550 research outputs found

    Oscillation-based DFT for Second-order Bandpass OTA-C Filters

    Get PDF
    This document is the Accepted Manuscript version. Under embargo until 6 September 2018. The final publication is available at Springer via https://doi.org/10.1007/s00034-017-0648-9.This paper describes a design for testability technique for second-order bandpass operational transconductance amplifier and capacitor filters using an oscillation-based test topology. The oscillation-based test structure is a vectorless output test strategy easily extendable to built-in self-test. The proposed methodology converts filter under test into a quadrature oscillator using very simple techniques and measures the output frequency. Using feedback loops with nonlinear block, the filter-to-oscillator conversion techniques easily convert the bandpass OTA-C filter into an oscillator. With a minimum number of extra components, the proposed scheme requires a negligible area overhead. The validity of the proposed method has been verified using comparison between faulty and fault-free simulation results of Tow-Thomas and KHN OTA-C filters. Simulation results in 0.25μm CMOS technology show that the proposed oscillation-based test strategy for OTA-C filters is suitable for catastrophic and parametric faults testing and also effective in detecting single and multiple faults with high fault coverage.Peer reviewedFinal Accepted Versio

    A MLMVN WITH ARBITRARY COMPLEX-VALUED INPUTS AND A HYBRID TESTABILITY APPROACH FOR THE EXTRACTION OF LUMPED MODELS USING FRA

    Get PDF
    A procedure for the identification of lumped models of distributed parameter electromagnetic systems is presented in this paper. A Frequency Response Analysis (FRA) of the device to be modeled is performed, executing repeated measurements or intensive simulations. The method can be used to extract the values of the components. The fundamental brick of this architecture is a multi-valued neuron (MVN), used in a multilayer neural network (MLMVN); the neuron is modified in order to use arbitrary complex-valued inputs, which represent the frequency response of the device. It is shown that this modification requires just a slight change in the MLMVN learning algorithm. The method is tested over three completely different examples to clearly explain its generality

    Analog circuit fault diagnosis via FOA-LSSVM

    Get PDF
    At present, the research on fault detection and diagnosis technology is very significant to improve the reliability of the equipment, which can greatly improve the safety and efficiency of the equipment. This paper proposes a new fault detection and diagnosis means based on the FOA-LSSVM algorithm. Experimental results demonstrate that the algorithm is effective for the detection and diagnosis of analog circuit faults. In addition, the model also demonstrate good generalization ability

    Time-efficient fault detection and diagnosis system for analog circuits

    Get PDF
    Time-efficient fault analysis and diagnosis of analog circuits are the most important prerequisites to achieve online health monitoring of electronic equipments, which are involving continuing challenges of ultra-large-scale integration, component tolerance, limited test points but multiple faults. This work reports an FPGA (field programmable gate array)-based analog fault diagnostic system by applying two-dimensional information fusion, two-port network analysis and interval math theory. The proposed system has three advantages over traditional ones. First, it possesses high processing speed and smart circuit size as the embedded algorithms execute parallel on FPGA. Second, the hardware structure has a good compatibility with other diagnostic algorithms. Third, the equipped Ethernet interface enhances its flexibility for remote monitoring and controlling. The experimental results obtained from two realistic example circuits indicate that the proposed methodology had yielded competitive performance in both diagnosis accuracy and time-effectiveness, with about 96% accuracy while within 60 ms computational time.Peer reviewedFinal Published versio

    Methods for testing of analog circuits

    Get PDF
    Práce se zabývá metodami pro testování lineárních analogových obvodů v kmitočtové oblasti. Cílem je navrhnout efektivní metody pro automatické generování testovacího plánu. Snížením počtu měření a výpočetní náročnosti lze výrazně snížit náklady za testování. Práce se zabývá multifrekveční parametrickou poruchovou analýzou, která byla plně implementována do programu Matlab. Vhodnou volbou testovacích kmitočtů lze potlačit chyby měření a chyby způsobené výrobními tolerancemi obvodových prvků. Navržené metody pro optimální volbu kmitočtů byly statisticky ověřeny metodou MonteCarlo. Pro zvýšení přesnosti a snížení výpočetní náročnosti poruchové analýzy byly vyvinuty postupy založené na metodě nejmenších čtverců a přibližné symbolické analýze.The thesis deals with methods for testing of linear analog circuits in the frequency domain. The goal is to develop new efficient methods for automatic test plan generation. To reduce test costs a minimum number of measurements as well as less computational demands are the fundamental aims. The thesis is focused on the multi-frequency parametric fault diagnosis which was fully implemented in the Matlab program. The fundamental problem consists in selection of test frequencies which can reduce the influences of measurement errors and errors caused by tolerances of well-working components. The proposed methods for test frequency selection were statistically verified by the MonteCarlo method. To improve the accuracy and reduce the computational complexity of fault diagnosis, the methods based on least-square techniques and approximate symbolic analysis were presented.

    Handling Fault Diagnosis Problem of Linear-Analogue Circuits with Voltage Phasor Measurement

    Get PDF
    This paper proposes a novel method to estimate the influence of hard-fault in linear-analogue circuit system based on the measurement of voltage phasor with assistant branch introduced. Furthermore, a new fault diagnosis strategy based on the voltage phasor modeling is established, and the tolerance influence on the corresponding voltage measurement is also discussed. The actual analogue circuit test shows us that the proposed method is effective and reliable to locate the accurate fault signature in voltage measurement for the fault diagnosis. As a matter of fact, it includes both the amplitude and phase information in a complex value form when the linear-analogue circuit is under the AC test. Besides, it can be also applied to ambiguous groups and the sensitive test-frequencies determination in the process of fault diagnosis,while the effectiveness of multifrequencies test has also been testified through test-frequencies sweeping investigation and the maximum error evaluation of fault component value in the second circuit example

    A verification technique for multiple soft fault diagnosis of linear analog circuits

    Get PDF
    The paper deals with multiple soft fault diagnosis of linear analog circuits. A fault verification method is developed that allows estimating the values of a set of the parameters considered as potentially faulty. The method exploits the transmittance of the circuit and is based on a diagnostic test leading to output signal in discrete form. Applying Z-transform a diagnostic equation is written which is next reproduced. The obtained system of equations consisting of larger number of equations than the number of the parameters is solved using appropriate numerical approach. The method is adapted to real circumstances taking into account scattering of the fault–free parameters within their tolerance ranges and some errors produced by the method. In consequence, the results provided by the method have the form of ranges including the values of the tested parameters. To illustrate the method two examples of real electronic circuits are given
    corecore