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a b s t r a c t

An effective modeling technique is proposed for determining baseline energy consumption in the industry.
A CHP plant is considered in the study that was subjected to a retrofit, which consisted of the implemen-
tation of some energy-saving measures. This study aims to recreate the post-retrofit energy consumption
and production of the system in case it would be operating in its past configuration (before retrofit) i.e., the
current consumption and production in the event that no energy-saving measures had been implemented.
Two different modeling methodologies are applied to the CHP plant: thermodynamic modeling and artifi-
cial neural networks (ANN). Satisfactory results are obtained with both modeling techniques. Acceptable
accuracy levels of prediction are detected, confirming good capability of the models for predicting plant
behavior and their suitability for baseline energy consumption determining purposes. High level of robust-
ness is observed for ANN against uncertainty affecting measured values of variables used as input in the
models. The study demonstrates ANN great potential for assessing baseline consumption in energy-
intensive industry. Application of ANN technique would also help to overcome the limited availability of
on-shelf thermodynamic software for modeling all specific typologies of existing industrial processes.
1. Introduction

The industry represents about 20% of the European Union (EU)’s
primary energy consumption. Although 30% improvement in en-
ergy intensity has been achieved in this sector during the last
two decades, relevant potential remains for energy efficiency
enhancement (Energy Efficiency Plan, 2011).

The European Commission is developing systematic plans
aimed at rational energy use, like regular and mandatory energy
audits in large industrial sites and incentives that EU member
countries should establish for companies to implement energy
management systems. Intensification of high-efficiency cogenera-
tion plants is also included as an effective potential contributor
to the energy efficiency of European industry.

In this scenario, energy studies acquire a decisive role in the
competitiveness of the industrial sector, the main objective of en-
ergy audits being the identification of measures aimed at increas-
ing equipment efficiency and reduction of energy consumption.
Once the saving measures proposed in the energy audit have been
implemented, an issue of relevant importance is the assessment of
real benefits generated by the changes. Although it is to be hoped
that the actual effects are not too different from the anticipated
savings, a significant margin of error exists due to, among other
factors, the reference conditions which the study was based on
and the variability of those conditions in the real operation of
the production process. The new consumption of the factory after
the retrofit can be easily obtained, provided that adequate measur-
ing instruments are installed and functioning properly. The energy
saving achieved, on the contrary, cannot be measured, since this
would suppose being able to measure the current consumption
of industry in its past configuration (before retrofit). For these rea-
sons, the impact of programs and projects for improving energy
efficiency in the industry can only be estimated, as the difference
between the current energy consumption (directly measurable)
and consumption that would occur in the same period in the event
that no saving measures had been implanted. This second term is
often called by the name of baseline energy consumption.

The International Performance Measurement and Verification
Protocol (Efficiency Valuation Organization (EVO), IPMVP Volume
1, 2012) can be considered as the international reference text on
measurement and verification (M&V) of energy savings from pro-
jects aimed at improving energy efficiency and reducing energy
costs. One of the aspects highlighted in the protocol is that a key
factor in the planning phase of a program of M&V of savings is
the selection of the method that aims to solve the problem of
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determining the baseline consumption. The need for a clear for-
malization of the baseline development process is also stressed
in the interesting work of (Reichl & Kollmann, 2011). Among the
various approaches proposed for determining the baseline con-
sumption (U.S. EPA State Clean Energy, 2009), the most easily
applicable is the engineering method, based on the use of standard
formulas and assumptions for calculating the energy use before
retrofit. However, the simplicity and practicality guaranteed by
its implementation involves an associated level of uncertainty
(Kelly Kissock & Eger, 2008) that makes it unsuitable for systematic
use in the industrial field. Statistical analyses are also contem-
plated, but this general term is actually used to refer to models
of limited complexity aimed at determining ‘‘before’’ and ‘‘after’’
consumption taking into consideration few factors like changes
in weather, facility occupancy and factory operating hours. Other
suggested methods contemplate computer simulation for deter-
mining system energy performance. Finally, integrative methods
can be used, combining some of the aforementioned approaches.

As evidenced by the literature survey (discussed below), no rel-
evant applications of ANN modeling technique were detected for
the determination of the energy consumption baseline in CHP sys-
tems, intended as the consumption of the system before the imple-
mentation of the efficiency enhancement measures. The objective
of this paper is to present a valid modeling technique allowing
an answer to the problem of determining the baseline energy con-
sumption in the industry. The ANN approach is proposed, as an
effective way of recognizing complex non-lineal patterns govern-
ing energy consumption in industrial production sites. Achievable
levels of accuracy and suitability of ANNs in predicting the behav-
ior of the system are also discussed, by comparing the ANN
approach with the thoroughly tested thermodynamic modeling
technique. A combined heat and power (CHP) plant is considered
for the application of the proposed methodology. The extensive
historical operating dataset available from the existing monitoring
system is used to generate and validate both ANN and thermody-
namic models. Cogeneration plants are often present in industrial
sites and represent an efficient solution for electricity and heat
supply to energy-intensive processes. According to the objective
of this work, a CHP system can also be considered as an indepen-
dent industrial unit, products of which are electricity and heat,
e.g., in the form of steam delivered to the productive process.

Below is a brief summary of the literature consulted, stating
some of the latest applications of ANN modeling to industrial
and cogeneration plants.

