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1 Introduction 
The development of space electronics especially for launcher such as Ariane 6 
has to fulfill space standards and space requirements provided by the space 
industries. The standards of the European Cooperation for Space Standardiza-
tion (ECSS) are used extensively to ensure a development process that meets 
the space requirements. This standard covers space project management, space 
product assurance and space engineering. The ECSS is a cooperative effort of 
the European Space Agency, national Space Agencies and European Industry 
Associations for the purpose of developing and maintaining common stan-
dards[Ref. 1]. 

The work presented in this dissertation was carried out to fill the gap of devel-
oping wireless sensor network for Ariane launchers [Own.  1]. The development 
process follows the space requirements that demand the sensor node to survive 
the environmental condition inside the launcher. This makes the work 
uniquely compared to commercial wireless sensor network development. The 
versatile analog mixed signal module proposed in this work consists of infra-
red transmitter, VLC receiver, power management, data processing with digi-
tal/analog sensor interface unit and solar cell as energy harvester. The signal 
conditioning circuits that comprise Wheatstone bridge and active filters are 
also included in the module. The sensor module is used to build wireless sen-
sor network inside the Vehicle Equipment Bay (VEB) of Ariane 5.  

After the process of development was completed, several measurements were 
taken to test the sensor module capability to withstand temperature, vibration, 
shock and Electromagnetic Interference (EMI) given by the Ariane 5 require-
ments. These tests are categorized as engineering and are listed as following: 

 Temperature test 
 Vibration test 
 Shock test 
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 Electromagnetic interference (EMI) test. 
The requirements for these tests are taken from Ariane 5 user's manual pro-
vided by the European Space Agency. The results of the test will be used to 
ensure higher technological readiness of the sensor module for the launcher 
[Ref. 2]. 

The functionality of the sensor module was also studied to support the devel-
opment process towards the final products (this shall be done by the space in-
dustry).  

Figure 1 shows the versatile analog mixed signal sensor module developed 
with the given constraints provided by the European Space Agency. The con-
straints are: 

 The standards given by European Cooperation for Space Standardization 
(ECSS). 

 The requirements given by space industry consortium. 
 The engineering test requirements of Ariane 5. 
 Cost effective components with short time development. 

 

 

Figure 1: Versatile analog mixed signal sensor module design constraints. 
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At the end, a radiation protection method is proposed in order to reduce the 
radiation effect caused by space radiation environment. 

1.1 The Author’s Contribution 
Some of the author’s contributions to this work are: 

- Development of  wireless sensor network for Ariane Launcher especially 

used inside Ariane’s 5 vehicle equipment bay (VEB) [Own.  1]. 

- Studying the impact of the multi layer insulator inside (MLI) the VEB 

towards infrared communication profile [Own. 2].  

- Development of low power infrared transceiver ASIC with AMS350 nm 

technologies [Own.  3]. 

- Development of time stamp and time synchronization method that utilize 

visible light communication to provide clock information concurrently 

to all of the sensor nodes [Own.  5]. 

- Development of infrared sensor node for Ariane 5's telemetry subsystem 

with various smart sensors [Own.  4]. 

- Development of energy harvesting method with visible light communi-

cation (VLC) that utilizes solar cell as receiver [Own.  5]. 

- Testing the infrared wireless sensor network that meets Ariane 5's re-

quirements [Ref. 3]. 

- Presenting an overview about the space radiation methods that can be 

used to protect the infrared sensor network in future development. 

1.2 Goal of developing the analog mixed signal sensor 
module 

The main goal of developing a versatile analog mixed signal sensor module is 
to reduce the harness inside the launcher by using it as a wireless sensor. The 
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reduction does not only save mass but also reduce the work time of the engi-
neers to plan and configure the harness each time and to update the dedicated 
launcher specification. Some possible placement of the wireless sensor module 
in the form of sensor node on Ariane 5's upper stage is shown in Figure 2. The 
placement of the sensor node can be at the Ariane 5's fairing where the payl-
oad is kept or inside the Vehicle Equipment Bay (VEB). 
 
Figure 3 shows the space vehicle harness integration that is time consuming 
and requires extremely high care during the installation [Ref. 3].  

 

 

Figure 2: The wireless sensor node placement for Ariane 5 upper stage [Ref. 3]. 
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The VEB contains the brain of the launch vehicle with on-board computer and 
it houses most of the electronics for the flight control [Ref. 4]. The implementa-
tion of the sensor module in the frame of this work is for building wireless 
sensor networks that do not show electromagnetic emission that exceeds the 
limit permitted inside the launch vehicle.  

 

 

Figure 3: Example of space vehicle harness integration on ATV-2 “Johannes 
Kepler” [Ref. 5]. 

Figure 4 shows the overview of the Vehicle Equipment Bay and the distribu-
tion of the wireless sensor node that is built with the sensor module developed 
in this work. 

 

Figure 4: The wireless sensor network in the Vehicle Equipment Bay built 
with sensor modules developed in the frame of this work [Ref. 6]. 
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1.3 Wireless Sensor Node Development Overview on 
Space Application 

Since sensor technologies and small scale (micro, nano-scaled technologies) 
electronics has shown in principle high dynamics in their evolution within a 
short time, this demands time to market of the product development becoming 
very fast. This also drives the development of the energy-autonomous sensor 
node. The development of such sensor has been shown by Swiss Center for 
Electronics and Microtechnology with WiseNET [Bib. 25] and Smart DUST, 
that incorporate System on Chip solution with bidirectional optical communi-
cation [Bib. 26]. The new architecture that introduces satellite-on-a-chip “Space 
Chip” was also purpose in [Bib. 24]. Some considerations that shall be taken for 
designing wireless sensor network for space are discussed extensively in [Bib. 

27]. 
 
One of the example, the Johnson Space Center and Invocon, Inc. has devel-
oped and provided Invocon’s Micro-miniature Wireless Instrumentation Sys-
tem (MicroWIS) as miniaturized sensor installations on complex systems [Ref. 

81]. The wireless sensors can either record or transmit temperature, triaxial ac-
celerometer, strain, pressure, tilt, chemical, and ultrasound data. This sensor 
node was successfully implemented on over 19 NASA missions. The wireless 
sensor is battery-operated and is less than 1 cubic inch in volume. Figure 5 

shows the versions and characteristics of the (MicroWIS) [Ref. 81]. 

 

Figure 5: MicroWIS-based physical view[Ref. 81]. 
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1.4 Objectives 
Since the development of  MicroWIS belongs to a private company such as 
Invocon, Inc., the know-how to develop such sensor poses challenges for Eu-
ropean Space Agency to use similar technology for Ariane launcher [Own.  1]. 
This leads ESA to develop new sensor node entirely in Europe and the devel-
opment processes are reflected in this work. The objectives of developing low 
power versatile mixed signal sensor module are: 
 Designing sensor module that operates with lower voltage supply (e.g. 

3.3V) compared to the current space modules that work with 28 V or 55 

V. 

 Selecting low voltage COTS sensors that are smaller in size and lighter 

in comparison with the current space sensors for benchmarking. 

 Designing reconfigurable interfaces between the COTS sensors and the 

data formatting module that allow future COTS sensor products to be 

accommodated on the sensor node. 

 Selecting wireless communication methods that have electromagnetic in-

terference below the given limit provided by the space industry. 

 Designing wireless charging method that allows the sensor module’s 

battery to be fully charged before launching (this is important since the 

battery cannot be recharged manually after launcher installation). 

 Building the prototype of a sensor module that is intended for test and 

measurements in the Vehicle Equipment Bay of Ariane 5. 

 Building the prototype of a sensor module that is intended for engineer-

ing tests against given space requirements. 

 Purposing a space radiation protection method for sensor modules to 

survive the radiation during the mission. 
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1.5 Structure of the dissertation 

The dissertation is divided into several parts covering the development 
processes starting with general requirements given by the space industry up to 
the engineering tests to fulfill the space environment requirements. The design 
methodology is also presented to achieve the best design that fit the given re-
quirements. The information is provided in the following chapters: 
 Chapter 2: Wireless Sensor Network System Design 

    - Selection of Wireless Communication Systems and Energy 

      Harvesting Methods 

    - Overview of Space Qualified Sensors and Smart Sensors  

    - Effect of Space Materials on Infrared Communication 

 Chapter 3: Infrared Transceiver Design to Optimized Power Con-

sumption 

    - Selection of Infrared Physical Layer Modulation 

    - Infrared Transceiver ASIC Design with AMS350 nm   

      Technology 

    - Infrared ASIC Test and Power Consumption Measurement 

 Chapter 4: Infrared Wireless Sensor Node Implementation 

    - Infrared Wireless Sensor Node Prototype  

    - Infrared Sensor Node Development 

    - Infrared Sensor Node Engineering Tests 

 Chapter 5: Space Radiation Protection Overview 

 Chapter 6: Summary and Discussion 
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1.6 General Space Requirements Overview 
The space requirements for the sensor module are related to the Ariane 5's 
launch activities. Figure 6 shows  Ariane 5's launch sequence at Guiana Space 
Centre. Each step of the launch activity has a dedicated influence on the inter-
nal environment condition. The sensor module shall withstand the mechanical, 
thermal and electromagnetic environment presented inside the spacecraft. The 
highest mechanical dynamics are during booster operation, booster separation, 
fairing separation, central separation and upper stage ignition [Ref. 5]. 

 

 

 

Figure 6: Ariane 5's launch sequence at Guiana Space Centre [Ref. 3]. 
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At typical launch sequence, it is started with the lift-off event. On this event, 
the twin solid boosters are ignited and the spacecraft is flying with 51.6 de-
grees inclination to orbit. The booster separation occurs after 2 minutes and 18 
seconds at an altitude of 61 km. The first stage at that time is already ignited 
and it pushes the upper stage containing the payload to the orbit. At 3 minutes 
and 29 seconds with an altitude of 107 km, the fairing separation event occurs. 
The first stage falls after the separation happens at 9 minutes with an altitude 
of 133 km. 7 second thereafter; the upper stage is ignited and it moves the 
payload to the orbit. In the following sections, the overview of the space re-
quirements are described in relation to launch sequence: 

1.6.1  Mechanical environment requirements 

The mechanical environment is affected by two factors. The first is the exter-
nal factor caused by wind, gust or buffeting at transonic velocity. The second 
is internal factor caused by the launcher during lift-off, booster separation, 
fairing separation, central core separation and engine ignitions events.  

In Flight Static Acceleration 

The typical in flight longitudinal static acceleration during the flight of the 
spacecraft is shown in Figure 7. The load factor shown in the graphic de-
scribes the ratio of the aircraft lift-off to its weight. This also represents the 
stress ("load") to which the structure of the aircraft is subjected. The graph 
shows that the static acceleration increases rapidly up to 120 seconds after the 
lift-off. A fast decrease of the static acceleration happens after the booster se-
paration and first stage separation. The peak static acceleration is at 4.2 g at 
138 seconds and the value drops rapidly after the booster separation phase 
took place. 
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Figure 7: Typical longitudinal static acceleration during flight [

In Flight Sinusoidal Vibration

The sinusoidal vibration is caused mainly by the aerodynamic effects during 
atmospheric flight and flight transient phases
lateral amplitude smaller than the longitudinal
soidal vibration is measured at the spacecraft base and 
value of 0.8 g at 100 Hz in longitudinal direction.

 

Figure 8: Sinusoidal vibration at the 

 

: Typical longitudinal static acceleration during flight [

In Flight Sinusoidal Vibration 

The sinusoidal vibration is caused mainly by the aerodynamic effects during 
atmospheric flight and flight transient phases. Figure 8 shows 

than the longitudinal vibration amplitude.
soidal vibration is measured at the spacecraft base and shall not exceed the 
value of 0.8 g at 100 Hz in longitudinal direction. 

 

: Sinusoidal vibration at the spacecraft base [Ref. 
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: Typical longitudinal static acceleration during flight [Ref. 3]. 

The sinusoidal vibration is caused mainly by the aerodynamic effects during 
shows the vibration 

amplitude. The sinu-
not exceed the 

 

Ref. 3]. 
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In Flight Acoustic Vibration

The pressure created by the acoustic vibration is mainly caused by:
 Plume impingement on the launch pad during lift

 Unsteady aerodynamic phenomena during atmospheric flight (e.g. turb

lence inside the boundary layer which is transmitted through the upper 

composite structure to the interior of the launcher.

 The transonic phase vibration in the range of Mach 0.8 to 1.0 that also 

depends on the temperature of the airflow surrounding the spacecraft. 

Figure 9 shows the acoustic vibration spectrum inside the fairing during flight. 
The maximum amplitude is at 139.5 dB and found in the range of
190 Hz.  

 

Figure 9: Acoustic Vibration Spectrum [

In Flight Shock Profile  

The shocks that occur during the flight are caused mainly by:
 Lift-off 

 Booster ignition 

 

In Flight Acoustic Vibration 

The pressure created by the acoustic vibration is mainly caused by:
Plume impingement on the launch pad during lift-off. 

aerodynamic phenomena during atmospheric flight (e.g. turb

lence inside the boundary layer which is transmitted through the upper 

composite structure to the interior of the launcher. 

The transonic phase vibration in the range of Mach 0.8 to 1.0 that also 

depends on the temperature of the airflow surrounding the spacecraft. 

shows the acoustic vibration spectrum inside the fairing during flight. 
The maximum amplitude is at 139.5 dB and found in the range of

: Acoustic Vibration Spectrum [Ref. 3]. 

 

The shocks that occur during the flight are caused mainly by: 

 25 

The pressure created by the acoustic vibration is mainly caused by: 

aerodynamic phenomena during atmospheric flight (e.g. turbu-

lence inside the boundary layer which is transmitted through the upper 

The transonic phase vibration in the range of Mach 0.8 to 1.0 that also 

depends on the temperature of the airflow surrounding the spacecraft.  

shows the acoustic vibration spectrum inside the fairing during flight. 
The maximum amplitude is at 139.5 dB and found in the range of 90 Hz to 
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 Booster separation 

 Fairing separation 

 Stage separation 

The shock spectrum of the stage separation and fairing separation can reach 
2000 g in the frequency range of 1 kHz up to 10 kHz (see Figure 10).  The 
stage separation shock is mostly generated at the spacecraft base. The level of 
the shock for the payload is depending directly on the adapter type, interface 
diameter and the separation system. 

 

 

Figure 10: Envelope shock spectrum for state separation and fairing separation 
[Ref. 3]. 

1.6.2  In Flight Pressure Requirement 

In order to ensure low depressurization rate in the fairing compartment to one 
way vent doors are utilized. This system ensures the depressurization rate not 
exceed 2.0 kPa/s that is equal to 20 mbar/s. Figure 11 shows the variation of 
static pressure inside the fairing compartment. 
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Figure 11: Variation of static pressure inside the fairing compartment [Ref. 3]. 

The static pressure is 50 mbar at altitudes less than 60 km with the maximum 
depressurization rate of 45 mbar/s.  

Thermal Requirements 

Air conditionering is used to protect the system encapsulated in the fairing be-
fore lift-off. The temperature is kept around 23°C ± 2°C with 55% ± 5% of 
relative humidity. After fairing separation, the aero thermal flux caused by the 
molecular flow acting on the launcher surface in the velocity direction is do-
minant (see Figure 12). The maximum aero thermal flux is reaching 1,135 
W/m2 at the very moment after fairing separation. As the spacecraft is reach-
ing higher altitudes, the solar radiation flux and the terrestrial infrared radia-
tion shall also be considered in the calculation. On a case by case basis, specif-
ic launcher attitudes with respect to the sun heat flux are used to reduce the 
heat. 
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Figure 12: Aero thermal fluxes on trajectory after fairing separation [Ref. 3]. 

