.3 Integer to Integer Transforms 210

The results of the MLT-SPIHT scheme applied to lossless compression lead to­
wards one potential solution to the scalability to lossless. However, in answering the 
question stated in Section 6.1 one must explore other possible avenues for the appli­
cation of SPIHT. One of these avenues is the combination of SPIHT with integer to 
integer transforms. The reasoning is simple, given a PCM coded signal with integer 
samples then an integer transform will produce integer coefficients. These coefficients 
can then be transmitted without loss by the use of SPIHT. The next section explains 
integer transforms and explores the use of two integer transforms with SPIHT.

6.3 Integer to Integer Transforms
Transform coding, as first introduced in [HS63], is suboptimal to vector quantization 
in terms of representing a given signal with a limited number of bits [GoyOO]. This 
sub-optimality originates from the reliance of transform coders on scalar entropy 
quantization schemes. However, if one considers the ideal transform coding scenario, 
that is the transform decorrelates the input signal perfectly then scalar entropy coders 
become just as efficient as vector entropy coders with much less complexity [GoyOO]. 
This much reduced complexity is a major attraction of transform coding.

The integer to integer transform coding scheme is shown in Figure 6.2, and to al­
low a comparison with the standard transform coding scheme, the standard transform 
coding scheme is repeated in Figure 6.3. The difference between the two schemes is 
that in the integer to integer case, the quantization is carried out before the trans­
formation. The use of an invertible transform leads to lossless reconstruction of the 
signal. It is shown in [GoyOO] that the real benefit of transform coding comes about 
from its decorrelation of the input signal. This can be derived by assuming very high



6.3 Integer to Integer Transforms 211

Figure 6.2: Integer to Integer Transform Coding

bit rate coding and comparing the scalar entropy of the standard transform coding 
scheme and the integer to integer coding scheme.

Figure 6.3: The Transform Coding Scheme

Integer to integer transforms map integers to integers. The function of these trans­
forms is the same as other transforms; namely, to map a set of correlated coefficients 
to a set of less correlated coefficients [Beu84]. The new set of coefficients should 
ideally contain only a small number of large coefficients and'many small coefficients, 
allowing the use of only a few coefficients to approximate the original signal [Beu84].

There are two broad categories of integer to integer transforms; integer to integer 
transforms with non-integer coefficients that map integers to integers but do not 
have integer coefficients only in the basis functions, and integer integer to integer 
transforms that have only integers as coefficients in the basis functions, these are 
referred to in this thesis as integer transforms. The work presented here is only 
concerned with two integer transforms, the Walsh-Hadamard transform [Beu84] and 
the integer cosine transform as presented in [Cha89].
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6.3.1 The Walsh-Hadamard Transform

The transform matrix of the order 8 Walsh-Hadamard transform is given by (6.3.1). 
The Walsh transform is actually an ordered version of the Hadamard transform. The 
ordering is done in terms of increasing sequency [Beu84]. Sequency is defined as the 
number of times a function crosses zero divided by two, it is a more general version 
of frequency and allows non periodic functions to be described in a manner similar 
to frequency. Thus the ordering in terms of increasing sequency means that the rows 
in W  are organized such that the number of sign changes increases along the rows.

1 1 1 1 1 1 1 1

1 1 1 1 -1 -1 -1 -1

1 1 -1 -1 -1 -1 1 1

1 1 -1 -1 1 1 1 1—‘ -1

1 -1 -1 1 1 -1 -1 1

1 -1 -1 1 1—‘ 1 1 -1

1 1—l 1 -1 -1 1 -1 1

1 -1 1 -1 1 -1 1 -1

(6.3.1)

The Walsh-Hadamard transform has a number of important properties, the most 
useful in the case of compression being the invertability of the transform, that is

WMr x W m = MI  (6.3.2)
The Walsh-Hadamard transform can be used for numerous other applications 

[Beu84], [YH97], including the development of fast implementations of other trans­
forms, such as the Discrete Fourier Transform (DFT) [YH97]. However, in the context 
of signal compression, transforms are primarily chosen with good frequency selectivity
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Figure 6.4: Comparison of the Walsh-Hadamard lowpass filter with the MLT low pass 
filter, both of order 16

as a prime objective [Mal92]. This allows the reduction of leakage between frequency 
bands and hence a more accurate representation of the signal in the frequency domain. 
The use of the Walsh-Hadamard transform results in a poorer frequency selectivity 
than other, more popular, transforms in signal compression such as the MLT. The 
difference in frequency selectivity may be observed from Figure 6.4 which illustrates 
the frequency response of the low pass filters of the MLT of order 16 as compared 
with the frequency response of the equivalent filter in the Walsh-Hadamard trans­
form. It is observable from Figure 6.4 that the first side lobe attenuation of the MLT 
is approximately double that of the Walsh-Hadamard transform in decibels.

Yet there is another important consideration in lossless signal compression, that 
of dynamic range. The use of an integer transform on integer signals results in 
transform coefficients that have a greater dynamic range than the input coefficients.
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This means that the transform coefficients require a larger number of bits to be 
quantized in a scalar manner. The increase in the dynamic range is directly related 
to the size of the coefficients and the length of the transform filters. The increase in 
the dynamic range leads to an increase in the code book size required to represent 
the transform coefficients [GTAOO], which in turn presents difficulties for compression. 
Hence, integer transforms that do not lead to a large increase in the dynamic range 
are attractive for compression purposes. Since the Walsh-Hadamard transform only 
utilizes positive and negative ones it can also be deduced that the maximum possible 
increase in the dynamic range, in bits, is (where M  is the order of the transform)

A = [log2 M]  (6.3.3)

6.3.2 The Integer Cosine Transform

The Integer Cosine Transform (ICT) originally developed by Cham [Cha89] has inte­
ger basis functions based on the DCT. There have been a number of schemes proposed 
since for the design of sinusoidal transforms with integer coefficients [PDOOj. The at­
traction of using sinusoidal based transforms lies in the nature of the signals being 
transformed. Signals that tend to have a pseudo-sinusoidal behavior are more appro­
priately transformed with transforms that have sinusoidal basis fimctions. where as 
signals that are more ’square' in nature are better modelled using a sequency trans­
form such as the Walsh-Hadamard transform [Beu84]. To illustrate such an effect, 
consider Figures 6.5 and 6.6. Figure 6.5 shows the obtained DCT coefficients (of order 
64) when a 50 Hz sinusoid is transformed. Figure 6.6 shows the equivalent Walsh- 
Hadamard coefficients. Note how the energy of the signal is localized in the frequency
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Figure 6.5: DGT coefficients for a sinusoidal input

domain but is spread in the sequency domain. In terms of signal compression, it is of 
importance that the transform coefficients be highly localized.

