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Abstract: Nowadays, photovoltaics (PV) has gained popularity among other renewable energy
sources because of its excellent features. However, the instability of the system’s output has become
a critical problem due to the high PV penetration into the existing distribution system. Hence, it is
essential to have an accurate PV power output forecast to integrate more PV systems into the grid
and to facilitate energy management further. In this regard, this paper proposes a stacked ensemble
algorithm (Stack-ETR) to forecast PV output power one day ahead, utilizing three machine learning
(ML) algorithms, namely, random forest regressor (RFR), extreme gradient boosting (XGBoost), and
adaptive boosting (AdaBoost), as base models. In addition, an extra trees regressor (ETR) was used
as a meta learner to integrate the predictions from the base models to improve the accuracy of
the PV power output forecast. The proposed model was validated on three practical PV systems
utilizing four years of meteorological data to provide a comprehensive evaluation. The performance
of the proposed model was compared with other ensemble models, where RMSE and MAE are
considered the performance metrics. The proposed Stack-ETR model surpassed the other models
and reduced the RMSE by 24.49%, 40.2%, and 27.95% and MAE by 28.88%, 47.2%, and 40.88%
compared to the base model ETR for thin-film (TF), monocrystalline (MC), and polycrystalline (PC)
PV systems, respectively.

Keywords: photovoltaic systems; power output forecasting; one day ahead; machine learning;
stacking ensemble model; extra trees regressor

1. Introduction

Currently, power plants employ traditional energy sources, including fossil fuel,
gas, and coal, to generate electricity. Unfortunately, these sources significantly harm the
environment by producing carbon dioxide (CO2) and other toxic gases, contributing to
global warming [1]. The problems of fossil energy pollution and energy scarcity are severely
increasing as the social economy develops rapidly [2]. Due to their abundant and climate-
friendly attributes, renewable energy resources are being introduced in the hope that they
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will mitigate these issues. Sustainable use and the growth of renewable and clean energy are
primarily focused on wind and photovoltaics (PV), which are cost-effective, realistic, and
feasible solutions to this challenge [3]. PV generation has already surpassed wind power
generation as a new growth point in the renewable energy sector [4]. Because of the contrast
between day and night illumination, photovoltaic generation is advantageous. However,
regardless of PV’s advantages and the solutions it offers, PV generation is characterized by
a high degree of uncertainty and an intermittent nature [5] due to the influence of climatic
factors, such as cloudiness, temperature, and aerosols. In addition, the high PV penetration
in the distribution system impacts the voltage at the buses negatively. A recent significant
development in installing PV systems has resulted in reverse power flow along feeders,
resulting in an overvoltage issue. During noon hours, when there is a large PV power
injection but a low load demand, the overvoltage problem worsens significantly. It limits
the power injection from not only PV systems but also any future integration of PV into
the distribution system. These factors lead PV power generation that is grid-connected to
affect the grid [6]. Consequently, if the PV output power could be accurately forecasted
in real-time with insignificant delay, it would be essential for power grid dispatching or
regulation and the steady operation of PV power stations [7] to maintain optimal planning
and operation for the distribution networks [8–10]. Further, problems related to voltage
regulation due to high PV penetration can be solved by taking into account the predictive
power compensation [11] or by islanding the microgrids under limited communication to
enhance the operation of the distribution system [12].

PV forecasting can be classified into four main horizons based on the period: ultra-
short-, short-, medium-, and long-term forecasting [13]. In the case of ultra-short, forecast-
ing is performed at the minute scale and can be defined as nowcasting, whereas short-term
forecasting ranges from 48–72 h ahead. Finally, the medium- and long-term can vary
between a few days to a week and a few months to a year or more, respectively [14]. When
developing a power policy, the authority and decisionmakers focus primarily on long-term
forecasting to account for future PV energy generation. On the other hand, utility compa-
nies mostly conduct short-term forecasting to establish a plan for electricity production,
manage energy reserves, and assess purchase and sales agreements. In this study, the
authors focused on a short-term, one-day-ahead PV power output forecasting model.

Forecasting techniques can be categorized into statistical and machine learning (ML)
models. The statistical models mostly consist of auto-regression (AR), auto-regressive mov-
ing average (ARMA), autoregressive moving average with exogenous variable (ARMAX),
and linear regression (LR). For instance, an ARMA model was proposed in [15] to forecast
PV power output. Further, an ARMAX model was used in [16] to forecast the power
generation of a PV system and verified by utilizing a grid-connected 2.1 kW PV system;
the results showed that the ARMAX surpassed the ARMA by attaining better accuracy.
A vector autoregression approach was presented in [17]; the main aim of the study was
to forecast solar power six hours ahead utilizing distributed information. A short-term
PV power forecasting system (up to 72 h ahead) utilizing a bottom-up framework and
meteorological data was proposed in [18] to predict PV energy generation in Luxembourg.
It is evident that statistical methods can be used to forecast PV power output, but these
types of models are mainly based on linear relationships. In addition, they have restricted
capabilities in showing nonlinear correlations.