1.6.3  Electromagnetic Radiation/Emission Requirement 

The electromagnetic compability of the spacecraft shall be considered since 
the launch vehicle is equipped with various transmission and reception sys-
tems. This includes: 
 Telemetry system on the VEB external section with transmission power 

of 8 W with frequency between 2200-2290 MHz. The launch vehicle 

frequencies are 2206.5 MHz, 2227 MHz, 2254.5 MHz, 2267.5 MHz and 

2284 MHz. 

 Radar transponder system with transmission frequencies of 5500 - 5900 

MHz located on the cryogenic main stage has a transmission power of 

400 W peak.  
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The permitted electrical field generated by launch equipments with RF sys-
tems shall not exceed the limits given in Figure 13. 

 

Figure 13: The electromagnetic radiation/emission requirements [Ref. 3]. 

Space Radiation Requirements 

The space radiation requirements depend on the different stages of the elec-
tronic components development. The general requirements are described in 
ECSS handbook for radiation effects mitigation in ASICs and FPGA and are 
beyond the discussion for this work [Ref. 1]. 
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1.7 Design Flow According to the ECSS Standards 
In this section the design flow of the sensor module development is described 
according to the ECSS standards [Ref. 1]. The design flow guides the develop-
ment process to fulfill the requirements provided by the ESA. 

1.7.1  ECSS Sensor Module Development Flow 

The design methodology comprises seven main phases (Figure 14). These 
phases are: 
 Definition phase 

 Architectural design 

 Detailed design 

 Layout 

 Prototype implementation 

 Design validation and release 

In the Definition phase, the requirements are identified. The feasibility of ful-
filling the requirements is studied and the development risk of the design is 
analyzed. The system requirement review (SRR) is performed before moving 
to the next phase. 
 
The architectural design that comprises of architectural definition, and de-
sign verification is required in the second phase. The preliminary design re-
view (PDR) will be held for quality assurance. 
 
For the Detailed design, the sensor module design was divided in four parts. 
These are transceiver design, sensor interface design, analog interface design 
and power management design. At the end of this phase, the detailed design 
review was conducted. 
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Figure 14: ECSS Sensor Module Development Flow [Ref. 1]. 
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The PCB layout is generated and a 3D drawing for the sensor module casing is 
created. This activity is carried out in the Layout phase. The critical design 
review (CDR) has to be successfully planed before building the prototype. 
 
The soldering of the components after manufacturing the PCB and 3D casing 
shall follow the design in the layout phase. In the Prototype implementation 
phase, the manufactured parts are tested. This includes PCB test, power man-
agement test, transceiver test, sensor interface test and analog interface test.  
 
The flight model preparation is ready if the design is validated. Before the 
flight model is manufactured, the Quality assurance Review (QR) and the ac-
ceptance review (AR) shall be performed. 
 
Implementation of the ECSS standard for the sensor module design flow will 
be described in the next sections.   
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2 Wireless Sensor Network System Design 
The design of the wireless sensor network system is described in this chapter 
and is separated in three sections. They are mainly: 
 Selection of Wireless Communication Systems and Energy Harvesting 

Methods 

 Space Qualified and Smart Sensor Overview 

 Effect of Space Materials on Infrared Communication 

2.1 Selection of Wireless Communication Systems and 
Energy Harvesting Methods 

The selection of wireless communication and energy harvesting methods are 
closely related to the electromagnetic radiation requirements as described in 
section 2.4. The overview of the commercial wireless communication and 
wireless energy transfer/harvesting methods are described as following: 

2.1.1  Commercial Wireless Communication Overview 

Some factors that should be considered to select wireless communication sys-
tems for designing the sensor module that meets the electromagnetic require-
ments described in section 2.4 are related to: 
 Electromagnetic radiation limit 

 Communication speed 

 Communication distance 

 Power consumption 

After considering the factors mentioned above, two communication systems 
have been selected and are evaluated. They are: short range radio frequency 
communication system (less EMI) and optical communication system. This is 
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true because the short-range wireless technologies offer advantages especially 
if used in data-intensive and security-sensitive applications [Bib. 56]. 
 
The low electromagnetic radiation communication systems that fulfils the re-
quirements are Ultra Wide Band (UWB) communication system and infrared 
communication system. The systems comparison is shown in Table 1. 
 
The UWB system shows the electromagnetic radiation lower than 60 dBµV/m 
with the pulse width of the signal that is transmitted by the antenna is on the 
order of 200 ps and the voltage required for the antenna is about 100 mV.  
This energy can be distributed over the range of 2 to 6 GHz with 500 MHz 
bandwidth. Figure 16 shows the indoor electromagnetic radiation measure-
ment with a hand held device at frequencies above 1 GHz. 

 

Table 1: UWB and infrared communication systems comparison. 

System EM radiation speed distance TX current RX current 

UWB max. 55  50 Mbps 
max. 290m 

[Ref. 7] 
140 mA 
[Ref. 8] 

160 mA     
[Ref. 8] 

dBµV/m 
[Ref. 11] 

at 10m 
[Bib. 1] at 3.3 V at 3.3 V 

Infrared not reported 
4 Mbsp   
[Bib. 2] 

max. 5 m 
[Ref. 9] 

175 mA     
[Ref. 10] 

0.7 mA      
[Ref. 9] 

    at < 1 m at 60 kbps at 3.3 V at 3.3 V 

 

Figure 15 shows an example of an UWB transceiver architecture. The switch 
connects the antenna to the Low Noise Amplifier (LNA) in the receiving 
mode. The LNA is designed to cover the operating range 2-6 GHz with very 
low power spectral density caused by the short pulse signal from the transmit-
ter [Bib. 3]. The output signal of the LNA will be processed either by a matched 
filter or a correlator. The matched filter has an impulse response that matches 
the received pulse shape to recover the original pulse shape of the transmitted 
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signal. A correlator is much simpler to build because it consists of a signal 
multiplicator and integrator [Bib. 1].  An adjustable high-gain threshold circuit 
is used to recover the original signal.  
 
A digital UWB receiver architecture was later introduced to realize Orthogonal 
Frequency Division Multiplexing (OFDM).  The drawback of this method is 
that the receiver requires two high speed ADCs. If a flash ADC is used, the 
power consumption of the receiver part can reach 200 mW [Bib. 4]. This prob-
lem can be solved in the optical communication system especially with the 
commercial infrared receiver that is mostly used for home appliances and con-
sumes about 3 mW [Ref. 9].  

 

 

Figure 15: Example of UWB transceiver architecture [Bib. 1]. 

Figure 17 shows an example of infrared transceiver architecture. The infrared 
transmitter consists of only one infrared LED that is modulated with on-off-
keying (OOF). The transmitter current varies from 1 mA up to 1000 mA [Ref. 

10]. The infrared LED has not been reported to generate electromagnetic radia-
tion but the coverage area is limited by the transmitter/LED angle. The typical 
transmission distance is typically 5 meters (at 60 kbps) with transmission an-
gle of ±17° [Ref. 9]. 
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The commercial infrared receiver typically consists of built-in PIN diode, tran-
simpedance amplifier and a pulse shaping block [Ref. 9]. This type of infrared 
receiver is embedded in an epoxy package that functions as an infrared optical 
filter. This is important to reduce the disturbance to the infrared signal from 
the ambient light. 

 

 

Figure 16: UWB Electromagnetic radiation measurement under the FCC limits   
[Bib. 4]. 
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Figure 17: Example of infrared transceiver architecture [Ref. 9]. 

2.1.2  Commercial Energy Harvesting Overview 

Other important aspect of realizing a wireless sensor module is the power 
supply. There are two ways to provide power to the sensor module. The con-
ventional way is by using a battery and the other way is by using energy har-
vesting elements. Several studies have been conducted to compare the energy 
harvested in the environment with various energy harvesting elements. The 
comparison of the power harvested with various energy sources are summa-
rized in Table 2.  
 
Table 2: Energy harvesting sources and their corresponding power [Bib. 5, Ref. 

12]. 
Energy source Type of source Performance 

Light visible light 7500 µW/cm2 

Vibration Car engine 100 µW/cm2 

RF Wi-Fi 0.001 µW/cm2 

GSM 0.1 µW/cm2 

Thermal Car exhaust pipe 60 µW/cm2 
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The results show that the RF energy source yields very low power about 0.1 
µW/cm2. This can be increased by adding more power at the RF transmitter, 
but the electromagnetic radiation requirement described in section 2.4 prevents 
it to be implemented in the spacecraft.  
 
An example of RF energy transfer module found in the market that operates at 
915 MHz and functions as Radio Frequency Identification (RFID)  kit is 
shown in Figure 18 [Ref. 13]. The module consists of 3 Watts RF transmitters 
and a RF receiver module which has a maximum output of 6V and 100 mA at 
a RF input power of 23 dBm [Ref. 14].  

 

 

Figure 18: P2110-EVAL-01 RF Energy Harvesting Development Kit [Ref. 13]. 

The autonomous energy generation by thermoelectric with thermal gradient 
between the surface expose to the sun and colder surface on satellite's body 
has been demonstrated in [Bib. 34]. The COTS version of such thermoelectric 
generator can harvest electrical energy with the lowest temperature difference 
of 3.3 K and is illustrated by Figure 19 [Ref. 15]. This module consists of a thin 
film thermoelectric element, a DC booster and heat sink. The maximum power 
output is about 6 mW with a temperature difference of 45°C [Ref. 16].  
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Figure 19: TE-CORE Thermo Harvesting Power Module [Ref. 15]. 

Although the size of the thermoelectric element is relatively small to the over-
all size of the heat sink and DC booster poses challenges in order to be applied 
in a spacecraft. Finding the position with the required temperature difference 
and mounting the cold side of the thermoelectric element are relatively diffi-
cult compared to other types of energy harvesting methods.  
 
Another example to harvest energy from mechanical sources is piezoelectric 
generator that uses piezoelectric elements. Most of the commercial piezoelec-
tric elements that can be found on the market are manufactured with thin film 
technology.  That reduces the commercial piezoelectric element thickness and 
allows flexibility to have resonance frequencies up to 500 Hz [Ref. 16]. The 
technology also allows more protection layer on the piezoelectric elements as 
shown in Figure 20. 
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Figure 20: Protection layer of commercial piezoelectric element [Ref. 17]. 

In order to use the piezoelectric element, a mass needs to be placed to its tip 
and its other end has to be anchored to a holder (see Figure 21). A typical mass 
of 0.25 to 2 gr on the tip alters the power output and resonance frequency. A 
60 mW maximum power output can be achieved with 2 gr mass and at 60 Hz 
resonance frequency [Ref. 18]. The efficiency is affected mainly by the reson-
ance frequency and the amplitude of the vibration. 
 

Even though the thickness the piezoelectric element is low, it requires a holder 
that is relatively large in size and mass. The alternate current (AC) generated 
by the elements is very small compared to its peak to peak voltage that can 
reach up to 100 V. A rectifier and voltage regulator circuit is required and va-
ries according to the type of the application [Ref. 19]. 

 

Figure 21: A typical piezoelectric element installation on a holder [Ref. 18]. 
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Figure 22: Solar cell efficiency graph [Ref. 21]. 

Another energy source that can be harvested is visible light. This energy 
source is available in most of the places. Typically solar cells are used to 
charge a battery that powers a wireless sensor node which is built with a low 
power microcontroller and a low power RF transceiver. The RF transceiver 
typically works in sub-1GHz and 2.4-GHz frequency bands. The popular wire-
less communication protocols used are ZigBee, RF4CE and IEEE 802.15.4 
[Ref. 20].  
 
One of the products on the market shows that the External Quantum Efficien-
cy of the solar cell for indoor application reaches 75% for the peak absorbance 
between 500 and 550 nm (see Figure 22) [Ref. 21]. This translates to power 
generated by the solar cell with minimum 200 lux is about 7μW/cm².  
 
This type of solar cell is manufactured by GCell and has been demonstrated 
for indoor positioning systems with iBeacon. The iBeacon is a protocol devel-
oped by Apple [Ref. 22]. Figure 23 shows the world’s first solar powered iBea-
con with 100 ms refresh rate. A voltage regulator is also required to provide 
stable voltage within a range of 1.8 V to 8.4 V. For this purpose, Linear Tech-
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nology provides a voltage regulator with a minimum operational current of 1.6 
µA with an input power of only 7.5 µW [Ref. 23]. 
 
Summarizing the commercial energy harvesting alternatives presented above, 
thermoelectric elements and piezoelectric elements require larger peripherals 
for an application. The size of the thermoelectric heat sink makes it difficult 
for installation in narrow places and it is also difficult to locate a heat source 
inside the spacecraft which shall provide enough temperature difference for a 
sufficient temperature gradient. The vibration during the launch requires the 
hot side of the thermoelectric element to be mounted firmly on the spacecraft’s 
structure. This is difficult since the heat sink is at least ten times larger and 
heavier than the thermoelectric element. In the case of piezoelectric elements, 
the mounting method related to the vibration orientation requires much time 
and effort. Both of these energy harvesting methods are not well suited for 
wireless energy transfer inside the spacecraft. 

 

 

Figure 23: The World’s first energy harvesting iBeacon [Ref. 22]. 

On the other hand the RF and visible light energy harvesting allow energy and 
information transmission. Unfortunately for the RF case, it is not possible to 
harvest enough energy inside the spacecraft. This because the transmitter elec-
tromagnetic radiation is limited by the requirement described in section 2.4.  
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As an exemption, the energy transmission through visible light does not vi-
olate any of the requirements described in section 2. A solar cell shall be used 
to receive visible light from a light source positioned in the spacecraft.  
 
There are many types of commercial solar cell available which have been de-
veloped in recent years. Figure 24 shows an overview of the solar cell tech-
nologies that are ranging from thin film technology to organic technology. 
 

There are several parameters to select solar cell for a sensor module. These 
parameters are [Ref. 24]: 
 Solar cell material 

 Solar cell efficiency 

 Power output per surface area 

 

Figure 24: Solar Cell Technology Overview [Ref. 24]. 

Table 3 shows a comparison of the current technologies available on the mar-
ket. Until now, Monocrystalline and polycrystalline silicon deliver the highest 
power output per surface area [Ref. 24].  
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Although the thin film solar cells made of Cadmium Telluride (CdTe) and 
Copper Indium Diselenide (CIS) offer lower power output but they are light 
and have low mass. That makes them easier to be mounted inside a spacecraft. 
This advantage is originated mainly by the thin film manufacturing process.  

Table 3: Solar cell technology comparison [Ref. 24]. 
Cell material Module Surface area Advantages Disadvantages 

  efficiency needed for 1 kW     

Monocrystalline 15 - 18 % 7 - 9 m2 - easy to find on the market - expensive 

silicon - highly standarized - waste of silicon in 

   production process 

Polycrystalline 13 - 16 % 8 - 9 m2 - lesser energy and time to - slightly less efficient 

silicon   be produced than monocrys-   than monocrystalline 

   talline 

- easy to find on the market 

- highly standarized 

Micromorph  6 -9 % 9 - 12 m2 - higher temperature and - more space for same 

tandem (aμ-Si)    shading have lower impact    power 

   on performance 

- high cost cutting potential 

Thin film copper 10 - 12 % 9 - 11 m2 - higher temperature and - more space for same 

indium diselenide    shading have lower impact    power 

(CIS)    on performance 

- high cost cutting potential 

Thin film cadmium  9 - 11 % 11 -13 m2 - higher temperature and - more space for same 

telluride (CdTe)    shading have lower impact    power 

   on performance 

- high cost cutting potential 

Thin film amorphus 6 - 8 % 13 -20 m2 - higher temperature and - more space for same 

silicon (a-Si)    shading have lower impact    power 

   on performance 

- high cost cutting potential 
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After considering many factors and performing commercial wireless commu-
nication survey. Also checking the possible commercial energy harvesting 
technologies, the optical communication method and visible light energy har-
vesting and transmission are chosen. This selection is also in line with the re-
quirements described in section 2.4.  The infrared communication and visible 
light energy transmission method are described in more detail hereafter: 

2.1.3 IrDA Standard and Infrared Communication Link 

Before designing an infrared communication system, it is important to under-
stand the infrared communication link and infrared standardization. The stan-
dardization for commercial infrared communication is drafted by the Infrared 
Data Association (IrDA). IrDA was founded in 1993 by around 50 companies 
to specify the protocols for wireless infrared communication that is mostly 
used for home appliances [Ref. 25].  The IrDA physical layer has three commu-
nication speed categories, these are: 

 Asynchronous Serial IR with 9.6 – 115.2 kbaud, return-to-zero (RTZ) 

modulation and reduced original pulse width to 3/16. 

