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Summary

Video-based infant discomfort detection

Neonates have a neurobiological vulnerability to pain, due to their lower
pain threshold, sensitization from repeated pain, and immature systems for
maintaining homeostasis. Frequent and/or recurrent pain and discomfort can
lead to abnormal brain development, yielding long-term adverse neurodevel-
opmental outcomes. Hospitalized infants receive special care, where their vital
signs are continuously monitored. Unfortunately, only a few systems have
been developed for detecting infant stress and discomfort. Monitoring by
healthcare professionals invokes high costs, and is time-consuming and sub-
jective in the assessment. Because of these limitations, infants are currently
only observed during short intervals for a few times a day, which likely leaves
many discomfort moments unnoticed. To aid clinical staff in detecting discom-
fort/stress status of infants for timely and appropriate treatments, the research
in this thesis investigates an automated system for the computer-aided detec-
tion of infant discomfort using video monitoring.

The first part of this thesis covered by Chapter 2 and Chapter 3, introduces
infant discomfort detection based on facial expression analysis of single static
video frames. The initial steps of the workflows in both chapters are face de-
tection and the face Region-of-Interest (RoI) normalization. After the face ROIs
are identified, Chapter 2 presents conventional machine learning techniques,
which involve extracting handcrafted features of geometrical and appearance
facial information. In addition to this subject-independent scheme, template
matching-based features are further explored for subject-dependent detection.
Chapter 3 exploits deep Convolutional Neural Network (CNN) algorithms to
address the problem of single-frame analysis. Given the limited available data
for training, a pre-trained CNN model is employed, followed by a fine-tuning
strategy. The usage of deep learning-based methods substantially increase the
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performance achieved by conventional machine learning techniques (AUC in-
creases from 0.87 to 0.96).

The second part of the thesis described by Chapter 4 and Chapter 5, is de-
voted to the explicit analysis of temporal information for better understanding
the infant videos. Chapter 4 discusses a method for automated detection based
on analyzing facial and body motion. Motion trajectories are estimated from
frame to frame using optical flow. Time- and frequency-domain features are
further calculated for the classification. Chapter 5 describes infant body mo-
tion by two-dimensional (2D) time-frequency representations characterizing
the distribution of signal energy. Log Mel-spectrogram, Mel Frequency Cep-
stral Coefficients (MFCCs), and Spectral Subband Centroid Frequency (SSCF)
features are calculated from the one-dimensional (1D) motion signal. Finally,
deep CNNs are applied to the 2D images for the binary comfort/discomfort
classification. The best results have shown an AUC of 0.985 and an accuracy of
94.2 % when combining 2D feature representations with CNN-based classifica-
tion.

The third part of the thesis in Chapter 6 exploits 3D CNNs to analyze spatial
and temporal information in videos simultaneously. An automated and con-
tinuous video-based system for monitoring and detecting discomfort is pro-
posed. The system employs a novel and efficient 3D CNN, which achieves
an end-to-end solution without the conventional face detection and tracking
steps. Experimental results show that the proposed system achieves an AUC
of 0.99, while the overall labeling accuracy is also 0.99.

In the fourth and last part of this thesis, Chapter 7 demonstrates the feasibil-
ity of quantitive physiological measurements in infants based on deep learning
methods. An automated pipeline is investigated to estimate respiration signals
from videos for premature infants in neonatal intensive care units (NICUs).
Two flow estimation methods, namely conventional optical flow-based and
deep learning-based flow estimation methods, are employed and compared to
estimate pixel-based motion vectors between adjacent video frames. The respi-
ratory signal is further extracted via motion factorization. The deep flow-based
method reaches the best results, where an overall average cross-correlation co-
efficient of 0.74 is obtained, together with an average root-mean-squared error
of 4.55 bpm.

The work of this thesis substantiates that video-based artificial intelligence
(AI) is efficient and effective to facilitate clinical staff in detecting infant dis-
comfort status. The research reveals that developing AI systems is feasible for
clinical applications of infant monitoring. The use of video recording meth-
ods facilitate accurate and robust clinical information on the infant discomfort
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status. The performance evaluation metrics for such systems have been elabo-
rated to provide an objective assessment. The videos used for evaluating the AI
systems were recorded from real clinical scenes. The research work and the ob-
tained results offer a promising possibility to deploy the proposed techniques
in clinical practice.





Samenvatting

Video-based infant discomfort detection
Neonaten hebben een neurobiologische kwetsbaarheid voor pijn vanwege

hun lagere pijngrens, gevoeligheid voor herhaalde pijn en onvolwassen ont-
wikkeling voor het handhaven van homeostase. Frequente en/of terugke-
rende pijn en ongemak kan leiden tot afwijkende hersenontwikkeling, hetgeen
een problematische neurologische ontwikkeling kan opleveren op de lange ter-
mijn. In het ziekenhuis opgenomen kinderen krijgen een speciale zorgbehan-
deling, waarbij hun vitale lichaamssignalen continu worden bewaakt en geob-
serveerd. Helaas zijn er maar enkele systemen ontwikkeld voor het detecteren
van stress en fysiologisch ongemak bij kinderen. Het monitoren door medische
professionals leidt tot hoge kosten, is tijdsintensief en subjectief in de beoorde-
ling. Door deze beperkingen worden kinderen alleen geobserveerd in korte
tijdsintervallen op slechts een paar momenten per dag waardoor veel momen-
ten met pijn en/of ongemak niet worden geregistreerd. Om de medische staf te
helpen bij het detecteren van dergelijke ongemak/stressmomenten bij baby’s
en de tijdige en geschikte behandeling hiervan, wordt in dit proefschrift een
geautomatiseerd systeem onderzocht voor de computerondersteunde detectie
van ongemak/stressmomenten met behulp videobewaking.

