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This paper proposes a novel method to estimate the influence of hard-fault in linear-analogue circuit system based on the
measurement of voltage phasor with assistant branch introduced. Furthermore, a new fault diagnosis strategy based on the voltage
phasormodeling is established, and the tolerance influence on the corresponding voltagemeasurement is also discussed.The actual
analogue circuit test shows us that the proposed method is effective and reliable to locate the accurate fault signature in voltage
measurement for the fault diagnosis. As a matter of fact, it includes both the amplitude and phase information in a complex value
form when the linear-analogue circuit is under the AC test. Besides, it can be also applied to ambiguous groups and the sensitive
test-frequencies determination in the process of fault diagnosis,while the effectiveness ofmultifrequencies test has also been testified
through test-frequencies sweeping investigation and the maximum error evaluation of fault component value in the second circuit
example.

1. Introduction

The fault diagnosis problem has been one of the most critical
issues in the test of large-scale industrial or military digital-
analogue hybrid circuit. Furthermore, according to statistics,
in the mixed-signal (circuit) system, more than 80% faults
occur in the analogue section [1], and the corresponding test
cost accounts for 95% of the total test cost and 30%–50% of
manufacturing cost, as well as the test time which is more
than 80% of the total test time [2]. Therefore, there still exists
a pressing need to locate an effective and simple method
handling fault diagnosis in the analogue circuits.

Up to now, there have been extensive researches on
analogue circuit fault diagnosis, in which scientists developed
various fault diagnosis methods through different excitation
for the circuit test: (a) DC test: it is the simplest and
fastest one; however, it might fail because of energy-storage
components; (b) AC test [3–5]: it uses a periodic signal
as external stimulus for the circuit under test (CUT) and
overcomes the shortcomings of DC test, as well as requiring
relatively simple test; (c) aperiodic signals stimulus test [6–
9]: it owns the most abundant features about circuit state but
needs most complex test requirement.

To compromise the test simplicity (e.g., less time or
money consumption) and the test effectiveness (e.g., higher
fault detection and/or isolation rate), one can recommend the
AC test in this paper. Moreover, depending on the number
of frequency components in a stimulus, AC tests are further
classified into two categories: single-tone and multitone test.
In practice, multitone test stimuli can be composed of signals
of different frequencies; therefore, in this paper, all concerns
should be on the single-tone test: sinusoid signal test.

Eventually, this paper proposes a robust voltage phasor-
based method for the circuit diagnosis, when the sinusoid
signal stimulus is used in analogue circuit such that this
method is robust, because of the fault modeling being
established according to the rigorous theories. What is more,
there are at least 3 more advantages: (a) the corresponding
fault signature (voltagemeasurement) is simple to calculate in
the process of circuit diagnosis, compared to the feature used
in [10, 11]; (b) the fault diagnosis can be found in toleration
circumstance to benefit us in the actual fault diagnosis with
given requirement (e.g., the fault detection and/or isolation
rate); (c) although the voltage measurement is discussed in
a form of complex value for a AC test, it actually can be
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Figure 1: The linear circuit network.

generalized to the case of real voltagemeasurement in theDC
test.

In the end of this section, all of critical aspects of fault
diagnosis discussed in this paper are listed as follows: (a)
the calculation of voltage phasor value for a faulty linear-
analogue circuit with a given AC test, (b) the influence of
component tolerance on circuit voltage phasor response, (c)
the AC test selection for fault diagnosis based on voltage
phasor measurement, and (d) the further discussion about
ambiguous groups determination and evaluation of multifre-
quencies test.

The rest of paper is organized as follows. At first, Section 2
establishes the theoretical basis for all the discussed contents
as mentioned above. Then Section 3 tests the effectiveness of
theories of Section 2 in some representative linear circuits.
In Section 4, considering an important aspect—ambiguity
groups determination was often discussed in linear-analogue
circuit diagnosis in the past; one also discusses this topic on
the basis of proposed fault modeling in this paper. Besides,
the effectiveness of multifrequencies test in the second circuit
example is further evaluated. In the end, the corresponding
conclusions and prospects are made in Section 5.

2. Basic Principle

2.1. Voltage Phasor Modeling in Fault Diagnosis. Without loss
of generality, one assumes that a linear-analogue circuit in
Figure 1 is excited by an independent voltage stimuli as shown
in (1). Besides, this signal is expressed in a phasor form of (2),
according to the linear circuit theory in [12]:

𝑈
𝐼
= 𝑎
𝑖
sin (𝜔𝑡 + 𝜙

𝑖
) , (1)

where 𝑎
𝑖
is the amplitude of sinusoidal signal of 𝑈

𝐼
, 𝜔 is

a known fixed frequency, and 𝜙
𝑖
represents the phase of

this signal. Therefore, voltage phasor 󳨀→𝑈
𝐼
is a complex value

including the information of amplitude and phase from the
stimuli of 𝑈

𝐼

󳨀→
𝑈
𝐼
:
𝑎
𝑖

√2

𝑒
𝑖𝜙
. (2)

With the input signal 𝑈
𝐼
, the circuit output response is

also a sinusoidal signal 𝑈
𝑜
= 𝑎
𝑜
sin(𝜔𝑡 + 𝜙

𝑜
), whose voltage

phasor form is 󳨀→𝑈
𝑜
. Then, on the basis of the superposition

theorem [13, 14], one can establish (3) for the voltage phasor
󳨀→
𝑈
𝑜
at test-node 𝑇

𝑜
as follows:

󳨀→
𝑈
𝑜
= ∙𝑎
𝑖

󳨀→
𝑈
𝐼
+ ∙𝑎
𝑋

󳨀󳨀→
𝑈
𝑋
, (3)

where ∙𝑎
𝑖
is the complex transmission factor between 󳨀→𝑈

𝐼
and

󳨀→
𝑈
𝑜
, while ∙𝑎

𝑋
is the complex transmission factor from 󳨀󳨀→

𝑈
𝑋
to

󳨀→
𝑈
𝑜
.
As a matter of fact, the value of ∙𝑎

𝑖

󳨀→
𝑈
𝐼
equals the value of

voltage phasor response at 𝑇
𝑜
, if the input stimulus 𝑈

𝐼
is the

sole incentive and component 𝑋 is in short-circuit state. In
order to be convenient speaking in this paper, one can set it
as 󳨀󳨀→𝑈
𝑜𝑠
= ∙𝑎
𝑖

󳨀→
𝑈
𝐼
.

Ulteriorly, on the basis of Thevenin’s theorem in the
linear-analogue circuit, one can get the following:

󳨀󳨀→
𝑈
𝑋
=
󳨀󳨀󳨀→
𝑈
𝑂𝑋

∙𝑍
𝑥

∙𝑍
𝑥
+ ∙𝑍
𝑜

, (4)

where the 󳨀󳨀→𝑈
𝑋
(󳨀󳨀󳨀→𝑈
𝑂𝑋

) represents a voltage phasor through the
circuit branch𝑇

𝑥
−𝑇
𝑜
, when component𝑋 is in normal (open)

state. Besides, ∙𝑍
𝑥
is a complex impedance for component𝑋.

Meanwhile, ∙𝑍
𝑜
is Thevenin’s equivalent impedance seeing

through the circuit ports 𝑇
𝑥
and 𝑇

𝑜
, when component 𝑋 is

open.
Due to the formula 󳨀󳨀→𝑈

𝑜𝑠
= ∙𝑎
𝑖

󳨀→
𝑈
𝐼
and (3)-(4), this paper

finds the following:

󳨀→
𝑈
𝑜
=
󳨀󳨀→
𝑈
𝑜𝑠
+ ∙𝑎
𝑋

󳨀󳨀󳨀→
𝑈
𝑂𝑋

∙𝑍
𝑥

∙𝑍
𝑥
+ ∙𝑍
𝑜

. (5)

In particular, one assumes that component 𝑋 is in open-
circuit state; then the voltage phasor at 𝑇

𝑜
is 󳨀󳨀→𝑈
𝑜𝑜
as follows:

󳨀󳨀→
𝑈
𝑜𝑜
=
󳨀󳨀→
𝑈
𝑜𝑠
+ ∙𝑎
𝑋

󳨀󳨀󳨀→
𝑈
𝑂𝑋
. (6)

At last, in accordance with (5) and (6), there exists a
formula as follows:

∙𝑍
𝑥

∙𝑍
𝑜

= −

󳨀→
𝑈
𝑜
−
󳨀󳨀→
𝑈
𝑜𝑠

󳨀→
𝑈
𝑜
−
󳨀󳨀→
𝑈
𝑜𝑜

. (7)

In other words, (8) is formulated as follows:

󳨀→
𝑈
𝑜
= Γ (∙𝑍

𝑜
, ∙𝑍
𝑥
,
󳨀󳨀→
𝑈
𝑜𝑠
,
󳨀󳨀→
𝑈
𝑜𝑜
) =

∙𝑍
𝑜

󳨀󳨀→
𝑈
𝑜𝑠
+ ∙𝑍
𝑥

󳨀󳨀→
𝑈
𝑜𝑜

∙𝑍
𝑜
+ ∙𝑍
𝑥

, (8)

where Γ represents an invariable continuous function for a
given linear-analogue circuit.

In the case of parametric fault of𝑋, the value of󳨀󳨀→𝑈
𝑜𝑠
or󳨀󳨀→𝑈
𝑜𝑜

is considered as constant. At last, “Theorem 1” can be found.

Theorem 1. In analogue circuit of Figure 1, the potential faulty
component𝑋 owns the nominal impedance value ∙𝑍𝑟

𝑥
, and the

nominal response is
󳨀→
𝑈
𝑟

𝑜
; then the faulty response

󳨀→

𝑈
𝐹

𝑜
caused
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by parametric fault of 𝑋 at test-node 𝑇
𝑜
can be calculated

according to the following equation:

󳨀→

𝑈
𝐹

𝑜
=
∙𝛼 ∙ 𝑍

𝐹

𝑥

󳨀󳨀→
𝑈
𝑜𝑜
−
󳨀󳨀→
𝑈
𝑜𝑠

∙𝛼 ∙ 𝑍𝐹
𝑥
− 1

, (9)

where the value of ∙𝛼 is a constant determined by ∙𝛼 = (1/ ∙
𝑍
𝑟

𝑥
)((
󳨀→
𝑈
𝑟

𝑜
−
󳨀󳨀→
𝑈
𝑜𝑠
)/(
󳨀→
𝑈
𝑟

𝑜
−
󳨀󳨀→
𝑈
𝑜𝑜
)).

Proof. With the statement in (8), it is obvious to find follow-
ing equations:

∙𝑍
𝑟

𝑥

∙𝑍
𝑜

= −

󳨀→
𝑈
𝑟

𝑜
−
󳨀󳨀→
𝑈
𝑜𝑠

󳨀→
𝑈
𝑟

𝑜
−
󳨀󳨀→
𝑈
𝑜𝑜

, (10)

∙𝑍
𝐹

𝑥

∙𝑍
𝑜

= −

󳨀→

𝑈
𝐹

𝑜
−
󳨀󳨀→
𝑈
𝑜𝑠

󳨀→

𝑈
𝐹

𝑜
−
󳨀󳨀→
𝑈
𝑜𝑜

. (11)

Later, if (10) is divided by (11), ∙𝑍
𝑜
will be eliminated.