ML was introduced and has gained more popularity for such applications to over-
come these previous issues. ML differs from conventional statistical techniques in that
it does not impose stringent criteria on data distribution, can handle high-dimensional
data, and is straightforward in dimension reduction capability. Many researchers have
developed robust solar PV forecast models based on the previous literature to focus on
these concerns [19–21]. For example, the implementation of ensemble ML models, such
as random forest (RF) [22], gradient boosting regression trees (GBRT) [23], and extreme
gradient boosting (XGBoost) [24], has shown promising results in comparison to traditional
models. Further, ensemble approaches are more stable and can decrease the uncertainty
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related to the input data [25]. For instance, Usman and Zhanle [26] developed a framework
for assessing several ML techniques comprising RF, XGBoost, and artificial neural network
(ANN), with feature selection algorithms to forecast short-term PV power generation.
According to them, XGBoost is superior in contrast to other machine learning algorithms.

Nevertheless, since PV generation is characterized by periods of high variability on
partly cloudy days and low variability on sunny days; the meteorological data for a given
location are not always precise enough to forecast these periods with precision. To overcome
this problem, Andrade et al. [24] proposed a forecasting framework by combining XGboost
with feature engineering techniques. However, most studies have employed a single ML
model, and the generalizability and reliability of these studies are still inadequate. Hybrid
methods in ML are also generally used to deal with the single ML model’s drawbacks. For
example, to forecast PV power one hour in advance, hybrid RF-PCA-K-means-HGWO [27]
was used; the proposed model achieved MAE values 0.18, 0.14, and 0.19 percent lower
than the optimal findings of the previous models. The short-term forecasting of PV power
output was discussed in [28], and the RF-CEEMD-DIFPSOBPNN model was developed
to enhance the forecasting performance under different weather conditions, including the
sunny, cloudy, and rainy seasons. The proposed model also coped with the drawbacks of
single models.

Recently, scholars have developed diverse ensemble learning models, including bag-
ging, boosting, and stacking. Compared to the bagging and boosting methods, the stacking
approach is distinguished by two primary aspects. First, the stacking model typically
accounts for heterogeneous base learners (various learning methods are coupled), whereas
bagging and boosting mostly account for homogeneous base learners. The stacking model
integrates base models with the meta-model, whereas bagging and boosting incorporate
base learners using deterministic algorithms. For instance, various stacking models were
proposed in [29], utilizing different datasets for forecasting the PV output power pro-
duction; the results disclosed that the Stacking-GBDT model performed better compared
with other stacking models, achieving RMSE and MAE values with 47.7826 and 106.07,
respectively. Further, staking XGBoost was proposed in [25] to predict PV output gener-
ation, whereas a stacking ensemble model with a recurrent neural network (RNN) as a
meta-learner was discussed in [30] for one-to-three-day ahead PV power forecasting. The
authors of [31] proposed five models of LSTM, such as LSTM with time step, LSTM using
the window method, and stacked LSTM. The results showed that LSTM with time step
achieved the lowest RSME. A hybrid model based on XGBoost and ANN that integrated its
output using ridge regression was presented in [32]. Additionally, the authors concluded
that hybrid models are more accurate and stable than single models. Recently, the authors
of [33] suggested using RNN-LSTM to forecast the PV power output for three different
PV systems; compared with other models, the proposed model achieved the lowest RMSE
values, where the values attained were 39.2, 19.78, and 26.85 for TF, MC, and PV, respec-
tively. Table 1 summarizes the main differences between previous works and the proposed
work in different aspects, including input variables, forecasting horizon, PV module type,
dataset duration, and primary target.

Most prior research on the ML ensemble model approached solar PV production as a re-
gression task by employing statistical models and random forest at the base level [32,38,39].
However, the dynamic nature of solar PV timeseries data, with its weather dependence and
autoregressiveness, makes them difficult to predict using solely computational intelligence
techniques such as the single ensemble model. Moreover, they are ineffective at recognizing
nonlinear timeseries behavior and have poor prediction abilities. Therefore, to overcome
these limitations, this research employed a one-level stack ensemble model, including the
RFR, ETR, XGBoost, and Adaboost models. This study utilized XGBoost’s ability to capture
data characteristics in PV power forecasting, AdaBoost’s capacity for prediction tasks with
low bias errors while not being easily overfitted during training, and RFR’s superior fitting
ability and high tolerance for poor information. In addition, the ensemble ML technique
ETR was used to aggregate each base model’s prediction. Utilizing ETR as a meta-learner
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included quantifying individual model errors and data noise uncertainty, resulting in better
prediction accuracy.

Table 1. Highlighting the considered parameters in the recent works from the literature.

Ref Model Input Variables Horizon
PV Module Dataset

Duration
Target

MC PC TF

[29] Stacking-
GBDT

Light intensity, wind speed
and direction, weather

temperature, PV module
temperature, transfer

efficiency

Ultra-short-
term

(5 min
ahead)

Not mentioned 4 years PV power
output

[32] XGBoost-
DNN

Temperature, pressure,
wind speed and direction,
relative humidity, month

number, clear sky
index, time

Short-term
(1 h ahead) Not included 10 years Solar

irradiance

[33] RNN-
LSTM

Time, solar irradiance, wind
speed, ambient temperature,

PV module temperature,
actual output power

Short-term
(1 h ahead) 3 3 3 4 years PV power

output

[34] ELM

Solar irradiance, wind
speed, ambient temperature,

PV module temperature,
actual output power

Short-term
(1 day

ahead and
1 h ahead)