The ICT, as developed in [Cha89] has a transform matrix built on the property 
of 'dyadic symmetry from the DCT. It is argued that an infinite number of ICTs 
may be generated through this technique, and as such Cham proposes the use of the 
following matrix for the design of order 8 ICTs:
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Figure 6.6: Walsh- Had am ard Transform coefficients for a sinusoidal input

C«r  =

Í1 1 1 1 1 1 1 P
a b c d —d —c -b —a
e f —e —e ~ f f e
b - d —a —c c a d -b
1 -1 -1 1 1 -1 -1 1
c —a d b -b - d a —c
f —e e - f e —e f

V —c b —a a -b c - d)

(6.3.4)

As the integer cosine transform is actually defined by the use of the set {a. b. c. d. e, /}, 
each different ICT will be referred to as C{a.b.c.d.e. f}.  Cham [Cha89] describes a 
technique of developing order M  ICTs from the order 8 ICT recursively, it is included
here for completeness. The method generates an order 2M  transform matrix from an 
order M  transform matrix.
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For i = [0,... ,M-1] basis vectors of C2m (+7)
C2m (̂ , 2j )  =  CM(hj)

C 2m (+ 2.7 +  1) =  C M { h j )

j G [0,... ,M-1]
For i = [M,... ,2M\

C2m (̂  + Af, 2 j )  =

C2m (̂  + M, 2j + 1) = —CM(i,j) 

j G [0,2,4,... ,M-2]
C2m (̂  + M, 2j) =

C2m (̂  + Af, 2j + 1) = CM(hj)

j E [1,3,5,...,AM]
Figure 6.7 displays the obtained coefficients for the order 64 ICT with integer set 

{3, 2,1,1, 3,1} for the same sinusoidal input as used to obtain the DCT coefficients of 
Figure 6.5. Note that the transform coefficients energy is slightly more localized than 
those of the Walsh-Hadamard case. The integer set used for+his example is actually 
the worst performing one in terms of limited coefficient set reconstruction presented 
in [Cha89], however, it is the set that results in the least increase in dynamic range. 
The dynamic range set increase for the order 8 C{3,2,1,1,3,1} is given by:

A = [log2(2 + ^  {3,2,1,1,3,1})1 = 4 bits
That is, one bit more than the equivalent Walsh-Hadamard Transform. The frequency 
selectivity of the transform improves with the use of larger integers [Cha89]. Thus, 
the use of the ICT is quite varied depending on the cost that one is willing to pay 
in terms of dynamic range increase for the improvement in frequency selectivity and 
implementation complexity.
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Figure 6.7: C(3,2,l,l,3,l) coefficients for a sinusoidal input

6.4 The Integer to integer system  and results
The two transforms described previously were combined with SPIHT in a similar 
way to the MLT. The use of such transforms means that the increase in the dynamic 
range must be taken into account. As explained earlier, a large dynamic range means 
a larger code book is required to represent the signal when entropy coding is being 
used. SPIHT acts very much like an entropy coder in that as the dynamic range of 
the input increases so does the number of bits required to code the input. To clarify 
this point, Figure 6.8 has been included. The Figure shows the required number of 
bits to transmit the complete set of MLT coefficients as related to the quantization 
level of the coefficients. The hyperbolic increase in the mean bit rate clearly shows 
the detrimental effect of increasing the code book size, this effect has been similarly 
noted in [GTAOO].
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Figure 6.8: Mean Bit Rates vs the Quantization Resolution used in SPIHT

There is no overlap in the experimental system, overlap is quite often used in audio 
compression algorithms because modulated filter banks are used for the compression 
[Shl97]. In this case the filter banks being used, that is the transforms, are not 
modulated. Although a proper modulation would improve the frequency selectivity 
of the transform, the introduction of the overlap would cause redundancy unless a 
lapped transform was being used which is not the case here. Also, as the aim is the 
study of how well these transforms perform in a lossless coder, edge effects become 
irrelevant ultimately as one seeks a perfect reconstruction of the original signal.

In implementing this system a choice must be made with regards to the frame 
length that will be used. As mentioned a number of times previously, the longer the 
transform used, the greater the increase in the dynamic range. However, the shorter 
the transform the lower the frequency resolution and the greater the distribution of 
perceptual error for a given quantization noise. Hence, there is a trade off between
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Table 6.1: Lossless Compression Results for different frame lengths
Frame length (samples) Duration (ms) Mean Rate (kbps)

64 1.45 582
128 2.90 595
256 5.8 610512 11.6 6291024 23.2 649

lossless compression and quality at the lower rates. Table 6.1 shows the compression 
results for the different frame lengths used. The results were generated bv compressing 
12.44 seconds of signal xl using the basic system outlined and the varying frame 
lengths. The signal is a monotone uniform PCM signal (16 bit quantization) sampled 
at 44.1 kHz. hence the original bit rate is 706 kpbs .

The effect of the frame length is clear from Table 6.1. Using those results, the 
frame length was set at 64 samples and results obtained for lossless as well as scal­
able compression. Table 6.2 lists the results of the lossless compression. Table 6.2 
shows that the maximum compression ratio obtained is 1.74. This compression is 
not competitive with the state of the art in lossless audio compression. One of the 
main reasons for this is that with the use of the Walsh-Hadamard Transform very 
few zero coefficients are obtained. As SPIHT is a sorting algorithm that transmits all 
of the significant bits of any non-zero coefficient, and so does not transmit any zero 
coefficients, the lack of zero coefficients means that a large number of bits must be 
transmitted. This problem may be reduced by the use of a more efficient transform 
(in terms of grouping the energy of the input signal into a few coefficients).

