680 research outputs found

    Wind Power Forecasting Methods Based on Deep Learning: A Survey

    Get PDF
    Accurate wind power forecasting in wind farm can effectively reduce the enormous impact on grid operation safety when high permeability intermittent power supply is connected to the power grid. Aiming to provide reference strategies for relevant researchers as well as practical applications, this paper attempts to provide the literature investigation and methods analysis of deep learning, enforcement learning and transfer learning in wind speed and wind power forecasting modeling. Usually, wind speed and wind power forecasting around a wind farm requires the calculation of the next moment of the definite state, which is usually achieved based on the state of the atmosphere that encompasses nearby atmospheric pressure, temperature, roughness, and obstacles. As an effective method of high-dimensional feature extraction, deep neural network can theoretically deal with arbitrary nonlinear transformation through proper structural design, such as adding noise to outputs, evolutionary learning used to optimize hidden layer weights, optimize the objective function so as to save information that can improve the output accuracy while filter out the irrelevant or less affected information for forecasting. The establishment of high-precision wind speed and wind power forecasting models is always a challenge due to the randomness, instantaneity and seasonal characteristics

    A comparison of AdaBoost algorithms for time series forecast combination

    Get PDF
    Recently, combination algorithms from machine learning classification have been extended to time series regression, most notably seven variants of the popular AdaBoost algorithm. Despite their theoretical promise their empirical accuracy in forecasting has not yet been assessed, either against each other or against any established approaches of forecast combination, model selection, or statistical benchmark algorithms. Also, none of the algorithms have been assessed on a representative set of empirical data, using only few synthetic time series. We remedy this omission by conducting a rigorous empirical evaluation using a representative set of 111 industry time series and a valid and reliable experimental design. We develop a full-factorial design over derived Boosting meta-parameters, creating 42 novel Boosting variants, and create a further 47 novel Boosting variants using research insights from forecast combination. Experiments show that only few Boosting meta-parameters increase accuracy, while meta-parameters derived from forecast combination research outperform others

    Forecasting photovoltaic power generation with a stacking ensemble model

    Get PDF
    Nowadays, photovoltaics (PV) has gained popularity among other renewable energy sources because of its excellent features. However, the instability of the system’s output has become a critical problem due to the high PV penetration into the existing distribution system. Hence, it is essential to have an accurate PV power output forecast to integrate more PV systems into the grid and to facilitate energy management further. In this regard, this paper proposes a stacked ensemble algorithm (Stack-ETR) to forecast PV output power one day ahead, utilizing three machine learning (ML) algorithms, namely, random forest regressor (RFR), extreme gradient boosting (XGBoost), and adaptive boosting (AdaBoost), as base models. In addition, an extra trees regressor (ETR) was used as a meta learner to integrate the predictions from the base models to improve the accuracy of the PV power output forecast. The proposed model was validated on three practical PV systems utilizing four years of meteorological data to provide a comprehensive evaluation. The performance of the proposed model was compared with other ensemble models, where RMSE and MAE are considered the performance metrics. The proposed Stack-ETR model surpassed the other models and reduced the RMSE by 24.49%, 40.2%, and 27.95% and MAE by 28.88%, 47.2%, and 40.88% compared to the base model ETR for thin-film (TF), monocrystalline (MC), and polycrystalline (PC) PV systems, respectively