3 3 3 1 year PV power
output

[31] LSTM-
RNN Actual output power Short-term

(1 h ahead) Not mentioned 1 year PV power
output

[35] LSTM Actual output power and
sky images

Ultra-short-
term

(1, 2, 5, 10
min ahead)

Not mentioned Not
mentioned

PV power
output

[36] DPNN

Temperature, wind speed
and direction, relative

humidity, sky condition,
time, solar irradiance, sea

level pressure

Short-term
(1-9 h
ahead)

3 5 5 2 weeks PV power
output

[37] DSE-XGB

Hour, day, month, previous
day, same-time historical PV
generation, previous 15 min,

previous hour, solar
irradiance, relative

humidity, temperature

Ultra-short
and

short-term
(15 min and
1 h ahead)

3 5 5 3 years PV power
output

Proposed
Research

Stacking-
ETR

Time, solar irradiance, wind
speed, ambient temperature,

PV module temperature,
actual output power

Short-term
(1 day
ahead)

3 3 3 4 years PV power
output

The contribution of this study to the literature can be summarized as follows:

• An ensemble stacking model (Stack-ETR) was developed that can be utilized as a
baseline model for one-day-ahead PV power output forecasts, utilizing metrological
data without heavy hyperparameter tuning.

• A performance evaluation of the proposed Stack-ETR was conducted on three different
actual Malaysian PV systems over four years (2018 to 2021).

• In addition, the proposed model was compared with existing models and works to
highlight the superiority of the proposed model.
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This paper’s remaining sections are structured as follows: Section 2 offers the concep-
tual underpinning for constructing the stacked ensemble model. Section 3 presents the
modeling outcomes, and Section 4 discusses broad directions and issues for future research.

2. Methodology

This part of the paper explains the proposed methodology and comprehensively
explains the development of the proposed Stacking-ETR model. After developing the
Stacking-ETR model, the validation of the proposed model was conducted on three practical
Malaysian PV systems. In addition, the performance was evaluated using performance
metrics. The data collection and processing were performed at the Power Electronics
and Renewable Energy Research Laboratory (PEARL) at the University of Malaya, which
included an overview of the grid-linked PV system installed on the engineering tower roof.
The sequence of stages necessary for creating and assessing the proposed model is depicted
in Figure 1.

Figure 1. The flowchart for evaluating the performance of the proposed model.

2.1. The Machine Learning Models

The methodologies used in this investigation are described in this section. This method
evaluates and categorizes supervised learning techniques for several independent variables
into three groups: bagging and boosting ensemble approaches, as well as the proposed
Stack-ETR model.

2.1.1. Bagging Ensemble Model

An ensemble of regressions aims to develop a more efficient model by combining the
results of many regression models. Bagging ensemble also reduces the model’s variance
and trains weak models in parallel. Random forest regressor (RFR) and extra trees regressor
(ETR) are the most common bagging methods.

Random Forest Regressor (RFR)

The RFR is an ensemble-based machine learning technique based on the bagging
approach, which combines many trees. In RFR, a voting mechanism is used to improve the
performance of several base learners, decision trees (DT) in this study. The distinguishing
characteristics of random forest are bootstrap sampling, random feature selection, out-of-
bag (OOB) error estimation, and full-depth DT construction [39,40]. The RFR is built from
a series of decision trees. For instance, classification and regression trees (CARTs) are one
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example of decision tree methods. A CART undergoes some enhancement when paired
with the RFR. The RFR does not require cross-validation because it can perform out-of-bag
error estimation natively throughout the forest construction process. It is asserted that OOB
error estimation is impartial across numerous tests.

The training process for an RFR may be summed up as follows. In the first step,
the RFR draws a bootstrap sample from the initial dataset. For each bootstrap sample
obtained in the first step, it will develop an unpruned regression tree with the following
modifications in the second step: At each node, it will take a random sample (n) of the
input variables and determine the optimal split among them. After that, it will repeat steps
1 and 2 until the total number of identical trees has developed; then, it will forecast new
data by averaging the predictions of the total trees’ numbers.

Extra Trees Regressor (ETR)

ETR, or extremely randomized trees, is a tree-based ensemble ML technique based
on the bagging approach [41]. This approach was designed as an extension of the random
forest algorithm and is relatively new. The ETR approach builds an ensemble of unpruned
regression trees via a traditional top-down procedure. Like RFR, ETR uses a random
selection of characteristics to train each base estimator. However, rather than picking the
best split in each node, ETR chooses, at random, the best feature and matching value for
dividing the node [38]. In addition, RFR uses bootstrap replication to train the prediction
model, whereas ETR employs the entire training set to train every regression tree in the
forest. These significant modifications reduce the likelihood that ET will overfit data, as a
higher performance was documented in [41].

2.1.2. Boosting Ensemble Model

Boosting ensemble methods attempt to reduce the model’s bias by successively train-
ing several models to enhance each previously created model. The most common boosting
methods are AdaBoost and XGBoost.