Similarly. Table 6.3 shows the lossless compression results for ICT{3.2.1.1.3.1}. 
The results show very little compression. This is the result of increasing the dynamic 
range without any real gain in terms of efficiency. In [Cha89] ICT{3.2.1.1.3.1} is the
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Table 6.2: Loss ess Compression Results For the SQAM Files
Signal Mean

Rate (kbps)
Compression

Ratio
Signal Mean

Rate (kbps)
Compression

Ratio
xl 570 1.24 x9 542 1.30x2 405 1.74 xlO 559 1.27x3 550 1.28 xl 1 518 1.36x4 598 1.18 xl2 552 1.28x5 502 1.41 xl3 519 1.36x6 557 1.27 xl4 517 1.37x7 582 1.21 xl5 548 1.29x8 563 1.25 xl6 518 1.36

Table 6.3: Lossless Compression Results For the SQAM Files Using ICT{3.2.1.1.3.1}
Signal Mean

Rate (kbps)
Compression

Ratio
Signal Mean

Rate (kbps)
Compression

Ratio
xl 667 1.06 x9 640 1.1x2 547 1.29 xlO 644 1.1x3 609 1.16 xl 1 609 1.16x4 653 1.08 xl2 658 1.07x5 578 1.22 xl3 614 1.15x6 697 1.01 xl4 605 1.17x7 675 1.05 xl5 636 1.11
x8 666 1.06 xl6 618 _ 1.14

worst performing ICT in terms of Mean Square Error (MSE). yet it is the version 
presented that will introduce the lowest dynamic range increase, because of the values 
of the coefficients. One could attempt to improve the performance of the ICT based 
scheme, however, the initial results were not encouraging and have simply illustrated 
the detrimental effects of increasing the dynamic range.

In terms of perceptual quality, by simply listening to the synthesized audio pro­
duced by the described schemes it was observed that the scheme (using either trans­
form) is perceptually indistinguishable from the original only at around the 256 kbps
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Table 6.4: Experimental Results for The Overall Rate Given Various Base Rates
Base Error First Order Total Rate Actual Total
Rate Rate Entropy Expected Rate

(kbps) (kbps) (bits per sample) (kbps) (kbps)
64 344 7.02 374 40880 329 6.48 366 40996 305 6.01 362 401128 273 5.24 359 401192 213 3.72 356 405256 170 2.56 369 426

mark. The lower rates display a buzziness in the synthesized sound that could be at­
tributed to a short frame length being used (as in lossy coding, a short frame length 
will lead to noise being spread across greater sections of the spectrum).

In conclusion to this section it can be said that whilst the use of the integer 
transforms utilized here may result in implementation advantages, the rates obtained 
for lossless compression are not much better than the MLT-SPIHT scheme, and both 
schemes sub-perform the state of the art. The results presented thus far dictate that 
the lossy to lossless scheme be built of a lossy scalable section and a scalable lossless 
section.

6.5 The SPIH T scalable-to-lossless scheme
It has been mentioned in the previous section that if an entropy code for the residual 
error was to be combined with the lossy MLT-SPIHT scheme, then a good overall 
lossless compression ratio may be expected. It has also been outlined that one of 
the factors that generally influence the performance of SPIHT is the dynamic range 
of the input data. Hence, it is possible to reason that if the dynamic range of the
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Table 6.5: Results for The Lossless SPIHT CoderSignal Rate (kbps) Compression Ratio Bits/Sample
xl 318 2.22 7.20
x2 134 5.27 3.03
x3 206 3.43 4.65x4 266 2.65 6.01x5 346 2.04 7.84x6 232 3.04 5.23x7 354 1.99 8.01x8 317 2.23 7.18x9 366 1.93 8.28xlO 405 1.74 9.17xl 1 362 1.95 8.19xl2 368 1.92 8.33xl3 360 1.96 8.15xl4 360 1.96 8.15

xl5 255 2.77 5.75
x!6 306 2.31 6.93

synthesis error was sufficiently small then SPIHT could still be used to code the error 
signal at an acceptable rate, whilst maintaining the scalability of the coder in terms 
of waveform matching, until the lossless condition is met. _

An example of the difference in dynamic range between the original audio signal 
x(n) and the error signal e(n) is shown in Figure 6.9 where x(n) is coded at 64 kbps. 
It can be seen from the figure that the reduction in dynamic range is significant. It is 
also important to determine the statistical properties of the error signal, particularly 
the similarity between the error signal and white noise. This is important as it 
determines if there would be any gain in the use of a transform to further decorrelate 
the error signal. As expected, an analysis shows that the more bits that are spent 
on the compression of the original signal the more white-noise like is the error signal, 
and the less benefit one can expect from transforming the error signal. To illustrate
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Comparison of the input signal 
and the error signal at S4 kbps

Figure 6.9: The difference in the dynamic range between the error signal and the 
original signal when the lossy coder is operating at 64 kbps (the smaller signal is the 
error).

this, Figure 6.10 shows the Power Spectral Densities (PSDs) of two versions of the 
error signal for a coded frame of audio at rates of 64 kbps and 128 kbps, respectively.

The structure of the coder proposed in this paper is depicted in Figure 6.11. 
It consists of the combination of the lossy coder described earlier, which is based 
on the Modulated Lapped Transform (MLT) and SPIHT. and a lossless coder for 
transmitting the error made by the lossy part. The lossy part is given by the right 
half of the structure in Figure 6.11. and the error coding (if present) takes place in the 
left half. Note that both parts of the coder are based on the SPIHT algorithm. The 
input signal is transformed using the MLT where floating point calculations are used. 
The transform coefficients are encoded using SPIHT, and the bitstream is transmitted 
to the decoder. We will refer to this bitstream as bit stream one (òsti). Bitstream one
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Figure 6.10: PSD of the error signal at 64 kbps and 128 kbps as compared to the 
original.

is decoded at the encoder and the synthesized audio is subtracted from the original 
audio to obtain the output error. Here integer operations are used, so that the error 
output is integer and, as has been discussed, usually has a dynamic range that is 
less than that of the original integer signal. The time-domain error signal is then 
encoded into bitstream two (bst2), using a second SPIHT encoder. At the decoder, 
both bitstreams are received as one global bitstream, with bitstream one making up 
the first part of the total bitstream. The decoder may decode up to any rate desired. 
If bitstream one containing the transform coefficients is used up, then the decoder 
recognizes that the remaining bitstream is for the time-domain error signal, which it 
reconstructs and adds to the synthesized signal.

To produce good lossless performance, the maximum lossy rate should be deter­
mined. This is the rate at which the scheme stops transmitting frequency domain
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Figure 6.11: The scalable-to-lossless scheme based on SPIHT
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coefficients and starts transmitting time domain error samples. That is, its the max­
imum rate allocated to bitstream one.