 Synchronous Serial IR with 1.15 Mbaud, return-to-zero (RTZ) modula-

tion and reduced original pulse width to 1/4. 

 Synchronous Fast Serial IR with 4 Mbaud and 4 pulse position modula-

tion (PPM). 

The standard communication range is 1 m with minimum transmission angle 
of ±15° and the infrared light wavelength is between 850 and 950 nm. On the 
top of the physical layer are the Link Access Protocol (IrLAP) and Link Man-
agement Protocol (IrLMP) some other higher level protocol layers (see Table 
4). 
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Table 4: IrDA protocol stacks [Ref. 26]. 

IrTRAN-P IrObex IrLAN IrCOMM IrMC 

LM-IAS Tiny Transport Protocol (Tiny TP) 

IR Link Management - Mux (IrLMP) 

IR Link Access - Mux (IrLAP) 

Asynchronous Serial IR 

(SIR) 

(9600 - 115200 baud) 

Synchronous Serial 

IR (1.15 Mbaud) 

 

Synchronous Fast 

IR (FIR) 

(4 Mbaud) 

 

The advantages offered by the infrared communication system are its world-
wide compability and no need for approval from Federal Communications 
Commission (FCC) or other regulatory commissions. It is best used indoor es-
pecially when security issue is the priority. This feature is reflected by limited 
infrared propagation in the room. Table 5 shows the comparison between RF 
and infrared system [Bib. 6]. 
 
Since the introduction of the IrDA standards, the availability of the commer-
cial components that support the development of the infrared communication 
systems has increased significantly.  
 
To create infrared communication systems, only a simple link design is re-
quired compared to RF systems. The system can be built by simply using 8 bit 
microcontrollers connected directly to the infrared LED and the receiver [Ref. 

27]. One design of an infrared transceiver with small foot print costs less than 1 
$ manufactured by Vishay Semiconductors is shown in Figure 25 [Ref. 28].  
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Table 5: Comparison between RF and Infrared Communication Systems   [Bib. 
6]. 

Medium property RF Infrared Implication to Infrared 

Bandwidth regulated? Yes No - Approval not required 

- World wide compability 

Passes through walls? Yes No - Less coverage 

- More secure 

- Independent links in  

   different rooms 

Multipath fading? Yes No - Simple link design 

Dominant noise Other user Background - limited range 

light 

Input X(t) represents Amplitude Power - Difficult to operate 

   outdoors 

        

 

One important issue dealing with the infrared communication is to understand 
the categories of its communication link. The link categories are [Bib. 6]:  
 Direct link: The direct links uses directional transmitters and receivers 

configuration. 

 Non direct link: The non direct link uses wide-angle transmitters and 

receivers configuration 

 Hybrid link: The combination of transmitters and receivers with differ-

ent degrees of directionality.  

The direct link which is called line of sight (LOS) link is deployed to maxim-
ize power efficiency and minimizes multi path distortion. Non line of sight 
(NLOS) link is used to increase link robustness which is often referred to as a 



2 Wireless Sensor Network System Design 48 

          University of Bremen – March 2018  

diffuse link. The selection of the link type depends on the geometry and ma-
terial of the walls where the infrared communication system is deployed. If the 
walls have high light reflective properties, then is better to select the diffuse 
link. Figure 26 describes the classification of simple infrared links according 
to the degree of directionality of the transmitter and receiver [Bib. 6]. 

 

Figure 25: Vishay Semiconductors's infrared transceiver dimension [Ref. 28]. 

 

Figure 26: Classification of simple infrared links according to the degree of 
directionality of the transmitter and receiver [Bib. 6]. 

The infrared link can be described as a baseband channel mode by equation 1. 
Where R is the detector responsivity, X(t) is the optical power from the infra-
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red transmitter, Y(t) is the photo current of the infrared receiver, and h(t) is the 
impulse response. 

 
 
The back ground light (represented by Gaussian noise N(t)) is signal indepen-
dent and can be minimized by optical filtering. The average of the infrared 
LED transmitted power is represented by Pt , instead of time-average of |X(t)|2 
if X(t) represents amplitude. The average power Pr received by the photo diode 
can be described in equation 2. 

 

Where H(0)is channel dc gain and obtained from equation 3. 

 

Assuming that N(t) is dominated by a white Gaussian component and having 
double-sided power-spectral density N0. The SNR of given digital link at bit 
rate Rb can be described in equation 4. 

 

Increasing the SNR can be either done by increasing the transmitter power Pt 
or by increasing the infrared receiver light-collection area Aeff(ψ). The effec-
tive light-collection area of the infrared receiver can be described in equation 5 
with considering the concentrator and filter mounted on the photo detector. 

 

Where ψ is the angle of light incidence with respect to the receiver axis, g(ψ)is 
the concentrator gain, Ts(ψ) represents an average over the filter transmission 

(1) 

(2) 

(3) 

(4) 

(5) 
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at different wavelength and  ψc is the concentrator field of view (see Figure 
27). 

 

Figure 27: Basic construction of infrared receiver [Bib. 6]. 

The LOS links with either directed, hybrid or non directed as shown in Figure 
26 can be approximated with the help of the H(0) LOS  dc channel gain by using 
equation 5. The channel dc gain is described in equation 6 with the receiver 
located at distance d, angle ϕ. The LOS field of view is shown in Figure 28 

 

This is only valid if the transmitter emits an axially symmetric radian pattern 
which can be used to determine the photo detector incident current Is depend-
ing on distance d, angle ϕ and described in equation 7. 

 

In order to increase the field of view of the LOS link, the transmitter radiant 
intensity Ro shall be optimized. This can be achieved by utilizing the reflective 
materials in a building which has typical diffuse reflectivity value ρ between 
0.6 – 0.9 [Bib. 57], then the channel dc gain will be modified by using genera-
lized Lambertian radiant intensity that is described in equation 8.  

(6) 

(7) 
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Figure 28: LOS field of view [Bib. 6]. 

Where the order of m is calculated from m = -ln2/ln(cos ϕ1/2) with 
ϕ1/2=60°corresponds to m=1 and ϕ1/2=15°corresponds to m=20. 

 

From equation 8, the dc channel gain related to LOS general Lambertian ra-
diant intensity is used to describe equation 9. The new angle ϕd  referred to the 
reflection point (see Figure 29) is added. 

 

Figure 29 shows the non LOS field of view increases the transmitter radiant 
angle. The height between the receiver and the ceiling is represented by h, 
where dsr represents the horizontal distance between the radiated spot on the 
ceiling and the receiver. The received irradiance current Is at the photo detec-
tor is calculated with equation 10. 

 

(8) 

(9) 

(10) 
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The received power is then described as P = Is(dsr,h) Aeff(ψ), and the channel 
dc gain for directed or hybrid non LOS derived from equation 10 is shown in 
equation 11. 

 

 

This conclude that the coverage area of the infrared communication link is de-
pending significantly on the horizontal distance between the radiated spot on 
the ceiling and the receiver dsr and h, the height between the receiver and the 
ceiling. 

 

 

Figure 29: Non LOS field of view that increases the transmitter radiant intensi-
ty Ro [Bib. 6]. 

2.1.4  Visible Light Energy Transmission Method 

The optical wireless communication system was introduced by an experiment 
conducted in 1979 by Fritz R. Gfeller and Urs Bapst at IBM Zurich Reseach 
Laboratory [Bib. 7]. In recent years, the development of more efficient LEDs 
for home lighting opens new wireless communication alternatives by adding 
new features to LEDs for providing data to home appliances. The first VLC 

(11) 
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experiment was conducted in Japan for transmitting audio signals through 
LEDs (see Figure 30) [Ref. 29].  

 

 

Figure 30: The first Visible Light Communication experiment in Japan [Ref. 

29]. 

In 2011 a new technology LiFi was introduced by Harald Hass, Chair of Mo-
bile Communication at the University of Edinburgh in 2011 at TED Global. 
One of the LiFi’s break through is, that it can offer internet communication 
speed 100 times faster than the WLAN [Ref. 30]. The distinct difference be-
tween visible light communication and LiFi is  that the visible light communi-
cation typically does not provide internet access to the user but LiFi technolo-
gy allows movement of users to switch between LEDs transmitters. There 
could be also multiple users accessing the internet from the same LED trans-
mitter at the same time [Ref. 31]. The LiFi and VLC are using IEEE 802.11.7 
standard [Bib. 58].  The “Light fidelity (Li-Fi)” term is defined as the subset of 
VLC which is using the same IEEE 802.11.7 physical standard which allows 
high-speed, bidirectional and fully networked communications. The VLC 
technology is relatively safe for the fact that it does not pose any interference 
with RF signal [Bib. 48] thus it is applicable for critical system such as aero-
space application [Bib. 49]. 
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The main objective to use visible light communication instead of LiFi, because 
the sensor module in a spacecraft is not intended to have internet access during 
the launch. The solar cell as an energy harvesting component for charging the 
sensor module battery is utilized to receive data with low data rate. The fact 
that the data rate cannot exceed 10 kbaud with solar cells was studied by Ko-
rean researchers and the results are shown in Figure 31 [Bib. 8].   

 

Figure 31: Frequency response of the typical solar cell [Bib. 8]. 

There are several type of LEDs that shall be considered for energy transmis-
sion and visible light communication. These LED’s types are: 
 Phospor converted PC-LEDs which made of a single blue Indium Gal-

lium Nitride(InGaN) LED chip that pump a Ytrium Aluminum Garnet 

(YAG) phosphor coating. The green , yellow and red colours are con-

verted from the blue light produced through the coating, while the white 

colour is generated by the mixed of green, yellow, red and the leakage 

blue colour [Bib. 50]. 
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 The multi chip LEDs are made of combination of 3 or more LED chips 

which produce red, green, blue (RGB) color to created white color when 

they are mixed. 

 The organic LEDs (OLED) are made of organic sandwiched layers with 

positive and negative carriers. The drawback of this technology is its 

low frequency response and mean while offering longer life time (≈ 

50000 hours) compare with inorganic LEDs  [Bib. 51–Bib. 54]. 

 Micro LEDs (μ-LED) consist of micro LED arrays and are made of Al-

GaN. This technology offer high density LEDs with minimum pixel size 

of 14-84 μm [Bib. 55]. 

 

Table 6 summarizes the LED’s types with various parameters. The LEDs used 
in this work is a type of OLED that emits up to 4000 lux/m2 at a distance of 1 
meter and consumes less than 3 W. 

Table 6: Various types of LEDs and their parameters. 
Parameter pc-LED RGB LED µ-LED OLED 
          
Bandwidth 3-5 MHz 10-20 MHz ≥300 MHz ≤1 MHz 
Efficiency 130 lm/W 65 lm/W N/A 45 lm/w 
Cost Low High High Lowest 
Complexity Low Moderate Highest High 
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2.2 Overview of Space Qualified Sensors and Smart 
Sensors  

In this section, some space qualified sensors and commercial smart sensors 
will be described. This includes temperature sensors, acceleration sensors, 
pressure sensors, humidity sensors and light sensors. 

2.2.1  Space Qualified Sensor Overview 

The examples of some sensors presented here are typically used for space ap-
plication and they are manufactured to fit Ariane 5's requirement as described 
in section 2. The sensors are designed to operate in very harsh environmental 
conditions. Due to the vacuum in space, it requires the sensor to function in 
extremely high range of temperatures (typically – 40 to 120 °C). As air cool-
ing is not possible, the sensors are designed with metallic casing to dissipate 
the heat to the spacecraft’s body. The casing and thick wiring also keep the 
sensors survive the vibrations and shock imposed during the launch especially 
when the stage separation events occur. There are some Ariane 5’s qualified 
sensors to illustrate the need of smaller and smarter sensors for future devel-
opment. These sensors are described as following: 

Temperature Sensor 
In space application, the temperature sensor is used for thermal control and 
thermal monitoring systems. This is important to keep the on board equip-
ments and some sensors that need high stability inside their operational tem-
perature limits such as optical sensor can operated efficiently. 
 
One example of a space temperature sensor is a K-type thermocouple with op-
erating temperature from -74°C to 1200 °C (see Figure 32) [Ref. 32]. Typically 
this sensor is made of chromium – alumel material with sensitivity of approx-
imately 41 µV/°C. 
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Figure 32: Space qualified temperature sensor [Ref. 32]. 

Acceleration Sensor 

An acceleration sensor is required to measure the changing speed of the space-
craft and is also used to detect some events during the launch. These events are 
among others lift-off, booster separation, fairing separation, first stage separa-
tion and upper stage ignition.  
 
An example of a space qualified acceleration sensor is the EGCS-D0/D1S ac-
celerometer from TE Sensor Solution as shown in Figure 33. The sensor mea-
surement range is from ± 5 g up to ± 500 g. This sensor is used in a Wheat-
stone bridge setup and has a maximum frequency response of 4 kHz [Ref. 33].  

 

 

Figure 33: Space qualified acceleration sensor [Ref. 33]. 
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Pressure Sensor 

A pressure sensor is typically used for measuring wide variety of pressures 
which acquires vital values for controlling the launcher. The applications are 
among others for measuring pressure in the pump, thrust chamber, hydraulic 
system and liquid propellant. [Ref. 34]. 
 
An example of an absolute pressure sensor is shown in Figure 34 [Ref. 35]. The 
sensor has a measurement range of 0 to 4000 bars with a working temperature 
range of -50 to 150°C.  The shock resistance is 100 g and the sensor accuracy 
is ± 0.5%. 
 
In the next section the overview of smart sensors and their internal block dia-
grams will be presented. 

 

Figure 34: Space qualified absolute pressure sensor [Ref. 35]. 

2.2.2  Commercial Smart Sensor Overview 

The smart sensors are types of sensors that contain some features such as self 
calibration, signal conditioning, analog to digital conversion and a digital in-
terface to a microcontroller or external circuit [Ref. 36]. Some smart sensors 
that will be used for a sensor module are described in details in the following 
sections: 
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Relative Humidity and Temperature Sensor SHT11 

Relative humidity sensor is typically made of a capacitor that has a hygroscop-
ic dielectric material. This is different compared to a normal capacitor that 
uses plastic or polymer as dielectric. The polymer dielectric constant εr is in 
the range of 2 to 15 but for hygroscopic dielectric, it depends on the water va-
por concentration and can reach 80. For the sensor, the capacitance is directly 
related to the amount of moisture on the capacitor surface and depending on 
the ambient temperature [Ref. 37]. 
 
For SHT11, the signal of the capacitance and the ambient temperature mea-
surement are converted by a 14 bit ADC. The calibration memory stores the 
calibrated values during the manufacturing process that provides ADC values 
correction related to a given humidity and ambient temperature. The output of 
the ADC is converted to a serial interface protocol for a microcontroller or ex-
ternal computer. Figure 35 shows the internal block diagram of SHT11 [Ref. 

38]. 

RELATIVE
HUMIDITY
SENSOR

TEMPERATURE
SENSOR

14-BIT
ANALOG TO DIGITAL

CONVERTER

CALIBRATION
MEMORY

TWO-WIRE 
SERIAL 

INTERFACE

 

Figure 35: SHT11 internal block diagram [Ref. 38]. 

The SHT11 requires 3.3 V and consumes 3 mW with working temperature of -
20° C to 100° C. The physical view of the sensor and the dimensions are 
shown in Figure 36. The sensor also incorporates internal heating that can in-
crease the internal sensor temperature by 5 to 10 ° C. This feature is added for 
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functionality analysis to check the dew point while varying the temperature 
when decreasing the humidity [Ref. 38]. 

 

 

Figure 36: SHT11 relative humidity sensor [Ref. 38]. 

