171 research outputs found

    Primary User Emulation Detection in Cognitive Radio Networks

    Get PDF
    Cognitive radios (CRs) have been proposed as a promising solution for improving spectrum utilization via opportunistic spectrum sharing. In a CR network environment, primary (licensed) users have priority over secondary (unlicensed) users when accessing the wireless channel. Thus, if a malicious secondary user exploits this spectrum access etiquette by mimicking the spectral characteristics of a primary user, it can gain priority access to a wireless channel over other secondary users. This scenario is referred to in the literature as primary user emulation (PUE). This dissertation first covers three approaches for detecting primary user emulation attacks in cognitive radio networks, which can be classified in two categories. The first category is based on cyclostationary features, which employs a cyclostationary calculation to represent the modulation features of the user signals. The calculation results are then fed into an artificial neural network for classification. The second category is based on video processing method of action recognition in frequency domain, which includes two approaches. Both of them analyze the FFT sequences of wireless transmissions operating across a cognitive radio network environment, as well as classify their actions in the frequency domain. The first approach employs a covariance descriptor of motion-related features in the frequency domain, which is then fed into an artificial neural network for classification. The second approach is built upon the first approach, but employs a relational database system to record the motion-related feature vectors of primary users on this frequency band. When a certain transmission does not have a match record in the database, a covariance descriptor will be calculated and fed into an artificial neural network for classification. This dissertation is completed by a novel PUE detection approach which employs a distributed sensor network, where each sensor node works as an independent PUE detector. The emphasis of this work is how these nodes collaborate to obtain the final detection results for the whole network. All these proposed approaches have been validated via computer simulations as well as by experimental hardware implementations using the Universal Software Radio Peripheral (USRP) software-defined radio (SDR) platform

    Analysis, design and implementation of front-end reconfigurable antenna systems (FERAS)

    Get PDF
    The increase in demand on reconfigurable systems and especially for wireless communications applications has stressed the need for smart and agile RF devices that sense and respond to the RF changes in the environment. Many different applications require frequency agility with software control ability such as in a cognitive radio environment where antenna systems have to be designed to fulfill the extendable and reconfigurable multi-service and multi-band requirements. Such applications increase spectrum efficiency as well as the power utilization in modern wireless systems. The emphasis of this dissertation revolves around the following question: Is it possible to come up with new techniques to achieve reconfigurable antenna systems with better performance?\u27 Two main branches constitute the outline of this work. The first one is based on the design of reconfigurable antennas by incorporating photoconductive switching elements in order to change the antenna electrical properties. The second branch relies on the change in the physical structure of the antenna via a rotational motion. In this work a new photoconductive switch is designed with a new light delivery technique. This switch is incorporated into new optically pumped reconfigurable antenna systems (OPRAS). The implementation of these antenna systems in applications such as cognitive radio is demonstrated and discussed. A new radio frequency (RF) technique for measuring the semiconductor carrier lifetime using optically reconfigurable transmission lines is proposed. A switching time investigation for the OPRAS is also accomplished to better cater for the cognitive radio requirements. Moreover, different reconfiguration mechanisms are addressed such as physical alteration of antenna parts via a rotational motion. This technique is supported by software to achieve a complete controlled rotatable reconfigurable cognitive radio antenna system. The inter-correlation between neural networks and cellular automata is also addressed for the design of reconfigurable and multi-band antenna systems for various applications.\u2

    Measurements and characterization of optical wireless communications through biological tissues

    Get PDF
    Abstract. Radio frequency (RF) has been predominantly utilized for wireless transmission of data across biological tissues. However, RF communications need to address several challenges like interference, safety, security, and privacy, which often hamper the communications through the tissues. To mitigate these challenges, light-based communication can be exploited, as optical wireless communications have unique advantages in terms of security, interference and safety. In this thesis work, we have utilized near-infrared (NIR) light to investigate the feasibility of optical wireless data transfer through biological tissues. To understand the basics of optical communications through biological tissues (OCBT), fresh meat samples and optical phantoms have been used as models of living biological tissues. An experimental testbed containing a data modulated light source and a photodetector was implemented to carry out different measurements regarding the OCBT concept. We have explored the influence of parameters like transmitted optical power, temperature of the tissue, tissue thickness, and position of the light source on the performance of the light-based through-tissue communication system. Analysis of the measurement data allowed us to compare and characterize the effect of used optical elements for better performance evaluation of the optical communication system. We have successfully transmitted a high-resolution image file through a 3 cm thick pork tissue sample. The maximum transmitted power through the tissue sample during the optical communication was 231.4 mW/cm2, which is well below the limits defined by standard of safety regulation. A data rate of 22 kilobits per second has been achieved with the experimental system. Practical limitations of the current testbed prevented obtaining a higher data throughput. The results indicate a dependence of optical received power with respect to the tissue temperature. Moreover, we found both thickness and compositional differences of the biological tissues have a significant impact on the transmittance rate. This thesis work can be considered as a part of the development of 6G technology. The outcomes of this pilot study are very promising, and in the future, numerous potential applications based on OCBT could be developed, including wireless communications to implanted devices, in-body sensors, smart pills, and others

