We generalize the idea of Vassiliev invariants to the spin network context,
with the aim of using these invariants as a kinematical arena for a canonical
quantization of gravity. This paper presents a detailed construction of these
invariants (both ambient and regular isotopic) requiring a significant
elaboration based on the use of Chern-Simons perturbation theory which extends
the work of Kauffman, Martin and Witten to four-valent networks. We show that
this space of knot invariants has the crucial property -from the point of view
of the quantization of gravity- of being loop differentiable in the sense of
distributions. This allows the definition of diffeomorphism and Hamiltonian
constraints. We show that the invariants are annihilated by the diffeomorphism
constraint. In a companion paper we elaborate on the definition of a
Hamiltonian constraint, discuss the constraint algebra, and show that the
construction leads to a consistent theory of canonical quantum gravity.Comment: 21 Pages, RevTex, many figures included with psfi