Absolute pressure sensor MS5534A 

An absolute pressure sensor typically has a membrane that separates the sus-
pended vacuum from the outer world. The material of the membrane is typi-
cally made of stainless steel, piezoresistive material or silicon. The value of 
the resistance on the membrane changes according to the pressure of the gas or 
a liquid pushing toward the membrane into the suspended vacuum chamber 
[Ref. 39]. 

 

DIGITAL
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INPUT
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SYNCHRONOUS

SERIAL
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MEMORY
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Figure 37: Pressure sensor MS5534A internal block diagram [Ref. 40]. 
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The MS5534 absolute pressures sensor has a measurement range of 300 - 1100 
mbar. It operates with 3.3 V and consumes 3.3 mW in measurement mode. 
There are several piezoresistors used for the measurements and these are con-
nected to a multiplexer circuit in front of ADC input. Digital filtering is ap-
plied to filter the ADC values before sending them to a serial interface circuit 
that communicates with a microcontroller or external processor. A programm-
able read only memory (PROM) is required to store calibrated values during 
the manufacturing process. Figure 37 shows the internal block diagram of the 
MS5534A [Ref. 40]. 

 

 

Figure 38: MS5534A pressure sensor dimension [Ref. 40]. 

 

Three Axis Acceleration Sensor ADXL345 

A Microelectromechanical systems (MEMS) acceleration sensor is used wide-
ly and its application keeps growing in recent years [Ref. 41]. The MEMS acce-
leration sensor is essential for automotive and consumer application such as 
handheld equipments because of its miniaturized size and its high precision. 
The sensor typically consists of capacitor array combs with mass connected to 
positive electrodes and placed in the middle. The negative electrodes are 
usually bounded to the body. The change of velocity alters the position of the 
combs. The change between the combs’ distance results in capacitor values as 
shows in Figure 40 a) [Ref. 42].  

9.15 mm 

9.15 mm 
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Figure 39: Three axis acceleration sensor ADXL345 internal block diagram 
[Ref. 42]. 

The conversion of the capacitance value to the acceleration is done with a 
mass spring system method. Figure 39 shows the block diagram of ADXL345 
with three acceleration sensors, the values are amplified by a sensing circuit. 
An ADC then converts these values and a digital filter does the filtering. A 
power management circuit is driven by the control and interrupt logic as well 
the serial input/output circuit. A 32 level FIFO is placed between the digital 
filter and the serial I/O [Ref. 43]. 
 
The ADXL345 is powered with 3.3 V and consumes 40 µA during measure-
ment mode. The resolution of the sensor is 4 mg with maximum ±16 g mea-
surement values. It can survive shocks up to 10000 g and has a shock detection 
function embedded.  Figure 40b shows the physical view and dimension of an 
ADXL345. 
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                       a) Working principle                                          b) ADXL345 

Figure 40: ADXL345 three axis acceleration sensor [Ref. 43]. 

Visible Light and Infrared Light Sensor TSL2560 

A light sensor typically uses photo diodes or photo transistors to detect the 
number of photons. The type of light which can be measured depends on the 
photo diode measurement spectrum [Ref. 44]. The measurement spectrum of the 
infrared diode is in the range of 550 nm to 1100 nm with the peak at 800 nm. 
The visible light diode spectrum is from 300 nm up to 750 nm with the peak at 
550 nm. These two types of photo diodes are incorporated in TSL256 light 
sensor. Channel 0 is for visible/infrared light and channel 1 is for infrared light 
only. An integrator circuit is used to accumulate the values generated by the 
measured photons. This value is representing the light intensity which is con-
verted by an ADC given to a serial interface circuit [Ref. 45]. The internal block 
diagram of the TSL2560 is shown in Figure 41. 

 

 

 

 

3.0 mm 
5.0 mm 
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Figure 41: Visible and infrared light sensor TSL2560 internal block diagram 
[Ref. 45]. 

The TSL2560 requires 3.3 V and consumes 0.75 mW. Inside the sensor, the 
visible light photo diode has 640 nm peak sensitivity and the infrared photo 
diode has a 940 nm peak sensitivity. The sensor measurement range is be-
tween 0.1 lux and 40000 lux. Figure 42 shows the TSL2560 physical view and 
its dimensions [Ref. 45]. 

 

 

Figure 42: TSL2560 visible and infrared light sensor [Ref. 45]. 

The overview shows that smart sensors are much smaller than conventional 
space sensors. This is advantageous especially when building wireless smart 
sensor node for space which focus on less weight and limited by power con-

1.750 mm 

1.250 mm 
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straint. Although the smart sensors are not yet qualified for replacing current 
conventional space sensors but this work might initiate the development of 
space qualified smart sensor in the future. Conventional space sensors will be 
still used for some critical measurement purpose and the smart sensors are typ-
ically useful for environment monitoring inside the spacecraft. Next, the effect 
of space material on infrared communication will be discussed. 

 

2.3 Effect of Space Materials on Infrared 
Communication 

In this section, typical space materials that cover the spacecraft surface are 
studied with respect to their effect on infrared communication. These materials 
are typically layers used for temperature and micrometeoroids protection. By 
using these layers, the impact of the micrometeoroids and orbital debris colli-
sion can be reduced. The materials are in the form of Nextel ceramic cloth and 
Kevlar fabric for covering the internal wall [Ref. 46]. In recent years, carbon 
nano tubes (CNT) are studied to reinforce the polymeric composites and to re-
duce material mass [Bib. 9]. Figure 44 shows the process of CNT application on 
space materials. 
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Figure 43: Apollo

Other common space material is the heat protection material that consists of 
heat resistance nickel steel alloy, plastic film coated with 
multi layers of gold colored
sorb heat that might pass through the multi layer material and radiates it back 
to the deep space [Ref. 47]. Example of the materials used on 
mand module is shown in Figure 
 

Figure 44: CNT application on the space material [

Sensor Network System Design 

Apollo 1 command module [Ref. 48]. 

Other common space material is the heat protection material that consists of 
ickel steel alloy, plastic film coated with aluminum

colored films. The black sheets are typically used to a
sorb heat that might pass through the multi layer material and radiates it back 

]. Example of the materials used on Apollo
Figure 43. 

: CNT application on the space material [Bib. 
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Other common space material is the heat protection material that consists of 
aluminum or some 

films. The black sheets are typically used to ab-
sorb heat that might pass through the multi layer material and radiates it back 

Apollo 1 com-

 

Bib. 9]. 
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In the following sections the multi layer insulation (MLI) and its impact on 
infrared communication will be studied. MLI becomes the main focus because 
it is used frequently on the spacecraft internal surfaces. 

2.3.1 Multi Layer Isolation Overview 

Commonly MLI is used to protect spacecraft parts from thermal radiation. 
MLI material typically consists of multiple layers of thin metal alloys sand-
wiched with polymer films. Example of MLI stacking arrangement in the 
space shuttle Columbia is shown in Figure 45 [Ref. 49]. 
 

 

Figure 45: MLI stacking arrangement in space shuttle Columbia [Ref. 49]. 

The Outer Cover is a transparent layer that protects the MLI from shedding, 
flaking and particle generation. The Light Block is placed directly below the 
Outer Cover for blocking ultra violet radiation. Instead of polyester, the Net-
ting Spacer is made of silk that offers a 15 - 30% better performance to avoid 
damaging metalized coating when the Metalized Reflectors are sandwiches 
together [Bib. 10]. The Inner Cover is used as a buffer between the spacecraft 
structure and the MLI. The material is made of non- flammable materials and 
allows better adhesives strength to the Netting spacer of the MLI. 
 
Other use of MLI is for thermal insulation of the cryogenic hydrogen tanks. 
The MLI consist of less than 12 µm polyester film with double side aluminum 
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coating that has a 40 nm thickness [Ref. 50]. This type of MLI has high temper-
ature and non flammable nature and was tested in gaseous oxygen environ-
ment (see Figure 46).  

 

 

Figure 46: MLI physical view for cryognic hydrogen tanks [Ref. 50]. 

A very low absorptance of the MLI is caused by the coating process that uses 
advancements of nano technologies. The microscopic image of the MLI nano 
surface structure is shown in Figure 47. 
 
The infrared absorptance of 50 µm MLI at 4 K was measured with radiation 
temperatures between 40 and 100 K. The result shows that the infrared absorp-
tance is below 0.8 as described in Figure 47 [Ref. 50] (outward the tank). The 
effective emissitivity εeff is described in equation 1 [Bib. 11]. 
 

One of the most important usages of MLI is the protection of sensitive mea-
surement instruments such as telescopes, infrared cameras from the sun radia-
tion or from propulsion systems. The typical effective absorptance of the MLI 
when used to cover sensitive instruments is between 0.0015 and 0.0300. 
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Figure 47: MLI microscopic surface structure [Ref. 50]. 

The main reason to use MLI is because the low temperature of the hydrogen 
tank is difficult to be maintained for avoiding boil-off losses that might lead to 
safety issues and energy losses [Bib. 12].  

 

 

 

Where, 

σ  =  the Stefen-Boltzmann constant 

εeff      =  effective emissivity 

qtotal =  total heat flux through MLI 

T  =  temperature in Kelvin 

 

(12) 
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Figure 48: Infrared Absor

MLI Influence on Infrared Bit Error Rate

In this section, the MLI effect to the infrared communication is studied. 
51 shows the experimental setup with MLI materials. There are two types of 
MLI materials, one with 10 and 
ments (see Figure 49). The white color MLI shown in 
used for protecting the cryogenic hydrogen tanks. The VEB’s internal stru
tural surface (see Figure 50
49 b).  
 

                  a) 

Figure 49: Common MLI materials used: a) 10 layers, b) 20 layers.
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In this section, the MLI effect to the infrared communication is studied. 
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50) is protected by a yellow MLI as shown in 
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Ref. 50]. 

In this section, the MLI effect to the infrared communication is studied. Figure 
shows the experimental setup with MLI materials. There are two types of 
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cryogenic hydrogen tanks. The VEB’s internal struc-
) is protected by a yellow MLI as shown in Figure 

MLI materials used: a) 10 layers, b) 20 layers. 
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Figure 50: MLI material on the VEB [Ref. 4]. 

Figure 51 shows the experiment setup that consists of infrared transmitter TX, 
receiver RX, light source and MLI. The distance between the MLI and the 
infrared transceiver is 100 cm. Referring equation 1, the light source is placed 
near the infrared receiver to induce Gaussian noise N(t). There are two visible 
light sources used for the study. The first is the DC LED light and the second 
is the AC light bulb. The light intensity for both light sources shall not be 
more than 800 Lux measured at the infrared receiver. This allows fair compar-
ison between the light sources that might induce different level of Gaussian 
noise N(t). 
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Figure 51: Experiment setup with MLI material. 

The schematic of the setup is shown in Figure 52 and it requires random bit 
generator at the transmitter side and the output of the receiver will be com-
pared with the transmitted bit to find the BER. The current source is realized 
by a constant 5V voltage supply in series with one resistor. The infrared 
transmitter consists of an infrared LED TSAL6200 that has peak wavelength 
of λ = 960 nm, BC337 as LED driver controlled by pattern generator signal.  

 
The infrared receiver TSMP58000 has integrated photo detector and pream-
plifier in its package. The preamplifier includes automatic gain control unit 
that enable it to receive weak signal up to 5 meters. The TSAL6200 consumes 
only 0.9 mA at 5 V.     
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Figure 52: The infrared transceiver schematic with pattern

The probability of the error at the infrared receiver is mainly affected by the 
decision threshold of the infrared receiver
nal. As expressed in equation 4, the detector responsitivity 
H(0) and LED transmitted power 
 
The probability function of the infrared receiver is unknow as illustrated in 
Figure 53. This is due to the fact that the infrared receive
characteristic of its SNR in the datasheet. 

 

The experiment was carried out by placing the angle of the TX and RX 
By adjusting the current to the TX LED in the dark, the minimum curret 
required to reach BER of 10
BER was achieved with AC light by providing 420 mA to the TX with 5 
LED resistor. In contrast, the DC light giv
measurement results performed in the dark.
surement results for LED resistance in different illumination condition [
2]. 
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: The infrared transceiver schematic with pattern generator and cu
rent source. 

The probability of the error at the infrared receiver is mainly affected by the 
of the infrared receiver which rely much on SNR of the si

nal. As expressed in equation 4, the detector responsitivity R, chan
and LED transmitted power Pt increase the SNR quadratic.  

The probability function of the infrared receiver is unknow as illustrated in 
. This is due to the fact that the infrared receiver does not provide the 

characteristic of its SNR in the datasheet.  

The experiment was carried out by placing the angle of the TX and RX 
By adjusting the current to the TX LED in the dark, the minimum curret 
required to reach BER of 10-9 is at 175 mA with 12 Ω LED resistor. The 
BER was achieved with AC light by providing 420 mA to the TX with 5 

. In contrast, the DC light gives the BER values following the 
measurement results performed in the dark. Figure 54 shows the BER me
surement results for LED resistance in different illumination condition [
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The probability function of the infrared receiver is unknow as illustrated in 
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The experiment was carried out by placing the angle of the TX and RX at 0°. 
By adjusting the current to the TX LED in the dark, the minimum curret 

resistor. The same 
BER was achieved with AC light by providing 420 mA to the TX with 5 Ω 

es the BER values following the 
shows the BER mea-

surement results for LED resistance in different illumination condition [Own. 
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Figure 53: Unknown probability function of the experiment. 

One reason that might cause the AC light delivers such high noise to the infra-
red channel because its light spectrum contains high infrared components. 

 

Figure 54: Bit-error-rate (BER) measurement versus LED current in different 
illumination conditions [Own.  2] 
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By utilizing the graph provided from the datasheet (see Figure 55) , the infra-
red transmitter radiant intensity at 0° with 1 meter distance from the MLI is 
about 130 mW/sr. A much higher radiant intensity about 330 mW/sr is re-
quired when AC light is present. 

 

Figure 55: LED radiant intensity vs. forward current [Ref. 10]. 

A further experiment was conducted by varying the angle between the TX and 
RX with fixed radiant intensity of 130 mW/sr. This is intuitive to study the 
non LOS channel dc gain H(0) as described in equation 11. 
 
The measurement results show that for no light condition and for DC light il-
lumination, the BER reaches 10-9 at 0° to ±10° (see Figure 56). When the an-
gle increases to more than ±10°, the BER reaches a maximum 10-4 at ±20°.  

 

Only when the AC light was present, the BER is larger than 10-3 for all angles. 
The LED  propagation pattern from the datasheet is shown in Figure 57 and 
the receiver gain pattern in illustrated in Figure 58. 
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The results of the experiment show that MLI can be utilized for diffused non 
line of sight infrared communication inside the spacecraft. The visible light 
from a DC source can be presented in combination with infrared communica-
tion because it does not affect much on the BER. Different layers of MLI have 
been tested and they did not give significant influence to the measurement re-
sults. Based on these facts, an infrared transceiver will be designed and de-
scribed in detail in the next section. 

 

 

Figure 56: Bit-error-rate (BER) measurement results with infrared transceiver 
angle variation [Own. 2] 
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Figure 57: Infrared LED's propagation pattern [Ref. 10]. 

 

 
Figure 58: Infrared receiver gain pattern [Ref. 9]. 
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3 Infrared Transceiver Design for Optimized 
Power Consumption 

Pulse code modulation (PCM) has been used widely for audio devices and 
infrared remote control [Bib. 14]. It offers flexibility for direct data storing and 
allows pulse regeneration (example for audio CD). There are three types of 
PCMs used for infrared communication nowadays [Ref. 51]: 
 Manchester coding 

 Pulse distance coding 

 Pulse length coding 

 

The Manchester coding represents a data bit by a transition from “0” to “1” for 
logic “1” and “1” to “0” for logic “0”. The advantage of this coding enable the 
receiver to reconstruct clock information provided by the transmitter. The 
clock information is embedded in the phase changing sequence of each data bit 
period (the bit transition). This results in twice the bandwidth compare to uni-
polar return zero coding [Ref. 52]. 