Extreme Gradient Boosting (XGBoost)

XGBoost is a supervised ensemble ML method based on boosted trees [42]. XGBoost
is an enhanced and scalable implementation of the gradient boosting (GB) method that
iteratively combines weak base models into a more robust model. XGBoost fits the input
data to the first base model. Then, a second model is fitted to its residual to enhance the
learning capacity of the first learner. This procedure of residue buildup is continued until
the specified requirements are reached. The result is computed by aggregating the results
of all the base models. It also prevents overfitting by integrating a regularization term
into the goal function. GB’s learning process is quicker than XGBoost’s due to system
optimization, parallel computing, and distributed computing [37]. GB utilizes a stopping
criterion for tree splitting dependent on a negative loss criterion, whereas XGBoost applies
a depth-first strategy. Using the maximum depth option, XGBoost prunes the tree reversely.
In the XGBoost technique, sequential tree construction is accomplished through parallel
implementation. XGBoost’s outer and inner loops are interchangeable. The inner loop
computes a tree’s characteristics, while the outer loop enumerates its leaf nodes. This
switching method improves the efficiency of the algorithm.

Adaptive Boosting (AdaBoost)

The AdaBoost ensemble ML algorithm is based on the boosting approach, and many
algorithms were developed from its focus on classification and regression issues [43,44].
However, in contrast to other boosting algorithms, the AdaBoost method is an iterative
algorithm that modifies the learning pattern based on the error produced by base learners.
The core concept of the AdaBoost algorithm is to create a robust learner by merging weak
base learners generated in each iteration; hence, it is crucial to weigh and combine base
learners appropriately. Several models can be used as base learners in AdaBoost. The most
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common base learners used in AdaBoost are decision tree regression (DTR) and linear
regression (LR). In this work, the authors utilized LR as a base learner for AdaBoost.

2.1.3. Stack Generalization

Stacked generalization, often known as stacking, is an additional ensemble learning
approach developed by Wolpert [45] that has been utilized extensively in several domains
since its creation. In stacking, the results of various models (random forest, AdaBoost, etc.)
are stacked to train a new meta-learner for the final prediction. Stacking’s fundamental
premise is built on two tiers of algorithms. The first level comprises several algorithms
known as base learners, while the second is made of a meta-learner known as a stacking
algorithm. First-level learners are frequently different base models; however, stack ensem-
bles may also be constructed from the same base learner model [46]. First-level learners are
trained to predict the result using the original dataset. Then, each base learner’s prediction
is compiled to generate a new dataset. The new dataset comprises forecasts made by weak
learners. Then, this dataset is utilized by the second-level meta-learner to produce the
final prediction. The purpose of the meta-learner model is to correct the errors produced
by the base models by adjusting the final output prediction. Multiple stacking layers are
possible, with each level’s prediction serving as an input for the next. Stacking is the most
advanced ensemble learning technique. It can effectively reduce both bias and variance by
avoiding overfitting.

This work highlights the capacity of stacked machine learning models by presenting
an adaptable implementation that considers ensemble architecture. The primary goal
of stacking is to determine the optimal mix of models for the PV output power forecast.
Therefore, four stack models are formed; the stack models are shown in Table 2. Ten-fold
cross-validation of the base models was used to prepare the training dataset for the meta-
model, while the out-of-fold predictions served as the basis for the training dataset. The
entire process of the proposed Stack-ETR model is shown in Figure 2. The steps of the
proposed Stack-ETR are elaborated as follows:

Step 1: The first step is data collection, including solar irradiance, ambient and PV
module temperature, wind speed, time, and the actual power produced by the three types
of PV.

Step 2: The next stage is data preprocessing and scaling. The collected data is daily
averaged and scaled, as detailed in Section 2.2; the data is divided into training and testing
sets, with a ratio of 80:20.

Step 3: The first level of the Stack-ETR consists of the base models (RFR, XGBoost, and
AdaBoost). The base models predict the PV power output utilizing 10-fold cross-validation.

Step 4: The second level of the Stack-ETR consists of a meta-regressor (ETR), which
takes all the predictions of base models as an input (M × Pi) to produce the final forecast.

Step 5: The proposed Stack-ETR model is evaluated using the performance metrics
described in Section 2.2.

Table 2. Stack ensemble models.

Model Name Base Learners Meta-Learner

Stack-RFR ETR, XGBoost, AdaBoost RFR

Stack-ETR RFR, XGBoost, AdaBoost ETR

Stack-XGBoost RFR, ETR, AdaBoost XGBoost

Stack-AdaBoost RFR, ETR, XGBoost AdaBoost
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Figure 2. The entire process of the proposed Stack-ETR model.

2.2. Performance Metrics Utilized to Assess the Model’s Effectiveness

Equations (1)–(4) assess the forecast accuracy for all models based on the evaluation
metrics. The root mean square error (RMSE), as stated in Equation (1), is the first measure-
ment metric. Mean square error (MSE) is described in Equation (2), while the coefficient
of determination (R2) and mean absolute error (MAE) are stated in Equations (3) and (4),
respectively. Finally, the values P and P̂ represent the actual values and forecasted values,
respectively. The value Pavg, on the other hand, represents the average of the actual values.