ThenTheorem 1 is obtained.

Theorem 1 builds up the accurate analytic expression of
fault response, because of parametric fault of component𝑋. It
also tells us that based on the voltage phasor measurement or
estimation in a few fault states (e.g., open-circuit state, short-
circuit state, and nominal state), one can induce all the fault
responses for any continuous parametric faults.

In particular, if component 𝑋 is resistance 𝑅 or capaci-
tance 𝐶, which means 𝑍

𝑥
= 𝑅
𝑥
or 𝑍
𝑥
= 𝑋
𝑥
= 1/𝑖𝜔𝐶

𝑥
,

“Theorem 2” is given as follows.

Theorem 2. The faulty response curve of voltage phasor 󳨀→𝑈
𝑜
=

󳨀→

𝑈
𝐹

𝑜
in Figure 1 can be determined by (14)-(15), respectively, if

the fault component 𝑋 is capacitance 𝐶
𝑥
or resistance 𝑅

𝑥
in

linear-analogue circuit.

Proof. Without loss of generality, let 𝑍
𝑥
= 𝑅
𝑥
+ 𝑖𝑋
𝑥
, 𝑍
𝑜
=

𝑅
𝑜
+ 𝑖𝑋
𝑜
, 󳨀󳨀→𝑈
𝑜𝑜
−
󳨀󳨀→
𝑈
𝑜𝑠
= 𝑎 + 𝑖𝑏, and 󳨀→𝑈

𝑜
−
󳨀󳨀→
𝑈
𝑜𝑠
= 𝑈re + 𝑖𝑈im, then

(12) is given as follows:

𝑅
𝑥
+ 𝑅
𝑜
=
(𝐴
1
𝑅
𝑜
− 𝐴
2
𝑋
𝑜
) (𝑈re − 𝑎)

(𝑈re − 𝑎)
2
+ (𝑈im − 𝑏)

2

+
(𝐴
2
𝑅
𝑜
+ 𝐴
1
𝑋
𝑜
) (𝑈im − 𝑏)

(𝑈re − 𝑎)
2
+ (𝑈im − 𝑏)

2

𝑋
𝑥
+ 𝑋
𝑜
=
(𝐴
2
𝑅
𝑜
+ 𝐴
1
𝑋
𝑜
) (𝑈re − 𝑎)

(𝑈re − 𝑎)
2
+ (𝑈im − 𝑏)

2

−
(𝐴
1
𝑅
𝑜
− 𝐴
2
𝑋
𝑜
) (𝑈im − 𝑏)

(𝑈re − 𝑎)
2
+ (𝑈im − 𝑏)

2
,

(12)

where 𝐴
1
= 𝑎𝑅
𝑜
− 𝑏𝑋
𝑜
, 𝐴
2
= 𝑏𝑅
𝑜
+ 𝑎𝑋
𝑜
.

Furthermore, the results of (12) lead to (13), when
component𝑋 is capacitance (𝑍

𝑥
= 𝚤𝑋
𝑥
, 𝑅
𝑥
= 0) or resistance

(𝑍
𝑥
= 𝑅
𝑥
,𝑋
𝑥
= 0) as follows:

(𝑈re − 𝑎)
2
+ (𝑈im − 𝑏)

2
− 𝐵
1
(𝑈re − 𝑎) + 𝐵2 (𝑈im − 𝑏) = 0,

(𝑈re − 𝑎)
2
+ (𝑈im − 𝑏)

2
− 𝐵
󸀠

1
(𝑈re − 𝑎) + 𝐵

󸀠

2
(𝑈im − 𝑏) = 0,

(13)

where 𝐵
1
= (𝐴
1
𝑅
𝑜
− 𝐴
2
𝑋
𝑜
)/𝑅
𝑜
, 𝐵
2
= (𝐴
2
𝑅
𝑜
+ 𝐴
1
𝑋
𝑜
)/𝑅
𝑜
,

𝐵
󸀠

1
= (𝐴
2
𝑅
𝑜
+ 𝐴
1
𝑋
𝑜
)/𝑋
𝑜
, and 𝐵󸀠

2
= (𝐴
1
𝑅
𝑜
− 𝐴
2
𝑋
𝑜
)/𝑋
𝑜
.

It is obvious to find that 󳨀→𝑈
𝑜
−
󳨀󳨀→
𝑈
𝑜𝑜
= (𝑈re − 𝑎) + 𝑖(𝑈im − 𝑏).

Then if one sets󳨀→𝑈
𝑜
= 𝑈

re
𝑜
+𝑖𝑈

im
𝑜

and󳨀󳨀→𝑈
𝑜𝑜
= 𝑈

re
𝑜𝑜
+𝑖𝑈

im
𝑜𝑜
, (14)-(15)

can be found as follows:

(𝑈
re
𝑜
)
2
+ (𝑈

im
𝑜
)
2

− 𝐶
1
𝑈

re
𝑜
− 𝐶
2
𝑈

im
𝑜
= 𝐶, (14)

(𝑈
re
𝑜
)
2
+ (𝑈

im
𝑜
)
2

− 𝐶
󸀠

1
𝑈

re
𝑜
− 𝐶
󸀠

2
𝑈

im
𝑜
= 𝐶
󸀠
, (15)

where 𝐶
1
= 2𝑈

re
𝑜𝑜
+ 𝐵
1
, 𝐶
2
= 2𝑈

im
𝑜𝑜
− 𝐵
2
,𝐶󸀠
1
= 2𝑈

re
𝑜𝑜
+ 𝐵
󸀠

1
,

𝐶
󸀠

2
= 2𝑈

im
𝑜𝑜
− 𝐵
󸀠

2
, 𝐶 = −(𝑎

2
+ 𝑏
2
) − 𝐵
1
𝑎 + 𝐵

2
𝑏, and 𝐶󸀠 =

−(𝑎
2
+ 𝑏
2
) − 𝐵
󸀠

1
𝑎 + 𝐵
󸀠

2
𝑏.

2.2. Voltage Phasor Measurement and Estimation. In the
Theorems 1 and 2, we know that by separately measuring
voltage phasor

󳨀→
𝑈
𝑟

𝑜
in the nominal circuit state and 󳨀󳨀→𝑈

𝑜𝑜
(󳨀󳨀→𝑈
𝑜𝑠
)

in open (short)-circuit state, one can calculate the value of
the output voltage phasor in all parametric fault states, which
benefit us to accomplish the circuit fault modeling.

However, the open-circuit and short-circuit faults are the
most catastrophic fault states, which means the correspond-
ing analogue circuit in these states has to be destroyed in
both physical structure and circuit function; that is, one can
not drive the actual circuit into these two dangerous states
for constructing the fault modeling. Therefore, there are 2
possible means to solve this tricky thing: (1) faulty responses
are simulated in PSpice-modeled circuit, which has been
utilized in the SBT method; (2) faulty responses can also
be estimated through the voltage phasor measurement and
calculation as shown in this section.

In Figure 2(a), when the circuit is in nominal state, one
can set stimulus 󳨀→𝑈

𝐼
and measure the voltage phasor

󳨀→
𝑈
𝑎

𝑥

through component 𝑋’s branch as well as locate the value
of
󳨀→
𝑈
𝑎

𝑜
. Furthermore, in Figure 2(b), by adding an auxiliary

stimulus with voltage phasor stimuli representation of
󳨀→

𝑈
𝑏

𝑥
in

Figure 2(b), in this case, the voltage phasor at 𝑇
𝑜
will be

󳨀→

𝑈
𝑏

𝑜
̸=

󳨀→
𝑈
𝑎

𝑜
, while the value of

󳨀→
𝑈
𝑎

𝑥
turns to

󳨀→

𝑈
𝑏

𝑥
. After this, Lemma 3 is

acquired.

Lemma 3. The faulty response 󳨀󳨀→𝑈
𝑜𝑠
, which is caused by short-

circuit fault of component𝑋, is as follows:

󳨀󳨀→
𝑈
𝑜𝑠
=

󳨀→

𝑈
𝑏

𝑜
−

󳨀→

𝑈
𝐵

𝑜
. (16)
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Figure 2: Short-circuit response evaluation in linear circuit.

Proof. According to the superposition theorem in linear

circuit theories and (3),
󳨀→

𝑈
𝑏

𝑜
=
󳨀󳨀→
𝑈
𝑜𝑠
+ ∙𝑎
𝑥

󳨀→

𝑈
𝑏

𝑥
. Furthermore,

the value of
󳨀→

𝑈
𝐵

𝑜
is the CUT output at 𝑇

𝑜
when the original

input stimulus 󳨀→𝑈
𝐼
is shortened but the auxiliary stimulus

󳨀→

𝑈
𝑏

𝑥

is preserved; that is,
󳨀→

𝑈
𝐵

𝑜
= ∙𝑎
𝑥

󳨀→

𝑈
𝑏

𝑥
. As a result, Lemma 3 is

founded.

Lemma 3 means that, with the measurement of voltage
phasor in Figures 2(b) and 2(d), one can estimate the short-
circuit response at 𝑇

𝑜
before the potential faulty component

𝑋 is involved in short-circuit fault state. The cost is the input
stimulus 󳨀→𝑈

𝐼
should be shortened in the process of voltage

measurement. In order not to shorten any stimulus or port
for the estimation of 󳨀󳨀→𝑈

𝑜𝑠
, Theorem 4 is established.

Theorem 4. The faulty response 󳨀󳨀→𝑈
𝑜𝑠
, which is caused by short-

circuit fault of component𝑋, is as follows:

󳨀󳨀→
𝑈
𝑜𝑠
=

󳨀→
𝑈
𝑎

𝑜

󳨀→

𝑈
𝑏

𝑥
−

󳨀→

𝑈
𝑏

𝑜

󳨀→
𝑈
𝑎

𝑥

󳨀→

𝑈
𝑏

𝑥
−
󳨀→
𝑈
𝑎

𝑥

. (17)

Proof. According to the process of deduction of Lemma 3, it

is apparent to know that
󳨀→

𝑈
𝐵

𝑜
= ∙𝑎
𝑥

󳨀→

𝑈
𝑏

𝑥
. By substituting it to (6),

one obtains the following equations:

󳨀󳨀→
𝑈
𝑜𝑜
=
󳨀󳨀→
𝑈
𝑜𝑠
+

󳨀→

𝑈
𝐵

𝑜

󳨀→

𝑈
𝑏

𝑜

󳨀󳨀󳨀→
𝑈
𝑂𝑋
. (18)

Furthermore, when circuit is in normal state, the complex
impedance of 𝑋 is 𝑍𝑎

𝑥
, and then there is the following

equation:

󳨀󳨀󳨀→
𝑈
𝑂𝑋
=
󳨀→
𝑈
𝑎

𝑥
(
∙𝑍
𝑜

∙𝑍𝑎
𝑥

+ 1) . (19)

Based on (6) and (18)-(19), one further knows the follow-
ing equation:

(
󳨀󳨀→
𝑈
𝑜𝑜
−
󳨀󳨀→
𝑈
𝑜𝑠
)(1 −

󳨀→

𝑈
𝐵

𝑜

󳨀→
𝑈
𝑎

𝑥

󳨀→

𝑈
𝑏

𝑥
(
󳨀→
𝑈
𝑎

𝑜
−
󳨀󳨀→
𝑈
𝑜𝑠
)

) = 0. (20)

In general case, 󳨀󳨀→𝑈
𝑜𝑜
−
󳨀󳨀→
𝑈
𝑜𝑠

̸= 0; that is, 1− (
󳨀→

𝑈
𝐵

𝑜

󳨀→
𝑈
𝑎

𝑥
/

󳨀→

𝑈
𝑏

𝑥
(
󳨀→
𝑈
𝑎

𝑜
−

󳨀󳨀→
𝑈
𝑜𝑠
)) = 0. Hence, with

󳨀→

𝑈
𝐵

𝑜
= ∙𝑎
𝑥

󳨀→

𝑈
𝑏

𝑥
, one can get the solution

of Theorem 2.