Het eerste deel van dit proefschrift, namelijk Hoofdstuk 2 en Hoofdstuk 3,
introduceert detectie van ongemak bij baby’s op basis van gezichtsuitdruk-
kingsanalyse van afzonderlijke statische videobeelden. De eerste stappen van
de processtappen die zijn beschreven in beide hoofdstukken, zijn gezichtsde-
tectie en de beeldnormalisatie van het gezichtsgebied (“region of interest”).
Nadat de gezichtsgebieden zijn geïdentificeerd, presenteert Hoofdstuk 2 de
conventionele machine-learning-technieken, waarbij handmatig geselecteerde
kenmerken worden geëxtraheerd van geometrische en uiterlijke gezichtsinfor-
matie. Naast dit persoonsonafhankelijke schema, worden verder sjabloon-
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matching gebaseerde eigenschappen onderzocht voor persoonsafhankelijke
detectie. Hoofdstuk 3 onderzoekt diepgelaagde algoritmen voor convolutio-
nele neurale netwerken (CNN) om het probleem van beeldgebaseerde analyse
op te lossen Gezien de beperkt beschikbare trainingsdata, wordt een vooraf
getraind CNN-model gebruikt, gevolgd door een verfijningsstrategie voor het
verbeterd leren van het netwerk. De resultaten van de dieplerende netwerken
verbeteren de performance van de conventionele machine-learning technieken
aanzienlijk (AUC neemt toe van 0,87 naar 0,96).

In het tweede deel van het proefschrift, namelijk Hoofdstuk 4 en Hoofd-
stuk 5, is de temporele informatie expliciet geanalyseerd om de kindervideo’s
beter te begrijpen. In Hoofdstuk 4 wordt een methode voor geautomatiseerde
detectie ontwikkeld die gebaseerd is op het analyseren van gezichts- en li-
chaamsbewegingen. Bewegingstrajecten worden geschat van beeld tot beeld
met behulp van nauwkeurige bewegingsanalyse van beeldelementen (“optical
flow”). Tijds- en frequentiedomeinkenmerken worden berekend voor de clas-
sificatie. In Hoofdstuk 5 wordt de lichaamsbeweging van de baby’s beschreven
door tweedimensionale (2D) tijd-frequentierepresentaties die de distributie
van signaalenergie karakteriseren. Kenmerken van Log Mel-spectrogram, Mel
Frequency Cepstral Coefficients (MFCC’s) en Spectral Subband Centroid Fre-
quency (SSCF) worden berekend op basis van het eendimensionale (1D) bewe-
gingssignaal. Tenslotte worden diepe CNN’s toegepast op de 2D-beelden voor
een binaire classificatie van comfort of ongemak. Wanneer 2D-representaties
van de beeldeigenschappen worden gecombineerd met een CNN-gebaseerde
classificatie, krijgen de best gemeten resultaten een AUC waarde van 0,985 en
een nauwkeurigheid van 94,2 %.

Het derde deel van het proefschrift in Hoofdstuk 6 onderzoekt 3D-CNN’s
om spatiële en temporele informatie in video’s gezamenlijk te onderzoeken.
Daartoe wordt een automatisch en continu draaiend videosysteem ontwikkeld
voor het bewaken en detecteren van ongemak. Het systeem maakt gebruik van
een nieuw efficiënt 3D-CNN netwerk, waarmee een volledig geïntegreerde op-
lossing kan worden bereikt zonder de conventionele stappen voor gezichtsher-
kenning en tracking. Experimentele resultaten leveren een AUC waarde van
0,99, waarbij de totale classificatienauwkeurigheid ook 0,99 is.

Het vierde en laatste deel van dit proefschrift in Hoofdstuk 7 demonstreert
de haalbaarheid van kwantitatieve fysiologische metingen bij zuigelingen op
basis van deep-learningmethoden. Een geautomatiseerd proces wordt onder-
zocht om ademhalingssignalen te schatten uit video-opnamen van zuigelingen
op de neonatale intensive care units (NICU’s). Twee methoden voor het schat-
ten van de ademhalingsbeweging, namelijk de conventionele methode op basis
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van optical flow en een deep-learningmethode, worden gebruikt en met elkaar
vergeleken om pixel-gebaseerde bewegingsvectoren tussen opeenvolgende vi-
deobeelden te schatten. Het ademhalingssignaal wordt verder geëxtraheerd
via bewegingsfactorisatie. De deep-learningmethode bereikt de beste resulta-
ten, waarbij een totale gemiddelde kruiscorrelatiecoëfficiënt van 0,74 en een
gemiddelde RMSE fout van 4,55 bpm wordt verkregen.

Het onderzoek in dit proefschrift bevestigt dat video-gebaseerde kunstma-
tige intelligentie (KI) efficiënt en effectief is om klinisch personeel te helpen
bij het detecteren van ongemak bij baby’s. Het onderzoek toont aan dat het
ontwikkelen van KI-systemen haalbaar is voor klinische toepassingen van ba-
bybewaking. Met gebruik van video-opnamemethoden is het mogelijk om
nauwkeurige en bruikbare klinische informatie over de ongemaksstatus van
een zuigeling te verkrijgen. De prestatie- en evaluatiemetriek voor dergelijke
systemen zijn uitgewerkt om een objectieve beoordeling te kunnen geven. De
video’s die zijn gebruikt voor het evalueren van de KI-systemen, zijn opgeno-
men vanuit echte klinische scènes. De verkregen resultaten bieden een veel-
belovende mogelijkheid om de voorgestelde systemen in de klinische praktijk
toe te passen.
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Chapter 1
Introduction

1.1 Clinical background of infant discomfort

The birth of a baby is one of the most joyful events in the history of a family,
provided that all is well with the baby and the mother in the initial period after
giving birth. However, the pregnancy period or the early stages of life of the
baby can be complicated, caused by health issues for both the baby and the
mother. Such issues can seriously hamper the healthy start for an infant and
the involved parents. When complications arise, typically infants are born in
the hospital and kept for several days or even longer periods for monitoring
and treatment, if they are required. The primary objective in the hospitals is to
correctly diagnose the occurring problems, solve those as far as possible, and
then help the baby to get recovered and become strong enough to be released
from the hospital to their normal lives.

When serious situations happen to the infants (e.g. infants can be extremely
weak) after being born, the current solution in the hospitals is that the infants
are kept in Neonatal Intensive Care Units (NICUs) for continuous monitor-
ing. The infants are regularly visited and checked by doctors, and special
feeding/tests are also being performed. There are various types of infants be-
ing monitored in NICUs, which can be categorized as conditions, including 1)
weak infants with diseases, and 2) infants without diseases, but just intrinsi-
cally premature born. Regardless of the types of infants, pain and discomfort
are important aspects for infant well-being and also for starting a healthy de-
velopment. Monitoring of the well-being of neonates is an important topic for
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clinicians, parents and the infants themselves. It is critical for both short-term
and long-term development of infants, and it has been found that it influences
their brain development. Controlling pain in the newborn period of infants is
beneficial for improving physiological, behavioral, and hormonal outcomes.