Simplified methodologies have been proposed for determining
baseline consumption and for verification of energy savings in the
industry, based on lineal regression and multi-regression analysis
(Dalgleish & Grobler, 2003; Kelly Kissock & Eger, 2008). Other more
developed methods have been applied, like lineal combinations of
influence variables and subsequent regression modeling for generat-
ing the baseline efficiency in industrial refining sites (Velázquez et al.,
2013).

The ANN modeling approach is not a novelty in the industry, as
evidenced by the applications for optimization of distillation pro-
cesses and control of wastewater treatment units (Liau, Yang, & Tsai,
2004; Mingzhi, Yongwen, Jinquan, & Yan, 2009; Motlaghi, Jalali, &
Nili Ahmadabadi, 2008). Olanrewaju and Jimoh (2014) propose a
hybrid approach based on Index Decomposition Analysis (IDA),
ANN modeling and Data Envelopment Analysis (DEA), to predict
the expected energy consumption in the industry and subsequently
optimize the present energy use with reference to the predicted val-
ues. Monedero et al. (2012) apply ANN approach to model the best
past operation of a petrochemical site, for comparison with present
operation and efficiency optimizations purposes. ANN modeling has
been frequently proposed also for cogenerations, combined cycles
and power plants, with multiple objectives:
- Power prediction of the plant (Smrekar, Pandit, Fast, Assadi, &
De, 2010).

- Prediction and monitoring of thermal efficiency and pollutant
emissions of the plant (Fantozzi & Desideri, 1998; Flynn,
Ritchie, & Cregan, 2005; Lu & Hogg, 2000; Pan, Flynn, & Cregan,
2007; Tronci, Baratti, & Servida, 2002).

- Adjustment of power generation to demand profile of the
industry (Moghavvemi, Yang, & Kashem, 1998).

- Reproducing the behavior of plant components (boilers, steam
turbines, and superheaters) (Bekat, Erdogan, Inal, & Genc,
2012; De, Kaiadi, Fast, & Assadi, 2007; Du et al., 2011; Jia &
Xu, 2010; Ma, Wang, & Ma, 2008; Olausson, Häggståhl, Arriag-
ada, Dahlquist, & Assadi, 2003).

- Optimization of load distribution and load disconnection for
stability purposes in the case of fault of the system (Hsu, Chu-
ang, & Chen, 2011; Romero & Shan, 2005).

- Optimization of operating parameters for plant efficiency max-
imization, in some cases through combined implementation of
ANN and other optimization techniques, e.g., genetic algorithm
(Arslan, 2011; Hajabdollahi, Hajabdollahi, & Hajabdollahi, 2012;
Rashidi, Galanis, Nazari, Basiri Parsa, & Shamekhi, 2011; Suresh,
Reddy, & Kolar, 2011).

The main power generation unit of the CHP plant considered in
this study is constituted by a gas turbine. Many examples exist in
the literature of the ANN modeling approach applied to gas turbines,
for condition monitoring and performance estimation (Asgari, Chen,
Menhaj, & Sainudiin, 2013; Barad, Ramaiahb, Giridhara, & Krishna-
iahb, 2012; Fast, Assadi, & De, 2009a; Fast, Palmé, & Genrup, 2009b;
Lazzaretto & Toffolo, 2001; Nikpey, Assadi, Breuhaus, & Mørkved,
2014; Palmé, Breuhaus, Assadi, Klein, & Kim, 2011), fault detection
(Kong, Ki, Kang, & Kho, 2004; Kong, Park, & Kim, 2008; Simani & Fant-
uzzi, 2000; Volponi, DePold, Ganguli, & Daguang, 2003), control
enhancement (Sisworahardjo, El-Sharkh, & Alamb, 2008), and turbine
diagnostics (Bettocchi, Pinelli, Spina, Venturini, & Burgio, 2004).

Other examples of ANN methodology applied to industry for online
monitoring, performance estimation and diagnostic purposes are rep-
resented by modeling of boilers (Arriagada, Costantini, Olausson,
Assadi, & Torisson, 2003; Chong, Wilcox, & Ward, 2000; Chu et al.,
2003; Hao, Kefa, & Jianbo, 2001; Rusinowski & Stanek, 2007; Teruel,
Cortes, Diez, & Arauzo, 2005), furnaces (Calisto, Martins, & Afgan,
2008), circulating fluidized bed boilers (Liukkonen et al., 2011), com-
pressors (Ghorbanian & Gholamrezaei, 2009), refrigerating and heat-
ing systems (Kizilkan, 2011; Esen and Inalli; 2009), and fluidized bed
dryers (Chen, Tsutsumi, Lin, & Otawara, 2005; Satish & Setty, 2005).

Other industrial applications of ANN involve more specific areas
such as control of nuclear power plants (Oliveira & Soares de Almei-
da, 2013), performance prediction of internal combustion engines
(Canakci, Ozsezen, Arcaklioglu, & Erdil, 2009; Oğuz, Saritas, &
Baydan, 2010; Tasdemir, Saritas, Ciniviz, & Allahverdi, 2011; Yap &
Karri, 2013), modeling and control of fuel cells (Chávez-Ramírez
et al., 2010; Hatti & Tioursi, 2009), performance prediction and opti-
mization of solar systems (Kalogirou, 2004; Sözen & Akçayol, 2004),
power output forecasting of wind power plants (Yeh, Yeh, Chang, Ke,
& Chung, 2014), control of hybrid wind-diesel power generators
(Vargas-Martínez, Minchala Avila, Zhang, Garza-Castañón, & Calle
Ortiz, 2013), and prediction performance of photovoltaic panels
(Karamirad, Omid, Alimardani, Mousazadeh, & Navid Heidari, 2013).
2. Description of CHP plant, implemented energy-saving
measures and preliminary data processing

The system at issue is a CHP plant at the service of a refining
site. Fig. 1 shows a simplified schematic of the plant. The main
components of the unit can be appreciated:
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Fig. 1. Simplified diagram of the CHP plant and areas subject to energy-saving measures.
� Gas turbine (GT). Generates electricity from fuel burned in
the combustion chamber, both for refinery use and for
export to the grid of the production which exceeds demand.