According to Theorems 1 and 2, if one can further obtain
the value of 󳨀󳨀→𝑈

𝑜𝑜
, the fault modeling with voltage phasor will

be established. In fact, the faulty response of 󳨀󳨀→𝑈
𝑜𝑜

can be
calculated withTheorem 5.

Theorem 5. If one replaces the auxiliary stimulus in
Figure 2(b) with an auxiliary branch 𝑋󸀠󸀠 owning impedance

∙𝑍
𝑎
, then the output response

󳨀→

𝑈
𝑏

𝑜
=
󳨀󳨀→
𝑈
𝑜𝑏
. Thus, the value of

faulty response 󳨀󳨀→𝑈
𝑜𝑜

at 𝑇
𝑜
, which is caused by open-circuit

fault of component 𝑋, is estimated through (21). Here,
∙𝑍
//
= ∙𝑍
𝑎
// ∙ 𝑍

𝑎

𝑥
as follows:

󳨀󳨀→
𝑈
𝑜𝑜
=
󳨀󳨀→
𝑈
𝑜𝑏
+

󳨀→
𝑈
𝑎

𝑜
−
󳨀󳨀→
𝑈
𝑜𝑏

1 + (∙𝑍
//
/ ∙ 𝑍𝑎
𝑥
) ((

󳨀→
𝑈
𝑎

𝑜
−
󳨀󳨀→
𝑈
𝑜𝑠
) / (

󳨀󳨀→
𝑈
𝑜𝑏
−
󳨀󳨀→
𝑈
𝑜𝑠
))

.

(21)

Proof. Assume that the faulty complex impedance of 𝑋 is
∙𝑍
𝐹

𝑥
, while the nominal complex impedance of𝑋 is ∙𝑍𝑟

𝑥
; then

according to (10)-(11), (22) is as follows:

∙𝑍
𝐹

𝑥
= − ∙ 𝑍

𝑟

𝑥

(

󳨀→

𝑈
𝐹

𝑜
−
󳨀󳨀→
𝑈
𝑜𝑠
)(
󳨀→
𝑈
𝑟

𝑜
−
󳨀󳨀→
𝑈
𝑜𝑜
)

(

󳨀→

𝑈
𝐹

𝑜
−
󳨀󳨀→
𝑈
𝑜𝑜
)(
󳨀→
𝑈
𝑟

𝑜
−
󳨀󳨀→
𝑈
𝑜𝑠
)

. (22)

According to (22), there should be (23), in which
󳨀→

𝑈
𝐹

𝑜
=

󳨀󳨀→
𝑈
𝑜𝑏
,
󳨀→
𝑈
𝑟

𝑜
=
󳨀→
𝑈
𝑎

𝑜
and ∙𝑍𝑟

𝑥
= ∙𝑍
𝑎

𝑥
:

∙𝑍
//
= ∙𝑍
𝑎

𝑥
+

(
󳨀󳨀→
𝑈
𝑜𝑏
−
󳨀󳨀→
𝑈
𝑜𝑠
) (
󳨀→
𝑈
𝑎

𝑜
−
󳨀󳨀→
𝑈
𝑜𝑜
)

(
󳨀󳨀→
𝑈
𝑜𝑏
−
󳨀󳨀→
𝑈
𝑜𝑜
) (
󳨀→
𝑈
𝑎

𝑜
−
󳨀󳨀→
𝑈
𝑜𝑠
)

. (23)

At last,Theorem 5 is established by the result of (23).

In short, the paralleled impedance of ∙𝑍
𝑎
achieves the

impedance transformation inTheorem 5; then the hard-fault
state (open-circuit) influence can be estimated with the help
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of auxiliary branch 𝑋󸀠󸀠 and other circuit responses (e.g., 󳨀󳨀→𝑈
𝑜𝑏
,

󳨀󳨀→
𝑈
𝑜𝑠
).

2.3. Tolerance Influence on the Voltage Phasor. According to
(9) inTheorem 1, Lemma 6 is found.

Lemma 6. Set the faulty value of component𝑋 to ∙𝑍𝐹
𝑥
= 𝑍
𝐹

𝑥𝑟
+

𝑖𝑍
𝐹

𝑥𝑖
, and the corresponding circuit output voltage phasor at 𝑇

𝑜

is
󳨀→

𝑈
𝐹

𝑜
= 𝑈
𝐹

𝑜𝑟
+𝑖𝑈
𝐹

𝑜𝑖
; thenwithin the tolerance circumstance, there

are 2 continuous functions shown as follows:

𝑈
𝐹

𝑜𝑟
= ℏ(∙𝑍

𝐹

𝑥
,

󳨀󳨀󳨀󳨀→

𝑈
Tor
𝑜𝑜

,

󳨀󳨀󳨀󳨀→

𝑈
Tor
𝑜𝑠

,

󳨀󳨀󳨀󳨀→

𝑈
Tor
𝑟𝑜

) ,

𝑈
𝐹

𝑜𝑖
= 𝑔(∙𝑍

𝐹

𝑥
,

󳨀󳨀󳨀󳨀→

𝑈
Tor
𝑜𝑜

,

󳨀󳨀󳨀󳨀→

𝑈
Tor
𝑜𝑠

,

󳨀󳨀󳨀󳨀→

𝑈
Tor
𝑟𝑜

) ,

(24)

where
󳨀󳨀󳨀󳨀→

𝑈
Tor
𝑜𝑜

(
󳨀󳨀󳨀󳨀→

𝑈
Tor
𝑜𝑠

) is obtained, when component 𝑋 is in the
open-circuit state (short-circuit state) with all other fault-free
components according to component tolerance. And the value of
󳨀󳨀󳨀󳨀→

𝑈
Tor
𝑟𝑜

ismeasured in the case that all components are set around
the nominal component values within the tolerance range.

Proof. According to (9), one can assure that there are 2
equations without consideration of tolerance:

𝑈
𝐹

𝑜𝑟
= ℏ (∙𝑍

𝐹

𝑥
,
󳨀󳨀→
𝑈
𝑜𝑜
,
󳨀󳨀→
𝑈
𝑜𝑠
,
󳨀󳨀→
𝑈
𝑟𝑜
) ,

𝑈
𝐹

𝑜𝑖
= 𝑔 (∙𝑍

𝐹

𝑥
,
󳨀󳨀→
𝑈
𝑜𝑜
,
󳨀󳨀→
𝑈
𝑜𝑠
,
󳨀󳨀→
𝑈
𝑟𝑜
) ,

(25)

where 󳨀󳨀→𝑈
𝑟𝑜
=
󳨀→
𝑈
𝑟

𝑜
. Therefore, Lemma 6 is correct while taking

the account of tolerance influence in the analogue circuit.

On the basis of Lemma 6 and the basic principle of
continuous function, one can conclude that if the faulty value
of component 𝑋 varies continuously in a given parametric
range as shown in (26), the corresponding value of voltage
phasor at the circuit output 𝑇

𝑜
should be bounded in (27) as

follows:

𝑍
𝐹

𝑥𝑟
∈ [{𝑍

𝐹

𝑥𝑟
}min, {𝑍

𝐹

𝑥𝑟
}max] , 𝑍

𝐹

𝑥𝑖
∈ [{𝑍

𝐹

𝑥𝑖
}min, {𝑍

𝐹

𝑥𝑖
}max] ,

(26)

𝑈
𝐹

𝑜𝑟
∈ [{𝑈

𝐹

𝑜𝑟
}min, {𝑈

𝐹

𝑜𝑟
}max] , 𝑈

𝐹

𝑜𝑖
∈ [{𝑈

𝐹

𝑜𝑖
}min, {𝑈

𝐹

𝑜𝑖
}max] .

(27)

Without loss of generality, if the potential faulty com-
ponent 𝑋 is resistance 𝑅

𝑥
, whose nominal value is 𝑅

𝑥0
and

the component tolerance is ±𝛼, then the component value
variation within tolerance range is [𝑅

𝑥0
(1 − 𝛼), 𝑅

𝑥0
(1 + 𝛼)].

Furthermore, the maximum range of component parameters
is [𝑅
𝑥0
(1 − 𝛽), 𝑅

𝑥0
(1 + 𝛽)], 𝛽 > 𝛼. Then Lemma 7 and

Theorem 8 can be listed.

Lemma 7. Assume that component 𝑅 owns the following
parametric values: (a)𝑅

𝑥1
= ((1+𝛽)/(1+𝛼))𝑅

𝑥0
and (b)𝑅

𝑥2
=

((1 −𝛽)/(1 − 𝛼))𝑅
𝑥0
, and these values satisfy: (1) 𝑅

𝑥1
(1 − 𝛼) ≤

𝑅
𝑥0
(1 + 𝛼); (2) 𝑅

𝑥1
(1 + 𝛼) ≥ 𝑅

𝑥0
(1 − 𝛼)); then the conclusions

are made in (28) as follows:

∀𝑈
𝛽

𝑜𝑟
∈ 𝐴
𝑟
= ∪
𝜅=0,1,2

[{𝑈
𝜅

𝑜𝑟
}min, {𝑈

𝜅

𝑜𝑟
}max] ,

∀𝑈
𝛽

𝑜𝑖
∈ 𝐴
𝑖
= ∪
𝜅=0,1,2

[{𝑈
𝜅

𝑜𝑖
}min, {𝑈

𝜅

𝑜𝑖
}max] ,

(28)

where the potential faulty component 𝑅
𝑥
owns the parametric

range of [𝑅𝜅
𝑥
(1 − 𝛼), 𝑅

𝜅

𝑥
(1 + 𝛼)], 𝜅 = 0, 1, 2, when the

corresponding voltage phasor value is {
󳨀→
𝑈
𝜅

𝑜
} = {𝑈

𝜅

𝑜𝑟
} + 𝑖{𝑈

𝜅

𝑜𝑖
}.