Recent findings show that frequent pain or discomfort in newborn infants,
who are at a time of physiological immaturity and undergo rapid brain devel-
opment, can cause complications, such as delay in cognitive and motor devel-
opment [41]. Cumulative pain/stress experienced at an early-life stage signifi-
cantly contributes to abnormal brain development, which can yield long-term
adverse neurodevelopmental outcomes [24] [108] [173] [11] [121] [100]. Sig-
nificant and long-lasting consequences following pain/stress in the newborn
periods can change the central nervous system and responsiveness of the neu-
roendocrine and immune systems, which can lead to stress many years later,
even at maturity [42] [103]. Furthermore, for infants born preterm, neonatal
pain-related stress is associated with alterations in both early and later devel-
opmental outcomes [161]. Neurobiological vulnerability to pain in newborn in-
fants is well established, due to their lower pain threshold, sensitization from
repeated pain, and immature systems for maintaining homeostasis [34] [35].
Therefore, in the Neonatal Intensive Care Unit (NICU), continuous discomfort
or pain assessment for newborn infants is highly desired, since it helps care-
givers to understand the severity of infant situations and develop appropriate
treatments. Reliable discomfort detection can play a crucial role in appropriate
and timely treatment in pediatric clinics. In the meantime, it also contributes
greatly to the well-being of the infants for a better early-life quality.

Self-reporting is currently considered to be the gold standard for pain as-
sessment among patients, and is the most reliable indicator of the existence
and intensity of acute pain and discomfort [99]. Assessment scales that rely
on patient self-reporting are commonly used to measure the intensity of pain.
However, infants cannot report verbally their pain or discomfort and must rely
on healthcare professionals to recognize their behavioral or physiologic signs
suggesting pain and discomfort [61]. Because of this lack of communication,
the value of discomfort detection is even further increased.

1.2 Current measurements in clinical setting

At present, discomfort and pain monitoring for infants is performed manually
and visually by healthcare professionals, who check both the behavioral pa-
rameters (e.g. facial expression, body movement and crying sound) and/or the
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physiological parameters (e.g. vital signs of the infants, like breathing, heart
rate, body temperature) of infants.

1.2.1 Vital signs

Currently, vital signs of NICU infants are continuously monitored by sensors
and transmitters in combination with a single central monitor (see Figure 1.1).
Vital signs include heart rate, respiration rate, blood oxygen saturation, and
body temperature, which are measured by the sensors and electrodes attached
to infant skin. However, this approach of measuring parameters can damage
the vulnerable skin of neonates and cause infections, which adds an extra bur-
den. Moreover, the wires can also interfere with the clinical staff and parents
when taking care of the infants. These issues initiate the objective for a friendly,
contactless measurement of vital signs. Moreover, the alarm of a professional
monitoring system is only triggered when the monitored parameters exceed
the boundaries of normal ranges. When infants experience discomfort mo-
ments, such as feeling hungry, needing a diaper change, missing mom, or even
disease-induced pain, the system cannot notify clinical staff immediately as the
vital signs may stay within the normal range.

1.2.2 Comfort scales

In common practice, there is no universal or standard method to monitor and
assess discomfort/pain. Currently, the stress/comfort levels of hospitalized
infants are regularly checked by caregivers and clinicians. For pediatric units,
multiple pain/comfort-scale forms have been developed, in order to assist
healthcare professionals in detecting the level of pain or discomfort.

For term neonates 1, there are well-known discomfort/comfort scale tools,
which are also reported in literature. For example, the Comfort Scale [5] con-
siders both observational and physiological factors, while the Neonatal Infant
Pain Scale (NIPS) [75] is based on interpreting facial expression, crying, breath-
ing patterns, and upper and lower limb movement, etc. The Objective Pain
Scale (OPS) has been utilized with infants and children from birth to three years
of age [98]. For preterm neonates, the Premature Infant Pain Profile (PIPP)
score [138] is a multi-dimensional measure developed to assess acute pain. Ta-
ble 1.1 summarizes the above-mentioned validated pain/discomfort tools for
neonates.

1The word “term" means here non-preterm.
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Figure 1.1: – Visual example of a NICU setup at the Máxima Medical Center, Veldhoven, the
Netherlands. The subpicture at the left shows the physiologic parameters measured
and shown on the display for monitoring.
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Name of the scale
Incl. phys.
measures Preterm Term

Comfort Scale Yes No Yes
Objective Pain Scale (OPS) Yes Yes Yes
Neonatal Facial Coding System (NFCS) Yes Yes Yes
Neonatal Infant Pain Scale (NIPS) Yes Yes Yes
Premature Infant Pain Profiles (PIPP) Yes Yes Yes

Table 1.1: – Validated scales and scoring systems for neonatal pain/discomfort monitoring
(phys. means physiology).

The scale-based assessment is typically performed by caregivers/clinicians
by observing infant behavior for 2-3 minutes. However, visual assessments are
only scheduled for a few times a day. The intermittent assessment can lead
to under/misdiagnosis and therefore delay in treatment or incorrect therapy.
Another important aspect of detection is that the current procedure is based on
the subjective assessment of personnel, which incurs inter-assessor variation.

Since a continuous discomfort/pain assessment tool is not available, an au-
tomated monitoring system that can continuously detect discomfort is highly
desired to replace the current intermittent manual observation, such as by a
camera-based health monitoring system.

The existing pain scales are valuable for this research work, since they can
help and guide the development of video-based automated monitoring sys-
tems. The existing scales for assessing infant status can give pre-information
about which infant features are important to observe and assess discomfort, for
example, with regards to facial appearance, body movement, etc. The existing
comfort scales are assessed by a human. In the framework of this thesis, the
purpose of developing an automated video-based monitoring system is to offer
an assisting artificial care-evaluator. In other words, the system is expected to
extend the visual system of humans over a continuous time period and mimic
the presence of an observing caregiver.