6.5.1 Determining the maximum lossy rate

A number of experiments were conducted to determine what rate the lossy scalable 
component of the coder should be set at. Figure 6.12 shows the results of one such 
experiment where the lossy maximum rate was set to values between 16 kbps and 256 
kbps (inclusive) in 16 kbps intervals. Here 18 bits for SPIHT coding resolution was 
used. At each maximum lossy rate the entropy of the error has been calculated and 
used to determine the lower bound for the rate required to achieve lossless compression 
if an entropy code was to be used to code the error. Two of the three curves on the 
graph describe the expected rate in different situations, and one gives the collected 
rate with the proposed coder. The top curve (i.e. the one with the worst perfor­
mance) describes the expected lossless rate if lossy rate reservation was used, that is 
if bitstream one was allocated the maximum lossy rate all the time. SPIHT does not 
require such reservation of bitstream space. The second curve from the top takes this 
into account and does not assume that bitstream one is allocated the maximum rate 
all the time, instead it utilizes the actual rate required by SPIHT for a complete re­
construction of the coefficients up to the coding resolution that is hard coded at both 
encoder and decoder. This curve continues to decrease with the decreasing entropy 
of the error signal and finally at 192 kbps crosses the lowest curve in the figure. The 
lowest curve in the figure is the actual rate collected for the proposed coder. It is 
noticeable that the SPIHT scheme outperforms the lossy-plus-entropy code scheme 
until the 192 kbps mark for the maximum lossy rate. The reason behind this is that
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Figure 6.12: Mean lossless rates collected, compared with the lossless rates expected.

SPIHT transmits only the significant bits of the coefficients, and importantly, for zero 
coefficients or samples the algorithm does not transmit a single bit. An entropy code 
must transmit at least one bit (and in most cases two) per coefficient, even if that 
coefficient is zero. SPIHT avoids these extra bits by recognizing large sets of zero 
coefficients or samples and treating them collectively in the sorting process.

6.5.2 Psychoacoustic analysis o f the lossy component

Having analyzed the results in terms of lossless compression, the performance of the 
coder has to be analyzed for its subjective effects on the synthesized audio at different 
lossy rates. A psychoacoustic analysis of the lossy scalable component of the coder 
was performed to add a perceptual dimension to the choice of the maximum lossy 
scalable rate. The analysis determined the mean variation between the pleasantness 
parameters of the original signal and the synthesized signal at different maximum
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lossy rates.
Figure 6.13 shows the results obtained at different maximum lossy rates for signal 

xl. The curves show the mean percentage variation in the psychoacoustic parameters, 
denoted as Ev and calculated by the use of the equation:

Ev =  £ ( x 100% (6.5.1)

where po is the value of a pleasantness factor calculated for the original signal x(n), 

p is the pleasantness factor calculated for the reconstructed signal, and E(-) denotes 
the expectation operation. It can be seen that the mean variation decreases with 
the increasing rate, however it can also be seen that the variation is not significant 
at any rate, starting at near the 10% mark for sharpness and roughness and near 
the 3% mark for loudness. The low variation of loudness is expected as at 32 kbps, 
the lowest rate used, SPIHT would have transmitted good approximations of the 
most significant spectral components, leading to a loudness level that is similar to the 
original one. Sharpness is influenced by the center frequency of the signal and the 
distribution of spectral components, which should also be well approximated at 32 
kbps. A similar line of reasoning follows for the roughness result. Thus the variation 
is expected to be small, the important property is how the variation is reduced. That 
is, at what rate does the reduction in variation saturate. The presented figure shows 
that the percentage variation reaches a knee point at around the 96 to 128 kbps marks. 
Similar results were obtained for other signals tested. The knee point position was 
found to depend on the spectral content of the signal being used, which is expected, 
with highly tonal signals reaching the knee point at lower rates than more noise-like 
signals. Using the psychoacoustic results and the lossless rate versus lossy rate results 
presented in Section 6.5.1, it is safe to conclude that any lossy rate between 128 kbps
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Figure 6.13: Sharpness, roughness and loudness variations at different lossy rates for 
x l .

and 192 kbps will produce good scalable-to-lossless performance. .

6.6 Results
Two sets of results are presented here: the lossless compression results and the ob­
jective scalable lossy results of the MLT-SPIHT coder. First we consider the lossless 
compression results.

6.6.1 The lossless compression results

Using the experiments described in Sections 6.5.1 and 6.5.2, it was determined that 
a lossy maximum rate of 192 kbps should be used in combination with a coding 
resolution of 18 bits per spectral coefficient and 16 bits (PCM) per time domain error 
coefficient. Table 6.6 shows the results for the lossless compression of the SQAM
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files of Table 4.2. Most of the files show a compression ratio that is above 2, which 
is competitive with the current state of the art in lossless compression [HS01]. The 
lowest compression ratio was 1.74 for female French speech, whilst the greatest ratio 
obtained was 5.27 for an electronic tune. The average compression ratio obtained was 
2.46. As with other current schemes, the compression ratio depends strongly on the 
content of the signal [HS01]. In most current schemes, the compression ratio is higher 
for highly predictable signals that can be very well modelled by the use of a linear 
predictor. In this case, and because of the scalability capability, the more concentrated 
the energy of the signal is in the frequency domain the higher the compression ratio. 
The reason being that a signal with concentrated energy in the frequency domain is 
coded very well in the first part of the coder and so a very small, highly uncorrelated, 
error signal is produced leading to a high lossless compression ratio overall.

Table 6.6: Results for the Lossless SP HT Coder.Signal Mean Rate 
(kbps)

Compression Ratio Bits/Sample
xl 318 2.22 -7.20
x2 134 , 5.27 3.03
x3 206 3.43 4.65
x4 266 2.65 6.01
x5 346 2.04 7.84
x6 232 3.04 5.23
x7 354 1.99 8.01
x8 317 2.23 7.18
x9 366 1.93 8.28
xlO 405 1.74 9.17
xl 1 362 - 1.95 8.19
xl2 368 1.92 8.33
xl3 360 1.96 8.15
xl4 360 1.96 8.15
xl5 255 2.77 5.75
xl6 306 2.31 6.93
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6.6.2 Objective Results for the scalable-to-lossless and lossy 

coders

Figure 6.14 shows the Segmental Signal-to-Noise Ratio (SegSNR) results for a lossy 
coded version of signal xl (up to 240 kbps) as well as the performance of the scalable- 
to-lossless scheme described earlier up to and including 320 kbps. The SegSNR values 
are calculated using frames that are 17.5 ms long and not overlapping (note that this 
does not match the frame selection in the coding scheme). It can be seen from Figure 
6.14 that there is a knee point for the coder at around the 64 kbps mark. It can also 
be seen that the SegSNR is above the 40 dB mark at 64 kbps indicating that a high 
quality signal has been synthesized. As expected, the lossy coder saturates at the 
high bit rates. In contrast, the scalable-to-lossless scheme continues to improve the 
SegSNR of the synthesized signal. It is important to note that the values presented 
in the figure are calculated across frames that have not been perfectly reconstructed. 
At 320 kbps there were 530 frames (from a total of 1426) that were coded losslessly. 
TheTemaining error in the other frames is clearly very small. Note also that the rates 
listed in Table 6.6 are average rates, while the rates shown in Figure 6.14 are the 
maximum rates that the coder is permitted to use.