 

 

Figure 59: Manchester coding signal representation [Ref. 51]. 

The pulse distance coding is representing the data by varying the length of the 
transmission period [Ref. 51]. For example, logic “1” has period of TB and logic 
“0” has shorter period TA. (see Figure 60). 
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Figure 60: Pulse distance coding signal representation [Ref. 51]. 

In the case of pulse length coding, the length of the pulse is varied to represent 
the data bit. Figure 61 shows that for logic “1” the period is TL and for logic 
“0” the period is TS. To separate the data bits, a gap with period of TG is in-
serted in between each pulse [Ref. 51]. 

 

 

 

Figure 61: Pulse length coding signal representation [Ref. 51]. 

Next, the Manchester coding and uni-polar non return zero will be analyzed 
for the infrared communication, even though there are many more modulation 
methods exist such as [Bib. 33]: 

o Differential amplitude pulse position modulation 

o Digital pulse interval modulation 

o Dual header pulse position modulation 

o Multilevel digital pulse interval modulation 

 

 

 

TA TB TB TA TA 

TL TS TG TG TS TL TG TL TG 
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3.1 Modulation Selection of the Infrared Physical Layer 

The power spectral density of Manchester coding and uni-polar non return ze-
ro coding are analyzed for better understanding of the design. Although the 
uni-polar non return zero power spectrum density (see equation 13, [Bib. 15]) 
shows that it requires more power as the signals move toward DC but it offers 
simpler hardware design.  

 

                    

 

 

Where A is the amplitude of the signal, Tb is the period of the signal 
represented by bandwidth Rb = 1/Tb. The more advance coding it the well 
known Manchester coding. This coding offer clock recovery and does not con-
tain DC components (see equation 14, [Bib. 15]). This becomes challenging 
when designing the hardware because the incoming Manchester signal needs 
edge detection function for synchronizing the internal Manchester clock before 
the zeros and pulses can be generated. Although the Manchester clock at the 
receiver part is possible to be generated from the incoming signal edges, but 
that causes hardware overhead.   

 

 

 

Figure 62 shows the spectral density comparison between Manchester coding 
and uni-polar non return zero coding. The Manchester coding PSD amplitude 
is normalized for better graph comparison. 

 

(13) 

(14) 
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Figure 62: Manchester coding and uni-polar non return to zero spectral density 
comparison [Bib. 15]. 

The graph of the PSD shows that at Rb = 0, uni polar non return to zero coding 
reaches its highest PSD amplitude. Although uni-polar coding does not offer 
error detection capability but it requires less complexity to build. On the other 
hand, the Manchester coding reaches its peak PSD amplitude at higher fre-
quency (in this case ~0.75 Rb). It requires twice the bandwidth of uni-polar  
non return to zero coding, but it offers error detection mechanism especially 
when rows of zeros or ones are transmitted. Next the modulation methods will 
be implemented in an ASIC design.  

3.2 Infrared Transceiver ASIC Design with AMS350 nm 
Technology 

The design of an infrared ASIC requires several steps to complete and they 
are: 

 Digital Part Design 

 Analog Part Design 
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 Substituting Clock Synchronous Digital Part with Event Driven Analog 

Part to save energy 

The analog mixed signal 350 nm technologies are used to realize the infrared 
transceiver ASICs design. The technology is provided by an Austrian multina-
tional semiconductor manufacturer, Austria Mikro Systeme AG (referred to as 
AMS) [Ref. 53].  
 

The design of the ASICs is carried out to optimize power consumption. This is 
achieved by simplifying the hardware building blocks and by replacing the 
critical synchronous module with asynchronous circuit. Since the clock always 
present in synchronized circuit, the high current consumption during clock 
transition is happening all the time. This current consumption is minimized by 
either using asynchronous circuit or analog circuit with capacitor to store state 
when state machine is required [Bib. 59]. In this work, the asynchronous digital 
circuit is replaced by analog astabile multivibrator is to overcome the draw-
back that might related to global clock issues (e.g. cross talk, critical path, etc.) 
[Bib. 60]. This implicates less energy consumptions  by having the analog cir-
cuit with simple design. This leads to less transistors  compared with synthe-
sized digital circuit [Bib. 61, Bib. 62]. Next section will show how a simple ana-
log circuit is used to replace digital pulse detection and pulse recovery circuit.  

 

A 9600 bandwidth is selected for realizing the infrared transceiver. The simu-
lation for this bandwidth was performed in Matlab with P. Welch algorithm 
which estimates and compares the spectral density in of both modulation types 
[Bib. 47].  In the simulation, a random bit stream was generated for both cod-
ings. The simulation results in Figure 63 show that at 9600 baud the uni-polar 
coding consumes less power than the Manchester coding by approximately -
20dB. At 2400 baud, the Manchester coding reduces the power consumption 
by -6 dB. This result shows that minimum power consumption is achieved at 
9600 baud with almost -65 dB for uni-polar coding.  
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Such communication speed is sufficient especially for compacted data from 
smart sensors, such those temperature, air pressure, air humidity and accelera-
tion sensors. 

 

Figure 63: Manchester and uni-polar return to zero spectral density simulation 
[Own.  3]. 

3.2.1  Manchester coding ASIC development 

The design of the hardware is initialized by grouping the hardware blocks ac-
cording to their functionality. The block diagram of the Manchester coding 
transmitter is divided into sub blocks and they are described as following, 
 UART to Manchester block contains the following sub blocks: 

 Manchester clock Generator block: This block generates Man-

chester clock with 19200 Hz or twice of the transmission baud (see 

signal M_clk). 

 Manchester block: This block uses a logical operator XOR to 

generate a Manchester output signal by inverting the UART_in 
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signal and XORing it with the Manchester clock output. (see sig-

nal Manchester_out = UART_in   XOR   M_clk). 

 IrDA 3/16 pulse shaping block: The input signal Manchester_out is 

shaped by reducing the pulse width to 3/16 of the baud period. In this 

case the 9600 baud has period of 104 µs and was reduced to 20 µs (see 

signal 3/16_out). The pulse shaping block is required to meet IrDa 

physical layer standard in order to reduce power consumption of the in-

frared LED by 85 % [Ref. 26]. 
 

and the Manchester receiver blocks are: 
 IrDA 3/16 pulse recovery block: The input signal from the infrared re-

ceiver IR_receiver is inverted (see signal 3/16_in) and its pulse period 

is extended to 52 µs (because the Manchester code uses twice of the 

bandwidth, see signal Manchester_in). 

 Manchester to UART  block contains the following sub blocks: 

 Manchester edge detector block: This block detects the ris-

ing/falling edges of the 3/16_in signal from IrDA 3/16 pulse re-

covery block. When the rising edge from the start bit is detected, 

the block will generate 21 short pulses (see signal edge_detector) 

triggered by the input signal. The state machine in the edge detec-

tor compares the previous input state with the current input state 

for detecting if any Manchester pulse transitions exist. A timer is 

set to measure the length of each detected edge. If the timer is 

valid and there is no edge detected at the input, the error flag is set 

and the received bits are erased. 

 Manchester clock recovery block: The signal received from the 

Manchester edge detector block is used to recover the Manches-
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ter clock (see signal clk_recovered). The edge received flag is set 

for each clock detected in Manchester edge detector block. This 

flag is used to generate Manchester clock for UART generator 

block.  

 UART generator block: The Manchester_in signal is XORed 

with the clk_recovered signal and inverted to recover the 

UART_out signal. (see signal UART_out = Manchester_in   

XOR   clk_recovered). 

 
The Manchester coding block diagram is shown in Figure 64 and its transmit-
ter/receiver simulation is shown in Figure 65. The UART protocol is selected 
for infrared ASIC that communicates with microcontroller because other digi-
tal interfaces of the microcontroller are already used for smart sensors. The 
smart sensors are using digital interfaces such as SPI and I2C to communicate 
with the microcontroller.  

 

 

 

Figure 64: Manchester coding transmitter and receiver block diagram. 
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Figure 65: Manchester transmitter and receiver simulation. 

The VHDL codes of the Manchester coding were synthesized on a Xilinx 
Spartan 3E - FPGA as shown in Figure 66. 

 

 

Figure 66: FPGA prototype for testing the modulation methods. 
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Two FPGAs boards and the infrared transceiver were separated by a distance 
of 4 meter. A smart sensor board was used to provide some data for the com-
munication. This data was then displayed on a VGA monitor on the transmitter 
as well on receiver sides for comparison.   
 
At the receiver, the signal was measured with an oscilloscope as shown in 
Figure 67 (active Low signal). The transmitted signal at the LED has a pulse 
width of 20 µs complying to IrDA standard. These pulses represent a start bit 
and 8 bits data (a stop bit is not sent to save power). The signal received at the 
infrared receiver has a much shorter period, about 5 µs and needs to be recov-
ered  to produce a wider pulse in the IrDA 3/16 pulse recovery block.  

 

 

Figure 67: Manchester coding infrared transceiver signal. 

The recovered UART signal is measured at the FPGA board output as shown 
in Figure 68. The measurement shows that the Manchester coding was suc-
cessfully implemented on the FPGA and was able to handle transmitter and 
receiver signals. In this experiment, the FPGA board was running with a 50 
MHz clock and in order to reduce power consumption, a clock divider was 
used to provide 10 MHz for the ASIC design.  
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Figure 68: Manchester recovered UART signal at the FPGA output. 

3.2.2  Uni-polar Coding ASIC Development 

The block diagram of a uni-polar coding transmitter is much simpler than 
Manchester coding and only has one block. The block is, 
 IrDA 3/16 pulse shaping block: The input signal UART_in is shaped 

by reducing the pulse width to 3/16 of the baud period. A period of one 

UART bit is 104 µs and reduced to 20 µs (see signal 3/16_out). 

and  uni-polar return to zero receiver block is, 
 IrDA 3/16 pulse recovery block: The input signal from the infrared re-

ceiver IR_receiver is inverted and its pulse period is extended to 104 µs 

(see signal 3/16_in). The UART_out signal is the result of the inverted  

3/16_in signal. 

The uni-polar non return to zero block diagram is shown in Figure 69 and its 
transmitter/receiver simulation is shown in Figure 70. Xilinx Spartan 3E 
FPGA was used for testing the uni-polar return to zero coding and the same 
setup was also prepared for the signal measurement. 
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Figure 69: The uni-polar non return to zero coding transmitter and receiver 
block diagram. 

The signals at the infrared LED and at the infrared receiver are shown in Fig-
ure 71. The uni-polar non return to zero coding only turns on the infrared LED 
when data bit has logic “0”, this leads to less power consumption compare 
with Manchester coding. The uni-polar non return zero coding also complies 
with IrDA standard and has a pulse width of 20 µs at the transmitter LED. The 
UART data is directly represented as a start bit, 8 data bits and without stop bit 
(see Figure 72).  
 

 

Figure 70: Uni-polar return to zero transmitter and receiver simulation. 

The 3/16 pulse recovery block is realized with an astabile multivibrator cir-
cuit as shown in Figure 73. The design of this block with analog circuit is to 
replace asynchronous digital circuit that shall be triggered by very short pulses 
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received from infrared receiver. At 9600 baud the pulses width defined by Ir-
DA standard is 20 μs and this can reach 1.8 μs when the communication speed 
reaches 115200 baud. The goal of placing one resistor and capacitor externally 
is for allowing pulse width recovery for various speed in future development. 
This offers more flexibility compare with digital circuit especially when the 
ASIC has been manufactured. The analog circuit of this block was designed to 
consume less than 70 μA and by using only 4 transistors it reduce probability 
of space radiation in comparison with high density transistor circuit such as 
digital circuit.  
 
The front-end transistor PMOS1 is used to detect the incoming short pulse 
from the infrared receiver. PMOS is used because the infrared receiver output 
is driven by active low signal. Once PMOS1 is activated, the voltage at R3 will 
be increased to turn NMOS1 on. NMOS1 is used to discharge capacitor C1, 
hence it will activate PMOS2. 

 

 

Figure 71: Uni-polar non return to zero coding infrared transceiver signal. 

When PMOS2 is activated, NMOS2 is also on, this results in an active Low at 
the output (UART_out). The simulation result shows that if the infrared re-
ceiver voltage goes down, the UART_out signal follows instantly but it does 
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not immediately rise and follows the input signal (see Figure 74). This caused 
by charge time constant of C1 depending on value R5.  The time constant τ for 
C1 and R5 is calculated according to equation 9. 
 

 
 
 

 

Figure 72: Uni-polar non return zero recovered UART signal at the FPGA 
output. 

 

Figure 73: Astabile multivibrator circuit as 3/16 pulse recovery block. 

(9) 
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The relationship between R5, C1, supply voltage VDD and voltage across C1 is 
described by equation 15. 

 

 

 

PMOS2 is kept ON until C1 voltage |VGS| less than its threshold voltage |VT| 
(since the source of PMOS2 is attached to VDD, it means when C1 voltage 
shall be reaching VDD - |VT| PMOS2). Equation 16 gives this relationship [Ref. 

54]. 

 

 

Where, 
IDsat =  PMOS2 current at VC1<VT 
Kn  =  gain factor of PMOS2 
VT  =  PMOS2 threshold voltage 
VC1 =  PMOS2 Gate-Source voltage 
 

 

Figure 74: Astabile multivibrator circuit simulation. 

(16) 

(15) 
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The extended pulse width at UART_out is set to 104 µs by adjusting the val-
ues of R5 and C1. The current consumption of the circuit was reduced to less 
than 75 µA through the selection of the transistors width and length (see Fig-
ure 73 and Figure 74). The digital circuit has been replaced by this circuit for 
power optimization. 

3.2.3  Infrared transceiver ASIC Design 

In this section the layout of the infrared transceiver ASIC based on the mod-
ulation methods is carried out.  The Cadence Virtuoso Analog Design Envi-
ronment [Ref. 56] was used to design the 3/16 pulse recovery circuit while C1 
and R5 are placed externally. These two components allow calibration for 
achieving 104 µs pulse width after the ASIC is manufactured. The digital part 
was synthesized by Synopsys Design Compiler [Ref. 57] together with Cadence 
Encounter [Ref. 58].  
 
The Manchester layout has a chip surface of 330 × 330 µm, the uni-polar TX 
is 130 × 130 µm, the Manchester recovery is 51 × 56 µm and the uni-polar RX 
is also 51 × 56 µm. The total area required for both of the designs, including 
40 input/output pads, is 1800 × 1800 µm (see Figure 75). The power consump-
tion estimated for the designs is summarized in Table 7. The Dynamic Power 
consumption was estimated with 10 ms of simulation using SimVision (from 
Cadence Design Systems), based on the AMS 350 nm technology parameters. 
The simulation results were exported as value change dump and were used to 
estimate the dynamic power consumption using the register transfer logic 
compiler (RTL). 

Table 7: Dynamic power estimation of the digital circuit. 

Layout name Instance Leakage Dynamic Total 

    Power (nW) Power (mW) Power (mW) 

Manchester layout 628 0.598 39.89 39.89 

Uni-Polar layout 261 0.248 1.47 1.47 
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Figure 75: Infrared Manchester and uni-polar coding layouts. 

The simulation results show that the Manchester coding design has a layout 
area 1.4 times larger than the uni-polar non return to zero and consumes al-
most 26 times more power (39.89 mW) than its counterpart (1.47 mW). The 
comparison of the power consumption between space application sensor node, 
commercial sensor node and this work is summarized in Table 8. Although the 
sensor nodes comparison in Table 8 are not fully comparable to each other but 
it gives insight of the recent development in wireless sensor node technolo-
gies.  
 
The priority of developing the ASIC is shifted toward design flexibility that 
allows various COTS, Space components and self custom ASICs to be inter-
changeable.  That means the analog sensors, smart sensors, telecommunication 
hardware, data processing hardware/microcontroller shall be flexible to follow 
latest COTS development. For example, while finishing of this work, a newly 
tested COTS microcontroller that has been reported to qualified space radia-
tion test. This enables the already built system to adapt using the microcontrol-
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ler, which is contrary if the sensor node main functionalities are all design in 
one ASIC. 