The followed approach is that for our work, we are inspired by the afore-
mentioned comfort scales, to adopt important features from them if useful, but
we are not bounded by them in the sense that sometimes technology can offer
more possibilities than existing human-based monitoring. It is expected that
the facial features of the infants can provide important information indicating
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the infant’s discomfort status, since parts of these scales are based on facial ex-
pressions. However, it is of interest to also consider additional parameters that
are important for pain/discomfort assessment, such as movement behavior
patterns, and also the physiological parameters, e.g., heart rate and respiratory
rate of the infant.

1.3 Techniques for human monitoring

In the past several years, there has been an increased interest in the devel-
opment of learning systems for understanding human behavior related to
pain/distress. Advanced methods for recognizing emotion or behavior have
been mostly developed for adults. However, such methods for adults can be
leveraged for infant monitoring. The existing behavior monitoring systems
can be classified into two categories: 1) physiological-based and 2) behavioral-
based analysis.

Various approaches have been developed to extract physiological parame-
ters including Heart Rate (HR), Respiratory Rate (RR), blood oxygen saturation
(SpO2), body temperature, and blood pressure (see Table 1.2). These methods
are typically based on contactless or less invasive manners. With extracted
physiological indicators, the human-health status can be further assessed. The
aforementioned parameters/signs can be measured and used to assess the per-
son’s level of physical functioning. Besides the physiology-based methods,
behavior-based systems focus on the analysis of facial expression, body mo-
tion, and crying sound, which are mostly extracted from video and audio sig-
nals.

It is hypothesized that motion behavior induced by discomfort/pain can be
measured from video signals, provided that the cameras are of sufficient qual-
ity and resolution and the camera setup allows to make informative recording
for further analysis. Good techniques are existing for extracting motion infor-
mation, such as optical flow, which will be introduced later in this thesis. Start-
ing from this view point, when applying optical flow-based motion analysis,
it is our intention to reuse the technique of extracting motion information for
the quantitative analysis of respiration measurement. However, our study on
exploiting physiological parameters for the sake of discomfort detection, will
not be exhaustive from the side of using physiological parameters. This thesis
just offers the first work on this exploration (e.g. respiration rate measurement)
for infant monitoring and we consider that more work will follow afterwards.
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Physiological pa-
rameters

Techniques Comments

Heart rate [104] Smart video The system requires the user to
place the tip of his/her index fin-
ger on the lens of a smart phone
camera, while the flash is on.

Respiratory
rate [133]

Respiratory
sounds

A plurality of respiratory rates are
derived from the recorded sounds
and then a heuristic is applied to
select one of the derived respira-
tory rates.

Blood oxygen satu-
ration [20]

Reflectance
pulse oximeter

The results show that the heart
rate and blood oxygen saturation
measured by the proposed design
are corresponding to the readings
of the standard monitor.

Body temperature
[21]

Conductive tex-
tile wires

Accurate temperature monitoring
obtained by a prototype belt.

Blood pressure [58] High-speed
camera

High intra-individual correlation
between pulse transit time and
blood pressure.

Table 1.2: – Examples of physiological parameter measurements.

1.4 Support of technology developments

Nowadays, camera-based video surveillance systems are being used every-
where, notably in the surroundings of our daily living, like traffic surveillance
and safety applications. Cameras are installed for different surveillance pur-
poses on the street, in factories, in train stations, and even in nursing houses.
Those cameras are often connected with remote monitoring systems via the In-
ternet, where human experts typically observe the videos and recognize a face,
detect incidents, track objects, etc.

In the past ten years, lenses of cameras have become smaller and cheaper,
which is also fueled by mobile phones and networking, which can support
video streaming. The surveillance is also continuously getting smarter in the
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analysis of pictures and videos, due to the advances in computer vision and
machine learning. Furthermore, mobile video surveillance systems have be-
come popular, and the captured video can be transmitted to its final destination
under specified delay constraints when needed.

Surveillance applications have been largely boosted because of the devel-
opment of Computer Vision (CV), which models and analyzes the semantic
content of videos. The CV systems are first developed on the basis of super-
vised learning, and then can identify the recurring activities within the videos
or recognize the abnormal events in the video contents, such as an incident in
the traffic, falling events of humans, etc. Besides recognition applications, one
of the most interesting areas of research is tracking and identification of ob-
jects. The goal of these CV algorithms is to define bounding boxes containing
an object of interest from each frame of the video. For example, CV can be used
to recognize patterns between human body movement and pose over multiple
frames in video footage or real-time video streams. It can be used also to track
the pose and movement of multiple team players in a match calculated from
both monocular and multi-view sports video datasets. Conventional machine
learning has evolved well into localizing and classifying objects of interest in
real-time. However, the accuracy and robustness of various computer vision
techniques remains a topic of research for further improvement.

In the past few years, because of the advances in algorithms and com-
putation power, Convolutional Neural Networks (CNN)-based deep learning
methods have become the latest machine learning technology in many fields
including computer vision. Deep learning is replacing conventional computer
vision techniques in object detection, action/activity recognition, motion track-
ing, human pose estimation, and semantic segmentation. The global term for
this field of technology is called Artificial intelligence (AI). Within this large
field, video- and image-based analysis forms a specific area on its own.

In the healthcare domain, videos can be also leveraged for infant care. A
machine learning or deep learning-based solution is desired to be available
and reliable for real-time monitoring. The objective of this monitoring sys-
tem is to assist clinicians in their observation tasks by performing a continu-
ous surveillance and automated alerting when needed. The system can detect
baby discomfort or other stressful moments and filter them out from all other
surrounding events. In this way, the clinicians are always notified when the
infants need care.

To summarize, in the past few years, with the improvement of the camera
quality, video processing techniques have been leveraged in different computer
vision applications, such as license-plate recognition, pedestrian monitoring,
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and speed testing. In the healthcare domain, the application of video moni-
toring is still in its infancy, but offers promising possibilities. The purpose of
this thesis is to leverage from these developments and design computer vision
techniques for better healthcare and for benefiting clinicians, parents, and in-
fants.

1.5 Problem statement and research questions

This section decomposes the imposed clinical questions into a series of techni-
cal research problems and formulates each problem into underlying research
topics.

1.5.1 Problem statement

The purpose of the research in this thesis is to exploit the AI technology for the
healthcare surveillance on infants. Here, this section first poses the problem
statement and then details it into research questions.

