Proof equivalence in a logic is the problem of deciding whether two proofs
are equivalent modulo a set of permutation of rules that reflects the
commutative conversions of its cut-elimination procedure. As such, it is
related to the question of proofnets: finding canonical representatives of
equivalence classes of proofs that have good computational properties. It can
also be seen as the word problem for the notion of free category corresponding
to the logic.
It has been recently shown that proof equivalence in MLL (the multiplicative
with units fragment of linear logic) is PSPACE-complete, which rules out any
low-complexity notion of proofnet for this particular logic.
Since it is another fragment of linear logic for which attempts to define a
fully satisfactory low-complexity notion of proofnet have not been successful
so far, we study proof equivalence in MALL- (multiplicative-additive without
units fragment of linear logic) and discover a situation that is totally
different from the MLL case. Indeed, we show that proof equivalence in MALL-
corresponds (under AC0 reductions) to equivalence of binary decision diagrams,
a data structure widely used to represent and analyze Boolean functions
efficiently.
We show these two equivalent problems to be LOGSPACE-complete. If this
technically leaves open the possibility for a complete solution to the question
of proofnets for MALL-, the established relation with binary decision diagrams
actually suggests a negative solution to this problem.Comment: in TLCA 201