And
󳨀→

𝑈
𝛽

𝑜
= 𝑈
𝛽

𝑜𝑟
+ 𝚤𝑈
𝛽

𝑜𝑖
is the voltage phasor corresponding to

the maximum range of component parameters being [𝑅
𝑥0
(1 −

𝛽), 𝑅
𝑥0
(1 + 𝛽)], 𝛽 > 𝛼.

Proof. If component 𝑅
𝑥
can take these values: 𝑅

𝑥1
= ((1 +

𝛽)/(1 + 𝛼))𝑅
𝑥0

and 𝑅
𝑥2
= ((1 − 𝛽)/(1 − 𝛼))𝑅

𝑥0
, which means

𝑅
𝑥1
(1 − 𝛼) ≤ 𝑅

𝑥0
(1 + 𝛼) and 𝑅

𝑥1
(1 + 𝛼) ≥ 𝑅

𝑥0
(1 − 𝛼), then

[𝑅
𝑥0
(1−𝛽), 𝑅

𝑥0
(1+𝛽)]=∪

𝜅=0,1,2
[𝑅
𝑥0
(1−𝛼), 𝑅

𝑥0
(1+𝛼)], 𝛽 > 𝛼.

Therefore, if the value of component𝑋(𝑅
𝑥
) varies within

parametric range of [𝑅
𝑥0
(1 −𝛽), 𝑅

𝑥0
(1 +𝛽)], according to the

continuous function in (24), Lemma 7 is established.

Theorem 8. The accurate parametric range of 𝑈𝐹
𝑜𝑟
(𝑈
𝐹

𝑜𝑖
) is

[{𝑈
𝐹

𝑜𝑟
}min, {𝑈

𝐹

𝑜𝑟
}max]([{𝑈

𝐹

𝑜𝑖
}min, {𝑈

𝐹

𝑜𝑖
}max]), which can be deter-

mined according to (29), when the faulty component value is
𝑅
𝑥0
(1 − 𝛽) ≤ 𝑍

𝐹

𝑥
= 𝑅
𝐹

𝑥
< 𝑅
𝑥0
(1 − 𝛼) or 𝑅

𝑥0
(1 + 𝛼) < 𝑍

𝐹

𝑥
=

𝑅
𝐹

𝑥
≤ 𝑅
𝑥0
(1 + 𝛽). Consider

[{𝑈
𝐹

𝑜𝑟
}min, {𝑈

𝐹

𝑜𝑟
}max] = 𝐴𝑟 ∩ [{𝑈

Tor
𝑟𝑜𝑟

}min, {𝑈
Tor
𝑟𝑜𝑟

}max],

[{𝑈
𝐹

𝑜𝑖
}min, {𝑈

𝐹

𝑜𝑖
}max] = 𝐴 𝑖 ∩ [{𝑈

Tor
𝑟𝑜𝑖

}min, {𝑈
Tor
𝑟𝑜𝑖

}max],

(29)

where 𝐴
𝑟

= ∪
𝜅=0,1,2

[{𝑈
𝜅

𝑜𝑟
}min, {𝑈

𝜅

𝑜𝑟
}max] and 𝐴

𝑖
=

∪
𝜅=0,1,2

[{𝑈
𝜅

𝑜𝑖
}min, {𝑈

𝜅

𝑜𝑖
}max] are shown in Lemma 7, and 󳨀󳨀→𝑈

𝑟𝑜
=

𝑈
𝑟𝑜𝑟
+ 𝑖𝑈
𝑟𝑜𝑖
, which has been given in Lemma 6.

Lemma 7 and Theorem 8 tell us that in tolerance-
influencing circuit, if the potential faulty component is in
a continuous faulty parametric range, the corresponding
variation range of faulty response at 𝑇

𝑜
can be estimated

through the simulation or measurement of voltage phasor in
some particular discrete faulty parameter cases. Or in other
words, the limited simulations or measurements in practice
could bring us accurate faulty response range estimation.

Furthermore, in the simulation or measurement of volt-
age phasor in discrete faulty parameter cases, Lemma 9 is
shown.

Lemma 9. As for a general linear-analogue circuit, it can be
considered as a network with 𝑏 branches and 𝑛 + 1 nodes (one
of the nodes is reference node, e.g., ground). Let𝑌

𝑛
be the branch

complex admittance matrix, 𝑒
𝑛
represent the voltage phasor

measurement vector, and 𝑠
𝑛
be a complex current vector, then

it is obvious to find (30) as follows:

𝑌
𝑛
𝑒
𝑛
= 𝑠
𝑛
. (30)
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The tolerance and discrete fault values influencing the cor-
responding branches (components) introduce these increment
matrices: Δ𝑌

𝑛
, Δ𝑒
𝑛
, and Δ𝑠

𝑛
as follows:

(𝑌
𝑛
+ Δ𝑌
𝑛
) (𝑒
𝑛
+ Δ𝑒
𝑛
) = 𝑠
𝑛
+ Δ𝑠
𝑛
. (31)

Without loss of generality, assume that the excitation
current is fixed; then Δ𝑠

𝑛
= 0. As a result, Theorem 10 is

established.

Theorem 10. Given a discrete faulty parameter for component
𝑋 through its branch, the corresponding voltage phasor (real
part and image part) follows normal distribution in the
tolerance-influencing circuit, if (a) the elements in the matrix
Δ𝑌 for all fault-free components follow the normal distribution;
(b) Δ𝑠 = 0.

Proof. Due to the solution of (30)-(31) and Δ𝑠 = 0, one can
get

Δ𝑒
𝑛
= −(𝑌

𝑛
+ Δ𝑌
𝑛
)
−1
Δ𝑌
𝑛
𝑒
𝑛
= − [𝑌

−1

𝑛
Δ𝑌
𝑛
𝑒
𝑛
+ 𝑒
𝑛
] . (32)

Therefore, each element of Δ𝑒
𝑛
can be linearly expressed

by the elements in matrix Δ𝑌
𝑛
. And the corresponding

voltage phasor (real part and image part) follows normal
distribution if the elements in the matrix Δ𝑌 follow the
normal distribution.

Theorem 10 states that the complex parametric faults
(discrete fault values) lead to the faulty responses at𝑇

𝑜
, whose

real part and image part number should conform to the
normal distribution.

2.4. Fault Diagnosis in Linear-Analogue Circuit. In a linear-
analogue circuit under test (CUT), the estimated range of
voltage phasor is represented in Table 1. Here, the fault states
set is 𝐹 = {𝐹

𝜅
}, 𝜅 = 1, 2, . . . , ℓ. And ℓ is the number of fault

states in linear-analogue circuit. Each fault state can represent
one of following continuous fault parameter ranges: (a)𝑍𝐹𝜅

𝑥
=

(𝑍
𝑟

𝑥
(1 + 𝛼), 𝑍

𝑟

𝑥
(1 + 𝛽)] or 𝑍𝐹𝜅

𝑥
= [𝑍
𝑟

𝑥
(1 − 𝛽), 𝑍

𝑟

𝑥
(1 − 𝛼)) for

𝑖th component branch in the circuit, where 𝛽 > 𝛼 and the
tolerance is ±𝛼 and (b) 𝑍𝐹𝜅

𝑥
= (𝑍
𝐹
𝑥

𝑥
(1 − 𝛾), 𝑍

𝐹
𝑥

𝑥
(1 + 𝛾)] for 𝑖th

component in the circuit, where the component tolerance ±𝛼
(𝛾 ≥ 𝛼) exerts on all other fault-free elements in the circuit
and𝑍𝐹𝑥

𝑥
is the representative discrete fault value as the central

value of parametric range.
Considering the voltage phasor is dependent on the input

stimulus at test-node 𝑇
𝑥
, which could variate with different

test-frequency of signal; thus, the test-frequency set can be
shown in the columns of Table 1: 𝑄

𝐹
= {𝑄
𝑚

𝐹
}, 𝑚 = 1, 2, . . . , ♭,

for the best fault diagnosis.
The corresponding voltage phasor value range in the rows

of Table 1 can be separated into two parts: one is from the
real part of voltage phasor value (e.g., [{𝑈𝐹𝜅

𝑜𝑟
}min, {𝑈

𝐹
𝜅

𝑜𝑟
}max],

1 ≤ 𝜅 ≤ ℓ), while the other is from the image part of
voltage phasor value (e.g., [{𝑈𝐹𝜅

𝑜𝑖
}min, {𝑈

𝐹
𝜅

𝑜𝑖
}max], 1 ≤ 𝜅 ≤ ℓ).

Therefore, based on the corresponding values in Table 1, the
fault diagnosis for a set of parametric faults is categorized
into fault detection and isolation: (a) a fault can be detected

if the corresponding value of voltage phasor range owns no
parametric overlaps with the fault-free state. (b) Meanwhile,
a fault can be isolated meaning that this fault state can
be distinguished from all other fault states because of no
intersection of complex voltages range.

To be convenient speaking in the following sections, one
sets the representation of 𝑅𝜅

𝑟
= [{𝑈

𝐹
𝜅

𝑜𝑟
}min, {𝑈

𝐹
𝜅

𝑜𝑟
}max] and 𝑅

𝜅

𝑖
=

[{𝑈
𝐹
𝜅

𝑜𝑖
}min, {𝑈

𝐹
𝜅

𝑜𝑖
}max]]; then following functions are shown in

(33)-(34) as follows:

{
𝜒det {𝐹𝜅} = 1, if 𝑅𝜅

𝑟
∩ 𝑅
0

𝑟
= 0 or 𝑅𝜅

𝑖
∩ 𝑅
0

𝑖
= 0

𝜒det {𝐹𝜅} = 0, otherwise,
(33)

where 1 ≤ 𝜅 ≤ ℓ.

{
𝜒iso {𝐹𝜅

1,2

} = 1, if 𝑅𝜅1
𝑟
∩ 𝑅
𝜅
2

𝑟
= 0 or 𝑅𝜅1

𝑖
∩ 𝑅
𝜅
2

𝑖
= 0

𝜒iso {𝐹𝜅
1,2

} = 0, otherwise,
(34)

where 1 ≤ 𝜅
1
, 𝜅
2
≤ ℓ.

Then the result of fault diagnosis is measured through
fault detection rate (FDR) and fault isolation rate (FIR) as
follows:

(a) Fault detection rate (FDR): the ratio of fault states that
can be detected in a given fault states set as follows:

FDR =
∑
ℓ

𝜅=1
𝐹
𝜅

𝐿
, (35)

where 𝐿 = ℓ.
(b) Fault isolation rate (FIR): the ratio of fault states pair

can be isolated based on a given fault states pair set as
follows:

FIR =
∑
ℓ

𝜅=1
𝐹
𝜅
1,2

𝑁
, (36)

where𝑁 = ℓ(ℓ − 1)/2.