6.7 The Perceptual SPIHT algorithm
The scheme described in Section 6.5 achieves the objective of smooth objective seal- 
ability (as can be seen from Figure 6.14). However, the scheme does not take into 
consideration perceptual issues. Specifically it does not give preference to perceptu­
ally significant coefficients over perceptually insignificant coefficients to the detriment
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Figure 6.14: Objective results for the lossy MLT-SPIHT coder and the scalable-to- 
lossless coder.

of the coder performance at lower rates. In previous chapters, the masking model was 
used to determine coefficients or signal components that are perceptually insignificant 
to remove them from the coding process. In many current audio coders the masking 
model is used to modify the scalar quantizers used in each band. In this case be­
cause the aim is the scaling to lossless both uses of masking have the disadvantage of 
distorting frequency domain signal components in a way that will increase the noise 
dynamic range and so reduce the ability of an algorithm such as SPIHT to produce 
competitive lossless compression results. An example of this effect has been given in 
Chapter 4 where the SegSNR of the perceptually equivalent signal was shown to be 
quite low.

In order to prevent the above described effect, SPIHT itself was modified to allow 
it to transmit the perceptually significant coefficients first whilst maintaining the
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quantization resolution of the perceptually insignificant components at such a level 
that, when transmitted, the synthesis error signal is still small. To achieve this, 
the output bitstream of SPIHT itself must again be divided into the perceptually 
significant bit stream and the perceptually insignificant bitstream. The perceptually 
significant bitstream is transmitted first.

To generate the required bitstream a few new definitions are required. Let vpe be a 
binary vector with perceptual significance information for all the coefficients. That is, 
if vpe{n) — 1 then coefficient n is perceptually significant otherwise it is perceptually 
insignificant. Also let LPISP  be the list of perceptually insignificant energy signifi­
cant points. That is, LPISP  contains pointers to coefficients that are significant in 
terms of energy but lie in a spectral band that contains other more significant coeffi­
cients which have masked this coefficient. Finally, name the perceptually significant 
bitstream òstia and the perceptually insignificant bitstream bstlb.

The complete algorithm is listed below. As in SPIHT, the first stage is an ini­
tialization stage, in this case, however LPISP is also set to empty. In the sorting 
pass, the energy significance test is maintained as the first test. Sorting bits are 
sent to bstla until an energy significant coefficient is encountered. This coefficient 
is tested for perceptual significance by checking the corresponding entry is vpe, if 
the coefficient is found to be significant (and òstia is not full) then the sign bit and 
further refinement bits are sent to òstia, otherwise these bits are sent to òstlò. The 
perceptual significance test is only applied to individual coefficients and not to whole 
sets as the energy significance test is. The same process is followed at the decoder as 
the encoder resulting in equivalent operation at both ends of the coder. Note that 
the major task of the algorithm is to re-arrange the bitstream produced in a more
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perceptually accurate manner. Some extra overhead is encountered in the bitstream 
formatting as a pointer must also be transmitted indicating the length of òstia, this 
is necessary for the decoder to be able to divide the total bitstream correctly and to 
allow òstia to be less than its hard-coded maximum length should the signal contain 
fewer significant components than expected. Although the listed algorithm outputs 
perceptual significance information it does so only for energy significant components 
and even then only when there is space in òstia, hence it would be rare to encounter 
a situation where all of vpe is transmitted.
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Algorithm PSPIHT:

1) Initialization: output n  =  \ lo g 2 ( m a X i \ c i \ ) \ ]

set the LSP as an empty list, and add the coordinates 
(z, j)  e  H to the LIP, and only those with descendants 
also to the LIS, as type A entries.
Set LPISP as empty set.

2) Sorting Pass:
2.1) for each entry (i) in the LIP do:

If bstla is not full
2.1.1) output Sn(i); to bstla

Else
2.1.1) output Sn(i); to bstlb

2.1.2) if Sn(i) = 1 and bstla is not full then output vpe(i) to bstla 

else if bstla is full
do not output vpe(i) move (i) to LPISP and output 
the sign of q to bstlb]

If vpe(i) = 1 then move (i) to the LSP
If bstla is not full output the sign of q to òstia;
Else output the sign of q to òstiò;

Else move (i) to the LPISP and output the sign of q to òstlò
2.2) for each entry (i) in the LIS do:

2.2.1) if the entry is of type A then
If òstia is not full

• output Sn(D(i))] to òstia
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Else
bullet output Sn(D(i))] to bstlb 

• if Sn(D(i)) = 1 then
* for each (k) G 0(i) do:

If òstia is not full
• output Sn(k)] to òstia

Else
• output Sn(k); to òstlò

• if Sn(k) = 1
If òstia is not full output vpe(k) to òstia
Else do not output vpe(k), move (k) to the LPISP
and output the sign of q to òstlò

If vpe(k) = 1 then add (k) to the LSP
If òstia is not full output the sign of ck to òstia 
Else output the sign of to òstlò 

Else add (k) to the LPISP and output the sign of Ck to 
òstlò

• if Sn{k) = 0 then add (k) to the 
end of the LIP;

* if L(i) 7̂  0 then move (i) to the
end of the LIS as an entry of type B , 
and go to Step 2.2.2); otherwise, remove 
entry (i) from the LIS;

2.2.2) if the entry is of type B then
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If bstla is not full
• output Sn(L(i)) to bstla

• output Sn(L(i)) to bstlb 

• if Sn(L(i)) =  1 then
* add each (k) G  0(i) to the end of

■ v the LIS as an entry of type A;

* remove (z) from the LIS.
3) Refinement Pass: for each entry (z) in the LSP,

except those included in the last sorting pass (i.e., with
same n), output the nth most significant bit of |q| to bstla if it is not full,
otherwise output the nth most significant bit of |q | to bstlb

for each entry (z) in the LPISP,
except those included in the last sorting pass (i.e., with 
same n), output the nth most significant bit of |q| to òsi 16

4) Q uantization-Step Update:decrement n by 1 and go
to step 2.

