2,360 research outputs found

    Stream Learning in Energy IoT Systems: A Case Study in Combined Cycle Power Plants

    Get PDF
    The prediction of electrical power produced in combined cycle power plants is a key challenge in the electrical power and energy systems field. This power production can vary depending on environmental variables, such as temperature, pressure, and humidity. Thus, the business problem is how to predict the power production as a function of these environmental conditions, in order to maximize the profit. The research community has solved this problem by applying Machine Learning techniques, and has managed to reduce the computational and time costs in comparison with the traditional thermodynamical analysis. Until now, this challenge has been tackled from a batch learning perspective, in which data is assumed to be at rest, and where models do not continuously integrate new information into already constructed models. We present an approach closer to the Big Data and Internet of Things paradigms, in which data are continuously arriving and where models learn incrementally, achieving significant enhancements in terms of data processing (time, memory and computational costs), and obtaining competitive performances. This work compares and examines the hourly electrical power prediction of several streaming regressors, and discusses about the best technique in terms of time processing and predictive performance to be applied on this streaming scenario.This work has been partially supported by the EU project iDev40. This project has received funding from the ECSEL Joint Undertaking (JU) under grant agreement No 783163. The JU receives support from the European Union’s Horizon 2020 research and innovation programme and Austria, Germany, Belgium, Italy, Spain, Romania. It has also been supported by the Basque Government (Spain) through the project VIRTUAL (KK-2018/00096), and by Ministerio de Economía y Competitividad of Spain (Grant Ref. TIN2017-85887-C2-2-P)

    Artificial neural networks and physical modeling for determination of baseline consumption of CHP plants

    Get PDF
    An effective modeling technique is proposed for determining baseline energy consumption in the industry. A CHP plant is considered in the study that was subjected to a retrofit, which consisted of the implementation of some energy-saving measures. This study aims to recreate the post-retrofit energy consumption and production of the system in case it would be operating in its past configuration (before retrofit) i.e., the current consumption and production in the event that no energy-saving measures had been implemented. Two different modeling methodologies are applied to the CHP plant: thermodynamic modeling and artificial neural networks (ANN). Satisfactory results are obtained with both modeling techniques. Acceptable accuracy levels of prediction are detected, confirming good capability of the models for predicting plant behavior and their suitability for baseline energy consumption determining purposes. High level of robustness is observed for ANN against uncertainty affecting measured values of variables used as input in the models. The study demonstrates ANN great potential for assessing baseline consumption in energyintensive industry. Application of ANN technique would also help to overcome the limited availability of on-shelf thermodynamic software for modeling all specific typologies of existing industrial processes

    Intelligent Circuits and Systems

    Get PDF
    ICICS-2020 is the third conference initiated by the School of Electronics and Electrical Engineering at Lovely Professional University that explored recent innovations of researchers working for the development of smart and green technologies in the fields of Energy, Electronics, Communications, Computers, and Control. ICICS provides innovators to identify new opportunities for the social and economic benefits of society.  This conference bridges the gap between academics and R&D institutions, social visionaries, and experts from all strata of society to present their ongoing research activities and foster research relations between them. It provides opportunities for the exchange of new ideas, applications, and experiences in the field of smart technologies and finding global partners for future collaboration. The ICICS-2020 was conducted in two broad categories, Intelligent Circuits & Intelligent Systems and Emerging Technologies in Electrical Engineering

    Estimation of gas turbine shaft torque and fuel flow of a CODLAG propulsion system using genetic programming algorithm

    Get PDF
    In this paper, the publicly available dataset of condition based maintenance of combined diesel-electric and gas (CODLAG) propulsion system for ships has been utilized to obtain symbolic expressions which could estimate gas turbine shaft torque and fuel flow using genetic programming (GP) algorithm. The entire dataset consists of 11934 samples that was divided into training and testing portions of dataset in an 80:20 ratio. The training dataset used to train the GP algorithm to obtain symbolic expressions for gas turbine shaft torque and fuel flow estimation consisted of 9548 samples. The best symbolic expressions obtained for gas turbine shaft torque and fuel flow estimation were obtained based on their R2 score generated as a result of the application of the testing portion of the dataset on the aforementioned symbolic expressions. The testing portion of the dataset consisted of 2386 samples. The three best symbolic expressions obtained for gas turbine shaft torque estimation generated R2 scores of 0.999201, 0.999296, and 0.999374, respectively. The three best symbolic expressions obtained for fuel flow estimation generated R2 scores of 0.995495, 0.996465, and 0.996487, respectively