3. Computational Example

In this section, there are 2 representative examples to validate
the proposed fault diagnosis based on the voltage phasor
analysis in both tolerance-free and tolerance-influencing
circuit. To be simplifying the question, in the first example of
this section, the proposed method to estimate the parametric
fault response and hard-faults influence is concerned with
the theories from Theorem 1 and Theorems 4–8 and their
corresponding lemmas. After this, in the second example, one
can organize the complex voltages as what has been shown
in Table 1 and select appropriate test-signal frequencies; that
is, we can use these selected columns for fault diagnosis of
a given fault states set, in order to satisfy the requirement of
FIR ≥ 90% and FDR ≥ 90%.

3.1.Thomas Filter Example. Thefirst example circuit is shown
in Figure 3, while the circuit output is at 𝑇

3
. This example is

used to demonstrate the critical results of proposed method
for fault diagnosis based on complex voltages estimation, and
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Table 1: Voltage phasor-based fault diagnosis with tolerance.

𝑄
1

𝐹
𝑄
2

𝐹
⋅ ⋅ ⋅ 𝑄

♭

𝐹

𝐹
0

[{𝑈
𝐹
0

𝑜𝑟
}
min
, {𝑈
𝐹
0

𝑜𝑟
}
max
] [{𝑈

𝐹
0

𝑜𝑟
}
min
, {𝑈
𝐹
0

𝑜𝑟
}
max
] ⋅ ⋅ ⋅ [{𝑈

𝐹
0

𝑜𝑟
}
min
, {𝑈
𝐹
0

𝑜𝑟
}
max
]

[{𝑈
𝐹
0

𝑜𝑖
}
min
, {𝑈
𝐹
0

𝑜𝑖
}
max
] [{𝑈

𝐹
0

𝑜𝑖
}
min
, {𝑈
𝐹
0

𝑜𝑖
}
max
] ⋅ ⋅ ⋅ [{𝑈

𝐹
0

𝑜𝑖
}
min
, {𝑈
𝐹
0

𝑜𝑖
}
max
]

𝐹
1

[{𝑈
𝐹
1

𝑜𝑟
}
min
, {𝑈
𝐹
1

𝑜𝑟
}
max
] [{𝑈

𝐹
1

𝑜𝑟
}
min
, {𝑈
𝐹
1

𝑜𝑟
}
max
] ⋅ ⋅ ⋅ [{𝑈

𝐹
1

𝑜𝑟
}
min
, {𝑈
𝐹

𝑜𝑟
}
max
]

[{𝑈
𝐹
1

𝑜𝑖
}
min
, {𝑈
𝐹
1

𝑜𝑖
}
max
] [{𝑈

𝐹
1

𝑜𝑖
}
min
, {𝑈
𝐹
1

𝑜𝑖
}
max
] ⋅ ⋅ ⋅ [{𝑈

𝐹
1

𝑜𝑖
}
min
, {𝑈
𝐹
0

𝑜𝑖
}
max
]

𝐹
2

[{𝑈
𝐹
2

𝑜𝑟
}
min
, {𝑈
𝐹
2

𝑜𝑟
}
max
] [{𝑈

𝐹
2

𝑜𝑟
}
min
, {𝑈
𝐹
2

𝑜𝑟
}
max
] ⋅ ⋅ ⋅ [{𝑈

𝐹
2

𝑜𝑟
}
min
, {𝑈
𝐹
2

𝑜𝑟
}
max
]

[{𝑈
𝐹
2

𝑜𝑖
}
min
, {𝑈
𝐹
2

𝑜𝑖
}
max
] [{𝑈

𝐹
2

𝑜𝑖
}
min
, {𝑈
𝐹
2

𝑜𝑖
}
max
] ⋅ ⋅ ⋅ [{𝑈

𝐹
1

𝑜𝑖
}
min
, {𝑈
𝐹
0

𝑜𝑖
}
max
]

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

𝐹
ℓ

[{𝑈
𝐹
ℓ

𝑜𝑟
}
min
, {𝑈
𝐹
ℓ

𝑜𝑟
}
max
] [{𝑈

𝐹
ℓ

𝑜𝑟
}
min
, {𝑈
𝐹
ℓ

𝑜𝑟
}
max
] ⋅ ⋅ ⋅ [{𝑈

𝐹
ℓ

𝑜𝑟
}
min
, {𝑈
𝐹
ℓ

𝑜𝑟
}
max
]

[{𝑈
𝐹
ℓ

𝑜𝑖
}
min
, {𝑈
𝐹
ℓ

𝑜𝑖
}
max
] [{𝑈

𝐹
ℓ

𝑜𝑖
}
min
, {𝑈
𝐹
ℓ

𝑜𝑖
}
max
] ⋅ ⋅ ⋅ [{𝑈

𝐹
ℓ

𝑜𝑖
}
min
, {𝑈
𝐹
ℓ

𝑜𝑖
}
max
]

Table 2: Component values in circuit of Figure 3.

Nominal values Discrete fault values Parametric faults limit
𝑅
1

1 kΩ 1.50 kΩ [1.28 kΩ, 1.73 kΩ]
𝑅
2

1 kΩ 5.00 kΩ [4.25 kΩ, 5.75 kΩ]
𝑅
3

1 kΩ 1.25 kΩ [1.06 kΩ, 1.44 kΩ]
𝑅
4

1 kΩ 0.75 kΩ [0.64 kΩ, 0.86 kΩ]
𝑅
5

1 kΩ 0.50 kΩ [0.43 kΩ, 0.58 kΩ]
𝑅
6

1 kΩ 1.20 kΩ [1.02 kΩ, 1.38 kΩ]
𝐶
1

100 nF 50.00 nF [42.5 nF, 57.5 nF]
𝐶
2

100 nF 150.00 nF [127.5 nF, 172.5 nF]

the parametric faults are as follows: (a) discrete fault values
in tolerance-free case as shown in Tables 2 and 4; (b) the
parameter of faulty components varies from 85% to 115% of
its discrete fault values in Table 5. Here, the former one is to
testify the accuracy of Theorems 1, 4 , and 5, while the latter
one is used to demonstrate the process of faulty response
estimation with consideration of tolerance and continuous
parametric fault pattern diagnosis in the linear-analogue
circuit.

In addition, in this circuit example, the stimulus signal
(green sketch in Figure 4) is as follows: (a) the amplitude is
√2 (V); (b) the test-frequency is set as 1.5 kHz; (c) the phase
of this signal is zero. Furthermore, the circuit response in
nominal circuit state is also given in Figure 4 (red sketch),
which satisfies: (a) the amplitude is 9.67 (V); (b) the test-
frequency is set as 1.5 kHz; (c) the phase of this signal is
−0.69. Therefore, according to the relationship between (1)
and (2), the corresponding phasor is 1.00+ 𝚤0.00 (V) (−5.23+
𝚤4.41 (V)).

In order to estimate the faulty responses because of
parametric faults in second column of Table 2, one should
primarily estimate all hard-faults influence in this circuit.
For instance, as for test-node 𝑇

3
, if 𝑅

3
is assumed to be

the potential parametric fault component, the corresponding
circuit output voltage phasor at test-node 𝑇

3
could be esti-

mated as the following procedure in the circuit with nominal
parametric values: (a) the circuit is in nominal state (fault-
free), and the stimulus is 󳨀→𝑈

𝐼
= 1.00 + 𝑖0.00 (V); (b) the

voltage phasor through 𝑅
3
branch is

󳨀→
𝑈
𝑎

𝑥
= −4.16 − 𝑖4.93 (V),

−→
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U
b

x

C1

C2

R1

R2

R3 R4

R5

R6

T1 T2

T3U1
U2 U3

−
−

−
+

+

+

Figure 3: TheThomas filter.
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Figure 4:The circuit stimulus (green) and response (red) in AC test.

and one can locate this complex value through the amplitude
and phase of sinusoidal signal at test-node 𝑇

1
; (c) as shown

in Figure 3, one adds an auxiliary voltage stimulus
󳨀→

𝑈
𝑏

𝑥
=

1.00 + 𝑖0.00 (V), and at the same time, the voltage phasor

at test-node 𝑇
3
is
󳨀→

𝑈
𝑏

𝑜
= −1.10 − 𝑖0.94 (V); (d) let all these

measurements be in (17), the solution of (17) is 󳨀󳨀→𝑈
𝑜𝑠
= 0.00 +

𝑖0.00 (V).
The similar measurements and calculations are processed

for the other hard-faults influence estimations at test-node𝑇
3
;

after that, the corresponding voltage phasor values are shown
in Table 3.

These particular hard-fault responses can be used to eval-
uate the parametric fault responses through the solution of
Theorem 1. Here, some parametric fault examples are shown
in Table 4, and one gives a specific process of calculating fault
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Table 3: Voltage phasors for hard-faults at 𝑇
3
in Figure 3.

Fault response (short-circuit) Fault response (open-circuit)
𝑅
1

−1.13 + 𝑖1.06 × 10
6

0.00 + 𝑖0.00

𝑅
2

−0.00 − 𝑖0.00 −8.95 + 𝑖0.00

𝑅
3

−1.00 + 𝑖0.00 0.00 + 𝑖0.00

𝑅
4

−1.00 + 𝑖0.00 0.00 + 𝑖0.00

𝑅
5

0.00 + 𝑖0.00 −1.00 + 𝑖0.00

𝑅
6

−0.00 + 𝑖0.00 1.11 + 𝑖0.12

𝐶
1

0.00 + 𝑖0.00 −0.99 + 𝑖0.10

𝐶
2

0.00 + 𝑖0.00 −1.00 + 𝑖0.00

Table 4: Voltage phasors for parametric faults at test-node 𝑇
3
in

Figure 3.

𝑒{

󳨀→

𝑈
𝐹

𝑜
}

󳨀→

𝑈
𝐹

𝑜
Diagnosis

𝑅
1
= 1.50 kΩ −3.49 + 𝑖2.94 −3.49 + 𝑖2.94 Y

𝑅
2
= 5.00 kΩ 2.34 − 𝑖3.93 −2.33 + 𝑖3.93 Y

𝑅
3
= 1.25 kΩ 4.24 + 𝑖4.52 4.24 + 𝑖4.52 Y

𝑅
4
= 0.75 kΩ −2.86 + 𝑖0.61 −2.86 + 𝑖0.61 Y

𝑅
5
= 0.50 kΩ 1.22 + 𝑖0.30 1.22 + 𝑖0.30 Y

𝑅
6
= 1.20 kΩ 4.61 + 𝑖7.88 4.61 + 𝑖7.92 Y

𝐶
1
= 50.00 nF −1.75 + 𝑖0.33 −1.75 + 𝑖0.33 Y

𝐶
2
= 150.00 nF 2.55 + 𝑖1.08 2.55 + 𝑖1.08 Y

response at test-node 𝑇
3
, when 𝑅

2
is the fault component

(e.g., 𝑅
2
= 5 kΩ): (a) according to data in Table 3, 󳨀󳨀→𝑈

𝑜𝑠
=

−0.00 − 𝑖0.00 (V) and 󳨀󳨀→𝑈
𝑜𝑜

= −8.95 − 𝑖0.00 (V); (b) when
all the components are in nominal circuit state 𝑅

2
= 𝑍
𝑟

2
=

1 kΩ, the value of 󳨀→𝑈
𝑜
on test-node 𝑇

3
is −5.23 + 𝑖4.41 (V); (c)

according to (9), ∙𝑎 is (−0.00 + 𝑖1.19)/104; (d) let all these
measurements, estimations, and calculations be in (9); one
can find the estimated complex value 𝑒{

󳨀→

𝑈
𝐹

𝑜
} = 2.34−𝑖3.93 (V).