6.8 R esults for the PSPIH T based scheme
The PSPIHT algorithm was inserted into the lossy section of the scalable to loss­
less system shown in Figure 6.11. By listening to the synthesized audio it could be 
heard that the perceptual quality of the scheme at 64 kbps is quite similar to that 
produced by the MLT-SPIHT scheme with masking described in Chapter 5. This
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Figure 6.15: Objective results for the PSPIHT algorithm using xl and a maximum 
lossy rate of 192 kbps

was the motivation behind developing this algorithm, i.e., obtaining a perceptually 
similar sound to the original signal at a lower rate than the basic MLT-SPIHT scheme 
(without masking). Subjective listening tests have also beerpperformed to determine 
the quality of the PSPIHT-MLT scalable sfcheme. The objective results of the scheme 
are presented here first.

6.8.1 Objective PSPIH T-M LT results

Figure 6.15 shows the SegSNR results for the processed signal xl using PSPIHT at 
rates from 16 kbps to 192 kbps. The result at 256 kbps is for the whole scheme using 
a maximum lossy rate of 192 kbps. Comparing Figure 6.15 with Figure 6.14 it can be 
observed that the SEGSNR of the PSPIHT synthesized signal is lower than that of 
the SPIHT synthesized signal. This is an expected result as extra bits are being spent
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by PSPIHT to inform the decoder of the perceptual significance of frequency domain 
coefficients. The advantage of PSIHT is that perceptually significant coefficients 
are transmitted first without resorting to distorting the perceptually insignificant 
coefficients, effectively a delay is being enforced on the transmission of coefficients 
that contribute to waveform matching the original signal but do not contribute to 
the perceptual matching of the original signal. Figure 6.15 also shows the continuous 
scalability of the proposed scheme is maintained when using PSPIHT in the lossy 
side of the coder.

The effect of using the PSPIHT algorithm on the lossless rate is given by Table 
6.7. The results shown are for the proposed scheme using a maximum lossy rate 
of 96 kbps. The reason for changing the maximum lossy rate is to minimize the 
detrimental effect of using PSPIHT on the lossless rate. The reason for the increase 
in the lossless rate can be deduced from Figure 6.15. The delay that PSPIHT imposes 
on perceptually insignificant coefficients means that the SegSNR of the synthesized 
signal is lower which in turn means that the dynamic range of the error is greater 
resulting in the reduced performance of SPIHT. To counter this effect, some tuning of 
the maximum lossy rate was carried out and it was determined that a maximum lossy 
rate of 96 kbps should be used. Table 6.7 shows that an average increase of 27 kbps 
can be expected, which is an acceptable cost when one considers that, potentially, a 
maximum of 44.1 kbps can be spent on perceptual significance information.

The increase in the lossless rate varied according to the content of the signal 
being compressed. Harmonic signals did not suffer as great an increase as inharmonic 
signals. This can be explained by reflecting on the spectral representation of each type 
of signal. Harmonic signals have few significant components, both perceptually and
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Table 6.7: Lossless compression performance using PSPIHT
Signal Mean Rate (kbps) Compression Ratio Bits per sample A Rate (kbps)

xl 349 2.02 7.9 31x2 134 5.27 3.0 0
x3 224 3.15 5.1 18x4 305 2.31 6.9 39x5 393 1.80 8.9 47
x6 244 2.89 5.5 12
x7 392 1.80 8.9 38
x8 347 2.03 7.9 30
x9 405 1.74 9.2 39
xlO 422 1.67 9.6 17
xl 1 385 1.83 8.7 23
xl2 396 1.78 9.0 28
xl3 376 1.88 8.5 16
xl4 387 1.82 8.8 27
xl5 296 2.39 6.7 41
xl6 331 2.13 7.5 25

in terms of energy. Noise like signals have significantly less perceptually significant 
components than energy significant components. This conclusion may be drawn from 
results presented in Chapter 4. As such, the residual signal produced for inharmonic 
signals maintains some significant energy components resulting in a higher dynamic 
range and more bits for lossless compression. However, the results presented still 
show a mean compression ratio of 2.29:1 and a compression ratio for most files which 
is competitive with the state of the art.

6.8.2 Subjective PSPIHT-MLT results

Informal listening tests have been conducted to compare the proposed scheme to the 
MPEG-4 AAC coder as well as to obtain an idea of the perceptual scalability of the 
PSPIHT-MLT scheme. The tests involved a total of 39 subjects. The subjects were
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Figure 6.16: Listening test results

asked to listen to two differently coded versions of the same sound (labelled A and 
B) and indicate which version was more preferable. A scale of 1 to 5 was used as 
indicated in Table 6.8. The comparison tests involved comparing the AAC coder and 
the PSPIHT coder at 16, 32 and 64 kbps. Also tested was the PSPIHT coder at lower 
rates against the PSPIHT coder at higher rates. Specifically, the PSPIHT coder at 
16 kbps has been compared to the PSPIHT coder at 32 kbps which in turn has been 
compared to the PSPIHT coder at 64 kbps.

The mean scores for all the comparisons have been obtained as well as the dif­
ference between the mean scores and the value 3. Fig. 6.16 shows the results with 
their 95% confidence intervals. In the results shown in Fig. 6.16 a score that is below 
0 indicates that the first coder mentioned in the label is better than the second one 
according to the scale used in the test. For example, the first data point plotted is 
below 0 indicating that, on average, the AAC coder is better than the PSPIHT coder
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Table 6.8: The subjective comparison scale used
Score Subjective opinion

1 A much better than B
2 A better than B
3 A and B are the same
4 A worse than B
5 A much worse than B

(both at 16 kbps) within the shown 95% confidence interval.
The subjective results shown in Fig. 6.16 indicate that the AAC coder and the 

proposed PSPIHT-MLT coder perform quite similarly at 16 and 32 kbps (with 95% 
confidence). The AAC outperforms the PSPIHT-MLT scheme at 64 kbps by a margin 
of 0.49 indicating a small overall difference in quality. The perceptual scalability of the 
PSPIHT-MLT scheme is clearly shown by the presented results with a clear difference 
between the 16 kbps coder and the 32 kbps coder, as well as a clear (although reduced) 
difference between the 64 kbps coder and the 32 kbps coder.