� Heat recovery steam generator (HRSG). Equipment consti-
tuted by heat exchangers the function of which is to recover
the heat contained in the flue gases at the outlet of the GT
and contemporary steam generation. Post-combustion is
also used to increase steam generation and meet the ther-
mal demand of the refinery.

� Steam turbine (ST). Used for additional generation of elec-
tricity from steam generated in the HRSG. Part of the steam
is extracted from the turbine before it completes its expan-
sion, to be supplied to refinery at the proper pressure level
required by the process. The remaining steam completes
the expansion in the turbine to be delivered to the process
at a lower pressure level.

From April to November 2008 a number of energy-saving pro-
jects were implemented in the CHP unit, by which the economic
benefit of the plant was increased significantly. Fig. 1 evidences
areas of implementation of projects, which were:

� Replacement of existing burners with Low-NOx burners in
the GT combustion chamber. It allowed the cessation of
steam injection into the combustion chamber, performed
until meeting the emission levels required by legislation.

� Preheating of deaerator feed water and installation of a new
economizer in the HRSG. A new heat exchanger was
installed that preheats the water fed to the deaerator, con-
temporarily cooling HRSG feed water. The first effect of this
measure was the reduction of steam consumption in the
deaerator. A new heat exchanger was also installed in the
HRSG (new economizer), to compensate the lower HRSG
feed water temperature. As a second effect of the project,
exploitation was thus enhanced of the GT gases heat content
and stack gas temperature was reduced from 190 to 130 �C.

The main effect of all implemented measures was a significant
reduction in steam self-consumption of the plant, which explains
the subsequent increase of CHP plant profit. Moreover, saving pro-
jects impacted on other consumptions and productions, which also
contribute significantly to the operating profit of cogeneration. The
parameters directly affected by the projects, for which the con-
struction of the baseline is required, are:

� Electricity production and fuel (natural gas) consumption in the
GT.
� Medium pressure (MP) steam injected into the GT.
� Low pressure (LP) steam consumed in the deaerator.

As mentioned above, two different modeling methodologies
were applied to the CHP plant, i.e., thermodynamic modeling and
ANN modeling. Prior to that, a filtering of the collected data was
necessary so that a valid database could be obtained for develop-
ment of both models. A comprehensive data collection was con-
ducted for most of the process variables. Records were obtained
from distributed control system (DCS), through specific software
that allows downloading historical data in Excel format. Plant
monitoring is very exhaustive, and hourly data were collected for
134 variables, comprised between 02-16-2007 18:00 and 05-07-
2009 00:00. These variables include the main operating parame-
ters of all the components of the plant:

� GT: electricity generation, GT regulation parameters (e.g.,
inlet guide vane opening angle), pressure drop in air filters,
properties of fuel, inlet air, exhaust gases and injected
steam.

� HRSG: conditions of fuel fed to post-combustion, properties
of exhaust gases and water/steam in the economizer, evap-
orator and superheaters, blowdown rate and stack exhaust
gas temperature.

� Deaerator: operating pressure, properties of fed steam and
boiler feed water.

� ST: electricity generation, properties of inlet live steam,
extraction steam and steam to condenser.

� Other components: properties of streams in the existing
heat exchangers of the plant for boiler feed water preheat-
ing, steam de-superheating stations, etc.

Previous data treatment was performed and anomalous regis-
ters were eliminated, associated with measurement faults or infor-
matics errors in the acquisition process. A valid database for the



following modeling phase was subsequently selected. The effec-
tiveness and the outcome of this selection process are strongly
bound to the level of knowledge of the operation of the plant. A
deep mastery of the philosophy of operation and control of the sys-
tem is fundamental to the purpose, and it always derives not only
from the prior knowledge of the system, but also from the observa-
tion of the same recorded data. A good understanding of the sys-
tem is thus necessary, whatever the method of modeling elected.
3. ANN modeling

ANN is an adaptive non-linear statistical data modeling tech-
nique consisting of interconnected artificial neurons processing
data in parallel. Exhaustive introductions to ANN modeling are
provided in most of the above-referenced works. The multi-layer
perceptron (MLP) network type was employed in this study, and
the supervised learning process was used for adjustment of net-
work parameters. Before the training, the dataset was randomized
and divided into training and test data subsets. The training set is
used for weight adjustment and the test set is used after the train-
ing to assess the performance i.e., prediction capability of ANN by
comparing calculated and desired values for a set of unknown data.
3.1. ANN setup and training

A multi-layer feed-forward structure was chosen for the ANN. A
specific ANN was generated for each output variable (GT electricity
production, GT fuel consumption, MP and LP steam consumptions)
and IBM SPSS Modeler 14.1.0 software package was used to setup
and train the models. Input variables in the models were selected
by the authors, based on the knowledge of system physics. Input
used for GT electricity production and GT fuel consumption were
the ambient conditions (temperature, atmospheric pressure and
humidity), the density and the lower heating value of the fuel,
NOx emissions and a counter representing the aging status of the
GT. The same inputs were used for GT steam injection, except for
fuel density, which has not a significant influence over it. The
steam consumption of deaerator was modeled as a function of its
operating pressure, the ambient temperature, the steam produc-
tion of the HRSG and the hot condensate mass flow returned from
the process for preheating of deaerator feed water.