All the estimated results for the discrete parametric faults
in Table 2 (column 2) have been calculated based on (9)
and been listed in Table 4 (column 2). And the results from
actual circuit measurements have also been shown in the
third columnof Table 4. As a consequence, the corresponding
fault diagnosis can be well done because of the consistence of
data (e.g., the amplitude and phase reflected in the voltage
phasor value) in column 2 and 3 of Table 4.

The results in Tables 3 and 4 point out that the process
of calculating faulty response when the circuit suffered
from parametric fault without consideration of tolerance.
Furthermore, in order to form the corresponding faulty
response data while considering the tolerance influence, the
basic solutions of Lemmas 6 and 7 and Theorem 8 are used.
Here, one gives a example process to calculate the the voltage
phasor value range for 𝑅

1
at test-node 𝑇

3
. Here, the fault

component 𝑅
1
varies in [0.85𝑅𝐹

1
, 0.95𝑅

𝐹

1
) ∪ [1.05𝑅

𝐹

1
, 1.15𝑅

𝐹

1
],

and 𝑅𝐹
1
= 1.5 kΩ. Then, there exist these values: 𝑅

𝑥0
=

1.500 kΩ, 𝑅
𝑥1

= 1.643 kΩ, and 𝑅
𝑥2

= 1.342 kΩ (1.358 kΩ),
which lead to the following component value ranges with
respective 5% tolerance influence:

Table 5: Voltage phasor-based fault diagnosis.

𝑈
𝑜𝑟

1
𝑈
𝑜𝑖

1 Diagnosis
No faults [−5.50, −4.98] [4.01, 5.38] 100%
𝑅
2

[−4.01, −2.96] [2.12, 3.10] 100%
𝐶
1

[−2.64, −1.99] [0.24, 1.40] 100%
𝐶
2

[2.20, 3.64] [0.82, 2.36] 100%
1The voltage phasor response at 𝑇3 is

󳨀→
𝑈𝑜 = 𝑈𝑜𝑟 + 𝚤𝑈𝑜𝑖.

(a) [1.425 kΩ, 1.575 kΩ], (b) [1.561 kΩ, 1.725 kΩ],
(c) [1.275 kΩ, 1.409 kΩ], (d) [1.290 kΩ, 1.426 kΩ].

These parametric sets unify to cover the whole range
of [0.85𝑅𝐹

1
, 0.95𝑅

𝐹

1
) ∪ (1.05𝑅

𝐹

1
, 1.15𝑅

𝐹

1
] for component 𝑅

1
.

Therefore, by running 100 simulations around the component
value 𝑅

𝑥0
or 𝑅
𝑥1

or 𝑅
𝑥2
, with the consideration of tolerance

±5%, the complex response ranges (including real part range
𝑟 and image part range 𝑖 for each complex response) at test-
node 𝑇

3
are as follows:

(a) 𝑟 = [−3.67, −3.25], 𝑖 = [2.32, 3.10];
(b) 𝑟 = [−3.28, −2.96], 𝑖 = [2.12, 2.57];
(c) 𝑟 = [−4.01, −3.63], 𝑖 = [2.55, 2.99];
(d) 𝑟 = [−3.75, −3.64], 𝑖 = [2.55, 2.84].

Therefore, according to Lemma 7 and Theorem 8, the
faulty response range for component𝑅

1
= [0.85𝑅

𝐹

1
, 0.95𝑅

𝐹

1
)∪

(1.05𝑅
𝐹

1
, 1.15𝑅

𝐹

1
] at the test-node 𝑇

3
is as follows:

(a) [{𝑈𝐹
𝑜𝑟
}min, {𝑈

𝐹

𝑜𝑟
}max] = [2.96, 4.01] ∩ [4.98, 5.50] =

[2.96, 4.01];
(b) [{𝑈𝐹

𝑜𝑖
}min, {𝑈

𝐹

𝑜𝑖
}max] = [2.12, 3.10] ∩ [4.01, 5.38] =

[2.12, 3.10].

Take some representative parametric faults in Table 5
into account; the corresponding fault states are continuous
fault component values in a given bounded parametric
varying range. And the other fault-free components’ values
are randomly selected around their corresponding nominal
values, while the tolerance is ±𝛼 = ±5%. Here, according to
the contents in Table 5, it is obvious to find both of the values
of FDR and FIR are 100% for these 3 parametric faults.

3.2. Sallen-Key Filter Example. The proposed fault diagnosis
method will be testified in another representative linear
circuit: Sallen-Key filter example. In this section, the nominal
component value is as follows: 𝑅

1
= 1 kΩ; 𝑅

2
= 3 kΩ; 𝑅

3
=

2 kΩ; 𝑅
4
= 4 kΩ; 𝑅

5
= 6 kΩ; 𝐶

1
, 𝐶
2
= 5 nF. Different from

the discussion in the previous subsection, the test-frequencies
of sinusoidal signal are carefully selected according to the
fault response curves determined by Theorem 2. And all the
candidate test-signal frequencies eventually construct a test-
frequencies set 𝑄 = 𝑄𝚤

𝐹
, 𝚤 = 1, 2, . . . , ♭.

The number of ♭ (test-frequencies numbers) is quite
dependent on the number of systematic parameter in transfer
function. For instance, in this example, the transfer function
is in (37). Therefore, there are at most 3 test-frequencies



Mathematical Problems in Engineering 9

−→
Uo

−→
UI

R1

R2

R3 R4

R5

C1

C2

To

U1

−

+

Figure 5: The Sallen-Key filter circuit.
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Figure 6: Complex faulty response curve for each component,
where R-axis represents 𝑈re

𝑜
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𝑜
.

required, in order to determine all the systematic parameter
in (37). Consider

ℏ (𝑠) = (
(𝑅
5
+ 𝑅
4
)

𝑅
1
𝑅
4
𝐶
1

𝑠)

× (𝑠
2
+ (

1

𝐶
2
𝑅
3

+
1

𝐶
1
𝑅
1

+
1

𝐶
1
𝑅
3

−
𝑅
5

𝐶
1
𝑅
2
𝑅
4

) 𝑠

+
(𝑅
1
+ 𝑅
2
)

𝐶
1
𝐶
2
𝑅
1
𝑅
2
𝑅
3

)

−1

.

(37)

Note that, in this example, if the faulty component can
own all possible parametric fault values (0 ≤ ‖𝑍𝐹

𝑥
‖ < ∞), and

the corresponding stimulus signal is√2 sin (2∗𝜋∗3000𝑡−0),
then the corresponding faulty response curve is shown in
Figure 6 for each component. With Theorem 2, these curves
are determined according to equations as follows: (a) 𝑅

1
:

(𝑈
re
𝑜
)
2
+(𝑈

im
𝑜
)
2
−1.86𝑈

re
𝑜
−1.21𝑈

im
𝑜
= 0. (b)𝑅

2
: (𝑈re
𝑜
)
2
+(𝑈

im
𝑜
)
2
−

2.99𝑈
re
𝑜
− 8.46𝑈

im
𝑜
= 0. (c) 𝑅

3
: (𝑈re
𝑜
)
2
+ (𝑈

im
𝑜
)
2
− 1.36𝑈

re
𝑜
+

1.93𝑈
im
𝑜
= 0. (d) 𝑅

4,5
: (𝑈re
𝑜
)
2
+ (𝑈

im
𝑜
)
2
+ 3.00𝑈

re
𝑜
+ 29.76𝑈

im
𝑜
=

0.0035. (e) 𝐶
1
: (𝑈re
𝑜
)
2
+ (𝑈

im
𝑜
)
2
− 1.82𝑈

re
𝑜
− 0.96𝑈

im
𝑜
= 0. (f)

𝐶
2
: (𝑈re
𝑜
)
2
+ (𝑈

im
𝑜
)
2
− 1.50𝑈

re
𝑜
+ 1.06𝑈

im
𝑜
= 0.

The intersections of these curves indicate the potential
ambiguous faults in Table 6; for instance, when 𝑅

1
is open,

Table 6: Ambiguous faults in the circuit of Figure 4.

Fault state Ambiguous faults
𝑅
1

Open 𝑅
2,3
: Short, 𝐶

1
: Short, 𝐶

2
: Open

𝑅
2

Short 𝑅
1
: Open, 𝑅

3
: Short, 𝐶

1
: Short, 𝐶

2
: Open

𝑅
3

Short 𝑅
1
: Open, 𝑅

2
: Short, 𝐶

1
: Short, 𝐶

2
: Open

𝑅
4

1All parametric faults 𝑅
5
: All parametric faults

𝑅
5

1All parametric faults 𝑅
4
: All parametric faults

𝐶
1

Short 𝑅
1
: Open, 𝑅

2,3
: Short, 𝐶

2
: Open

𝐶
2

Open 𝑅
1
: Open, 𝑅

2,3
: Short, 𝐶

1
: Short

1For any given parametric fault of 𝑅4(𝑅5),there exists a parametric fault of
𝑅5(𝑅4) generating the undistinguishable complex faulty response at test-
node 𝑇𝑜.

Table 7: Voltage phasor-based tolerance-free fault diagnosis with
test-frequencies set 𝑄

𝐹
= {𝑄
1

𝐹
, 𝑄
2

𝐹
, 𝑄
3

𝐹
}.

𝑄
1

𝐹
𝑄
2

𝐹
𝑄
3

𝐹

No faults 1.63 − 𝚤0.26 1.54 + 𝚤0.44 0.82 − 𝚤0.83

𝑅
1
= 1.50 kΩ 1.27 − 𝚤0.45 1.40 + 𝚤0.20 0.49 − 𝚤0.68

𝑅
2
= 1.50 kΩ 2.49 − 𝚤0.15 1.68 + 𝚤1.17 0.81 − 𝚤1.17

𝑅
3
= 3.00 kΩ 1.84 − 𝚤0.74 2.13 + 𝚤0.14 0.71 − 𝚤1.01

𝑅
4
= 2.00 kΩ 3.79 − 𝚤0.89 3.37 + 𝚤1.46 1.20 − 𝚤1.83

𝑅
5
= 3.00 kΩ 0.98 − 𝚤0.13 0.94 + 𝚤0.23 0.57 − 𝚤0.49

𝐶
1
= 2.50 nF 1.93 + 𝚤0.65 1.47 + 𝚤0.88 1.64 − 𝚤0.77

𝐶
2
= 2.50 nF 1.18 + 𝚤0.28 0.80 + 𝚤0.60 0.93 − 𝚤0.55

or 𝑅
3
is short, the voltage phasor on 𝑇

𝑜
owns the same value:

0.00 + 𝑖0.00 (V). Thus, the fault state 𝑅
3
: short, is one of

ambiguous faults to the fault state 𝑅
1
: 𝑂𝑝𝑒𝑛.