The objective of this thesis is to develop a video-based automated discomfort detec-
tion system that is able to monitor and interpret infant discomfort status. This implies
advanced video analysis on both facial features and infant behavior components. The
analysis techniques should be learned by an automated system in order to come to a
knowledgeable decision on the discomfort status of the infant.

Considering the practical factors for the implementation of a clinical ap-
plication of a surveillance system, important system requirements need to be
specified. (1) The system needs to be sufficiently accurate to be accepted by
the clinicians (e.g. for clinical trials). (2) The system should operate with a
fast execution time to allow real-time monitoring without delaying diagnosis.
(3) The cost should be feasible and the camera(s) should be installed at a po-
sition(s) rarely interfering with clinical treatments. The proposed system has
to be evaluated thoroughly against these requirements. The validation exper-
iments and results will provide an insight into the feasibility of incorporating
such an intelligent assisting system for future clinical application.

With the desire of the assisting system and posed system requirements, we
further detail the research aspects that need to be addressed for developing
such a system.
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1.5.2 Research questions

From the above problem statement, a number of specific research questions
can be derived to support an in-depth analysis in the field of (preterm) infant
monitoring, which are formulated as follows.

RQ1: Facial features for frame-level discomfort detection Many emotion
recognition systems have been developed by analyzing facial expressions.
However, most of this research focuses on surveillance of adults. The effects of
facial information to distinguish infant discomfort from comfort have not been
established.

Most of the infant videos were recorded when infants were lying on their
backs (supine position). However, they are still free to rotate their heads.
Therefore, considering the different sizes of infant faces and various head
poses, the system should be robust against variation in the face sizes and head-
/face poses among different infants. This leads to the following research ques-
tions.

• RQ1.a: Which facial features are relevant and discriminating for charac-
terizing the facial expression for the infant comfort/discomfort detection
task?

• RQ1.b: How should the facial features be normalized across different in-
fants, since infants have different levels of facial expressions?

RQ2: Deep learning-based frame-level discomfort detection Deep learning
techniques have shown impressive performance in multiple computer vision
applications. The performance of deep networks is unknown regarding the
task of infant discomfort detection, leading to the following research questions.

• RQ2.a: Can deep learning be used for this infant comfort/discomfort
classification task? If so, in what way?

• RQ2.b: Can deep learning be applied on a small dataset or are special
actions required to facilitate this?

• RQ2.c: Is deep learning sufficiently robust to environmental settings and
changes?
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RQ3: Incorporating temporal information - motion analysis Body move-
ment is an important indication for comfort or discomfort when clinical experts
visually assess infant status. The use of temporal information extracted from
video sequences needs to be validated by machine learning methods. Informa-
tion embedded in the video sequences enables a meaningful interpretation of
the body motion signals. CNNs are capable of automatic and deep learning of
features directly from input data. Three-dimensional (3D) CNNs can capture
both the object appearance and contextual information, together with motion
information. When applying 3D CNNs on the infant videos without explicit
detailed steps on face detection/normalization, the performance of the overall
system is not known at the time and needs research. This leads to the following
questions.

• RQ3.a: Can we leverage the motion information for infant discomfort
detection?

• RQ3.b: Can we employ optical flow and handcrafted features for the ex-
tracted motion signal to capture the temporal information?

• RQ3.c: In what way can deep learning facilitate the classification of a 1D
motion signal?

• RQ3.d: Can we use CNNs to jointly process both spatial and temporal
information?

• RQ3.e: How can an additional motion channel give guidance to CNNs to
focus on areas related to discomfort?

RQ4: Quantitative physiological signal measurement The tasks mentioned
above are all for the binary classification of comfort and discomfort. The fea-
sibility of video-based quantitative physiological measurements providing in-
formative value of respiratory rates, is an important research topic for this the-
sis. Only using video-based measurement offers clear benefits of contactless
measurements on the infants, so that it has a clear preference for further inves-
tigation. The related research questions are formulated as follows.

• RQ4.a: How can we quantitatively extract physiological signals from
video recordings?

• RQ4.b: Are the results calculated from videos reliable by comparing them
with the current standard methods (chest impedance)?
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1.6 Contributions of this thesis

This section summarizes the overview of the scientific contributions presented
in this thesis. The contributions are described in three perspectives, which are
elaborated below.

Contributions to facial feature analysis for discomfort detection: Our research
has investigated whether the facial features are discriminative to distinguish
infant discomfort from comfort moments.

An automated system is proposed for facial expression recognition for
infants during in-hospital care. Moreover, this study proposes to normalize
infant faces for effective feature computation. To better take into account
variations between each individual, we incorporate landmark-based template
matching for enhancing the performance. Furthermore, deep learning is em-
ployed to improve the performance by self-learning of the facial features. This
system applies a deep learning model based on pre-trained CNNs, followed
by a fine-tuned learning process. The performance of the deep-learning model
is improved when using the proposed fine-tuning steps, involving pre-training
with generic people pictures and dataset balancing combined with twofold
cross-validation. Using all refinements, the Area Under the Curve (AUC) then
substantially increases from 0.77 to 0.96.

Contributions to video-based AI systems for infant discomfort detection: Going
from 2D images to full videos, the thesis provides solutions to perform fully
analyzing video data without face detection/tracking. First, a preliminary
AI solution is developed to leverage the extraction of the motion information
embedded in the video segments. Sequentially, we propose a multi-channel
input to the learning network to help draw the attention of the networks to
the regions with significant movement related to facial expression changes,
where spatial and temporal information are learned jointly. The obtained
attention-based learning network is an innovative system implementation for
neonatal observation.

Contributions to the quantitative physiological signal measurement from videos:
For further supporting the classification of comfort status, we have developed a
contactless video-based physiological analytic method, for which an AI system
is designed that can quantitatively extract respiration rate for infants. This
solution allows healthcare personnel to create more in-depth understanding of
the comfort status of infants.
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1.7 Thesis outline and corresponding scientific
publications

This section presents an outline of the chapters in this thesis and briefly
discusses the contributions of each chapter. The corresponding scientific
publications from each chapter are also indicated.

Chapter 2 presents the system of image-based facial expression analy-
sis, using conventional machine learning techniques. The system extracts
handcrafted features characterizing both geometrical and facial appearance
information. Moreover, template matching-based features are introduced for
subject-dependent detection.

The contribution of this chapter was published in a journal article in
Machine Vision and Applications (2019) [145].