RMSE =

√√√√ 1
H

H

∑
i=1

(
P̂− P

)2
(

Wh/m2
)

(1)
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MSE =
1
H

H

∑
i=1

(
P̂− P

)2
(

Wh/m2
)

(2)

R2 = 1− ∑H
i=1
(

P̂− Pavg
)2

∑H
i=1
(

P− Pavg
)2 (3)

MAE =
1
H

H

∑
i=1
|(P̂− P)|

(
Wh/m2

)
(4)

2.3. Data Preparation and Partitioning

Data preparation and partitioning confirmed the positive impacts on model conver-
gence. It involves multiple steps, such as collecting data, arranging inputs and outputs,
dividing it, and standardizing it utilizing different techniques. The dataset was gathered
between 1 January 2018 and 31 December 2021 at 5-min intervals. The objective was to
forecast the PV power output of each module daily; hence, the dataset was the daily aver-
age. Sunrise and sunset in Malaysia happen between 6:50 and 7:20 and 18:55 and 19:15,
respectively. Consequently, the PV output from 7:00 to 19:00 was utilized for training and
testing the proposed forecasting models. The collected data had 12 readings per hour and
12 h per day. For daily averaging, the readings were summed and then divided by the
total number of readings per day. Hence the daily reading was obtained. The dataset
was divided into training and testing sets with an 80:20 ratio, as this ratio provides better
model forecasting performance, and many similar research works have used this ratio.
Figure 3 illustrates the training test sets for the three distinct PV panel types. In this study,
the seventh time-lagged readings of solar irradiance for the TF power output, MC power
output, and PC power output, along with the wind speed and time, were used to forecast
the PV output power for each PV module. Finally, the standard deviation was employed to
normalize the data. The process of these stages is represented by Equations (5)–(8):

µ =
1
H

H

∑
h=1

DCollected (5)

σ = std(DCollected) =

√
∑(di − µ)2

H
(6)

DCollected
normalized =

(DCollected − µ)

σ
(7)

PFore.−Actual = σ·PFore.−normalized + µ (8)

The µ refers to the mean, while the σ indicates the standard deviation of the utilized
dataset. Furthermore, H corresponds to the dataset’s size, while di represents the value
of each datapoint in the dataset. Equation (7) denotes the pretraining standardization of
the data, and Equation (8) includes the actual data forecasted, PFore.−Actual , to examine the
effectiveness of the testing in comparison to the trained network. All experiments utilized
in this study were conducted using Python 3.8 on a local machine with six Core i7-9750H
microprocessors, 16 GB memory, and NVIDIA GeForce GTX 1660 Ti with Max-Q design.
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Figure 3. Training and testing data for different PV panels: (a) thin-film, (b) monocrystalline,
(c) polycrystalline.

2.4. A Summary of the Grid-Connected PV Systems Utilized for Forecasting

The PV system with interconnected modules was installed and put into service in
2015, including three separate PV systems. Three different PV systems were constructed
at a latitude of 3.07◦ N and a longitude of 101.39◦ E, about 66 m above sea level on the
engineering tower’s top. A total of 6.575 kWP of PV capacity was installed between
three of the various PV types. The first one was thin-film (SHARP/NS-F135G5 type); all
arrays were made of amorphous silicon, and a total capacity of 2.7 kWP was attained by
merging 20 modules with 135 WP each. Polycrystalline (MITSUBISHI/PV-AE125MF5N
model) is another kind of photovoltaic system, and it consisted of 16 modules with a total
capacity of 2.0 kWP. The final solar array was monocrystalline (SHELL/SQ75 type), with
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a total capacity of 1.875 kWP and 25 modules, each with 75 WP. According to the IEC
61,730 regulations issued by the Sustainable Energy Development Authority (SEDA) [47],
PV modules were installed appropriately at a suitable distance. In Malaysia, SEDA is
responsible for the development of renewable energy initiatives. Malaysia’s climate is
tropical, with only two distinct seasons: sunny and rainy. Consequently, the lack of a winter
season is seen as a benefit. Therefore, the shading effect was drastically reduced. It is
also worth mentioning that the tilt angle plays a vital role in reducing the shading impact.
Accordingly, 5◦ is the optimal tilt angle for achieving that goal [48].

The whole array of PV panels was firmly fixed in a configuration aligned with true
south at 0◦ azimuth and 10◦ tilt. For a stable topological system, the azimuth angle was
defined as the PV modules’ angle with regard to the southerly direction. The tilt angle
was selected from the horizontal plane to correlate with the angle of the solar modules. As
discussed in [49], regarding the optimization of azimuth and tilt angles, the results indicated
that both angles were adequately positioned. Moreover, according to a study conducted
by [50], a ten-degree tilt angle enables PV panels in Kuala Lumpur to receive the maximum
levels of sunlight power. Furthermore, the shadowing effects and dust accumulation on
the solar panels are limited at this angle. In Malaysia, the optimal orientation for PV panels
to obtain the greatest annual average solar energy is at an azimuth angle of 0◦ toward
true south [51]. By including modules with an open back, natural cooling was included in
the PV systems installed on the engineering tower of the University of Malaya. Figure 4
displays the solar system as a whole, consisting of three different types and grid-linked
inverters for each type, whereas Figure 5 depicts grid-linked inverters at PEARL.

Figure 4. Three PV systems on the engineering tower’s roof at the University of Malaya.

Figure 5. Grid-linked inverters at PEARL.
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Figure 6 depicts the entirety of PEARL’s grid-linked PV systems. The data for this
study were collected between 1 January 2018 and 31 December 2021. Monthly data were
logged in an Excel spreadsheet, with the web server connected to the three inverters
registering data every five minutes for the three different PV system types. For this, three
inverters were utilized, with the monocrystalline (MC) and polycrystalline (PC) inverters
rated at 1600 W and the thin-film (TF) inverter rated at 2500 W.