 

Table 8: Comparison between the wireless sensor node characteristics of vari-
ous technologies and architectures. 

Application Space application Commercial application This work  

  Smart Dust[Bib. 24] SleepWalker [Bib. 65]/ Infrared transceivere ASIC with 

   /WiseNET [Bib. 25] Ultra-low Power 900 MHz  uni-polar NRZ coding 

    RF Transceiver [Bib. 65]   

Supply voltage 2.25 V 1V – 1.2 V [Bib. 66] 3.3 V 

Clock 16.67 MHz[Bib. 24] <  100kHz[Bib. 66] <10 MHz 

Technology 

 

350 nm 

SiGeBiCMOS (S35)[Bib. 24] 

65nm  

CMOS LP/GP[Bib. 66] 

350 nm  

CMOS (AMS35) 

    

Core Area 700µm X 700 µm [Bib. 24] 750µm X 875 µm[Bib. 66] <500µm X 500 µm 

Core-Power Consump-
tion 17 mW[Bib. 24] 174 µW[Bib. 66] No core 

 

Operating Frequency/ 
Wavelength 

433 MHz (ISM) and 868 MHz 
(SRD)[Bib. 25] 900MHz RF [Bib. 65] 940nm 

Propagation Range ca. 10 m indoors [Bib. 25] ca. 16 m indoors[Bib. 65] ca. 3 m indoors (measured) 

Data Rate/modulation 
<100 Kbps with FSK (Δf = 25 

kHz)[Bib. 25] 20 kbps [Bib. 65] 9.6kbps 

Power Consumption  
(Rx mode) 1.8 mW [Bib. 25] 1.2 mW [Bib. 65] <1 mW (measured) 

Power Consumption  
(Tx mode) 31.5 mW[Bib. 25] 2.5mW [Bib. 65] <1 mW(measured) 

Bit Error Rate (BER) 10-3- 10-5 [Bib. 64] 10-3- 10-5 [Bib. 65]  10-9(measured) 

 

The micro controller that passed the radiation test is the ATMEGA128. It is 
suggested that the reason ESA tested such microcontroller because it is sup-
ported by large community and offers higher speed, various digital and analog 
interfaces that compatible for the commercial smart sensors. The radiation test 
by ESA shows the microcontroller has: 

- Latch-up rate (SEL) of once in 481 years 
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- and single event upset (SEU) rate of once in 690 years 

This test was carried out by using Iron and Krypton ions at  a LET of 18.5 and 

32.1 MeVcm-2mg-1 [Bib. 63] . Next, the power consumption measurement of 

the infrared ASIC will be presented. 

3.3 Infrared ASIC Test and Power Consumption 
Measurement 

The fabricated infrared transceiver ASICs as shown in Figure 76 has been 
placed in the middle of a JLCC 44 ceramic leaded chip carrier and was bonded 
to the external package pins. The dimension of the package is 16.5 mm × 17.3 
mm. 
 
Figure 77 shows that the ASIC is soldered on a circuit connected to the infra-
red LED and infrared receiver.  The signal transmitted from the LED reflected 
directly to the infrared receiver and an oscilloscope was used to compare the 
signal forms.  

 

An UART signal was generated by a random generator on the laptop and the 
received data was compared to the generator output. The current measurement 
showed that the Manchester coding ASIC consumed 248.2 µA at 3.3 V, hence 
the power consumption is 818 µW. This measurement results are far less than 
the dynamic power estimation described in Table 7. The reason might be 
caused by non accurate power consumption simulation model based on the 
process parameters provided by ASM350 nm technologies.  
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Figure 76: Infrared transceiver ASIC. 

The same measurement setup was prepared on testing the uni-polar non return 
to zero coding and the result shows that it consumed 116.8 µA with its power 
consumption calculated as 382 µW (see Figure 78). 

 

 

Figure 77: Measurement setup of Manchester coding ASIC. 
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The results show that both of infrared modulation designs require less than 1 
mW with uni-polar non return to zero coding consuming one third power used 
by Manchester coding.  

 

 

Figure 78: Measurement setup of uni-polar return to zero coding ASIC. 

In the next section, the application of the infrared transceiver ASIC for wire-
less sensor nodes will be described in details. 
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4 Infrared Wireless Sensor Node 
Implementation 

In this section the implementation of the sensor node in the VEB and the tests 
performed to meet the Ariane 5's requirements will be described: 

4.1 Infrared Wireless Sensor Node Prototype for VEB 

There have been many discussions to utilize wireless sensor networks (WSNs) 
in space applications. Several scenarios by using the available communication 
methods for various space applications are listed below: 
 Autonomous formation flying (e.g. Scenario of measurement process of 

an asteroid [Bib. 36]) 

 Very small satellite cluster/swarm (e.g. ERMES nano satellite [Bib. 35], 

ESPACENET [Bib. 37]) 

 Segmented spacecraft 

 On board sensor network 

 Surface vehicles on moon, planets and asteroids 

 
Table 9 describes the criteria of potential communication technologies for 
space-based WSNs. The symbols “++, +, o, - , - - ” summarize the degree of 
COTS technology applicability for the WSN. 
 

For the segmented spacecraft like Ariane 5, the wireless energy transfer and 
clock synchronization are key issues on applying COTS technologies. Al-
though the RFID technology for aerospace application was investigated by 
NASA for such purpose [Ref. 63], the development of wireless transfer and 
clock synchronization for a large segmented spacecraft like Ariane 5 mainly is 
carried out by ESA in the frame of this work.  
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Table 9: Potential applicable COST technology for space WSN [Bib. 19]. 

      Available  technologies   

           IEEE Wireless Communication Protocols 
TDMA 
[Ref. 62]/ 

The technologies 
needed 

Applications Multihop Adhoc 802.15.4 802.15.1 802.11 802.16 
CDMA 
[Bib. 17]/ to support specific 

      
(Zigbee)    
[Ref. 59] 

(Bluetooth) 
[Ref. 60] 

(Wi-Fi) 
[Ref. 61] 

(WiMax) 
[Bib. 16] 

FDMA 
[Bib. 18] scenario 

Autonomous - + - - + + ++ Precise relative 

formation navigation 

flying                 

  Wireless power 

Segmented - + - - + + ++ transfer; clock 

spacecraft               synchronization; 

Very small high reliability 

satellite ++ ++ - - ++ + - data transmission 

cluster/swarm                 

Onboard 
sensor + o ++ + - - - 

 Autonomous sensor 
energy 

network                supply 

Surface ve-
hicles Node deployment  

on planets or ++ o + + ++ - - and landing;  

asteroids self location 

                  

 

Before beginning the development work, an overview of the telemetry system 
inside the VEB will be presented and is shown in Figure 79 . The telemetry 
consists of: 
 Avionic network gateway: This is the link to the avionic network of the 

launcher. 
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 Data concentrator: The information traffic and measurement sequences 

from different kind of networks are managed in this layer.

 Plain old sensors: analog space qualified sensors. 

 Smart sensors: smart sensors for future application.

 UWB sensor network

 Infrared wireless sensor network

 

Figure 79: Space Telemetry Network 

The infrared wireless sensor network is part of the telemetry system and r
quires sensor nodes and access points to operate. The chance was given to i
plement the infrared transceiver ASIC and therefore to demonstrate its wir
less communication ability in the 
a low power sensor node that consists of analog and digital sensors 
implemented. The steps of developments are described in details as following:

Wireless Sensor Node Implementation 

: The information traffic and measurement sequences 

from different kind of networks are managed in this layer. 

: analog space qualified sensors.  

: smart sensors for future application. 

UWB sensor network: was investigated in other work.  

Infrared wireless sensor network: focus of this work. 

: Space Telemetry Network proposed for Ariane 5's VEB [

infrared wireless sensor network is part of the telemetry system and r
quires sensor nodes and access points to operate. The chance was given to i
plement the infrared transceiver ASIC and therefore to demonstrate its wir
less communication ability in the network. As mentioned in the objectives of, 
a low power sensor node that consists of analog and digital sensors 

he steps of developments are described in details as following:
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: The information traffic and measurement sequences 

 

VEB [Bib. 20]. 

infrared wireless sensor network is part of the telemetry system and re-
quires sensor nodes and access points to operate. The chance was given to im-
plement the infrared transceiver ASIC and therefore to demonstrate its wire-

network. As mentioned in the objectives of, 
a low power sensor node that consists of analog and digital sensors shall be 

he steps of developments are described in details as following: 
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4.2 Infrared Sensor Node Development
The design of the infrared sensor node will include the following features:
 It shall operate with 3.3 V 

mAh 

 It shall have wireless energy charging

 It shall have visible light communication 

 It shall perform time stamping for each data measurement

 It shall provide various digital interfaces for a given list of smart sensors

 It shall perform analog signal acquisition with 10 bits ADC resolution 

 

With the features mentioned above, the bl
node is shown in Figure 80.

 

Figure 80: Infrared sensor node block diagram [

The lithium battery is more preferable compare with Ni
lesser mass and has been proven reliable

Wireless Sensor Node Implementation 

Infrared Sensor Node Development 
ed sensor node will include the following features:

operate with 3.3 V provided by lithium battery with 3.7 V

have wireless energy charging ability through solar cells

visible light communication receiver with solar

perform time stamping for each data measurement 

provide various digital interfaces for a given list of smart sensors

perform analog signal acquisition with 10 bits ADC resolution 

With the features mentioned above, the block diagram of the infrared sensor 
. 

: Infrared sensor node block diagram [Own.  4

ore preferable compare with Ni-Cd because it has 
proven reliable for space mission [Bib. 28
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ed sensor node will include the following features: 
lithium battery with 3.7 V, 150 

through solar cells 

solar cells 

provide various digital interfaces for a given list of smart sensors 

perform analog signal acquisition with 10 bits ADC resolution  

ock diagram of the infrared sensor 

 

4]. 

Cd because it has 
28]. The utili-
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zation of the lithium battery for space technology has been performed by 
NASA and was successfully completed in 2005 [Bib. 29]. 
 
A  PCB was designed for the sensors and infrared transceivers’ component 
and shown in Figure 81. This arrangement is compact in size compare with  
typical outdoor sensor node design[Bib. 32]. To increase the coverage area, 
infrared LEDs and receivers are located in four directions. The transceiver AS-
IC was placed in the centre of the PCB with the smart sensors surrounding it.  

 

 

Figure 81: Infrared wireless sensor node [Own.  4]. 

All sensors were tested and each sensor measurement period including ADC 
was recorded and is listed in Table 10. This information tells how long each 
sensor performs the measurement and therefore can be used to calculate the 
times needed for the time stamping algorithm. 
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Table 10: Measurement period of each smart sensor and ADC. 

Sensor Measurement period 
ADC 1.02 ms 

Acceleration sensor 1.61 ms 

Light sensor 32 ms 

Pressure sensor 71.6 ms 

Humidity sensor 1.404 s 

 

4.2.1  Infrared Sensor Node Energy Harvester 

Although a battery is available to power the sensor node, to extend its opera-
tional time, a solar cell is selected to harvest the energy from the light source 
placed inside the VEB. The application of the solar cell for wireless sensor 
charger has been used widely and offer less complexity [Bib. 30]. The charger 
circuit with solar cell is also simpler than the RF charger (e.g by using RF/DC 
rectifier and Schenkel Voltage Doubler) [Bib. 31].  Apart of using DC rectifier, 
the solar cell orientation shall be also place in an optimal direction by altering 
the solar cell holder to fit on the sensor node’s casing that faces the light 
source (see Figure 82).   

 

 

Figure 82: Sensor node casing design with solar cell facing the light source. 



4 Infrared Wireless Sensor Node Implementation 105 

          University of Bremen – March 2018  

For optimal energy harvesting, a high efficiency IXOLARTM solar cell that is 
made of monocrystalline material was selected. This cell has typical voltage 
output of 4.5V and a maximum current of 44.6 mA [Ref. 64] (see Figure 83). 

 

 

Figure 83: IXOLAR monocrystalline solar cell [Ref. 64]. 

The current density and power density of the IXOLARTM SolarMD is shown 
in Figure 84 and it has a maximal power density of 18 mW/cm2 at 0.5V. The 
maximum power that can be harvested with two solar cells with the dimension 
shown in Figure 83 is about 218 mW. 

 

 

 

 

20 mm 

61 mm 
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Figure 84: IXOLAR current density and power density curves [Ref. 64]. 

This solar cell presents very high external quantum efficiency (EQE). The 
EQE is typically defined as the number of electrons provided to the external 
circuit per photon incident on the device and is related to the solar cell spectral 
response [Ref. 65]. The EQE of IXOLARTM SolarMD is reaching more than 
90% in the range of 400 nm to 800 nm (see Figure 85) [Ref. 64]. This means 
that the solar cell offers an optimal response if visible light is present inside 
the VEB. 
 
As described in section 4.2, visible light communication will be used to harv-
est energy and also at the same time allows communication between the access 
point and the sensor nodes. The measurement performed by H. Hematkhah et 
al. with NRZ-OOK signaling for VLC LOS link can only reach 150 cm with 
2400 baud for an acceptable BER [Bib. 41].  In other experiment to transmit 
sensor measurements data from glucose sensor, heart beat sensor and tempera-
ture sensor between the patient located in hospital room to the VLC receiver,  
reaching maximum 10 m distance with sufficient VLCs LEDs [Bib. 42].  The 
railway health monitoring system with visible light communication was also 
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proposed to detect the vibration through the changes of the signal amplitude 
effected by LEDs angle displacement [Bib. 42]. After studying most of possible 
VLC applications, a circuit is developed to use the solar cell shown in Figure 
83. 
 
The circuit shall provide a band pass filter (BPF) connected to the solar cell 
for extracting the modulated signal received. This is useful if the solar cell is 
used to receive commands from the access point. With such functionality, the 
solar cell can be used to replace all of the infrared receivers that are placed 
surrounding the PCB. Hence 12 mW can be save, if 4 mW required to power 
each infrared receiver.  

 

Figure 85: IXOLARTM SolarMD External Quantum Efficiency [Ref. 64]. 

The VLC band pass filter was designed by cascading a high pass filter consists 
of R1 and C1 and a low pass filter composed of R2 and C2. An operational am-
plifier OP1 is used as the active components (see schematic in Figure 86). The 
cut-off frequency of the high pass filter is calculated by equation 17 [Ref. 66]: 
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Figure 86: The VLC Band Pass Filter circuit. 

and the cut-off frequency of the low pass filter is calculated according to equa-
tion 18 [Ref. 66]: 

 

 

The DC gain of OP1 of the band pass filter is calculated by using equation 19 
[Ref. 66]: 

 

In order to pass 9600 Hz signal from the VLC transmitter, the BPF’s cut-off 
frequencies are between 8.5 kHz and 10.5 kHz with the values of the compo-
nents described as following: 

 R1 = 4.7 kΩ 

 R2 = 47 kΩ 

 C1 = 470 pF 

 C2 = 1 nF 

(17) 

(18) 

(19) 
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The active component OP1 is LT1006 single supply operational amplifier that 
delivers low offset voltage 50 µV and a power consumption of less than 340 
µW [Ref. 67]. 
 
Figure 87 shows the simulation results of the BPF gain by using the values of 
the components obtained from equation 18 and 19. The results simulated with 
LT1006  LTSPICE model shows tendency of a HPF gain. At the graph, the 
cut-off frequency is found at 10 kHz with maximum gain -25 dB. Although 
the realization of the circuit works fine with the solar cell, but many attempts 
were carried out to find optimal gain. As an example by varying the compo-
nents values through LTSPICE parameters sweep. To obtain narrow Q value 
by using only one active filter stage is very challenging. The solution to keep 
high Q at narrow band width 2 kHz with resonant frequency 9600 Hz is nor-
mally done by adding more filter stages. But this might lead to higher circuit 
complexity and more energy consumption.  

 

Figure 87: BPF gain and phase simulation with LT-Spice. 
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To verify the BFP design and sensor node prototype, the infrared subsystem 
was tested with MLI in the laboratory as shown by test setup in Figure 88.  
 