Chapter 3 exploits deep CNN algorithms for the task of image-based analy-
sis. To address the limited available data for training, a pretrained model is uti-
lized, which is followed by training the networks using a public dataset with
labeled facial expressions for pain assessment (first fine-tuning). The model
is further refined with a self-recorded dataset of infant videos (second fine-
tuning).

The contribution of this chapter was published in a journal article in
Physiological Measurement (2019) [147].

Chapter 4 investigates an automated and continuous discomfort detection
method, based on analyzing motion patterns of preterm infants. For each video
segment, the motion matrices are first estimated from adjacent video frames
using optical flow. Then, the motion acceleration rate is calculated and 18 time
/frequency-domain features are extracted for characterizing motion patterns.
A support vector machine (SVM) classifier is then applied to video sequences
to recognize infant status to be comfort or discomfort.

The contribution of this chapter was published at the IEEE Int. Conf. of the
Engineering in Medicine and Biology Society (EMBC) 2019 [141].

Chapter 5 describes the infant body motion by two-dimensional (2D) time-
/frequency-domain representations characterizing the distribution of signal
energy. Log Mel-spectrogram, Mel Frequency Cepstral Coefficients (MFCCs)
and Spectral Subband Centroid Frequency (SSCF) features are calculated from
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the one-dimensional (1D) motion signal. Deep CNNs are further applied to the
2D images for the binary classification of comfort or discomfort.

The contribution of this chapter was published at SPIE Medical Imaging in
2020 [140].

Chapter 6 investigates the video characteristics (e.g. intensity images and
motion images) and the associated CNN architectures (e.g. 2D and 3D) for
infant discomfort detection. The realized improvements of the 3D CNN are
based on capturing both the motion and the facial expression information of
the infants, and the joint classification of those information parts.

The contribution of this chapter was accepted for publication by the Journal
of Quantitative Imaging in Medicine and Surgery in 2021 [139].

Chapter 7 proposes an automated pipeline to estimate respiration signals
from videos for premature infants in neonatal intensive care units (NICUs).
The conventional optical flow and deep learning-based flow estimation meth-
ods, are employed and compared to the estimation of motion information be-
tween adjacent video frames. The respiratory signal is further extracted via
motion factorization. The feasibility of quantitative physiological measure-
ment in infants based on deep learning methods is demonstrated.

The contribution of this chapter was published in the Journal of Applied
Science in 2019 [149].

Chapter 8 summarizes this thesis and discusses the research questions of
Chapter 1 and the findings in the thesis. The results of this thesis are finally
concluded and a brief outlook is presented regarding video-based infant mon-
itoring applications.



Chapter 2
Handcrafted features for facial
expression analysis

2.1 Introduction

The previous chapter has outlined the scope of this thesis by introducing the
clinical background and the desire for supportive systems in infant monitoring
to timely detect their discomfort status. This chapter starts with describing a
system based on conventional methods exploiting handcrafted features and a
machine learning classifier for the task of infant discomfort detection. Most
machine learning systems share a similar processing chain, where each pro-
cessing step performs a specific function, giving the components of data input,
information extraction, and finally a prediction from the processing analysis.
Regarding the second step of information extraction, existing computer vision
algorithms are based on the detection and extraction of local features in im-
ages/videos. The extraction of so-called handcrafted features involves algo-
rithms that are committed to understand, quantify, and improve features ex-
tracted from images/videos. Conventional handcrafted features are manually
designed by researchers, so that they are easy to be interpreted and intuitive
for human understanding. Handcrafted features can be also task-oriented for
a specific application, which requires that researchers should have domain-
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knowledge prior to designing any features.
As a sequential step, the designed features are usually combined with a ma-

chine learning classifier to perform the classification tasks in supervised learn-
ing. For example, Support Vector Machine (SVM) [155] is a popular machine
learning classifier, that maximizes the distances from each class to the decision
boundary. This approach works effectively and robustly if the margin separa-
tion is clear between the classes. SVM is more effective in high-dimensional
spaces and is also memory-efficient.

This thesis aims at exploring facial expressions of neonates to detect the
comfort status of the neonates. An important part of such detection is to ana-
lyze the facial expressions of the infants, in order to come to a decision on their
comfort status. This facial expression is explored by designing handcrafted fea-
tures and comparing the performance between different categories of features.

The objective of this chapter is to analyze infant facial expressions shown in
video frames by exploiting feature extraction and classifying those features for
estimating the comfort status of the infants. The facial expression is one of the
most common indicators of discomfort and pain for infants. The Primal Face
of Pain (PFP), shown in Figure 2.1, is a universal facial expression, associated
with pain, which is hardwired and presents at birth [126]. Considering the
input feature vectors, the final prediction of comfort/discomfort will be made
by an SVM classifier. In more detail, the following challenges and requirements
of such a discomfort detection system should be addressed.

• Normalization of head pose: With respect to the behavior of the infants, our
approach relies on the system requirement on infant head pose, which
has been described in Chapter 1. Most of the infant videos are recor-
ded when infants are lying on their backs (supine position), but they
are still free to rotate their heads. Therefore, considering the different
sizes of infant faces and various head poses, the system should be robust
against variations in the face size and head/face position among differ-
ent infants. This means that an extra normalization step is needed prior
to feature extraction to ensure proper system operation. Therefore, the
first challenge for the design of the system is the normalization step that
should handle the variations in size and pose to enable feature extraction.

• Selection of expression-related features: As the PFP is an indicator of infant
discomfort status, the employed handcrafted features should specifically
capture the typical patterns of PFP-related facial information, that differ-
entiates discomfort status from comfort. In order to facilitate this, we dis-
tinguish facial expression-related features and texture features from the
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face. It is expected that for defining proper handcrafted features, the per-
formance of facial expression-related features and the group of features
for describing texture from the face have to be explored and compared.

• Robustness against inter-infant differences: Pediatricians have observed that
when infants experience discomfort/pain, the levels of face distortion
due to pain experience vary greatly among different infants. For a selec-
tion of premature infants, the changes of facial expression from comfort
to discomfort are hardly visible. Therefore, the system should be able
to handle these inter-infant differences for maintaining reliable comfort
detection.

Taking the above requirements and challenges into account, our aim is to
develop an automated system that classifies infant comfort/discomfort status
using the described handcrafted feature groups followed by an SVM. The focus
on the classification is then on features describing the PFP, which concentrate
on the facial expression-related features.