6.9 Conclusions
This chapter has presented a study into extending the MLT-SPIHT compression 
scheme into a scalable to lossless compression scheme. This led to the proposal of a 
scalable to lossless scheme that applies SPIHT twice. This chapter also introduced a 
new perceptually based set sorting algorithm, PSPIHT. The investigation into lossless 
compression showed that the basic MLT-SPIHT can achieve lossless compression, 
however, the required bandwidth is not competitive with the state of the art. It was 
shown that the combination of the MLT-SPIHT scheme with an entropy code would 
produce competitive lossless results, however, the entropy scheme has to be scalable
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to achieve the set objectives.
The use of integer transforms has also been investigated. It was shown that whilst 

integer transforms can lead to lossless compression, the rates achieved were also not 
competitive with the state of the art. Other drawbacks of the integer transforms, such 
as reduced frequency selectivity, also compromised the performance of the algorithm 
at low rates. There is potential for the application of such transforms in audio com­
pression because of the complexity gains that can be made, however, in this particular 
application, the increase in dynamic range that these transforms introduced and the 
reduced frequency selectivity meant that the integer transforms did not perform well.

The proposed scalable to lossless MLT-SPIHT scheme has delivered good lossless 
compression results. The scalability of the scheme has been shown to be objective 
in nature. This is because perceptual considerations were not accounted for. In or­
der to account for such perceptual considerations, PSPIHT has been proposed. This 
algorithm allows the delay in transmission of frequency components that have zero 
perceptual entropy but are significant in terms of energy. This algorithm increases 
the lossless compression cost slightly but does introduce the advantage of scaling 
smoothly from a perceptually lossless representation to an objectively lossless repre­
sentation. Subjective listening tests have indicated that the PSPIHT-MLT scheme 
performs comparably with the A AC coder at 16, 32 and 64 kbps. The advantage of 
the PSPIHT-MLT and SPIHT-MLT scheme is that given a higher rate bit stream 
any lower rate bit stream can be extracted from that bit stream. For example, the 
16 kbps and 32 kbps bit streams can both be extracted from the 64 kbps bit stream. 
This is certainly advantageous when a variable rate channel is being used, as is the 
case in Internet applications.



Chapter 7
Conclusions and future work

7.1 Conclusions
This thesis has been aimed at the study of scalable and perceptual audio compres­
sion. A number of schemes and algorithms have been presented which aim to achieve 
scalable perceptual compression. The development of such schemes has given rise to 
a number of conclusions, these conclusions will be considered in respect of each of the 
chapters. -

Chapter 2 focused on the signal processing theory and psychoacoustic concepts 
that have been applied or have been found of some relevance to audio compression. 
The focus in that chapter was on concepts that were related to the work presented in 
later chapters. Also, in Chapter 2, a new technique for analyzing audio and speech 
coders was presented. This technique is based on the relative roughness, loudness, 
sharpness and tonality of the synthesized signal to the original signal. In a way this 
is similar to the approach that recent objective measures such as PEAQ have taken. 
The use of these psychoacoustic parameters was demonstrated by example to provide 
some insight into the operation of the coder being analyzed. Such an analysis scheme

245



7.1 Conclusions 246

aids in determining how to counter the perceptual distortion that has been introduced 
by the coder. For example, if a coding scheme produced a coded signal that was not 
as rough as the original but had similar loudness one may conclude that the envelope 
of the synthesized signal should have a higher modulation frequency.

Chapter 3 summarized related literature about perceptual and scalable audio com­
pression. The field of perceptual audio compression was seen to have advanced con­
siderably in the past one and a half decades with a number of significant audio 
compression standards. It can also be concluded from the presented material that 
there are a number of areas of research in audio compression that still require some 
attention. Effective scalability is one of the issues that still requires some work; tes­
tament to this is the standardization by MPEG of a number of coding schemes as 
objects in a scalable coder (MPEG-4). Signal modelling is also still a rich area of 
research, even though current and recent models have produced good results. The 
majority of the literature in perceptual audio compression has been found to be based 
on transform coding concepts with parametric coding schemes becoming more pop­
ular of late because of the push for lower rate audio. However, it was also noted 
that high rate compression for lossless applications is drawing increased attention. 
Fundamentally, whilst compression will continue to be commercially important, the 
increases in bandwidth availability across the Internet and for wireless communica­
tions has meant that high rate coders are once again being considered but this time 
these would be used to produce an exact copy of the original signal.

The first compression scheme proposed in this thesis appears in Chapter 4. This 
coding scheme was based on the paradigm of sorting sinusoidal parameters to obtain 
both perceptual and scalable compression. The sorting of the sinusoids allowed the
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development of novel quantization schemes such as spline interpolation between trans­
mitted amplitudes and weighted phase quantization. Phase components were found 
to be of limited significance. Specifically, it was found that phase components be­
longing to highly significant sinusoidal components should be quantized whilst other 
phase components may be ignored. It is acknowledged that it may not be necessary 
to explicitly quantize the phase, rather implicit quantization such as the inclusion of 
the envelope of the signal will provide equivalent results. The sinusoidal coder pre­
sented was implemented as both a variable rate compression scheme and a scalable 
compression scheme. Both schemes provided promising results at around the 40 kbps 
mark.

Further, the scalable sinusoidal scheme developed was compared to the MPEG-4 
AAC coder. The comparison showed that whilst the MPEG-4 AAC scheme slightly 
outperformed the proposed coder overall, the sinusoidal scheme clearly performed 
better for harmonic signals. This conclusion is drawn from the subjective test results 
obtained and presented in Chapter 4. The objective psychoacoustic results obtained 
showed that the scalable sinusoidal scheme scales in terms of differences in loudness, 
sharpness and roughness whereas the MPEG-4 AAC scheme does not show the same 
scalable behavior. This is most likely the result of coding objects, such as noise shap­
ing, that are employed in the MPEG-4 scheme. This result also raises the potential 
of adopting a systematic approach to reducing the psychoacoustic pleasantness factor 
error (for each of the factors used) in the scalable sinusoidal coder. Also, this result 
adds weight to the psychoacoustic analysis technique that was proposed as it gives a 
different perspective on modelling an audio signal by the use of both harmonic and 
noise components.
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The main disadvantage of the scalable sinusoidal scheme was found to be the limi­
tation in the granularity of the scheme. Since the definition of the scalable rates must 
be carried out off-line, it is difficult to envisage defining the scalable rates such that 
there is only a single bit of difference. Because of this limitation, the work presented 
shifted to incorporating SPIHT into audio coding schemes. SPIHT allows fine grain 
scalability without many off-line definitions and so Chapter 5 focused on studying 
how SPIHT should be used to achieve scalable and perceptual compression. The re­
sults presented in that chapter showed that the MLT combined with the SPIHT and 
a masking model produces significant compression with good audio quality. The sub­
jective tests conducted and reported can be used to make three conclusions. Firstly, 
it was shown that ignoring signal components with zero perceptual entropy intro­
duced, at worst, negligible perceptual distortion. Secondly it was shown that good 
quality audio synthesis can be obtained by the use of the MLT-SPIHT scheme (with 
the proposed set definitions) and, finally, that the scalability of the scheme was clear 
perceptually at the rates tested. The introduction of the masking model, and the way 
that it was used, resulted in a need to modify SPIHT to maintain its compression 
performance. The modification introduced was shown to help reduce the mean bit 
rate.

