9,985 research outputs found

    Nets, relations and linking diagrams

    Full text link
    In recent work, the author and others have studied compositional algebras of Petri nets. Here we consider mathematical aspects of the pure linking algebras that underly them. We characterise composition of nets without places as the composition of spans over appropriate categories of relations, and study the underlying algebraic structures.Comment: 15 pages, Proceedings of 5th Conference on Algebra and Coalgebra in Computer Science (CALCO), Warsaw, Poland, 3-6 September 201

    Embedded graph invariants in Chern-Simons theory

    Get PDF
    Chern-Simons gauge theory, since its inception as a topological quantum field theory, has proved to be a rich source of understanding for knot invariants. In this work the theory is used to explore the definition of the expectation value of a network of Wilson lines - an embedded graph invariant. Using a slight generalization of the variational method, lowest-order results for invariants for arbitrary valence graphs are derived; gauge invariant operators are introduced; and some higher order results are found. The method used here provides a Vassiliev-type definition of graph invariants which depend on both the embedding of the graph and the group structure of the gauge theory. It is found that one need not frame individual vertices. Though, without a global projection of the graph, there is an ambiguity in the relation of the decomposition of distinct vertices. It is suggested that framing may be seen as arising from this ambiguity - as a way of relating frames at distinct vertices.Comment: 20 pages; RevTex; with approx 50 ps figures; References added, introduction rewritten, version to be published in Nuc. Phys.

    Canonical quantum gravity in the Vassiliev invariants arena: I. Kinematical structure

    Get PDF
    We generalize the idea of Vassiliev invariants to the spin network context, with the aim of using these invariants as a kinematical arena for a canonical quantization of gravity. This paper presents a detailed construction of these invariants (both ambient and regular isotopic) requiring a significant elaboration based on the use of Chern-Simons perturbation theory which extends the work of Kauffman, Martin and Witten to four-valent networks. We show that this space of knot invariants has the crucial property -from the point of view of the quantization of gravity- of being loop differentiable in the sense of distributions. This allows the definition of diffeomorphism and Hamiltonian constraints. We show that the invariants are annihilated by the diffeomorphism constraint. In a companion paper we elaborate on the definition of a Hamiltonian constraint, discuss the constraint algebra, and show that the construction leads to a consistent theory of canonical quantum gravity.Comment: 21 Pages, RevTex, many figures included with psfi

    Quantum deformation of quantum gravity

    Get PDF
    We describe a deformation of the observable algebra of quantum gravity in which the loop algebra is extended to framed loops. This allows an alternative nonperturbative quantization which is suitable for describing a phase of quantum gravity characterized by states which are normalizable in the measure of Chern-Simons theory. The deformation parameter, q, depends on the cosmological constant. The Mandelstam identities are extended to a set of relations which are governed by the Kauffman bracket so that the spin network basis is deformed to a basis of SU(2)q spin networks. Corrections to the actions of operators in non-perturbative quantum gravity may be readily computed using recoupling theory; the example of the area observable is treated here. Finally, eigenstates of the q-deformed Wilson loops are constructed, which may make possible the construction of a q-deformed connection representation through an inverse transform.Comment: 12 pages, many figure

    MALL proof equivalence is Logspace-complete, via binary decision diagrams

    Get PDF
    Proof equivalence in a logic is the problem of deciding whether two proofs are equivalent modulo a set of permutation of rules that reflects the commutative conversions of its cut-elimination procedure. As such, it is related to the question of proofnets: finding canonical representatives of equivalence classes of proofs that have good computational properties. It can also be seen as the word problem for the notion of free category corresponding to the logic. It has been recently shown that proof equivalence in MLL (the multiplicative with units fragment of linear logic) is PSPACE-complete, which rules out any low-complexity notion of proofnet for this particular logic. Since it is another fragment of linear logic for which attempts to define a fully satisfactory low-complexity notion of proofnet have not been successful so far, we study proof equivalence in MALL- (multiplicative-additive without units fragment of linear logic) and discover a situation that is totally different from the MLL case. Indeed, we show that proof equivalence in MALL- corresponds (under AC0 reductions) to equivalence of binary decision diagrams, a data structure widely used to represent and analyze Boolean functions efficiently. We show these two equivalent problems to be LOGSPACE-complete. If this technically leaves open the possibility for a complete solution to the question of proofnets for MALL-, the established relation with binary decision diagrams actually suggests a negative solution to this problem.Comment: in TLCA 201

    A review of information flow diagrammatic models for product-service systems

    Get PDF
    A product-service system (PSS) is a combination of products and services to create value for both customers and manufacturers. Modelling a PSS based on function orientation offers a useful way to distinguish system inputs and outputs with regards to how data are consumed and information is used, i.e. information flow. This article presents a review of diagrammatic information flow tools, which are designed to describe a system through its functions. The origin, concept and applications of these tools are investigated, followed by an analysis of information flow modelling with regards to key PSS properties. A case study of selection laser melting technology implemented as PSS will then be used to show the application of information flow modelling for PSS design. A discussion based on the usefulness of the tools in modelling the key elements of PSS and possible future research directions are also presented

    Understanding Science Through Knowledge Organizers: An Introduction

    Get PDF
    We propose, in this paper, a teaching program based on a grammar of scientific language borrowed mostly from the area of knowledge representation in computer science and logic. The paper introduces an operationizable framework for understanding knowledge using knowledge representation (KR) methodology. We start with organizing concepts based on their cognitive function, followed by assigning valid and authentic semantic relations to the concepts. We propose that in science education, students can understand better if they organize their knowledge using the KR principles. The process, we claim, can help them to align their conceptual framework with that of experts which we assume is the goal of science education
    • …
    corecore