    Data-augmented sequential deep learning for wind power forecasting

    Get PDF
    Accurate wind power forecasting plays a critical role in the operation of wind parks and the dispatch of wind energy into the power grid. With excellent automatic pattern recognition and nonlinear mapping ability for big data, deep learning is increasingly employed in wind power forecasting. However, salient realities are that in-situ measured wind data are relatively expensive and inaccessible and correlation between steps is omitted in most multistep wind power forecasts. This paper is the first time that data augmentation is applied to wind power forecasting by systematically summarizing and proposing both physics-oriented and data-oriented time-series wind data augmentation approaches to considerably enlarge primary datasets, and develops deep encoder-decoder long short-term memory networks that enable sequential input and sequential output for wind power forecasting. The proposed augmentation techniques and forecasting algorithm are deployed on five turbines with diverse topographies in an Arctic wind park, and the outcomes are evaluated against benchmark models and different augmentations. The main findings reveal that on one side, the average improvement in RMSE of the proposed forecasting model over the benchmarks is 33.89%, 10.60%, 7.12%, and 4.27% before data augmentations, and increases to 40.63%, 17.67%, 11.74%, and 7.06%, respectively, after augmentations. The other side unveils that the effect of data augmentations on prediction is intricately varying, but for the proposed model with and without augmentations, all augmentation approaches boost the model outperformance from 7.87% to 13.36% in RMSE, 5.24% to 8.97% in MAE, and similarly over 12% in QR90. Finally, data-oriented augmentations, in general, are slightly better than physics-driven ones

    Methods to Improve the Prediction Accuracy and Performance of Ensemble Models

    Get PDF
    The application of ensemble predictive models has been an important research area in predicting medical diagnostics, engineering diagnostics, and other related smart devices and related technologies. Most of the current predictive models are complex and not reliable despite numerous efforts in the past by the research community. The performance accuracy of the predictive models have not always been realised due to many factors such as complexity and class imbalance. Therefore there is a need to improve the predictive accuracy of current ensemble models and to enhance their applications and reliability and non-visual predictive tools. The research work presented in this thesis has adopted a pragmatic phased approach to propose and develop new ensemble models using multiple methods and validated the methods through rigorous testing and implementation in different phases. The first phase comprises of empirical investigations on standalone and ensemble algorithms that were carried out to ascertain their performance effects on complexity and simplicity of the classifiers. The second phase comprises of an improved ensemble model based on the integration of Extended Kalman Filter (EKF), Radial Basis Function Network (RBFN) and AdaBoost algorithms. The third phase comprises of an extended model based on early stop concepts, AdaBoost algorithm, and statistical performance of the training samples to minimize overfitting performance of the proposed model. The fourth phase comprises of an enhanced analytical multivariate logistic regression predictive model developed to minimize the complexity and improve prediction accuracy of logistic regression model. To facilitate the practical application of the proposed models; an ensemble non-invasive analytical tool is proposed and developed. The tool links the gap between theoretical concepts and practical application of theories to predict breast cancer survivability. The empirical findings suggested that: (1) increasing the complexity and topology of algorithms does not necessarily lead to a better algorithmic performance, (2) boosting by resampling performs slightly better than boosting by reweighting, (3) the prediction accuracy of the proposed ensemble EKF-RBFN-AdaBoost model performed better than several established ensemble models, (4) the proposed early stopped model converges faster and minimizes overfitting better compare with other models, (5) the proposed multivariate logistic regression concept minimizes the complexity models (6) the performance of the proposed analytical non-invasive tool performed comparatively better than many of the benchmark analytical tools used in predicting breast cancers and diabetics ailments. The research contributions to ensemble practice are: (1) the integration and development of EKF, RBFN and AdaBoost algorithms as an ensemble model, (2) the development and validation of ensemble model based on early stop concepts, AdaBoost, and statistical concepts of the training samples, (3) the development and validation of predictive logistic regression model based on breast cancer, and (4) the development and validation of a non-invasive breast cancer analytic tools based on the proposed and developed predictive models in this thesis. To validate prediction accuracy of ensemble models, in this thesis the proposed models were applied in modelling breast cancer survivability and diabetics’ diagnostic tasks. In comparison with other established models the simulation results of the models showed improved predictive accuracy. The research outlines the benefits of the proposed models, whilst proposes new directions for future work that could further extend and improve the proposed models discussed in this thesis

