334 research outputs found

    Fusing deep learned and hand-crafted features of appearance, shape, and dynamics for automatic pain estimation

    Get PDF
    Automatic continuous time, continuous value assessment of a patient's pain from face video is highly sought after by the medical profession. Despite the recent advances in deep learning that attain impressive results in many domains, pain estimation risks not being able to benefit from this due to the difficulty in obtaining data sets of considerable size. In this work we propose a combination of hand-crafted and deep-learned features that makes the most of deep learning techniques in small sample settings. Encoding shape, appearance, and dynamics, our method significantly outperforms the current state of the art, attaining a RMSE error of less than 1 point on a 16-level pain scale, whilst simultaneously scoring a 67.3% Pearson correlation coefficient between our predicted pain level time series and the ground truth

    Neonatal pain detection in videos using the iCOPEvid dataset and an ensemble of descriptors extracted from Gaussian of Local Descriptors

    Get PDF
    Diagnosing pain in neonates is difficult but critical. Although approximately thirty manual pain instruments have been developed for neonatal pain diagnosis, most are complex, multifactorial, and geared toward research. The goals of this work are twofold: 1) to develop a new video dataset for automatic neonatal pain detection called iCOPEvid (infant Classification Of Pain Expressions videos), and 2) to present a classification system that sets a challenging comparison performance on this dataset. The iCOPEvid dataset contains 234 videos of 49 neonates experiencing a set of noxious stimuli, a period of rest, and an acute pain stimulus. From these videos 20 s segments are extracted and grouped into two classes: pain (49) and nopain (185), with the nopain video segments handpicked to produce a highly challenging dataset. An ensemble of twelve global and local descriptors with a Bag-of-Features approach is utilized to improve the performance of some new descriptors based on Gaussian of Local Descriptors (GOLD). The basic classifier used in the ensembles is the Support Vector Machine, and decisions are combined by sum rule. These results are compared with standard methods, some deep learning approaches, and 185 human assessments. Our best machine learning methods are shown to outperform the human judges

    Multi-Channel Neural Network for Assessing Neonatal Pain from Videos

    Full text link
    Neonates do not have the ability to either articulate pain or communicate it non-verbally by pointing. The current clinical standard for assessing neonatal pain is intermittent and highly subjective. This discontinuity and subjectivity can lead to inconsistent assessment, and therefore, inadequate treatment. In this paper, we propose a multi-channel deep learning framework for assessing neonatal pain from videos. The proposed framework integrates information from two pain indicators or channels, namely facial expression and body movement, using convolutional neural network (CNN). It also integrates temporal information using a recurrent neural network (LSTM). The experimental results prove the efficiency and superiority of the proposed temporal and multi-channel framework as compared to existing similar methods.Comment: Accepted to IEEE SMC 201

    Application of Texture Descriptors to Facial Emotion Recognition in Infants

    Get PDF
    The recognition of facial emotions is an important issue in computer vision and artificial intelligence due to its important academic and commercial potential. If we focus on the health sector, the ability to detect and control patients’ emotions, mainly pain, is a fundamental objective within any medical service. Nowadays, the evaluation of pain in patients depends mainly on the continuous monitoring of the medical staff when the patient is unable to express verbally his/her experience of pain, as is the case of patients under sedation or babies. Therefore, it is necessary to provide alternative methods for its evaluation and detection. Facial expressions can be considered as a valid indicator of a person’s degree of pain. Consequently, this paper presents a monitoring system for babies that uses an automatic pain detection system by means of image analysis. This system could be accessed through wearable or mobile devices. To do this, this paper makes use of three different texture descriptors for pain detection: Local Binary Patterns, Local Ternary Patterns, and Radon Barcodes. These descriptors are used together with Support Vector Machines (SVM) for their classification. The experimental results show that the proposed features give a very promising classification accuracy of around 95% for the Infant COPE database, which proves the validity of the proposed method.This work has been partially supported by the Spanish Research Agency (AEI) and the European Regional Development Fund (FEDER) under project CloudDriver4Industry TIN2017-89266-R, and by the Conselleria de Educación, Investigación, Cultura y Deporte, of the Community of Valencia, Spain, within the program of support for research under project AICO/2017/134

    Video-based infant discomfort detection

    Get PDF

    Going Deeper than Tracking: A Survey of Computer-Vision Based Recognition of Animal Pain and Emotions

    Get PDF
    Advances in animal motion tracking and pose recognition have been a game changer in the study of animal behavior. Recently, an increasing number of works go 'deeper' than tracking, and address automated recognition of animals' internal states such as emotions and pain with the aim of improving animal welfare, making this a timely moment for a systematization of the field. This paper provides a comprehensive survey of computer vision-based research on recognition of pain and emotional states in animals, addressing both facial and bodily behavior analysis. We summarize the efforts that have been presented so far within this topic-classifying them across different dimensions, highlight challenges and research gaps, and provide best practice recommendations for advancing the field, and some future directions for research

    Ubiquitous Technologies for Emotion Recognition

    Get PDF
    Emotions play a very important role in how we think and behave. As such, the emotions we feel every day can compel us to act and influence the decisions and plans we make about our lives. Being able to measure, analyze, and better comprehend how or why our emotions may change is thus of much relevance to understand human behavior and its consequences. Despite the great efforts made in the past in the study of human emotions, it is only now, with the advent of wearable, mobile, and ubiquitous technologies, that we can aim to sense and recognize emotions, continuously and in real time. This book brings together the latest experiences, findings, and developments regarding ubiquitous sensing, modeling, and the recognition of human emotions
    • …
    corecore