    Predictive Maintenance in SCADA-Based Industries: A literature review

    Get PDF
    The purpose of this paper is to mapping and review what has been done on the topic of research on predictive maintenance in SCADA (Supervisory Control and Data Acquisition) based industries. In the research area of predictive maintenance, various methods for predicting damage or time to failure of a machine have been proposed and applied in various industries. This paper systematically categorizes predictive maintenance in SCADA-based industries research based on industry classifications according to ISIC (International Standard Industrial Classification of All Economic Activities). Furthermore, the research scope is explored its connection to the topics of Internet of Things (IoT), Artificial Intelligence (AI), Machine Learning (ML), and Supervisory Control and Data Acquisition (SCADA). It is found that 81.5% of the research was conducted on the electricity, gas, steam, and air conditioning supply industries, 11.1% of research was conducted on the mining and quarrying industry, and 7.4% of the research conducted in the manufacturing industry. It is also found that 85.2% of studies used AI and ML, 18.5% of the studies used IoT, and 18.5% of research used AI/ML and IoT technology together

    ADAPTS: An Intelligent Sustainable Conceptual Framework for Engineering Projects

    Get PDF
    This paper presents a conceptual framework for the optimization of environmental sustainability in engineering projects, both for products and industrial facilities or processes. The main objective of this work is to propose a conceptual framework to help researchers to approach optimization under the criteria of sustainability of engineering projects, making use of current Machine Learning techniques. For the development of this conceptual framework, a bibliographic search has been carried out on the Web of Science. From the selected documents and through a hermeneutic procedure the texts have been analyzed and the conceptual framework has been carried out. A graphic representation pyramid shape is shown to clearly define the variables of the proposed conceptual framework and their relationships. The conceptual framework consists of 5 dimensions; its acronym is ADAPTS. In the base are: (1) the Application to which it is intended, (2) the available DAta, (3) the APproach under which it is operated, and (4) the machine learning Tool used. At the top of the pyramid, (5) the necessary Sensing. A study case is proposed to show its applicability. This work is part of a broader line of research, in terms of optimization under sustainability criteria.Telefónica Chair “Intelligence in Networks” of the University of Seville (Spain

    Electrical power prediction through a combination of multilayer perceptron with water cycle ant lion and satin bowerbird searching optimizers

    Get PDF
    Predicting the electrical power (PE) output is a significant step toward the sustainable development of combined cycle power plants. Due to the effect of several parameters on the simulation of PE, utilizing a robust method is of high importance. Hence, in this study, a potent metaheuristic strategy, namely, the water cycle algorithm (WCA), is employed to solve this issue. First, a nonlinear neural network framework is formed to link the PE with influential parameters. Then, the network is optimized by the WCA algorithm. A publicly available dataset is used to feed the hybrid model. Since the WCA is a population-based technique, its sensitivity to the population size is assessed by a trial-and-error effort to attain the most suitable configuration. The results in the training phase showed that the proposed WCA can find an optimal solution for capturing the relationship between the PE and influential factors with less than 1% error. Likewise, examining the test results revealed that this model can forecast the PE with high accuracy. Moreover, a comparison with two powerful benchmark techniques, namely, ant lion optimization and a satin bowerbird optimizer, pointed to the WCA as a more accurate technique for the sustainable design of the intended system. Lastly, two potential predictive formulas, based on the most efficient WCAs, are extracted and presented

    Cuban energy system development – Technological challenges and possibilities

    Get PDF
    This eBook is a unique scientific journey to the changing frontiers of energy transition in Cuba focusing on technological challenges of the Cuban energy transition. The focus of this milestone publication is on technological aspects of energy transition in Cuba. Green energy transition with renewable energy sources requires the ability to identify opportunities across industries and services and apply the right technologies and tools to achieve more sustainable energy production systems. The eBook is covering a large diversity of Caribbean country´s experiences of new green technological solutions and applications. It includes various technology assessments of energy systems and technological foresight analyses with a special focus on Cuba

    Marine Power Systems

    Get PDF
    Marine power systems have been designed to be a safer alternative to stationary plants in order to adhere to the regulations of classification societies. Marine steam boilers recently achieved 10 MPa pressure, in comparison to stationary plants, where a typical boiler pressure of 17 MPa was the standard for years. The latest land-based, ultra-supercritical steam boilers reach 25 MPa pressure and 620 °C temperatures, which increases plant efficiency and reduces fuel consumption. There is little chance that such a plant concept could be applied to ships. The reliability of marine power systems has to be higher due to the lack of available spare parts and services that are available for shore power systems. Some systems are still very expensive and are not able to be widely utilized for commercial merchant fleets such as COGAS, mainly due to the high cost of gas turbines. Submarine vehicles are also part of marine power systems, which have to be reliable and accurate in their operation due to their distant control centers. Materials that are used in marine environments are prone to faster corrosive wear, so special care also should be taken in this regard. The main aim of this Special Issue is to discuss the options and possibilities of utilizing energy in a more economical way, taking into account the reliability of such a system in operation
    corecore