    An academic review: applications of data mining techniques in finance industry

    Get PDF
    With the development of Internet techniques, data volumes are doubling every two years, faster than predicted by Moore’s Law. Big Data Analytics becomes particularly important for enterprise business. Modern computational technologies will provide effective tools to help understand hugely accumulated data and leverage this information to get insights into the finance industry. In order to get actionable insights into the business, data has become most valuable asset of financial organisations, as there are no physical products in finance industry to manufacture. This is where data mining techniques come to their rescue by allowing access to the right information at the right time. These techniques are used by the finance industry in various areas such as fraud detection, intelligent forecasting, credit rating, loan management, customer profiling, money laundering, marketing and prediction of price movements to name a few. This work aims to survey the research on data mining techniques applied to the finance industry from 2010 to 2015.The review finds that Stock prediction and Credit rating have received most attention of researchers, compared to Loan prediction, Money Laundering and Time Series prediction. Due to the dynamics, uncertainty and variety of data, nonlinear mapping techniques have been deeply studied than linear techniques. Also it has been proved that hybrid methods are more accurate in prediction, closely followed by Neural Network technique. This survey could provide a clue of applications of data mining techniques for finance industry, and a summary of methodologies for researchers in this area. Especially, it could provide a good vision of Data Mining Techniques in computational finance for beginners who want to work in the field of computational finance

    An Ensemble Approach for Multi-Step Ahead Energy Forecasting of Household Communities

    Get PDF
    This paper addresses the estimation of household communities' overall energy usage and solar energy production, considering different prediction horizons. Forecasting the electricity demand and energy generation of communities can help enrich the information available to energy grid operators to better plan their short-term supply. Moreover, households will increasingly need to know more about their usage and generation patterns to make wiser decisions on their appliance usage and energy-trading programs. The main issues to address here are the volatility of load consumption induced by the consumption behaviour and variability in solar output influenced by solar cells specifications, several meteorological variables, and contextual factors such as time and calendar information. To address these issues, we propose a predicting approach that first considers the highly influential factors and, second, benefits from an ensemble learning method where one Gradient Boosted Regression Tree algorithm is combined with several Sequence-to-Sequence LSTM networks. We conducted experiments on a public dataset provided by the Ausgrid Australian electricity distributor collected over three years. The proposed model's prediction performance was compared to those by contributing learners and by conventional ensembles. The obtained results have demonstrated the potential of the proposed predictor to improve short-term multi-step forecasting by providing more stable forecasts and more accurate estimations under different day types and meteorological conditionspublishedVersio

    A novel ensemble method for the accurate prediction of the major oil prices in Tanzania

    Get PDF
    Global development relies much on oil to run different types of machines. Using oil to power many types of equipment is very important to world economic growth. The analysis of oil prices is crucial for the country's long-term stability. However, global monopoly producers, wars, and pandemics have contributed to the volatility of crude oil prices. As a result, the optimal prediction model for oil prices becomes crucial. The performance of several ensemble strategies on single traditional and machine learning models was examined in this study. We found that the weighted ensemble technique outperformed other ensemble and single models in predicting petrol and diesel prices in Tanzania based on four performance metrics. Furthermore, a spike in global oil prices necessitates global economic and political stability for non-oil-producing nations to avoid suffering the consequences. Finally, other ensemble approaches may be used and compared to predict the oil prices.

    Analysis, Characterization, Prediction and Attribution of Extreme Atmospheric Events with Machine Learning: a Review

    Full text link
    Atmospheric Extreme Events (EEs) cause severe damages to human societies and ecosystems. The frequency and intensity of EEs and other associated events are increasing in the current climate change and global warming risk. The accurate prediction, characterization, and attribution of atmospheric EEs is therefore a key research field, in which many groups are currently working by applying different methodologies and computational tools. Machine Learning (ML) methods have arisen in the last years as powerful techniques to tackle many of the problems related to atmospheric EEs. This paper reviews the ML algorithms applied to the analysis, characterization, prediction, and attribution of the most important atmospheric EEs. A summary of the most used ML techniques in this area, and a comprehensive critical review of literature related to ML in EEs, are provided. A number of examples is discussed and perspectives and outlooks on the field are drawn.Comment: 93 pages, 18 figures, under revie
    • …
    corecore