For each of the generated ANN, the output layer is represented
by one neuron, while the number of hidden layers and neurons is
not fixed, being two the maximum number of hidden layers con-
templated in the study. The final architecture of the network was
determined by a trial-and-error process, in which different train-
ings were performed with varying numbers of hidden layers and
neurons, until the network with best prediction accuracy was se-
lected. A first set of trainings was performed, observing the behav-
ior of one-layered ANN with increasing number of neurons from 1
to 15, fixed as the maximum limit of neurons in the analysis. Fur-
ther increase of ANN complexity was considered unnecessary; as
observed by Calisto et al. (2008), an excessive number of neurons,
rather than having beneficial effects, may facilitate the overtrain-
ing and reduce the generalization capability of the network. ANN
structures presenting local maxima in prediction performance
were selected and the effect was observed of introducing a second
hidden layer. The number of neurons in the second layer was in-
creased for each selected ANN, from one to the same number of
neurons of the first hidden layer. As suggested by Kong and Goo
(2011), hyperbolic tangent sigmoid function and identity function
were used as transfer functions in the hidden and output layers
respectively. Range fields of data were rescaled before training to
have values between 0 and 1, to match the range of the activation
function of the first hidden layer. The common and well proven
back-propagation algorithm proposed by Rumelhart, Hinton, and
Williams (1986) was applied to train the ANN and update the
weights associated with neurons. Data are processed in the for-
ward direction at each iteration (epoch) and output values are gen-
erated in the output layer. The calculated error between the
desired output and the model prediction subsequently propagates
in the backward direction by means of Gradient Descent algorithm
with Momentum, a computationally efficient technique that allows
minimizing the error by updating the connection weights. This
method, widely explained in Moghavvemi et al. (1998), contem-
plates the use of two coefficients referred to as learning rate (g)
and momentum rate (m). Coefficient g is used to control the inten-
sity of the weights modification: fast learning is obtained with high
g values, but it may lead to instability problems. Momentum is
used to correct the current weight variation with a term that
reflects the impact of past weight change. The weight vector is
updated using the formula

wkþ1 ¼ wk � gkgk þmDwk

where k refers to the number of epochs and g is the gradient of the
error function E(w) with respect to the weights, in turn defined as

EðwÞ ¼
XNR

r¼1

EðrÞðwÞ

being

EðrÞðwÞ ¼ 1
2

XN

n¼1

tðrÞn � pðrÞn

� �2

where NR is the number of records, N is the number of network out-
puts, tn is the target output value for output n and pn is the corre-
sponding prediction generated by the network. The initial value of
g was set to 0.4 and m was fixed to 0.9. As proposed by Liang-yu,
Jian-qiang, and Bing-shu (2002) and Kong and Goo (2011), dynamic
variation of learning rate was used to increase stability of training
process. Variable adjustments were applied to learning rate factor
depending on the error behavior: no correction was used for error
decrease and strong reduction is applied for error increase (0.5 fac-
tor of correction), to prevent network unsteady problems. The factor
m was kept constant, except for the situations in which

gkjgkj � mjDwkj

In these cases m value is set at

m ¼ 0:9gk
jgkj
jDwkj

This correction being necessary to make sure that the weight
change takes place in the right direction for error decrease.

3.2. Prediction capability of the model

A total of 6405 records were used for the training of the net-
work. Data were pre-randomized and subsequently grouped in
two different sets: 70% of data were used for training and the
remaining 30% were used for testing at each epoch. The records
of the training set were internally divided into a model building
set and an overfit prevention set, which is used to track errors dur-
ing training in order to avoid overtraining of the network, i.e., to
prevent the network from becoming overly ‘‘specialized’’ in recog-
nizing the patterns which it was trained with, thereby losing its
generalization capability. The percentages of training data em-
ployed for model building and overfit prevention were 85% and
15%, respectively, corresponding to 59.5% and 10.5% of total re-
cords. The criteria selected for performance evaluation was the
accuracy coefficient defined by the formula:
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where NR is the number of records, tr is the target output value of
record r and pr is the corresponding prediction generated by the
network. The terms max(ti) and min(ti) in the denominator refer
to the maximum and minimum values among all the targets, and
subscript i was used to indicate that they do not vary with the index
r. Mean absolute error (MAE), root mean square error (RMSE), and
coefficient of determination R2 (square of the Pearson product mo-
ment correlation coefficient R) were also calculated, to complete
prediction capability analysis of the generated models:

MAE ¼ 1
NR
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tr
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Table 1 summarizes the accuracy levels achieved for GT electric
power in the selection process of the final structure of the ANN
model. Limited obtained variations of predictive capability confirm
the slight influence of hidden neurons number on ANN perfor-
mance observed by Bettocchi, Pinelli, Spina, and Venturini (2007)
when data are affected by measurement errors. Local maxima
can be observed for 3, 6 and 8 neurons in the first hidden layer.
Maximum accuracy is calculated for 8 neurons and no further
improvements are obtained augmenting neurons number. For that
reason 3, 6 and 8-layer structures are selected for checking the ef-
fect of introducing a second hidden layer. As it may be observed,
second hidden layer has no benefit for the case of 3 neurons,
whereas slight improvements can be observed for any two-layer
structures containing 6 and 8 neurons in the first hidden layer.
The final configuration selected for ANN contains 8 neurons in
the first layer and 3 neurons in the second, although the accuracy
enhancement achieved with the second layer introduction is not
relevant.
Table 1
Selection of ANN structure for modeling of GT electricity production. Obtained prediction