The remainder of this chapter is organized as follows. In Section 2.2, related
work on pain and discomfort detection is described. Section 2.3 elaborates our
method, and Section 2.4 explains the experimental results, with some discus-
sions in Section 2.5. Finally, Section 2.6 concludes the chapter.

2.2 Related work

2.2.1 Face detection

Face detection has been one of the most studied topics in the field of com-
puter vision. From the past, the Viola-Jones algorithm [166] is a well-known
successful face detector, which can be applied even in real-time applications.
The three main components of the Viola-Jones detector include (1) integral im-
age, (2) classifier learning with AdaBoost, and (3) attentional cascade structure.
The integral image is also known as a summed-area table, which can efficiently
compute the sum of values in a rectangular subset of a grid. The main concept
of boosting is to find a single and highly accurate hypothesis by combining
multiple simple hypotheses (called “weak" classifiers), each having moderate
accuracy. The attentional cascade structure is a critical component in the Viola-
Jones algorithm. The mechanism is the construction of small, and thus efficient,
boosted classifiers, which results in rejecting most of the negative sub-regions
of the objects, while keeping almost all the positive object samples. Therefore,
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most of the sub-regions will be rejected at the early stages of the detection pro-
cess, leading to an extremely efficient procedure. For the object detection, in
our case, this task aims at face detection.

SVM has also attracted much attention on the topic of face detection be-
cause of its fast computing and good performance [102]. Jee et al. [57] proposed
a real-time face detection system for personal authentication using color, edge,
binary information, and SVM classifiers. The system detects facial region by si-
multaneously using skin color and edge information. Candidates of eye pairs
are further detected by exploiting edge and binary information in the facial re-
gion. False detection is prevented by verifying eye and face candidate regions
using SVMs.

Shavers et al. [132] present a face detection system also based on SVM. The
λ-coefficients corresponding to the SVM support vectors are determined from
training a set of images. The support vectors are the archetypes for face and
non-face images. The SVM algorithm maps the test images (containing both
face and non-face images) into a high-dimensional transform space where a hy-

Figure 2.1: – Primal face of pain, involving brow bulge, eye squeeze, and a horizontally
stretched open mouth with deepening of the nasolabial furrow.
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perplane decision function is constructed. The decision function is equidistant
between support vector archetypes, in order to create an optimal hyperplane
decision function.

For background reading, a large amount of papers on face detection are
captured in the review papers [159] [169] on handcrafted features with SVMs.
More recent papers on face detection using deep learning will be discussed
later in this thesis. However, nearly all the existing methods are developed for
adult faces and not infant’s faces.

2.2.2 Pain/discomfort detection

A. Metadata parameters on discomfort detection

In the past years, emerging interesting applications [45] have fueled the in-
creased interest in pain assessment. There is a category of discomfort detection
methods based on metadata parameters, that assess pain or discomfort based
on behavior analysis. Existing approaches of metadata parameters can eval-
uate infant pain based on crying sound and body motion. Infant crying is a
common sign of discomfort, hunger, or pain. For classifying the crying sound,
Mima et al. [94] presented a method that analyzes baby cries within spectro-
graphic images, and classifies these cries into pain, sleeping, hunger, etc. The
obtained overall accuracy of the proposed method was 85%. Up to this point,
very few studies on pain assessment based on body movements have been
published [183] [185].

B. Physiological parameter-based methods

Various approaches have been devoted to assess pain based on physiological
indicators, for instance, vital signs such as Heart Rate (HR), Heart Rate Vari-
ability (HRV), Respiratory Rate (RR), blood oxygen saturation (SpO2), body
temperature, and blood pressure. The signs can be measured and used to as-
sess the person’s level of physical functioning. Lindh et al. [81] presented an
approach to assess infants pain by frequency-domain analysis of HRV during
heel lancing, which showed an increase in low-frequency power in the heel
stick response of preterm infants compared to baseline. Acharya et al. [2] de-
tected cardiac abnormalities by classifying cardiac rhythms, using an artificial
neural network and fuzzy relationships, which achieved an accuracy level of
80-85%. However, vital signs such as HR and RR are currently measured using
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techniques including electrocardiograms (ECG) and pulse oximetry, which re-
quire contact with the patient’s skin. Attaching the sensors to infant skin adds
an extra burden to infants, compared to the contactless methods using videos.

C. Facial expression-based analysis

Substantial attention has been paid to facial expressions in adults. Shan et
al. [131] empirically evaluated facial representation based on statistical local
features like Local Binary Patterns (LBPs), for person-independent facial ex-
pression recognition and illustrated that LBP features are effective and efficient
for facial expression recognition. They achieved a recognition rate of 91.4% for
7-class facial expressions (anger, disgust, fear, joy, sadness, surprise, and neu-
tral) by using Boosted LBP-based SVM with an RBF kernel. Kotsia et al. [73]
achieved a recognition accuracy of 99.7% for facial expression recognition, us-
ing the proposed multi-class SVMs and 95.1% for facial expression recognition
based on a set of chosen facial Action Units (AUs). Kharghanian et al. [66]
applied a hierarchical unsupervised feature learning approach to extract the
features needed for pain detection from facial images using a convolutional
deep belief network and achieved near 95% for the Area Under the Receiver
Operating Characteristic (ROC) Curve (AUC). Ashraf et al. [7] explored an ap-
proach for automatically recognizing acute pain with Active Appearance Mod-
els (AAM). The shape and appearance components represented by AAM were
further decoupled to separate features. Finally, SVM was employed for classifi-
cation. The method was evaluated on 15,761 frames from the UNBC-Mcmaster
shoulder pain database, which showed a frame-level accuracy value of 82.4%
for detecting pain frames, and a false positive rate of 30.1%. One of the chal-
lenges in this task is to align faces together for more effective feature extraction.
Lucey et al. [89] showed that the AAM can deal with patient movements and
can achieve significant improvements in both the facial AU and pain detec-
tion performance. Using the UNBC-McMaster database, the obtained AUC
was 0.847 when combining similarity-normalized shape features (SPTS) with
similarity-normalized appearance features (SAPP) and canonical normalized
appearance features (CAPP). Littlewort et al. [82] applied an automated facial
expression recognition system to spontaneous facial expressions of pain. A set
of 20 detectors from the facial action coding were extracted and passed on to a
classification stage, in which a classifier was trained to detect the difference be-
tween expressions of real pain and fake pain. The automated system obtained
an accuracy of 88% for subject-independent discrimination of real versus fake
pain.
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Most of the existing methods for automatic pain assessment based on
facial expressions focus on adults. However, the methods designed for
assessing adult pain may not have similar performance on the infants, because
the facial morphology and dynamics vary between infants and adults as
reported in [43]. Sikka et al. [134] presented a Facial Action Coding System
(FACS)-based method to describe children’s facial expressions of pain. The
model detection of pain versus no-pain achieved an AUC of 0.84–0.94 in both
ongoing and transient pain conditions on the videos from 50 children. One
challenge of FACS-based methods is the extensive time required for labeling
AUs in each video frame. Fotiadou et al. [36] proposed an infant discomfort
detection system based on the AAM. The system was evaluated in 15 videos
of 8 infants, yielding an AUC performance of 0.98. Unfortunately, the AAM
mesh has to be initialized for each individual baby by identifying a set of
landmarks manually, which makes it difficult to implement in clinical practice.