Figure 6. Schematic of PEARL’s grid-linked PV systems.

An SMA SUNNY SENSOR BOX was utilized to determine various parameters, includ-
ing the temperature of the PV module and surrounding environment, solar irradiance, and
wind speed. The SMA power injector provided electricity to the sensor box linked through
a communication bus to the SMA SUNNY WEBBOX. The WEBBOX arranged and saved
the measured data collected by the sensors and grid-linked inverters and was connected
to residential networks and desktop computers. The data could be accessed within five,
fifteen, or thirty minutes, depending on the need. The data from previous years were still
available and could be downloaded when needed.

3. Results and Discussions

This section provides forecast results for the PV power generated by the three prac-
tical Malaysian PV systems utilizing metrological data from 2018 to 2021 based on the
performance metrics. In addition, the section contains a comparison between the pro-
posed approach and existing machine learning methods to highlight the superiority of the
suggested stack ensemble ML method.

3.1. Evaluation of Stack-ETR for Forecasting Thin-Film PV System Output Power

This subsection provides forecast results for TF PV panel output power using perfor-
mance measurements for the proposed stack ensemble model and other ML models. The
prediction accuracy of the decision tree regressor (DTR) model was the lowest, as shown
in Table 3. Compared to the DTR, the prediction performance of the single ensemble ML
model was superior. By comparing the prediction accuracy of RFR, ETR, XGBoost, and
AdaBoost, we determined that the MAEs of the four models rise in the following order:
RFR (33.26), XGBoost (33.64), ETR (36.38), and AdaBoost (38.33). It was demonstrated that
the stacking model’s forecasting error was generally less than that of the single ensemble
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learning model. Comparing the forecast accuracies of various stacking models, we discov-
ered that the MAEs rise in the following order: Stack-ETR (25.87), Stack-XGBoost (28.8),
Stack-AdaBoost (30.88), and Stack-RFR (31.63). This was similar to the RMSEs, with values
of 36.95, 39.69, 41.9, and 42.73, respectively. Compared to the other models, the stack ETR
achieved the lowest RMSE and MAE values with the highest R2. Figure 7 shows that the
proposed stack ETR was closest to the ground truth compared to the other models.

Table 3. Forecast results utilizing various ML models for the TF PV panel-based system over the
forecast period (2018–2021).

Model
Thin-Film

MSE (Wh/m2) RMSE (Wh/m2) MAE (Wh/m2) R2

RFR 1967.3 44.35 33.26 0.9949
XGB 2013.01 44.87 33.64 0.9947
DTR 3038.29 55.12 41.01 0.9921
ADA 2622.19 51.21 38.33 0.9931
ETR 2395.43 48.94 36.38 0.9937

Stack-RFR 1826.15 42.73 31.63 0.9952
Stack-ETR 1365.16 36.95 25.87 0.9964
Stack-ADA 1755.79 41.9 30.88 0.9954
Stack-XGB 1575.48 39.69 28.8 0.9959

Figure 7. Forecast results using the proposed Stack-ETR for the TF PV panel-based system for
7 sample days.

3.2. Evaluation of Stack-ETR for Forecasting Monocrystalline PV System Output Power

As with thin-film, Table 4 displays the predicted output power of monocrystalline (MC)
PV panels for the proposed Stack-ETR and other ML methods. The ensemble ML model
achieved acceptable results. By comparing the prediction accuracy of RFR, ETR, XGBoost,
and AdaBoost, we discovered that the MAEs of the four models increase as follows:

Stack-ETR (13.16), Stack-XGBoost (13.91), Stack-AdaBoost (13.74), and Stack-RFR
(14.38). However, the single models achieved the worst results compared to the stacking
model, with the following values: RFR, 23.68; ETR, 24.93; XGBoost, 25.09; and AdaBoost,
30.1. This was comparable to the RMSEs for the stack models, with respective values of
18.43, 19.56, 19.37, and 20.36. According to Table 4, the prediction accuracy of the DTR
model was the lowest. It can be seen from Figure 8 that the proposed stack ETR was nearly
the same as the actual values, with less error compared to the rest of the models.
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Table 4. Forecast results employing different ML models for the MC PV panel-based system over the
forecast period (2018–2021).

Model
Monocrystalline

MSE (Wh/m2) RMSE (Wh/m2) MAE (Wh/m2) R2

RFR 939.12 30.65 23.68 0.9711
XGB 1038.73 32.23 25.09 0.968
DTR 1933.63 43.97 33.04 0.9405
ADA 1213.94 34.84 30.1 0.9627
ETR 950.04 30.82 24.93 0.9708

Stack-RFR 414.43 20.36 14.38 0.9872
Stack-ETR 339.6 18.43 13.16 0.9896
Stack-ADA 375.01 19.37 13.74 0.9885
Stack-XGB 383.74 19.59 13.91 0.9882

Figure 8. Forecast outcome utilizing the proposed Stack-ETR for the MC PV panel-based system for
7 sample days.