No. of neurons in the first
hidden layer

1 2 3 4 5 6 7 8

Obtained accuracy (%) 94,557 94,715 95,400 95,070 94,912 95,330 94,880 95,837

No. of neurons in the first-
second hidden layer

3-1 3-2 3-3

Obtained accuracy (%) 94,768 95,399 95,341

No. of neurons in the first-
second hidden layer

6-1 6-2 6-3 6-4 6-5 6-6

Obtained accuracy (%) 95,150 95,268 95,493 95,393 95,495 95,485

No. of neurons in the first-
second hidden layer

8-1 8-2 8-3 8-4 8-5 8-6 8-7 8-8

Obtained accuracy (%) 95,310 95,532 95,850 95,338 95,508 95,254 95,091 95,600

One-layer feed-forward structure

Two-layer feed-forward structure
Fig. 2 shows obtained results for all generated ANN models. As
it can be observed, the initial date of the modeling period does not
coincide with the aforementioned one. Indeed the elimination of
registers corresponding to the first months of operation was re-
quired, due to a prolonged faulty measurement of NOx. The final
dataset was so reduced to data comprised between 06-12-2007
07:00 and 04-21-2008 17:00 (6405 data). The first column of
Fig. 2 contains the simultaneous plots of ANN predictions and mea-
sured registers, along with corresponding errors for each data
point. The same information is presented in the second column,
in the form of cross plots of predicted values against measured val-
ues. Good agreement between predicted and actual values can be
observed from the first column, and correct random (and not sys-
tematic) behavior of deviations from the diagonal in the second
column. A strong smoothening tendency is observed in the deaer-
ator steam consumption for high steam flow rates (bottom left
graph of Fig. 2). This is mainly due to the low number of available
data for training the model in that period, which does not reflect
the normal operation of the plant. The plant in its original pre-ret-
rofit configuration includes a heat exchanger for preheating of
deaerator feed water with hot condensates returned from the pro-
cess. During the period at issue the heat exchanger was not receiv-
ing condensates, thus augmenting the steam consumption in the
deaerator. Apart from these aspects, the relative errors calculated
in that zone are still acceptable and comparable with those ob-
tained in the rest of the modeled period.

Additional graphs are also presented in Fig. 3, showing the same
results of Fig. 2 but for a smaller period of time (two weeks). This
may be useful to observe the graphical correspondence between
the values of accuracy and R2 achieved and the capacity of the
models to reproduce the registered profiles, in terms of flexibility
and ability to follow the tendencies and fluctuations of measured
data.

With reference to Table 2, satisfactory values of all calculated
performance parameters may be observed in GT electricity produc-
tion, demonstrating high model capability in predicting the out-
puts. Almost 89% of the points present errors lower than 1.0%
and only 0.9% are higher than 2%. Lower accuracy was obtained
from GT fuel consumption. The tendency of the model to smoothen
fluctuations of registered data may be observed in the generated
plots and is also reflected by the low value of R2. The strong influ-
ence of input data quality over model performance has to be con-
sidered in this specific case. Indeed the fluctuations of registered
accuracies.

9 10 11 12 13 14 15

95,150 95,663 95,523 95,524 95,605 95,722 95,620
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Fig. 2. ANN models. Predictions, measured registers and corresponding errors.
data are not representative of the real GT operation. They are
mainly due to the different frequencies of data acquisition for the
two parameters, product of which gives GT fuel consumption in
MW: fuel mass flow rate and fuel heating value. The first is mea-
sured on an hourly basis and the latter proceeds from the daily lab-
oratory analysis. Nevertheless model prediction capability is still
acceptable, since almost 86% of the calculated errors are lower than
2.0% and only 0.4% are higher than 5%. Models generated for GT
steam injection and steam consumption of deaerator reproduce
correctly tendencies of registered data, as confirmed by the calcu-
lated values of R2 and accuracy. As it was expected, higher MAE and
RMSE values were calculated for these two models, due to the rel-
evant error level commonly associated with on-line measurement
of steam flow rates. On average, 85% of errors are lower than 5.0%
for these two modeled parameters.

Summarizing, obtained accuracy levels and errors allow assert-
ing that the generated ANN models captured correctly the behavior
of the CHP plant. The generalization capability is regarded as
satisfactory for baseline energy consumption determining
purposes, since the order of magnitude of the obtained errors is
comparable with the uncertainty associated with measuring
instruments.
4. Thermodynamic modeling

The same energy consumption and generation parameters were
modeled using a thermodynamic simulator. The model was
performed with Thermoflex (release 23.0), (Thermoflow Inc.,
2013) a specific software for thermal systems modeling specially
conceived for power generation and CHP plants.
4.1. Model description