    Smart Wireless Sensor Networks

    Get PDF
    The recent development of communication and sensor technology results in the growth of a new attractive and challenging area - wireless sensor networks (WSNs). A wireless sensor network which consists of a large number of sensor nodes is deployed in environmental fields to serve various applications. Facilitated with the ability of wireless communication and intelligent computation, these nodes become smart sensors which do not only perceive ambient physical parameters but also be able to process information, cooperate with each other and self-organize into the network. These new features assist the sensor nodes as well as the network to operate more efficiently in terms of both data acquisition and energy consumption. Special purposes of the applications require design and operation of WSNs different from conventional networks such as the internet. The network design must take into account of the objectives of specific applications. The nature of deployed environment must be considered. The limited of sensor nodes� resources such as memory, computational ability, communication bandwidth and energy source are the challenges in network design. A smart wireless sensor network must be able to deal with these constraints as well as to guarantee the connectivity, coverage, reliability and security of network's operation for a maximized lifetime. This book discusses various aspects of designing such smart wireless sensor networks. Main topics includes: design methodologies, network protocols and algorithms, quality of service management, coverage optimization, time synchronization and security techniques for sensor networks

    Contributions to the security of cognitive radio networks

    Get PDF
    The increasing emergence of wireless applications along with the static spectrum allocation followed by regulatory bodies has led to a high inefficiency in spectrum usage, and the lack of spectrum for new services. In this context, Cognitive Radio (CR) technology has been proposed as a possible solution to reuse the spectrum being underutilized by licensed services. CRs are intelligent devices capable of sensing the medium and identifying those portions of the spectrum being unused. Based on their current perception of the environment and on that learned from past experiences, they can optimally tune themselves with regard to parameters such as frequency, coding and modulation, among others. Due to such properties, Cognitive Radio Networks (CRNs) can act as secondary users of the spectrum left unused by their legal owners or primary users, under the requirement of not interfering primary communications. The successful deployment of these networks relies on the proper design of mechanisms in order to efficiently detect spectrum holes, adapt to changing environment conditions and manage the available spectrum. Furthermore, the need for addressing security issues is evidenced by two facts. First, as for any other type of wireless network, the air is used as communications medium and can easily be accessed by attackers. On the other hand, the particular attributes of CRNs offer new opportunities to malicious users, ranging from providing wrong information on the radio environment to disrupting the cognitive mechanisms, which could severely undermine the operation of these networks. In this Ph.D thesis we have approached the challenge of securing Cognitive Radio Networks. Because CR technology is still evolving, to achieve this goal involves not only providing countermeasures for existing attacks but also to identify new potential threats and evaluate their impact on CRNs performance. The main contributions of this thesis can be summarized as follows. First, a critical study on the State of the Art in this area is presented. A qualitative analysis of those threats to CRNs already identified in the literature is provided, and the efficacy of existing countermeasures is discussed. Based on this work, a set of guidelines are designed in order to design a detection system for the main threats to CRNs. Besides, a high level description of the components of this system is provided, being it the second contribution of this thesis. The third contribution is the proposal of a new cross-layer attack to the Transmission Control Protocol (TCP) in CRNs. An analytical model of the impact of this attack on the throughput of TCP connections is derived, and a set of countermeasures in order to detect and mitigate the effect of such attack are proposed. One of the main threats to CRNs is the Primary User Emulation (PUE) attack. This attack prevents CRNs from using available portions of the spectrum and can even lead to a Denial of Service (DoS). In the fourth contribution of this the method is proposed in order to deal with such attack. The method relies on a set of time measures provided by the members of the network and allows estimating the position of an emitter. This estimation is then used to determine the legitimacy of a given transmission and detect PUE attacks. Cooperative methods are prone to be disrupted by malicious nodes reporting false data. This problem is addressed, in the context of cooperative location, in the fifth and last contribution of this thesis. A method based on Least Median Squares (LMS) fitting is proposed in order to detect forged measures and make the location process robust to them. The efficiency and accuracy of the proposed methodologies are demonstrated by means of simulation