3.3. Evaluation of Stack-ETR for Forecasting Polycrystalline PV System Output Power

As with thin-film and monocrystalline systems, Table 5 depicts the forecasted output
power of the polycrystalline (PC) PV panels using the proposed Stack-ETR and other ma-
chine learning approaches. The ensemble ML model offered adequate results. Comparing
the prediction accuracy of RFR, ETR, XGBoost, and AdaBoost reveals that the MAEs of
the four models grow as follows: XGBoost (23.37), ETR (24.53), AdaBoost (27.05), and RFR
(27.57). RFR had the lowest prediction accuracy compared to the single ensemble models,
MC and TF. However, the stack ensemble models achieved superior outcomes: Stack-ETR,
14.5; Stack-XGBoost, 15.8; Stack-AdaBoost, 16.76; and Stack-RFR, 17.39. These values were
identical to the RMSEs, with respective values of 23.09, 23.97, 24.58, and 24.9. Despite this,
Stack-RFR scored the lowest forecast precision among stack ensemble models for the three
practical PV systems. Figure 9 demonstrates the accuracy of each model compared to the
ground truth. All the models followed the same pattern with a marginal error value, and
the proposed Stack-ETR was nearest to the real values, i.e., the negligible errors.
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Table 5. Forecast results utilizing many ML models for the PC PV panel-based system over the
forecast period (2018–2021).

Model
Polycrystalline

MSE (Wh/m2) RSME (Wh/m2) MAE (Wh/m2) R2

RFR 1518.1 38.96 27.57 0.9898
XGB 1163.5 34.11 23.37 0.9922
DTR 1340.41 36.61 27.85 0.991
ADA 1261.89 35.52 27.05 0.9915
ETR 1027.2 32.05 24.53 0.9931

Stack-RFR 619.92 24.9 17.39 0.9958
Stack-ETR 533.33 23.09 14.5 0.9964
Stack-ADA 604.05 24.58 16.76 0.9959
Stack-XGB 574.4 23.97 15.8 0.9961

Figure 9. Forecast outcome using the proposed Stack-ETR for the PC PV panel-based system for
7 sample days.

3.4. Discussion

As can be seen from the results, the proposed Stack-ETR model outperformed other
stack ensemble and single ensemble ML models across the forecasted period in terms of all
performance metrics used to evaluate forecasting accuracy for all three PV systems. Com-
bining the XGBoost, RFR, and AdaBoost models at the base level of the stacked ensemble,
the XGBoost and RFR explicitly captured the dependence of the solar PV power output
forecast, while AdaBoost extracted trends from the data. ETR, a bagging method, was used
to integrate the predictions from the three base learners due to its faster computing perfor-
mance and ability to effectively forecast with a smaller training set in a high-dimensional
space. Furthermore, the ETR meta-learner made sense of the underlying models’ outputs
to generalize testing data. Hence, the stack model combined learning algorithms with com-
plementary strengths and allowed their deficiencies to be compensated. For this purpose,
we developed a stack ensemble model (Stack-ETR) for PV power output in which each base
learner contributed crucial information for prediction and allowed the ETR to successfully
manage uncertainty by aggregating the output of several strong learners. Through the
four selected single ensemble models (RFR, ETR, XGBoost, and AdaBoost), the RFR model
performed the best in predicting the power output for TF and MC panels. At the same
time, XGBoost achieved the highest prediction accuracy for the PC panel. However, the
AdaBoost model performed the worst for all PV panel-based types. Consequently, the
suggested stack ensemble ML model effectively forecasted the daily power output of three
different PV systems over four years. In addition, our proposed Stack-ETR can be used to
predict PV panel output power in real grid-connected PV systems, thereby enhancing the
dependability and stability of the distribution network.
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Figure 10 shows the total reduction in RMSE and MAE for the stack models compared
with the base ETR model for the three PV module types. It can be seen that Stack-ETR
recorded the highest reduction in RMSE and MAE for all PV module types, especially in
MC, with a value of 40.2% and 47.2%, respectively, followed by the Stack-XGBoost and
Stack-AdaBoost. Finally, Stack-RFR had the lowest decrease in RMSE and MAE, particularly
in the TF PV panel-based system, with 18.9 and 20.8 percent, respectively. The coefficient of
determination (R2) is demonstrated in Figure 11, representing the agreement between the
actual and forecasted values. It can be observed from Figure 11 that Stack-ETR attained
the highest R2 values out of the three PV models, followed by Stack-XGBboost and Stack-
AdaBoost. For example, in the PC PV panel-based system, the Stack-ETR achieved a value
of 0.9964. In contrast, in the TF and MC PV panel-based systems, the results were 0.9964
and 0.9964, respectively, implying a superior and satisfactory forecasting performance. The
worst R2 result was for the AdaBoost model.

Figure 10. The reduction in RMSE and MAE for the stack models compared to the ETR model.