The generated model reproduces the CHP plant configuration in
the period prior to the implementation of saving projects. Fig. 4
shows the diagram of the model used for the simulation. As it
can be observed, ST was not included in the model, due to the fact
that the operation and electricity production of ST was not affected
by energy saving measures. Indeed, the electricity generated by the
ST is determined by the conditions (mass flow, temperature and
pressure) of inlet live steam and the amount of steam extracted.
The production and conditions of live steam entering the turbine
are continuously controlled by means of the post-combustion fuel
regulation system. It implies that the changes caused by saving
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Fig. 3. ANN models. Predictions, measured registers and corresponding errors. Results for one month.
measures in the conditions of GT exhaust gases do not affect the
conditions of the steam entering the ST. On the other hand, the per-
centage of steam extracted from the turbine only depends on the
process demand of MP and LP steam. As previously commented,
steam auto-consumptions of the plant decreased as a consequence
of the implementation of the energy conservation measures. This
caused an increase of MP and LP steam exported to the process.
In case the process not having the capacity to absorb these
changes, this would have led to modify the form of controlling
steam extraction from the ST. Nevertheless, no excess of steam ex-
port was registered, since the exportation increase was compen-
sated by load reduction of other auxiliary equipment supplying
steam to the process. For these reasons, the operation of the ST
did not suffer changes, thus confirming the independency between
ST electricity generation and the energy saving measures.

The main components of the plant can be observed: GT, HRSG,
heat exchangers train for preheating of treated water, and deaera-
tor. The model reproduces the main plant control philosophy: a
control loop was implemented for HRSG load, which allows assign-
ing live steam flow produced as an input variable to the model. For
model adjustment, the plant was simulated in off-design condi-
tions and model outputs were compared with measured data, until
satisfactory matching between data and measurements was ob-
tained. The model tuning was performed manually, although Ther-
moflow special features would be available for carrying it out
automatically. This way, a model was obtained capable of simulat-
ing GT partial load operation and reproducing the actuation of the
real control system: GT load can be specified in the simulator both
in the form of a specific GT electricity production and as a fixed
percentage of GT nominal power. The software allowed endowing
the model with the appropriate level of detail to reproduce the ac-
tual complexity of plant operation. For instance, the boiler feed
water turbopump was included in the scheme, driven by MP steam
proceeding from desuperheating section, as well as the flash tank
for LP steam recovery from HRSG blowdown.

4.2. Preliminary assumptions

According to the plant operation protocol prior to the installa-
tion of the new Low-NOx burners, the steam flow rate injected into
the GT was manually controlled to maintain fixed levels of NOx

emissions in GT exhaust. Such control was hardly reproducible in
the model, since the control of GT steam injection for reduction of
NOx emissions is not directly implementable in the software. A
fixed value of GT steam-to-fuel ratio was assumed for the post-ret-
rofit period, equal to the average recorded value in the pre-retrofit
period, thus reducing somewhat the precision of the model. In re-
turn, the first months of operation of the CHP plant were not dis-
carded for the simulation, as it was necessary for the case of ANN
modeling. Indeed NOx emissions were not used as an input in the
model and there was no reason to discard the period of faulty
NOx measurement. The adjustment of some parameters depending
on operating hours was also necessary to complete the setup of the
model, e.g., GT fouling parameters. Since time is not contemplated
among the inputs of the thermodynamic model, the effects of aging
had to be determined separately for all the input variables directly
depending on number of operating hours. A simplification was
adopted for those variables, and the same trends observed in the
pre-retrofit period were assumed for the GT degradation factors
and air pressure losses in GT air admission line.
4.3. Validation and prediction capability of the model

For GT full load operation, brief periods of operation were se-
lected to validate the model’s ability to simulate consecutive days
of operation. The selection was carried out so that different scenar-
ios of plant operation were covered, according to the main operat-
ing parameters of the plant: GT electricity production, fuel burned
in post-combustion, steam injection in GT, etc. A total of 500 h of
operation were simulated to validate the model at full load. For
partial load operation all recorded data were used, due to their
smaller amount: 280 measured data. For the validation, a tool
was developed which allows performing massive simulations. An
Excel spreadsheet was used to link to the simulation file that al-
lowed automatically simulating a number of times set by the user.
Thermoflex software provides Visual Basic (VBA) code for that pur-
pose. Only few modifications had to be introduced to adapt it to
the specific simulation model. Fig. 5 shows validation results for
GT electricity production at full load. Data are presented sorted
by date, so that performed selection can be observed, along with
the strong influence of ambient temperature over the evolution
of GT electrical output. For clarity, the simulated sections were uni-
fied and displayed adjacent in the second diagram.



Fig. 4. Diagram of CHP simulation model (Thermoflex software).
Obtained error levels were relatively low, although sensibly
higher than the corresponding ANN model. Only 57% of the points
presented errors lower than 1.0%, compared to 89% of ANN
predictions fulfilling the same condition. Nevertheless, the predic-
tion capability of the model may be still considered satisfactory, as
83% of calculated errors were lower than 2% and only 0.1% higher
than 5%. No systematic error behavior was detected and the same
random tendency was observed as for ANN models. For the sake of
concision, results are not shown for the other modeled parameters.
Such results confirmed the more than proven ability of the thermo-
dynamic simulator to predict the behavior of this type of plants,
although with somewhat less precision of ANN when it comes to
reproducing a set of measured operating data. This can be mainly
attributed to the high sensitivity of thermodynamic models to
the quality of input data. The well-known data reconciliation
(DR) technique would certainly help to correct the measurement
errors, thus reducing its adverse effects on the model. For this pur-
pose Thermoflow conceived a special DR software package, the
application of which would contribute to enhance the model
capacity of prediction.

5. Results

Fig. 6 shows the energy baselines obtained for the CHP plant,
proceeding with the application of thermodynamic modeling tech-
nique. Results are indicated for the main consumption and produc-
tion parameters of the plant, which were affected by the
implementation of the previously described energy conservation
measures:
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Fig. 5. Thermodynamic model. Simulations, measured registers and corresponding erro
unification of selected periods (right).
� Replacement of existing burners with Low-NOx burners in
the GT combustion chamber.