The MLT-SPIHT coder has a number of advantages. It is a low delay scalable 
scheme that allows scalability down to a single bit per frame. The scheme allows 
the variation in bit rate from frame to frame, this is very useful in applications such 
as internet transmission where a variable bit rate is the norm. The scheme is also 
scalable in terms of the psychoacoustic measures already discussed, as shown by the 
results presented in Chapter 6.
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Chapter 6 extended the MLT-SPIHT scheme so that it could achieve lossless 
compression. The scheme adopted is actually a double application of SPIHT in that 
a residual signal is produced that is also transmitted by the use of SPIHT. The 
results presented showed that this is a more appropriate approach than attempting 
to reach lossless levels without coding an error signal. It was, however, also shown 
that the MLT-SPIHT scheme is capable of reaching lossless compression given a high 
enough bit rate (that is lower than the original rate) and coding resolution of the 
MLT coefficients. Chapter 6 also presented a study of the application of integer to 
integer transforms to lossless compression. The results presented showed that the 
trade-off between dynamic range increase and frequency selectivity is very difficult to 
advantageously balance. An increase in an integer transforms’ frequency selectivity 
will mean an increase in the dynamic range of the transformed sequence; this hinders 
the ability of SPIHT to compress the audio signal in a lossless manner.

Whilst the scalable to lossless scheme presented produced good results, it did not 
incorporate masking in any form. This observation led toythe development of the 
Perceptual SPIHT algorithm which introduces more bitstream formatting into the 
application of SPIHT. This allows the transmission of perceptually significant coeffi­
cients first whilst not corrupting the other coefficients to a point where the recovery of 
the original signal losslessly becomes more difficult. The difficulty in obtaining good 
lossless compression results when the lossy coder used only contains perceptually sig­
nificant coefficients can be appreciated more when the results of Chapter 4 are taken 
into consideration. In that chapter the SegSNR of the perceptually identical signal 
to the original was shown to barely reach 30 dB, indicating a significant amount of 
spectral color in the residual signal. This makes the compression of the residual signal
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more difficult and so reduces the level of compression achieved. The PSPIHT-MLT 
scheme resulted in similar perceptual quality to the MLT-SPIHT with masking, and 
maintained the ability to scale smoothly to lossless compression. The compression 
ratios achieved were, as expected, not as high as the compression ratios of the MLT- 
SPIHT scheme without masking with an average increase of approximately 27 kbps. 
It is notable that the increase in bit rate depended on the content of the signal with 
tonal signals suffering a much lower increase than noise-like signals. This is to be ex­
pected as tonal signals have perceptually significant components that are also energy 
significant whilst noise-like signals tend to have energy significant components that 
are not perceptually significant.

Overall, this thesis has provided a number of promising solutions to scalable per­
ceptual compression and a novel scalable to lossless scheme that has produced good 
results.

7.2 Future work
There are a number of directions in which the presented work may be taken. As a 
starting point, lets consider the analysis of audio coders by the use of the mentioned 
psychoacoustic measures. This work can be developed to provide a reliable percep­
tual error criteria that allows the selection of signal components that minimize this 
global psychoacoustic error. That is, a weighting function would be developed (from 
psychoacoustic data) for the relative significance of each measure, signal components 
would be extracted in an iterative manner continuously decreasing the global error 
criteria. Although there have been approaches to audio compression along these lines 
in the past, this effort would be directed towards the development of more effective
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signal models.
The development of more effective signal models is inherently related to the scal­

able sinusoidal coder, which has been observed to introduce a consistent form of 
psychoacoustic distortion for a given audio signal. A natural extension to this work 
would be the addition of psychoacoustic distortion reduction techniques that would 
result in increased perceptual quality at lower rates. The sinusoidal extraction can 
also be improved through the extraction of sinusoids according a more sophisticated 
error criterion.

With regards to the MLT-SPIHT coding scheme, better quality at lower rates 
remains an illusive aim. The difficulty arises from the trade-off that must be made 
with regards to the fine granular scalability and quality. The most obvious direction of 
extending this work is to incorporate a noise model into the coder whilst maintaining 
the scalability. The challenge is to maintain the gain that each bit contributes to the 
quality of the synthesized audio. It is possible that this problem can be approached 
from a hierarchical perceptual perspective, where perceptually significant sets are 
defined rather than harmonically related'sets. This would lead to perceptual set 
sorting where the most perceptually significant set would be given preference over 
the other sets. The hurdle to overcome here is the definition of the sets on a frame 
to frame basis, as perception is very much related to the signal statistics which tend 
to change over short periods of time. The solution may lie in a backward adaptive 
approach where the sets are backward adapted at both encoder and decoder to better 
match the perceptual content of the signal. The implementation of such a scheme 
should provide a better SPIHT performance.
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The scalable to lossless work can also be improved upon in terms of lossless com­
pression and better performance at the lower rates. This work can be expanded to 
include scalability between different sampling rates. The solution to the sampling 
rate (and thus bandwidth) scalability can be developed in a similar manner to the 
MPEG-4 scalable solution, namely the coding of consecutive base and residual layers. 
Scalability can be achieved by coding the difference between the interpolated base 
layer signal and the higher bandwidth sampled signal. As a side issue, integer trans­
forms should be more comprehensively studied for audio applications as they provide 
significant complexity reduction, freeing system resources for the implementation of 
much more complex compression algorithms.

As a final future direction of work stemming from this thesis, the overall scalability 
issue can be enhanced to include multichannel and scene creation scalability. That is 
scalable audio compression should progress from this point towards the development 
of a multichannel compression algorithm that produces an embedded bitstream al­
lowing a smooth transition from basic scene recreation to complex scene recreation. 
The MLT-SPIHT scheme can be used as a starting point to the development of such 
complex compression systems.
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