    A Survey on Data Plane Programming with P4: Fundamentals, Advances, and Applied Research

    Full text link
    With traditional networking, users can configure control plane protocols to match the specific network configuration, but without the ability to fundamentally change the underlying algorithms. With SDN, the users may provide their own control plane, that can control network devices through their data plane APIs. Programmable data planes allow users to define their own data plane algorithms for network devices including appropriate data plane APIs which may be leveraged by user-defined SDN control. Thus, programmable data planes and SDN offer great flexibility for network customization, be it for specialized, commercial appliances, e.g., in 5G or data center networks, or for rapid prototyping in industrial and academic research. Programming protocol-independent packet processors (P4) has emerged as the currently most widespread abstraction, programming language, and concept for data plane programming. It is developed and standardized by an open community and it is supported by various software and hardware platforms. In this paper, we survey the literature from 2015 to 2020 on data plane programming with P4. Our survey covers 497 references of which 367 are scientific publications. We organize our work into two parts. In the first part, we give an overview of data plane programming models, the programming language, architectures, compilers, targets, and data plane APIs. We also consider research efforts to advance P4 technology. In the second part, we analyze a large body of literature considering P4-based applied research. We categorize 241 research papers into different application domains, summarize their contributions, and extract prototypes, target platforms, and source code availability.Comment: Submitted to IEEE Communications Surveys and Tutorials (COMS) on 2021-01-2

    Intelligent Sensor Networks

    Get PDF
    In the last decade, wireless or wired sensor networks have attracted much attention. However, most designs target general sensor network issues including protocol stack (routing, MAC, etc.) and security issues. This book focuses on the close integration of sensing, networking, and smart signal processing via machine learning. Based on their world-class research, the authors present the fundamentals of intelligent sensor networks. They cover sensing and sampling, distributed signal processing, and intelligent signal learning. In addition, they present cutting-edge research results from leading experts

    Low power design of a versatile analog mixed Signal sensor module

    Get PDF
    The development of space electronics especially for launcher such as Ariane 6 has to fulfill space standards and space requirements provided by the space industries. The standards of the European Cooperation for Space Standardization (ECSS) are used extensively to ensure a development process that meets the space requirements. This standard covers space project management, space product assurance and space engineering. The ECSS is a cooperative effort of the European Space Agency, national Space Agencies and European Industry Associations for the purpose of developing and maintaining common standards. The work presented in this dissertation was carried out to fill the gap of developing wireless sensor network for Ariane launchers. The development process follows the space requirements that demand the sensor node to survive the environmental condition inside the launcher. This makes the work uniquely compared to commercial wireless sensor network development. The versatile analog mixed signal module proposed in this work consists of infrared transmitter, VLC receiver, power management, data processing with digital/analog sensor interface unit and solar cell as energy harvester. The sensor module is used to build wireless sensor network inside the Vehicle Equipment Bay (VEB) of Ariane 5

    An Energy-Efficient and Reliable Data Transmission Scheme for Transmitter-based Energy Harvesting Networks

    Get PDF
    Energy harvesting technology has been studied to overcome a limited power resource problem for a sensor network. This paper proposes a new data transmission period control and reliable data transmission algorithm for energy harvesting based sensor networks. Although previous studies proposed a communication protocol for energy harvesting based sensor networks, it still needs additional discussion. Proposed algorithm control a data transmission period and the number of data transmission dynamically based on environment information. Through this, energy consumption is reduced and transmission reliability is improved. The simulation result shows that the proposed algorithm is more efficient when compared with previous energy harvesting based communication standard, Enocean in terms of transmission success rate and residual energy.This research was supported by Basic Science Research Program through the National Research Foundation by Korea (NRF) funded by the Ministry of Education, Science and Technology(2012R1A1A3012227)
    corecore