According to Figure 6 and Tables 6 and 7, test-frequency
𝑄
1

𝐹
= 30 kHz is a sensitive frequency for the circuit under

test (CUT) of Figure 5 in parametric fault diagnosis (Table 7).
Furthermore, one can sketch the other response curves
with different test-frequencies. Such investigation leads to 3
representative sensitive test-frequencies: 𝑄1

𝐹
= 30 kHz, 𝑄2

𝐹
=

20 kHz, and𝑄2
𝐹
= 60 kHz, for a given fault states set in Table 7.

These test-frequencies can be testified as sensitive fre-
quencies, according to the frequency sweeping results in
Figure 7: (a) each response curve corresponds to a com-
ponent fault in Table 7; (b) actually, in Figure 6, the test-
frequencies 𝑄1

𝐹
= 30 kHz and 𝑄2

𝐹
= 20 kHz are around the

center frequency of Sallen-Key filter.
As a matter of fact, the sensitive test-frequencies inves-

tigated in Figures 6 and 7 are also the recommendations
in the circuit diagnosis for all potential single parametric
faults with tolerance consideration (i.e., component tolerance
for fault-free component is 2%, while the parametric range
for faulty component is [95% 𝑋

𝑐
, 105% 𝑋

𝑐
] and 𝑋

𝑐
is the

value in Table 7 for each potential faulty component). For
instance, as for the fault states set in Table 8, if one lists the
corresponding voltage phasor varying ranges, which can be
estimated through the similar manner as what the Thomas
filter example does, it is simple to locate the value of FIR =
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Figure 7: The Sallen-Key filter circuit response in frequency
domain.

Table 8: Voltage phasor-based tolerance-influencing fault diagnosis
with test-frequencies set 𝑄

𝐹
= {𝑄
1

𝐹
, 𝑄
2

𝐹
, 𝑄
3

𝐹
}.

𝑄
1

𝐹
𝑄
2

𝐹
𝑄
3

𝐹

No faults [1.37, 1.78] [1.32, 1.63] [0.73, 0.95]

[−0.27, −0.12] [0.35, 0.56] [−0.90, −0.70]

𝑅
1
: [1.43Ω, 1.58 kΩ] [1.09, 1.41] [1.15, 1.51] [0.42, 0.58]

[−0.46, −0.29] [0.14, 0.32] [−0.75, −0.56]

𝑅
2
: [1.43Ω, 1.58 kΩ] [1.91, 2.73] [1.27, 1.74] [0.73, 1.03]

[−0.14, 0.15] [0.87, 1.35] [−1.29, −0.94]

𝑅
3
: [2.85 kΩ, 3.15 kΩ] [1.66, 2.01] [1.76, 2.26] [0.61, 0.85]

[−0.74, −0.51] [0.10, 0.33] [−1.11, −0.86]

𝑅
4
: [1.90 kΩ, 2.10 kΩ] [2.92, 4.24] [2.89, 3.55] [1.07, 1.52]

[−0.89, −0.27] [1.00, 1.73] [−2.07, −1.45]

𝑅
5
: [2.85 kΩ, 3.15 kΩ] [0.86, 1.05] [0.83, 0.98] [0.51, 0.65]

[−0.13, −0.05] [0.19, 0.27] [−0.52, −0.45]

𝐶
1
: [2.34 nf, 2.63 nf] [1.74, 2.05] [1.19, 1.54] [1.19, 1.54]

[0.30, 0.46] [0.73, 0.96] [0.73, 0.96]

𝐶
2
: [2.34 nf, 2.63 nf] [0.97, 1.26] [0.65, 0.83] [0.78, 1.04]

[0.21, 0.37] [0.49, 0.66] [−0.57, −0.42]

100% and FDR = 100%.Therefore, all faults in Table 8 can be
100% diagnosis with given test-signals set.

4. Further Discussion

So far, this paper has presented a novel parametric fault
modeling to the fault diagnosis of linear analog circuits via
voltage phasor measurements. Particularly, it has discussed
the tolerance and multifrequency measurements in the fault
diagnosis as follows.

(a) The tolerance often introduces a variable parame-
ter for the circuit components which leads to the
variation of circuit response from one circuit board
to another. In this paper, its influence is estimated
according to the principles from Lemmas 6–9 and

Theorems 8 and 10. At last, the corresponding appli-
cations have been shown in the illustrative examples
of previous section.

(b) The analytic parametric fault modeling (see, (9), (14)-
(15)) and tolerance estimation in this paper give
us a simple rule to select test-frequency for fault
diagnosis in a given fault states set, which means
the following: (1) the maximum number of test-
frequencies is determined by the number of system-
atic parameter in transfer function (i.e., (37)); (2)
the final test-frequencies set should attempt to avoid
ambiguous faults and increase the value of FDR and
FIR (see, (35)-(36)).

However, considering the fact that an important aspect in
the linear circuit fault diagnosis problem is constituted by the
concepts of testability, the voltage phasor-based ambiguous
groups determination will be in a discussion in this section.
One can find that it is quite effective when it is compared
with the “Jacobian rank approach” [15] based on transfer
function coefficients. Futhermore, one uses the maximum
error evaluation technology to evaluate the multifrequencies
test previously listed in the second circuit example. This
technology used to appear in [16].

4.1. AmbiguousGroups inVoltage Phasor Investigation. In this
section, the ambiguous groups determination is based on
voltage phasor investigation and the corresponding principle
is shown as follows.

According to (9), test equations are constructed and
circuit parameter functions P (impedance value functions
vector for potential faulty circuit network components) are
related to test measurementsU (voltage phasor values vector)
through the testability matrix B as shown in the following
equation:

BP = U, (38)

where B = [
󳨀󳨀→
𝑈
𝑥
1

𝑜𝑜
−
󳨀󳨀→
𝑈
𝑥
1

𝑜𝑠
,
󳨀󳨀→
𝑈
𝑥
2

𝑜𝑜
−
󳨀󳨀→
𝑈
𝑥
2

𝑜𝑠
, . . . ,

󳨀󳨀→

𝑈
𝑥
𝑝

𝑜𝑜 −

󳨀󳨀→

𝑈
𝑥
𝑝

𝑜𝑠 ], P =

diag ([1/(∙𝛼
𝑥
1

∙ 𝑍
𝐹

𝑥
1

− 1), . . . , 1/(∙𝛼
𝑥
𝑝

∙ 𝑍
𝐹

𝑥
𝑝

− 1)]), and U =

[

󳨀→

𝑈
𝐹

𝑜
−
󳨀󳨀→
𝑈
𝑥
1

𝑜𝑜
,

󳨀→

𝑈
𝐹

𝑜
−
󳨀󳨀→
𝑈
𝑥
2

𝑜𝑜
, . . . ,

󳨀→

𝑈
𝐹

𝑜
−

󳨀󳨀→

𝑈
𝑥
𝑝

𝑜𝑜 ].
Due to general method of ambiguous groups determi-

nation illustrated in [15–17], testability matrix B can be
used to locate ambiguous groups based on Definition 11
and to locate the canonical ambiguous groups because of
Definition 12. Besides, the concept of “linearly dependent”
here is in Definition 13; thus, the columns 𝐶

1
, 𝐶
2
, . . . , 𝐶

𝐷
of

the testability matrix are linearly dependent which means the
corresponding components constitute an ambiguity group,
for the whole complex test-frequencies domain.

Definition 11. A set of 𝐷 components constitutes an ambigu-
ity group of order 𝐷 if the corresponding 𝐷 columns of the
testability matrix are linearly dependent.

Definition 12. A set of𝐷 components constitutes a canonical
ambiguity group of order 𝐷 if the corresponding columns
of the testability matrix are linearly dependent and every
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subset of this group of columns is constituted by linearly
independent columns.

Definition 13. The columns 𝐶
1
, 𝐶
2
, . . . , 𝐶

𝐷
of the testability

matrix are linearly dependent, if ∑𝐷
𝚤=1
𝜅
𝚤
𝐶
𝚤
= 0, where the

constant 𝜅
𝚤
, 1 ≤ 𝚤 ≤ 𝐷 includes at least one nonzero real

value.

With Definitions 11–13, let us talk about the ambiguous
groups division in the circuit examples of previous section;
in the first circuit example, it should be noted that the output

voltage phasors caused by 𝑅
3
, 𝑅
4
, 𝑅
5
, and 𝐶

2
satisfy

󳨀󳨀→

𝑈
𝑅
3

𝑜𝑜
−

󳨀󳨀→

𝑈
𝑅
3

𝑜𝑠
=

󳨀󳨀→

𝑈
𝑅
4

𝑜𝑜
−

󳨀󳨀→

𝑈
𝑅
4

𝑜𝑠
= −(

󳨀󳨀→

𝑈
𝑅
5

𝑜𝑜
−

󳨀󳨀→

𝑈
𝑅
5

𝑜𝑠
) = −(

󳨀󳨀→

𝑈
𝐶
2

𝑜𝑜
−

󳨀󳨀→

𝑈
𝐶
2

𝑜𝑠
).

Therefore, the corresponding columns are linearly dependent
in matrix B. Therefore, in this circuit, one can make the
conclusion that 𝑅

3
, 𝑅
4
, 𝑅
5
, and 𝐶

2
constitute an ambiguous

group, only through the direct observation of 󳨀󳨀→𝑈
𝑜𝑠

and 󳨀󳨀→𝑈
𝑜𝑜

as mentioned above, and such ambiguous group can be
divided into two canonical ambiguous groups, [𝑅

4
, 𝑅
5
] and

[𝑅
3
, 𝐶
2
].

Then the similar process is used to the components set
[𝑅
1
, 𝑅
2
, 𝑅
6
, 𝐶
1
], here the [𝑅

1
, 𝑅
2
, 𝑅
6
, 𝐶
1
] constitutes an

ambiguous group due to the corresponding linearly depen-
dent columns inB: 0×(1.13−𝚤1.06 × 106)+1×(1.11+𝚤0.12)−
12×(−0.99+𝚤0.10)+(−10.77/8.95)×(−8.95+𝚤0.00) = 0, where
the voltage-phasors are from Table 3. Then [𝑅

1
, 𝑅
2
, 𝑅
6
, 𝐶
1
]

can be found as a canonical ambiguous group according to
Matlab computation and Definition 12. Eventually, the final
canonical ambiguous group division in the circuit of Figure 3
is [𝑅
4
, 𝑅
5
][𝑅
3
, 𝐶
2
] and [𝑅

1
, 𝑅
2
, 𝑅
6
, 𝐶
1
].