� Preheating of deaerator feed water and installation of a new
economizer in the HRSG.

The baselines behave as expected. The baselines of electricity
production and GT fuel consumption are higher than measure-
ments. It is mainly due to the cessation of steam injection into
the GT and the installation of a new stage of filtration in the GT
air inlet line; a second filter had to be integrated in the system to
prevent the acceleration of GT fouling, since the new Low-NOx

burners imposed the cessation of ‘‘carbo-blasting’’ a cleaning
method based on injection of solid natural media. Therefore, peri-
odic load reductions can be observed for GT cleaning, which would
take place if the new burners had not been installed, as well as a
corresponding decrease in steam injection. In the case of ANN
modeling it was thought inappropriate to model the cleaning oper-
ation mode, due to the small number of records available. This ap-
proach has no influence on the results, given the low number of
operating hours in cleaning mode and considering the ultimate
goal of the study, which is the determination of the economic ben-
efit of implementing energy-saving measures. Among the obtained
trends, exceptional crossings occur between measured data and
energy baselines. For GT fuel baseline consumption, crossings
may be observed during continuous intervals of operation. These
isolated cases are likely to be attributed to measurement errors.
Actually these values were removed for ANN modeling for being
out of range. In Fig. 7 both energy baselines predicted by ANN
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Fig. 6. Predicted and measured energy production and consumptions of CHP in the post-retrofit period.
and thermodynamic models are represented, together with the
percentage differences between them.

The results for predicted GT electricity production and fuel con-
sumption indicate relatively low differences between generated
baselines, in the order of 3–5%. Predictions obtained from ANN
modeling for these two parameters show a tendency to exceed
thermodynamic baseline in the second part of the observed period.
A source of inaccuracy which the differences could be addressed to
is the approximate approach that was adopted to reproduce GT
aging in thermodynamic modeling. On the one hand, aging param-
eters were used as an adjustable input to better reproduce mea-
sured data when validating the thermodynamic model for pre
retrofit period. On the other hand, those parameters generate an
environment of uncertainty in the post retrofit period: the same
trends were reproduced as for the pre retrofit period and there is
no warranty that it corresponds to the real CHP operation. Another
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Fig. 7. Energy baselines obtained with A
possible cause of the discrepancies could be associated with the
fuel feed temperature, not contemplated in the ANN model. After
the implementation of energy saving measures, fuel preheating
was introduced as a practice in plant operation. This resulted in a
slight reduction of GT fuel consumption and electricity production.
Fuel temperature could not be included as an input to ANN models,
since fuel was supplied to GT at ambient temperature in pre retro-
fit period and the slight fluctuations registered were not sufficient
to appreciate its effects. More relevant differences between the
models were detected for steam injected into the GT, the differ-
ences ranging up to 30–35%. In this case better results were
achieved with the ANN modeling approach. The discrepancies are
mainly associated with the limitations of thermodynamic model
when reproducing the real plant control for NOx emissions reduc-
tion, as discussed above. Concerning the effect of the second saving
project (pre-heating of deaerator feed water), the differences are
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NN and thermodynamic modeling.



Table 2
Final structure and prediction performance of the generated ANN models.

Modeled
parameter

No. of
input
neurons

No. of neurons in
the first hidden
layer

No. of neurons in the
second hidden layer

No. of neurons in the second hidden layer MAE
(%)

RMSE
(%)

R2 Accuracy
(%)

Below
0.1%

0.1�0.5% 0.5�1.0% 1.0�2.0% 2.0�5.0% 5.0�10.0% Above
10.0%

GT electricity
production

7 8 3 13.5 45.8 29.3 10.5 0.9 0.0 0.0 0.51 0.67 0.95 95.85

GT fuel
consumption

7 7 2 6.6 24.5 26.0 28.4 14.1 0.4 0.0 1.08 1.41 0.74 93.29

MP steam
injection into
GT

6 12 5 2.2 9.7 11.2 20.8 35.9 17.4 2.8 3.16 4.32 0.94 96.90

LP steam
consumed in
deaerator

4 3 / 3.1 11.5 15.2 25.0 34.6 8.7 1.9 2.45 3.58 0.94 97.22
relevant again: steam consumption in the deaerator predicted by
thermodynamic simulation is significantly lower, due to the high
measurement uncertainty of treated water flow, which induces er-
ror propagation in the simulation of the water preheating line.
Hence, the differences are smaller for the hours of operation in
which the implanted saving measure is not active, i.e., the new ex-
changer installed is out of service and LP steam consumption is
higher. Discussed results reflect the main problem associated with
energy baseline assessment, i.e., the great uncertainty environment
and the absence of reference data for comparison characterizing
the post-retrofit period. Limiting this uncertainty was indeed the
main objective of this study, aimed at developing advanced and
reliable modeling techniques for determination of credible base-
line energy profiles. As regards the fidelity of the models, it is log-
ical that it cannot be appreciated from the generated baselines, but
prediction accuracy is to be rather detected during the validation
process of the models. In this sense, the reader can refer to the pre-
vious sections of this paper discussing the validation results of
both ANN and thermodynamic models.
6. Conclusions

Two different modeling approaches were used to determine the
baseline of energy consumption and production in a CHP plant.
ANN modeling and thermodynamic simulation were compared,
both showing satisfactory levels of accuracy and suitability for
baseline construction. The main potentials and inconveniences
associated with each one of the analyzed methodologies were de-
tected during the study.