The sensor node was placed facing the MLI to receive diffuse infrared light 
and visible light from the access point. During the operational mode, the pow-
er consumption of the sensor node is about 20 mW at 3.3 V. In the idle mode, 
it consumes less than 1 mW. In this mode only the infrared ASIC, BPF circuit 
and the solar cell are activate. On the access point side, the visible light trans-
mitter consumes around 2.8 W that consists of 3 organic LED clusters.  

 

Figure 88: infrared sensor node is tested with MLI . 

The design and the experiment show that the visible light communication ma-
naged to reduce the power consumption of the sensor node by substituting the 
use of 4 infrared receivers. It also increases the communication range because 
VLC LEDs are more diffuse and powerful than the infrared LEDs. 
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4.2.2  Sensor Module Time Stamp Method 

One important aspects of designing spacecraft telemetry system is designing 
time stamp for measurement data. The time synchronization and clock accura-
cy shall be taken inconsideration especially if energy constraint is included.   
 
Some algorithms that use reference beacon to let the sensor node neighbors’ to 
calculate the beacon arrival time instead of receiving explicit time stamp in-
formation has been studied in [Bib. 38].  The Timing-sync Protocol for Sensor 
Networks (TPSN) that shown more accuracy compared with Reference Broad-
cast Synchronization (RBS) proved to be effective for large scale wireless ad-
hoc sensor networks and only reached the accuracy of less than 20 ms [Bib. 39].  
 
Some other algorithm such as Gradient Time Synchronization Protocol 
(GTSP) that used decentralized clock synchronization by letting every node to 
broadcast the time for calibrating the logical clock, requires hardware clock for 
time stamp which consumes more energy when the accuracy increases [Bib. 

40].  
 
The task of synchronizing the hardware clock on the sensor node especially 
when the microcontroller is busy acquiring high rate data reading from the 
sensors in critical measurement period poses new challenge for the task sche-
duling. This leads to more complexity on the sensor node and it increases 
power consumption.  
 
The infrared sensor network designed and built in this work acquires its time 
information from the Avionic network gateway. The time distribution of the 
whole system is shown in Figure 89, where TA and TB are deterministic since 
they are distributed through wires. A different situation is given in the wireless 
network because TC is not deterministic. 
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Figure 89: Time distribution in the telemetry system [Own.  5]. 

Figure 90 shows the schematic of infrared communication delays and the sen-
sor acquisition time that has to be considered for time stamping. The TVLC de-
lay is describing the delay from the access point to the sensor node microcon-
troller. This delay path includes the access point 3/16 pulse shaping block, 
VLC transmitter, solar cell, BPF and 3/16 pulse recover block.  
 
Another delay path is from sensor node’s 3/16 pulse shaping block, infrared 
transmitter, to access point’s infrared receiver and 3/16 pulse recovery block 
and labeled as TIR. The delay caused by sensor data acquisition and ADC has 
been previously described in Table 10. 

. 
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Figure 90: The infrared network communication delay and sensor acquisition 
time diagram. 

In order to reduce the complexity and computational power, the time stamp 
activity is concentrated in the access point. This is justified since access point 
has higher computational power than sensor node and does not have energy 
constraints.  On the other hand, the power consumption of the sensor node can 
be reduced by eliminating the use of real time clock hardware. The realization 
of this design is by subtracting the current time T0 with the infrared communi-
cation delay TIR  when the data is received by the access point.  
 

The delay in the infrared communication for time stamp is shown in Figure 91. 

Where Table 11 listed the communication latency (TVLC + Tsensor + TIR) and is 
mainly affected by the processing time of various smart sensors.  
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Figure 91: Infrared communication delay. 

In order to have predictable time stamp, the infrared communication path de-
lay TIR has to be statistically stable. This is done by performing multiple mea-
surements for finding the mean value and deviation. The deviation of TIR is 
also caused by clock jitter. 
 
The measurement result shows that TIR is about 1.032 ms and the TIR Jitter is ± 
3.5 µs (see Figure 92). This concludes the time stamp accuracy performed for 
each data sampling of the access point is in the range of ± 3.5 µs.  

 

Table 11: Infrared sensor latency measurement. 

Sensor Latency  

ADC0-ADC3 5440 ms 

Acceleration sensor 8620 ms 

Light sensor 36.6 ms 

Pressure sensor 76.80 ms 

Humidity sensor 1.440 s 
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Figure 92: Infrared communication TIR delay and TIR Jitter measurement. 

To test this method, the time stamp results performed by the access point for 
ADC, acceleration sensor and vibration sensor are shown in Figure 93.  
 
The time stamp values were calculated with a sensor sampling rate TS of 100 
S/s for ADC and 67 S/s for acceleration and vibration sensor. Figure 94 shows 
the signal that contains acceleration data which was transmitted within the 
sampling rate period TS. Since the delay of TIR and its jitter TIR Jitter is known,  
the time stamp is performed at the instance when the data received the access 
point.  
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Figure 93: Time stamp result performed at the access point. 

 

Figure 94: Acceleration sensor sampling rate signal measurement. 

Time stamp 

Data 
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4.2.3 Infrared Sensor Node Communication Protocol 

The infrared communication protocol consists of 24 bits commands and 16 
bits data from the sensor node (see Figure 95). The 24 bits command consists 
of 8 bits sensor ID, 4 bits sensor type (ADC, acceleration sensor, etc.), 2 bits 
sampling rate (1 S/s, 10 S/s and maximum 100 S/s).  
 
The 16 bits data from the sensor node consists of 1 bit sign and 13 bits sensor 
value (see Figure 96). In this case the protocol is design for transmission speed 
optimization. All of the data transmissions are in burst mode and it does not 
include acknowledgment and CRC. 

 

 

Figure 95: Infrared communication bit stream. 

 

Figure 96: Infrared communication data format. 

4.2.4  Infrared Sensor Node Energy Harvesting Measurement 

In order to study the light energy distribution inside the VEB, the visible light 
distribution was measured for optimal sensor node placement. Figure 97 shows 
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the measurement setup with the VLC transmitter fixed at one end and the light 
intensity measured a long distance 
surement in the VEB and the measurement conducted in the laboratory is 
shown in Figure 98. 

 

Figure 97: Energy Harvesting Measurement.

As comparison, it shows that the light intensity in the VEB is lower than a d
rect line of sight setup in the laboratory. The reason for lower light in
distribution in the VEB is caused by various equipments and wirings blocking 
the light path. The curvature of the VEB structure also prevents a direct line of 
sight energy transfer for large distances. The minimum light intensity inside 
the VEB that still can be used to send commands to the sensor note is about 77 
lux at 227 cm. 
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was conducted in the laboratory with the same distance intervals as in the 
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output was connected to 1 k
power harvested was 3.5 mW by placing the solar cell directly in front of the 
VLC transmitter and the minimum power was 57 µW at 227 cm. Improvement 
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can be made by adding more VLC LEDs or increasing the size of the solar 
cells. The Solar cell voltage measurement in the laboratory is shown in Figure 
99. 
 

 
Figure 98: Light intensity measurement comparison. 

 

 

 

Figure 99: Solar cell voltage measurement in the laboratory. 
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In the next section, the engineering test of the sensor node will be described in 
detail. The tests include mechanical tests, temperature tests and electromagnet-
ic interference tests. 

4.3 Infrared Sensor Node Engineering Tests 

The engineering test is required to ensure the basic performance of the proto-
type to fulfill the given specification. The tests of this section were carried out 
to identify design weakness affected by the space environment such as vibra-
tion, shock, temperature shock and electromagnetic interferences. The test re-
ports are still evaluated by European Space Agency at the moment of writing 
this dissertation and cannot be disclosed to the public. 

4.3.1  Sensor Module Mechanical Tests 

In order to survive the mechanical tests, the sensor node casing and PCB were 
redesigned (see Figure 100). The casing was designed to fit the vibration and 
shock test interface provided by the German Aerospace Centre. The casing of 
the infrared receiver and VLC transmitter were also redesigned and are shown 
in Figure 101. 

 

 

Figure 100: Infrared sensor node redesigned casing and PCB. 
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Figure 101: Infrared receiver and VLC transmitter redesigned casings. 

The shaker available at the German Aerospace Centre test facilities has the ca-
pability of [Ref. 68]:  
 Maximum 150 g acceleration 

 Maximum speed of 1.8 m/s 

 Shaker frequency range 2 Hz to 6000 Hz 

 Maximum test object mass of 150 kg 

The test equipment is shown in Figure 102 and the infrared sensor node instal-
lation on the shaker in shown in Figure 103. At first, the sensor node is placed 
and fastened on the shaker structure interface. Several test sensors are place on 
various surface of the sensor node’s casing to monitor the sinusoidal wave and 
record the data for further analysis.   
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Figure 102: Test equipment for sinusoidal test in German Aerospace Centre 
Bremen [Ref. 68]. 

The infrared sensor node communication was monitored during the test to 
study the mechanical effect that might influence the VLC and infrared data 
transmission quality (see Figure 104). 

 

 

Figure 103: Infrared sensor node installation on the shaker. 

Structure interface 

Test sensor 

Sensor node 



4 Infrared Wireless Sensor Node Implementation 123 

          University of Bremen – March 2018  

 

Figure 104: Infrared sensor node communication setup during the test. 

For the shock test, the infrared sensor node was placed on the shock platform 
to absorb the energy provided by the shock inducing device (SID) (see Figure 
105). The communication data was monitored in parallel to study the effect of 
the shock on the sensor node. Figure 106 shows the mechanical impact caused 
by the shock on the shock platform.  

 

 

Figure 105: Infrared sensor node setup during shock test. 

IR signal 

VLC signal Sensor node 

Shaker 

SID Sensor node 

VLC signal 

IR signal 
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Figure 106: Shock impact on the shock platform after the test. 

The test shows that the sensor node passes the mechanical tests and survives: 
 Sinusoidal vibration requirement described in section 2.1 at 

- 0.8 g at 100 Hz in longitudinal and lateral direction 
  There is no BER detected in this sinusoidal vibration test. 

 Shock requirement described in section 2.1 at 

 - 650 g at 400 Hz 

          - 880 g at 665 Hz 

          - 2000 g at 1000 Hz up to 20000 g at 10000 Hz 

            There were only two packets of 8 bits data lost during the shock test  

            at 65 kN. This might be caused by the mechanical displacement that   

            impacted the communication angle of the receiver. The BER plot is  

            not possible due to the short duration of the impact (in ms).   

 

4.3.2 Sensor Module Thermal Test 

In this test, ventilation holes were created on the upper housing of the sensor 
node to allow effective air flow into the housing to the sensor and ASIC (see 
Figure 107).  

Shock Impact 
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Figure 107: Sensor node housing for thermal test. 

A cable was required to power the sensor node from outside the thermal 
chamber (see Figure 108).  The data from all sensors was acquired and moni-
tored on the access point to check if any sensors have been affected by the 
temperature profiles (see Figure 109). 

 

 

Figure 108: Infrared sensor node extended power supply cable. 
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Figure 109: Sensor node data acquisition during the temperature test. 

The communication between the sensor node and the infrared receiver with a 
VLC transmitter was established through the glass window of the thermal 
chamber (see Figure 110). 

 

 

Figure 110: Temperature test setup. 

Data monitoring 

Glass window 
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The measurement conducted in this section shows that the sensor node passes 
the thermal test according to the requirement given in section 2.1 with: 
 Temperature range from -20°C to 85°C 

 Temperature shock test 

The temperature reading was collected from the thermal chamber's tempera-
ture display and also from the temperature sensor data from sensor node. 
There is no BER found during the thermal test between the given temperature 
range. 

4.3.3  Sensor Module Electromagnetic Interference Test 

For testing the electromagnetic interference, the infrared sensor node, infrared 
receiver and VLC transmitter are placed in aluminum casings. The test setup 
shown in Figure 111 requires 9 meters minimum distance between the VLC 
power supply/laptop and the test objects. 

 

Figure 111: Infrared sensor module test setup. 
 

In order to reduce the interferences between the internal components of the 
infrared sensor node, infrared receiver and VLC transmitter, the ground had to 
be connected to the aluminum casings. Figure 112 and Figure 113 shows the 
grounding inside the infrared receiver and VLC transmitter.  
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Figure 112: Infrared receiver grounded casing. 

The infrared module test setup as shown in Figure 114 was prepared to test the 
functionality of the system before the electromagnetic interference test was 
started. 

 

 

Figure 113: VLC transmitter grounded casing. 

The infrared communication system has passed the electromagnetic interfe-
rence test in a frequency range of 100 MHz to 200 GHz and subjected to elec-
tric field strength of less than 150 dBµV/m with no BER detected. 
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Figure 114: Infrared sensor module test setup.

The engineering tests that were performed 
node has fulfilled all of the space environmental requirements described in 
section 2. Next, the space radiation protection aspect will be discussed.
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filled all of the space environmental requirements described in 

ace radiation protection aspect will be discussed.

 129 

 

that the infrared sensor 
filled all of the space environmental requirements described in 

ace radiation protection aspect will be discussed. 



5 Space Radiation Protection Overview 130 

          University of Bremen – March 2018  

5 Space Radiation Protection Overview 
The density and complexity of electronic systems on a silicon chip which re-
quires VLSI (Very Large Scale Integration) circuits have become the major 
topic of discussion nowadays.  This leads to more awareness of spacecraft re-
liability towards radiation effects since the starting of space electronics minia-
turization era. An example of such increasing problems is the cosmic-rays rad-
iation to Uosat-3 spacecraft is shown in Figure 115. Most of the errors is 
caused by single event upset SEU in the South Atlantic area [Ref. 69]. 

 

Figure 115: Uosat-3 localization of errors on earth orbit [Ref. 69]. 

There are mainly two types of radiation effects towards microelectronic devic-
es. This can be categorized into cumulative effects and single event effects 
(SEE) [Ref. 69]. The cumulative radiation effects are applicable for the com-
plete lifetime of electronic devices. The damage on the devices could be sub-
divided into ionizing (total ionizing dose) and non-ionizing (displacement) 
damage. 
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All kinds of electronic components are subject to total ionizing dose (TID) ef-
fects that are depending on the absorbed energy from the ions impacting the 
affected circuit. This absorption is independent of the type of radiation that is 
coming. The type of impacting particles, their energy level, the related shiel-
ding efficiency,  the particle sources and the orbits around the earth are sum-
marized in Table 12. 

Table 12: Type of impacting particles and their energy level [Ref. 70]. 

Solar flares Galactic cosmic rays Van Allen Belts 
Type of particles - Protons - Protons (85%) - Electrons (2 belts at 

  - Alpha particles (5-10%) - Alpha particles (14%)   at 3000 and 20000 km) 

  - Heavy ions - Heavy ions (<1%) - Protons (1 belt at 

  - electrons     3000 km) 

  102…103 MeV per 400 MeV max for protons 

Energy level Low nucleon   
  105 MeV for the most 7 MeV max for electrons 

  energetic   

Exposed orbits High altitute orbits: - Polar orbits - Intermediary orbits 

  - Geosynchronous - High altitude orbits   around 3000 km 

  - Far missions   - Low orbits above 

        South Atlantic 

 

The Single Event Effects (SEE) can be classified into non-destructive effects 
(so-called soft errors) and destructive effects producing damage (hard errors). 
The particle interaction with a MOS transistor that causes SEE is illustrated in 
Figure 116. The lists of non-destructive and destructive single event effects are 
described in Table 13 and Table 14 [Ref. 71]. 
 
There are mainly two methods used to increase the radiation tolerance of space 
electronics. The first is by selecting protective material that can absorb the 
energy of the particles and the second is by changing the transistor layout de-
sign to be more radiation tolerant. Secondary solutions are software redundan-
cy algorithm or circuit design redundancy techniques. 



5 Space Radiation Protection Overview 132 

          University of Bremen – March 2018  

Table 13: Non-destructive single event effects [Ref. 71]. 