The similar process of determination of ambiguous group
is given in the second example; then it is obvious that com-
ponents 𝑅

4
and 𝑅

5
constitute a canonical ambiguous group,

when
󳨀󳨀→

𝑈
𝑅
4

𝑜𝑜
−

󳨀󳨀→

𝑈
𝑅
4

𝑜𝑠
= −1× (

󳨀󳨀→

𝑈
𝑅
5

𝑜𝑜
−

󳨀󳨀→

𝑈
𝑅
5

𝑜𝑠
) and

󳨀󳨀→

𝑈
𝑅
4

𝑜𝑜
−

󳨀󳨀→

𝑈
𝑅
4

𝑜𝑠
̸= 0 (

󳨀󳨀→

𝑈
𝑅
5

𝑜𝑜
−

󳨀󳨀→

𝑈
𝑅
5

𝑜𝑠
̸= 0). Besides, the columns corresponding to 𝑅

2
, 𝑅
3
, 𝐶
2

in testability matrix B is B󸀠 = [B󸀠(1),B󸀠(2),B󸀠(3)] = [1.199 −
𝚤0.2470,1.098 − 𝚤2.070,−1.324 + 𝚤1.248], and nonzero real
constants in Definition 13 cannot be found under the circuit
test with the test-frequency being 𝑄𝐹

1
= 30 kHz, which

means these columns in B󸀠 are not linearly dependent. After
that, [𝑅

2
, 𝑅
3
, 𝐶
2
] does not constitute an ambiguous group

for the whole complex frequencies domain. At last, the final
canonical ambiguous group division in the Sallen-key circuit
is [𝑅
4
, 𝑅
5
], [𝑅
1
], [𝐶
1
], [𝑅
2
], [𝑅
3
], and [𝐶

2
] for the whole

complex frequencies domain.
The results of ambiguous groups division above can be

verified through “Jacobian rank approach.” Therefore, in the
first circuit example, the transfer function of theThomas filter
is shown in (39), while Jacobian matrix B is given by (40)–
(42):

ℏ
𝑇
𝑜

(𝑠) =
−𝑅
5
/𝑅
1
𝑅
3
𝑅
4
𝐶
1
𝐶
2

𝑠2 + (1/𝑅
2
𝐶
1
) 𝑠 + 𝑅

5
/𝑅
3
𝑅
4
𝑅
6
𝐶
1
𝐶
2

(39)

B = 𝐶 × [B1,B2] (40)

B1 =

[
[
[
[
[
[
[
[
[
[

[

𝑅
3

𝑅
4

𝑅
5

𝐶
2

𝑅
5

𝑅
1
𝑅
3

𝑅
5

𝑅
1
𝑅
4

−1

𝑅
1

𝑅
5

𝑅
1
𝐶
2

−𝑅
5

𝑅
3
𝑅
6

−𝑅
5

𝑅
4
𝑅
6

1

𝑅
6

−𝑅
5

𝑅
6
𝐶
2

0 0 0 0

]
]
]
]
]
]
]
]
]
]

]

(41)

B2 =

[
[
[
[
[
[
[
[
[
[
[
[

[

𝑅
1

𝑅
2

𝑅
6

𝐶
1

𝑅
5

𝑅
2

1

0 0
𝑅
5

𝑅
1
𝐶
1

0 0
−𝑅
5

𝑅
2

6

−𝑅
5

𝑅
6
𝐶
1

0
𝑅
3
𝑅
4
𝐶
2

𝑅
2

2

0
𝑅
3
𝑅
4
𝐶
2

𝐶
1
𝑅
2

]
]
]
]
]
]
]
]
]
]
]
]

]

, (42)

where 𝐶 = 1/𝑅
3
𝑅
4
𝐶
1
𝐶
2
.

In (41), the corresponding columns for components
𝑅
3
, 𝑅
4
, 𝑅
5
, and 𝐶

2
in B are linearly dependent. Furthermore,

in (42), the corresponding columns for𝑅
1
, 𝑅
2
, 𝑅
6
, and 𝐶

1

are linearly dependent too. Therefore, the effectiveness of
ambiguous group division through proposed method is
finally verified in a point of view of “Jacobian rank approach”
when it is applied in the following special circuit example:
[𝑅
3
, 𝑅
4
, 𝑅
5
, 𝐶
2
] and [𝑅

1
, 𝑅
2
, 𝑅
6
, 𝐶
1
]. Morevoer, a canonical

ambiguous groups division in the corresponding circuit is
[𝑅
4
, 𝑅
5
], [𝑅
3
, 𝐶
2
], and [𝑅

1
, 𝑅
2
, 𝑅
6
, 𝐶
1
].

The similar verification can be proceeded in the second
circuit example; then the corresponding testability matrix B
is established in (43). Here, considering the testability value
does not depend on component values [18], one assigns all
“1” values to the circuit parameters inmatrixB.Thus, one can
also find the same result about canonical ambiguous groups
division in the proposed method application and the transfer
function-based testability matrix (Jacobian matrix in [15])
investigation in (43). As a matter of fact, considering the
relationship that the output voltage phasor is actually 󳨀→𝑈

𝑜
=

󳨀→
𝑈
𝐼
× ℏ
𝑇
𝑜

(𝑠)|
𝑠=𝚤𝜔

, where 𝜔 is the complex frequencies, it is not
hard to understand such consistency. Consider

B =
[
[
[

[

𝑅
1
𝑅
2
𝑅
3
𝑅
4
𝑅
5
𝐶
1
𝐶
2

−2 0 0 −1 1 −1 2

−1 −1 −2 0 0 −2 −2

−1 1 −2 1 −1 −1 −1

]
]
]

]

. (43)

4.2. Multifrequencies Circuit Test Determination and Evalu-
ation. In the last paragraph, one could conclude that the
ambiguous group based on voltage phasor is the same as
the result of testability analysis based on “Jacobian rank
approach,” where the testability matrix is a Jacobian matrix
determined by coefficients in transfer function. Such conclu-
sion is not surprise, because the output voltage phasor can be
expressed as 󳨀→𝑈

𝑜
=
󳨀→
𝑈
𝐼
× ℏ
𝑇
𝑜

(𝑠)|
𝑠=𝚤𝜔

, where 𝜔 is the complex
frequencies.
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Such conclusion implies that the sensitive test-frequency
selected according to voltage phasor is also the sensitive
one for fault diagnosis, which is searched out through the
transfer function-based method. This solution has been ver-
ified geometrically through the frequency sweeping results
shown in Figure 7, when the parametric faults in Table 7 need
diagnosis.

In fact, the result of Table 6 and Figure 6 further tells us
that one should select appropriate test-signal to distinguish
the given ambiguous faults between 𝑅

4
and 𝑅

5
, which is

also what canonical ambiguous groups result would like
to tell us. Moreover, one can find out the same results in
the ambiguous faults determination through Figure 6 or the
ambiguous groups analysis in the last subsection.

At last, the observation of Figure 7 and Tables 7 and 8
points out that the test-frequencies 𝑄1

𝐹
= 30 kHz, 𝑄2

𝐹
=

20 kHz, and 𝑄3
𝐹
= 60 kHz are sensitive to all the parametric

faults that need diagnosis; even the tolerance is in consider-
ation. And the values of FDR and FIR in the circuit example
are 100% ≥ 90%.

In spite of the values of FDR and FIR, the maximum
error evaluation technology involved in [16] can also be used
to evaluate the effectiveness of multifrequencies test in fault
diagnosis, where the maximum error for the potential fault
components 𝑅

1
is represented by max{Δ𝑅

1
%} = max{‖(𝑅𝐹

󸀠

1
−

𝑅
𝐹

1
)/𝑅
𝐹

1
‖}. And𝑅𝐹

1
is a real fault value, while𝑅𝐹

󸀠

1
is a calculated

value based on (9).
In order to simplify the illustration, let us firstly assume

that the fault component in investigation owns a given
discrete fault parameter while other fault-free components
suffered from tolerance. For instance, 𝑅

1
is single fault

in a tolerance-influencing circuit, whose faulty value is
𝑅
1
= 1.5 kΩ. In addition, the tolerance of other fault-free

components is ±2% and the test-frequency is 20 kHz. Then
one of representative output voltage phasor measurement
at test-node 𝑇

𝑜
in such tolerance circumstance is given as

󳨀→

𝑈
𝐹

𝑜
= 1.300 − 𝚤0.4438, while the corresponding estimated

hard-fault output responses based on the measurements in

Theorems 4 and 5 are
󳨀󳨀→

𝑈
𝑅
1

𝑜𝑠
= 1.943 + 𝚤1.031 and

󳨀󳨀→

𝑈
𝑅
1

𝑜𝑜
=

0.000 + 𝚤0.000. Therefore, the calculated fault value of 𝑅
1
is

1.4995 kΩ according to (9), which means the error for 𝑅
1
is

Δ𝑅
1
% = ‖(1.500 − 1.4995)/1.500‖ = 0.033%. Such error tells

us the test-frequency 20 kHz is a sensitive one to the fault
𝑅
1
= 1.5 kΩ, because it is accurate enough to accomplish the

parametric diagnosis of 𝑅
1
= 1.5 kΩ when the corresponding

input stimulus with test-frequency 20 kHz is used. Besides,
it also means the estimated hard-fault responses are accurate
through the methods inTheorems 4 and 5.

The similar test and diagnosis process can be extended
to the multifrequency measurements (𝑄

𝐹
= {𝑄
1

𝐹
= 20 kHz,

𝑄
2

𝐹
= 30 kHz, and 𝑄3

𝐹
= 60 kHz}) for the fault diagnosis of

𝑅
1
; therefore, max{Δ𝑅

1
%} = 0.067%. As a matter of fact, if

the calculations based on the proposed fault modeling are
done for all other potential faults, the maximum errors for all
these fault values aremuch less than the component tolerance
influence (2%).

5. Conclusion

This paper gives a voltage phasor-based viewpoint in order to
solve the fault diagnosis problem in linear-analogue circuit:
in the process of fault diagnosis, the accurate voltage phasor
feature discussion let us know the accurate faulty response.
Furthermore, the tolerance problem is also demonstrated, in
which the proposed statistics-based point of view is used to
estimate the voltage phasor varying range. After that, the test-
frequencies are determined in fault diagnosis applications in
order to obtain the required FDR/FIR values. In fact, all of
these aspects have been analyzed and tested in the experiment
of representative linear-circuit benchmarks.

In sum up, the method presented in this paper, is an
acute view to handle the fault diagnosis problem of the
component parametric alteration in linear-analogue circuit.
Furthermore, it has been discussed in the problemof ambigu-
ous groups determination, too. And it can be extended to the
following cases (a)–(c). All of these aspects should be done in
further research.

(a) Although the hard-fault is not the main focus in
this paper, the proposed method could be general-
ized to hard-fault case through hard-fault influence
estimation based on voltage phasor measurement in
Theorems 4 and 5.

(b) In fact, the discussion of accurate analysis can be used
in the nonlinear circuit cases, as long as the linear-
wise segments modeling can be established. In this
case, the equivalent linear circuit network is used to
replace the nonlinear circuit component. This means
the parametric fault influence caused by nonlinear
components can be transformed to the parametric
alterations of corresponding linear circuit network.

(c) The ambiguous groups determination could benefit
us in the test-nodes selection problem.
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