Concerning ANN modeling, the potential versatility and utility
of this technique was demonstrated. High accuracy was observed
in the results, being the error levels obtained comparable with
the uncertainty of measured data. The models showed satisfactory
robustness against the errors contained in measured values of in-
put variables. Another detached feature of ANN models is their
practicality, which make them easily usable on different media like
spreadsheets, programming, etc.

However, in the course of work, the main drawback associated
with the ANN modeling arose, i.e., the vulnerability to changes in
operating parameters outside the range for which the model was
trained. A common feature to statistical models in general is the
need for input data to contain fluctuations representative of sys-
tem operation. ANNs do not guarantee accuracy outside the ranges
for which they were generated and the effects cannot be repro-
duced of the variables for which no changes were recorded. Also,
when records for output variables are erroneous, the error is insur-
mountable by ANN models since they were trained through these
records. A clarification is also necessary, with respect to the sim-
plicity of development and application of ANN models. Although
the ‘‘black box’’ philosophy of ANN modeling technique might sug-
gest the contrary, the presented analysis shows that ANN approach
cannot elude a deep knowledge of the physics of the system. This is
a factor of paramount importance, since the selected database
inevitably affects the result of the ANN training. In the case of ther-
modynamic modeling the problem of system knowledge is rather
related to the construction of the model, being the selection of data
less critical. Indeed, deviations of thermodynamic simulations
from measured registers can even be a valuable aid for the revision
of the selected database.

Regarding thermodynamic modeling, obtained results as well as
previous experience in the use of the simulator confirmed its
remarkable ability to predict the behavior and performance of
CHP plants with satisfactory level of accuracy. Also, thermody-
namic modeling is not conditioned by the richness of historical
data available, since it is not based on statistics. This can be a great
advantage, given the problems involved in the acquisition of reli-
able measurements in almost any industrial plant.

On the other hand, the high sensitivity to measurement errors
emerged for this modeling method: faulty meters impact adversely
on the variables which are calculated from these measurements.
This directly affects the simulation, which solves the mass and en-
ergy balances based on these inputs, contrary to what happens to
ANN models. Some limitations were also detected when perform-
ing a complete modeling of the plant, and some simplifying
assumptions had to be introduced, thus reducing the fidelity of
reproduction of plant operation. It is the case of the steam flow
injection into the GT, which cannot be directly predicted as a func-
tion of NOx emission levels. A second case is represented by the
inability to include operating hours as input variables to the model.
It makes necessary the adjustment of equipment aging parameters,
which complicates the simulation if the aim is reproducing contin-
uous time intervals of plant operation.

With respect to the times required for computation, during the
validation phase the problem arose of long waiting times for the
simulation of continuous periods of operation. However this is
not a problem for the construction of the baseline, since its deter-
mination is performed periodically and response times of the sim-
ulator are more than acceptable for the intended purpose.

Some aspects are also worth noting related to the behavior of
the models against uncertainty. The modeling of a system by ther-
modynamic simulation is based on the physical behavior of plant
equipment. This is advantageous, since detection is possible of
measurement errors and therefore the model, by means of its re-
sults, may provide more reliable values for those parameters with
high uncertainties in their measurements. However, if these errors
occur in the input variables, risk of propagation exists and adjust-
ments or complementary calculations are necessary. ANN model-
ing may help to overcome this problem due to the ‘‘black box’’
treatment that it implies; when modeling variables with respect



to others, the error is already included in the model, so that consis-
tent results can be obtained starting from measurements that con-
tain a certain error. Obviously this is only possible when it comes
to errors within acceptable levels because the data quality is still
a determining factor when making use of ANN modeling.

The application of the two proposed modeling methodologies
yielded satisfactory results for the determination of baseline con-
sumption in a CHP plant. The ANN models showed a special robust-
ness against the error contained in measurements of input
variables, which has been seen adversely affecting the proper
development of thermodynamic simulation models. Nevertheless,
DR technique would help to improve the quality of the input data
in the model and would constitute a valid help to increase the pre-
dictive capacity of thermodynamic models. Owing to the limited
market availability of specific modeling software to cover all the
different typologies of industrial processes, more suitability is also
expected in ANN employment for general industrial processes.

Apart from the work presented in this paper, more evidence is
needed of the applicability of the methodology proposed, and its effec-
tiveness should be proven for different industrial applications. ANN-
based energy consumption models should be obtained for many other
cases, identifying and addressing the main specific issues characteriz-
ing the big variety of production processes existing in the industry.

Moreover, a high potential exists for the utilization of ANN mod-
eling technique for energy baseline determination, with other pur-
poses than M&V of savings. For instance, the application of ANN
approach should be investigated for determining the reference con-
sumption line in industrial sites, representing the normal operation
of the facilities. The generated reference could be subsequently
implemented in the consumption monitoring system of the plant,
and would help to identify the deviations from the reference energy
consumption and detect the main causes of those deviations (ineffi-
cient plant operation, faults of measuring instruments, etc.).

The need for proper establishment of energy baselines is clearly
expressed also in the ISO 50001:2001 international standard for
energy management systems. In this sense, the use of methods
such as that proposed or other advanced methods for modeling
of nonlinear systems should be taken into consideration, in substi-
tution of the methods that are often adopted in the industrial facil-
ities, based on simplifying assumptions which do not allow a
rigorous determination of the energy baseline, thus reducing the
effectiveness of the energy management system implemented.
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