  Non-destructive effects 

Type of effect Sensitive device Description 

Single event 
registers, lat-
ches change of the logic state of a latch or 

upset (SEU)   a memory cell 

Single event combinational temporary deviation of an analog signal 

transient (SET) logics, Opamps (analog equivalent of SEU) 

Single event 
registers, lat-
ches momentary corruption of the 

disturb (SED)   information stored in a bit 

 

Table 14: Destructive single event effects [Ref. 71]. 

  Destructive effects 

Type of effect Sensitive device Description 

Single event power transistors power devices are triggered in the OFF state 

burnout (SEB)   by a particle induced current transient. A par- 

    asitic or the main bipolar structure is turned 

    on and a positive feedback mechanism gner- 

    ates a destructive current by impac-ionisation 

    (avalanches). 

Single event dielect-
ric CMOS transistor heavi-ion-induced catastrophic failure of 

failure (SEDF)   DRAM or SRAM devices. Similar to the 

    SEGR phenomenon 

Singel event Gate Power CMOS transistor A heavy-ion-induced localised dielectric break 

rupture (SEGR)   down of the gate oxide occuring in the tran- 

    sistor's OFF state (VGS < 0) 

Single event latch-
up CMOS transistor The triggering of a (parasitic) thyristor, typi- 

(SEL)   cally a combination of active and parasitic de- 

    vices, by a particle hit. The thyristor usually 

    operates between the power supplies and may 

    sustain destructive high currents. 

Singel event  CMOS transistor Switching a pn-junction to avalanche mode 

snapback   sustain a high current. Snapback does not in- 

 (SES)   volve a positive feedback; imposes a maxi- 

    mum supply voltage constraint. 
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The selection of material for stopping the space particle and transistor layout 
techniques to increase the robustness of the circuit will be presented next.  

 

Figure 116: Particle interaction of space particle with a transistor [Bib. 21]. 

5.1 Radiation Protection Material Overview 

The space radiation in the form of particles that collide with matters results in 
various microscopic phenomena. The phenomena can be separated into elastic 
collisions and inelastic collisions. For the case of perfectly elastic collisions, 
there is no loss of kinetic energy in the collision. But in inelastic collisions, 
part of kinetic energy is converted to some other form of energy during the 
collision (see Figure 117). 

 

 

Figure 117: Illustration of perfectly elastic and inelastic collisions [Ref. 72]. 
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The inelastic collisions between the space particle with protective materials 
result in energy dissipation of heavy ion such as protons in the materials. 
Some results show that low-Z (atom with less protons in the nucleus) materials 
produce fewer secondary products and are more efficient to stop heavy par-
ticles. Figure 118 shows the stopping power of various materials against pro-
tons [Ref. 73]. Hydrogen presents the best stopping material but due to its im-
practicability, polyethene is typically used as space radiation protection ma-
terial. 

 

Figure 118: Proton stopping power for low- and high-Z materials [Ref. 73]. 

5.2 Space Wireless Sensor Node ASICs Overview 

An earlier wireless sensor ASICs development was initialized by the Defense 

Advanced Research Projects Agency (DARPA). The motivation was driven 

mainly by military applications. Although microcontroller offers relatively 

large computational power, e.g. for preprocessing of data, it makes the sensor 

node versatile in terms of the application fields. However, if the application 

requires only simple but dedicated digital processing functionality (e.g. ADC, 

decoder/encoder, demodulator), this make microcontroller contains a lot of 

overhead in terms of chip area for the microcontroller IP core and in term of 

power consumption. 
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In addition to that, this overhead is expensive for space applications because 

all circuits must be radiation harden.  An example of space wireless sensor 

node based on ASIC with solar cell array, photo sensor and CCR receiver is 

shown in Figure 119. 

 

Figure 119: Optical wireless sensor node for space [Bib. 26]. 

In order to use the available ASICs process technologies effectively, the selec-
tion of proper technologies shown in Table 15 is very important depending on 
the sensor node’s application.  

Table 15: Some process technologies and their typical application [Ref. 82]. 

Technologies Specifications Common application 
BCD High voltage Actuators driving 

High current driving Power stage driving 

BiCMOS SiGe Low RF losses Gsps ADCs 
> 10 Gbit/s links 
Multi GHz RF 

      
CMOS 250nm -
130nm Standard analog circuit Standard Readout  

Integrated Circuit 

DSM 65nm - 22nm High Digital density FPGA, Processors, 
Mixed capabilities Telecom ASICs 
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5.3 Radiation Layout Technique Overview 
Radiation hardened ASIC’s libraries for developing customized ASIC are 
normally very expensive. The libraries are typically not open because they are 
protected by intellectual properties (IP). This makes them very difficult for the 
scientific community to do transistor layout improvement for space ASIC de-
sign. The well known radiation harden ASIC libraries are: 

 IMEC Design Against Radiation Effects (DARE) library [Ref. 74]. 

These libraries are provided by IMEC Belgium based research institute. 

 CERN 0.25 µm radiation hardened library [Ref. 75]. 

The libraries are provided by European Organization for Nuclear Re-

search (CERN) for particles accelerator in Switzerland. 

 BAE 0.15 µm radiation hardened library [Ref. 76].The libraries are de-

veloped and provided by BAE Systems PLC. 

 Ramon Chips 0.18 µm and 0.13 µm radiation hardened libraries [Ref. 

77].The libraries are provided by Israel based company RAMON 

CHIPS Ltd. 

 Cobham (former Aeroflex) 600, 250, 130 and 90 nm radiation hard-

ened libraries [Ref. 78].Cobham Semiconductor Solution in USA is pro-

viding various sizes of radiation hardened technologies libraries.  

 ST Microelectronics C65SPACE 65 nm radiation hardened library 

[Ref. 79].These libraries are supplied by a French-Italian electronics 

manufacturer STMicroelectronics. 

 Microchip MH1RT 0.35 µm and ATC18RHA 0.18 µm CMOS an-

dATMX150RHA 0.15 µm SOI CMOS radiation hardened libraries [Ref. 

80].The libraries are provided by American based company ATMEL 

Corporation. 
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The main types of Radiation effects in microelectronic devices are cumulative 
effects and single event effects (SEE). 

 
Generally the displacement damage in MOSFETs devices is the secondary 

concern. The main source of device degradation under irradiation is the dam-

age by ionization in the surface layers (SiO2). 

 
The degradation of MOSFET parameters due to exposition to ionizing radia-

tion are: 

 shift in threshold voltage (Vth), 

 decrease in gain (transconductance gm) and speed  

 and an increase of leakage currents. 

 
If a particle collision occurs in the oxide layer (SiO2), electron-hole pairs will 

be created. The amount of electron-hole pairs created is directly proportional 

to the Linear Energy Transfer (LET) from the impact particle to the target in 

the material (see Figure 116). 

 
When an electric field is present in the impact region, the generated electrons 

and holes will be separated. The electrons will be quickly collected by the 

nearest electrode of positive charge and the holes remain trapped in the oxide 

for a long time.  

 
The trapped holes in the oxide will generate permanent positive charges fixed 

in the oxide layer. The increase of these fixed positive charges will cause a 

charge of the MOSFETs (in this case NMOS)  threshold voltage (Vth) as 

shown in Figure 120. 
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Figure 120: Threshold voltage shift of an NMOS (a) and PMOS (b) transistor 
vs. accumulated dose [Bib. 43]. 

 

The region which lays at the transition between field thick oxide and gate thin 

oxide is called “bird’s beak”. The positive charged particles trapped in the 

field thick oxide, will also increase leakage currents between drain and source 

(see Figure 121). 

 

Figure 121: Positive charged particles trapped into the "bird's beak" region 
[Bib. 44]. 
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A typical radiation hardened method is done by modifying conventional tran-
sistor layout design. The first prominent method to reduce leakage current af-
ter the collision is by drawing the Gate contact inside the source area. This me-
thod minimizes the parasitic paths between source and drain [Bib. 22] (see Fig-
ure 122). 

 

 

                a) Conventional layout                    b) Radiation harden layout 

Figure 122: Comparison between conventional and radiation hardened layout 
techniques [Bib. 22]. 

 

The standard CMOS technology surprisingly includes an inherent  p-n-p-n 

sandwich structure. The pairing of the typical CMOS device (NMOS/PMOS 

transistors) can create a parasitic bipolar transistors and form a silicon-

controlled rectifier  (thyristor) that can be activated if proper condition occur.  

 

If the NMOS/PMOS transistors enter the active region and for some reason 

their configuration satisfies several conditions, the parasitic thyristor is 

switched on and shortens the power supplies which results in a destructive cur-

rent, unless the supply current is limited. This high current state is called latch-

up. 

 
In order to minimize this effect, a well known method is that avoid single 
event latch-up from n-p-n-p (thyristor) is introduced. The minimizing parasit-
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ic resistances associated with the n-p-n-p structure is done by designing a 
large number of guard rings surrounding the transistor as show in Figure 123. 

 

 

Figure 123: Guard rings layout enclosing MOS transistor [Bib. 23]. 

These guard rings are designed very close to the p-n junctions and are biased 
through as many contacts as possible. The supply metal lines shall be large to 
ensure a low resistance. 

5.4 Radiation Circuit Design Overview 
Another important aspect of radiation harden ASICs, is the circuit design. The 

circuit design can be optimized to minimize the consequences of radiation ef-

fects. The basic goal is to assure a stable operation point of the analo-

gue/digital stages. 

 

The command circuit design is realized here by using cross-coupled feedback 

resistors [Bib. 45]. This method is a classical method of SEU-hardening SRAM 

and the latch circuits increase RC delay in the feedback loop between upset 
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and recovery. This technique is also very effective for reducing the SEU sus-

ceptibility of SRAMs. The cross-coupled feedback resistors circuit for SRAM 

is illustrated in Figure 124. 

 

 

Figure 124: CMOS Memory Cell Modified with RG Resistors [Bib. 45]. 

Another method for radiation hardening is by incorporating two additional 

PMOS transistors to make flip flops more resistant against SEU [Bib. 46]. The 

additional transistors are used in such a manner that the positive charge gener-

ated by the radiation will be discharged and suppress the otherwise possible 

state of the Flip-Flop. Figure 125 shows the implementation of the hold tran-

sistors. 
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Figure 125: Schematic of a flip flop with two additional PMOS hold transis-
tors [Bib. 46]. 

In this section, the radiation effects, radiation harden by design layout and cir-
cuit techniques have been introduced. There are many radiation hardened li-
braries have been identified such as UMC180 or MH1RT 0.35 µm, which may 
be used for further development to build infrared transceivr ASIC against 
space radiation.  

 
Furthermore,  the ASIC the infrared transceiver with AMS35nm technologies 

describes in the previous section is not typically for radiation hardened ASIC 

development, but some consideration has been taken for radiation hardened 

concept. This can be seen from the development of the pulse 3/16 pulse shap-

ing that replace digital circuit with analog circuit that uses single transistor to 

invert the input signal. This circuit reduces forming parasitic thyristor effect 

compare to typical digital cell that uses PMOS/NMOS pair to build inverter, 

when single event latch-up occurs.  The summary and discussion of all sec-

tions from this work will be concluded next.  
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6 Summary and Discussion 
The steps taken to develop a low power design of a versatile analog mixed 
signal sensor module have been presented in this dissertation. The steps and 
their results are presented as following: 

 Step 1: General space requirement overview as described in section 2 

provides information about the Ariane 5's requirements. The environ-

ment requirements such as mechanical, pressure, thermal and electro-

magnetic interference were used to design a sensor module prototype 

that is suitable for European launcher. The first implication of the re-

quirements to the design is the selection of infrared and visible light 

communication system which minimizes the electromagnetic interfer-

ence to the on board equipment in the VEB. The second implication of 

the requirements is to design the infrared transceiver ASIC that allows 

transition for future design with the commercial radiation hardened li-

braries in the market. 

 Step 2:   The selection of commercial wireless communication systems 

and energy harvesting methods as described in section 4 have been 

made to increase sensor module lifetime during the mission. In order to 

fulfil the electromagnetic interference requirements presented in section 

2, a comparison was made between the existing wireless technologies 

and this work. Although there are many available energy harvesting 

products on the market, wireless energy transfer by using visible light 

communication that powers solar cell as well as providing data trans-

mission has been proven to be the optimum solution to be used inside a 

VEB. 

 Step 3: Some qualified space sensors and smart sensors have been pre-

sented in section 5. Although the smart sensors could not fully replace 
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the space qualified sensors but they offer less energy consumption and 

small in size if they are used together with wireless sensor nodes. The 

miniaturization of sensor node makes them advantageous especially for 

some places inside VEB that could not be easily equipped with space 

qualified sensors.  

 Step 4: The characteristic of space material that is mostly covering the 

spacecraft surface were studied in section 6. The investigation of MLI 

effects on the infrared communication has shown promising results es-

pecially when the visible light from LED is used for energy transfer in a 

confined room. 

 Step 5: The infrared transceiver ASIC design was done according to the 

IrDA physical layer standard and was described in section 7.  There are 

two modulation methods that are realized on the ASICS. Both of them 

show very low power consumption (less than 800 µW). The uni-polar 

non return to zero modulation shows more promising results due to its 

simplicity in the ASIC design. 

 Step 6: The implementation of the infrared ASIC on a wireless sensor 

node is described in section 8 and shows various technologies as de-

scribed Table 8. Some capabilities for the sensor node are listed below: 

  - Energy harvesting capability (max. 3.5 mW) 

- Visible light communication capability (max. 300 cm) 

- Various digital interface capability to smart sensors 

- Analog signal acquisition capability (with 10 bit ADC) 

- Infrared communication capability (9600 baud at 3 m) 

- Time stamping capability (accuracy ± 3µs) 



6 Summary and Discussion 145 

          University of Bremen – March 2018  

The infrared subsystem was fully functional and performed as expected 

in the presence of MLI. The light distribution in the VEB and the com-

munication range of the sensor nodes were measured and the results 

show that with 2.8 W visible light power, it able to provide commands 

and energy that activate the sensor nodes in a distance of more than 200 

cm with 77 lux light intensity. 

 Step 7: In order to fulfil the Arine 5 requirements as described in sec-

tion 2, engineering tests were carried out and the results have been pre-

sented in section 9. Aluminium casings were built for the sensor nodes, 

infrared receivers and VLC transmitter. These casings were used for 

protection during the engineering tests. The tests have been performed 

with the following results:  

   - In the mechanical tests, the sensor node passed the mechanical  

     test and survived  sinusoidal vibration at 0.8 g at 100 Hz in  

     longitudinal and lateral direction. It also survived shock test at: 

    - 650 g at 400 Hz 

    - 880 g at 665 Hz 

    - 2000 g at 1000 Hz up to 20000 g at 10000 Hz 

   - In the thermal test, the sensor node worked within the given   

     temperature range of -20°C to 85°C. 

   - In the electromagnetic interference test, the infrared subsystem  

      passed the electromagnetic interference tests within a frequency  

      range of 100 MHz to 200 GHz and subjected to electric field 

      strength of less than 150 dBµV/m. 

 Step 8: The space radiation protections were presented in section 10. 

There are many radiation harden libraries that can be used to manufac-

tured an infrared transceiver ASIC with space radiation tolerant but they 
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are mostly very costly and are protected by intellectual properties. An 

alternative solution is to design the radiation hardened infrared trans-

ceiver ASIC with the current AMS350 nm technology enhanced by 

space radiation hardened layout techniques. 

 

All of the steps mentioned above conclude the work for developing a low 
power versatile analog mixed signal sensor module that fulfils the environ-
mental requirements for Ariane 5’s VEB.  
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10 Appendices 

Appendix 1: Sensor Node Schematic 
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Appendix 2: Sensor Node PCB 
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Appendix 3: Infrared Receiver Schematic 
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Appendix 4: Infrared Receiver PCB 
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Appendix 5: VLC Transmitter Schematic 
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Appendix 6: VLC Transmitter PCB 

 

 

 
 
 
 
 
 
 
 
 
 
 

 

 