Figure 11. The coefficient of determination for different ML models conducted on three different
types of PV panels.
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3.5. Comparative Studies

Table 6 evaluates the proposed Stack-ETR model’s performance compared to existing
models for predicting PV power output. The Stack-ETR model attained the lowest RMSE
values (Wh/m2), with 37.37, 13.95, and 20.41 for TF, MC, and PC, respectively. Further,
the Stack-ETR model achieved the smallest MAE values (Wh/m2), with 23.36, 8.79, and
12.24 for TF, MC, and PC, respectively. The other models attained the highest RMSE values
compared to the Stack-ETR. For instance, the Stack-GBDT in [29] achieved a 47.7826 RMSE
value, whereas the RNN-LSTM model in [33] attained values of 39.2, 19.78, and 26.85 for
the TF, MC, and PV, respectively. In addition, the obtained results in [34], utilizing the ELM,
perform poorly compared to the proposed model, with RMSE values of 90.41, 59.93, and
54.96 for TF, MC, and PV, respectively. The MAE and RMSE values in Table 6 reveal that
our suggested stack ensemble model surpassed all previously published PV output power
forecast models for the same and other climates and appears to be comparable with the
best performers. Further, it is evident that the Stack-ETR attained the best results with less
error compared to other models in the literature. Hence, based on the overall findings, the
proposed Stack-ETR model may be recommended for PV power output forecasting.

Table 6. A comparative study to evaluate the proposed Stack-ETR model’s performance compared
with existing models.

Predicting Method Year Ref. RMSE (Wh/m2) MAE (Wh/m2)

Stack-ETR (TF)

- Present Study

37.37 23.36

Stack-ETR (MC) 13.95 8.79

Stack-ETR (PC) 20.41 12.24

Stack-GBDT 2022 [29] 47.7826 106.0726

RNN-LSTM (TF)

2022 [33]

39.2 -

RNN-LSTM (MC) 19.78 -

RNN-LSTM (PC) 26.85 -

XGBoost-DNN 2021 [32] 51.35 -

DPNN 2020 [36] 52.8 -

Kmeans-AE-CNN-
LSTM 2020 [52] 45.11 -

LSTM-RNN 2019 [31] 82.15 -

LSTM 2018 [35] 139.3 -

ELM (TF)

2018 [34]

90.41 -

ELM (MC) 59.93 -

ELM (PC) 54.96 -

4. Conclusions

Photovoltaics (PV) has gained popularity among other renewable energy sources due
to its many attractive characteristics. Due to the substantial penetration of PV into the
existing distribution system, the instability of the system’s output has become a serious
issue. In order to integrate additional PV systems into the grid and improve energy
management further, it is crucial to have an accurate PV power output forecasting system.
Hence, a stacked ensemble algorithm (Stack-ETR) was proposed to forecast daily PV output
power. The assessment of PV power output was carried out by considering three machine
learning algorithms, namely, random forest regressor (RFR), extreme gradient boosting
(XGBoost), and adaptive boosting (AdaBoost). Further, the validation of the forecasted
PV power output was carried out using the real-time data of three PV systems, namely,
thin-film, monocrystalline, and polycrystalline technologies. The Stack-ETR was effective at
recognizing nonlinear timeseries behavior as compared to a single ensemble model, where
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the results demonstrated that the proposed Stack-ETR achieved the lowest RMSE and
MAE and the highest R2, as compared to other models. The Stack-ETR model attained the
lowest RMSE values (Wh/m2), with 37.37, 13.95, and 20.41 for TF, MC, and PC, respectively.
Further, the Stack-ETR model achieved the smallest MAE values (Wh/m2), with 23.36, 8.79,
and 12.24 for TF, MC, and PC, respectively. Moreover, implementing the stack on the ETR
model exhibited the most significant reduction in RMSE and MAE for all PV module types,
particularly in MC, with values of 40.2% and 47.2%, respectively, compared with the single
ensemble ETR model. The following recommendations can be drawn from the study:

• For all investigated PV systems, the proposed Stack-ETR model consistently outper-
formed earlier models in varied climates, showing that the proposed model is superior
and acceptable. Consequently, extending the model’s predictions to other regions
is simple.

• Due to its efficacy in forecasting daily PV output power, Stack-ETR could potentially be
applied to other studies, such as global horizontal irradiance, electricity consumption,
and wind speed and power.

• A real-time evaluation of the proposed model’s performance and practical applicability
to building energy management systems would also be interesting.
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Abbreviations

Acronyms
PV Photovoltaic
RFR Random Forest Regressor
XGBoost Extreme Gradient Boosting
AdaBoost Adaptive Boosting
ETR Extra Trees Regressor
TF Thin-Film
MC Monocrystalline
PC Polycrystalline
CO2 Carbon Dioxide
ML Machine learning
AR Auto-Regression
ARMA Auto-Regressive Moving Average
ARMAX Autoregressive Moving Average with Exogenous Variable
LR Linear Regression
RF Random Forest
GBRT Gradient Boosting Regression Trees
RNN Recurrent Neural Network
ANN Artificial Neural Network
PEARL Power Electronics and Renewable Energy Research Laboratory
LSTM Long Short-Term Memory
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DT Decision Trees
DTR Decision Trees Regression
OOB Out-of-Bag
CART Classification and Regression Trees
ELM Extreme Learning Machine
RMSE Root Mean Square Error
MSE Mean Square Error
R2 Coefficient of Determination
MAE Mean Absolute Error
SEDA Sustainable Energy Development Authority
Nomenclature
P Actual Values
P̂ Forecasted Values
Pavg Average of the Actual
DCollected The Collected Data
DCollected

normalized The Normalized Collected Data
µ The Mean Value
σ Standard Deviation
H Dataset’s Size
di Value of Each Datapoint in the Dataset
PFore.−Actual Actual Data Forecasted
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