Summarizing the related work in the context of this chapter, we concentrate
on the techniques of extracting facial features and then processing these fea-
tures with an SVM. The FACS-based method is not considered in our research,
because the working scheme requires manual labeling of AUs for each video
frame, which increases the complexity of the process and is time-consuming.
For the AAM-based approach, the initial step needs manual identification for
facial landmarks, which is not attractive as it does not provide a generic solu-
tion. Infant discomfort is generally assessed by observing their facial expres-
sion. Therefore, the handcrafted features referring to PFP will be designed and
utilized to discriminate facial information of comfort and discomfort. Conven-
tional handcrafted features (e.g., LBPs) will also be included in this study be-
cause of its proven efficiency for facial expression recognition. Once the hand-
crafted features are obtained, an SVM classification will be directly applied
because SVM would find the optimal margin gap between separating hyper-
planes and is also computationally efficient.

2.3 Methods for handcrafted feature-based classifi-
cation

This section describes the designed method for an automated discomfort de-
tection system based on handcrafted feature extraction aiming at describing
the PFP and classifying those features into a comfort/discomfort class. The
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proposed method involves three key steps listed below.

• Face normalization: The face region is first detected by identifying 68 facial
landmarks. This is followed by resizing and rotating the region according
to the location of the facial landmarks, to correct the face size and rotation
variance. In this way, a normalized face ROI is obtained.

• Handcrafted feature extraction: To extract the features characterizing the
PFP-related facial information, geometric features calculated from the
68 facial landmarks are leveraged. Appearance features from the facial
ROI are also extracted for describing the facial texture. These features are
finally supplied to an SVM [16] [38] classifier.

• Subject-(in-)dependent detection: A subject-independent detection scheme
is proposed. In addition, we further introduce template matching-based
features for subject-dependent detection, which compensates the inter-
infant variance.

The above properties will be further explained in detail in the following sub-
sections.

2.3.1 Face detection and normalization

The subsection starts with extracting the infant face from each frame of the
video. The complete face detection and normalization workflow generates the
face ROI as input for the next step of discomfort/comfort classification. Given
an input video frame of a face image, 68 facial landmarks are first localized
using the Dlib facial landmark detector [67], implemented by Kazemi et al. [64].
We utilize the Dlib face landmark detector because it detects the face with a rich
number (68) of landmarks [54] and its implementation is also efficient [19]. The
68 landmarks are points on the face such as the eye corners, mouth, along the
eyebrows, along the face boundary, and so forth.

Figure 2.2 shows an example of an original face image and a processed
version. Subfigure 2.2 (a) indicates the original face, while Subfigure 2.2 (b)
depicts the corresponding normalized face ROI and 68 facial landmarks. Once
the 68 landmarks are identified, we select the central point between two in-
ner eye-corner points as the point to rotate the image. The image is rotated to
the position that the two eye-corner points are along the same pure horizon-
tal line. Thereby, this processing step corrects the rotation variance of faces.
Then we select Landmark 1 as the leftmost point, Landmark 17 as the right-
most, and Landmark 9 as the bottommost points to define the left, right, and
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(a)

(b)

Figure 2.2: – Derivation of landmarks of a face image. (a) Example of face image, (b) correspond-
ing normalized face ROI and 68 facial landmarks. The highlighted Landmarks 1, 9,
and 17 are used for defining the face ROI. Landmark 28 is employed in Phase 2 for
further aligning sets of landmarks from different frames.
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bottom boundaries of the face ROI (see Subfigure 2.2 (b) for the landmarks).
We measure the distance between Landmark 9 and the mid point of the two
inner eye corners. The top boundary of the ROI is defined to be the horizontal
line that has the same distance from the mid inner eye point as Landmark 9.
A margin of 20 pixels is added to all the boundaries to cover the whole infant
face, and avoid loss of facial information. Finally, all face images are cropped
and resized to the size of 500×375 pixels.

2.3.2 Phase 1: Subject-independent discomfort detection

Geometric and appearance features are extracted from the facial ROI for dis-
comfort detection using the SVM classifier.

A. Geometric features

In general, when infants start suffering from discomfort, they tend to squeeze
their eyes and stretch their mouths, as is shown in Figure 2.1. In order to ex-
tract relevant features, we calculate the areas of eye and mouth. Then we count
the number of pixels inside the polygons surrounded by the landmarks of the
left eye, right eye, outer lip contour and inner lip contour, respectively (see
Figure 2.3). These four area sizes are considered as four geometric features.
Figure 2.4 shows the distributions of geometric features for comfort and dis-
comfort cases of our dataset.

B. Appearance features

The appearance of an infant face is changing when experiencing discomfort.
For example, as shown in Figure 2.1, brow bulge and nasolabial furrow become
apparent in the discomfort faces, which leads to texture changes in the forehead
and between the nose and upper lip area. Figure 2.5 compares the face appear-
ance of comfort and discomfort status of one infant. Different texture descrip-
tors have been exploited for facial expression recognition. Two methods that
have proven to be effective for facial representation are Histogram of Oriented
Gradients (HOG) [28] [167] and Local Binary Patterns (LBP) [101] [4] [130]. As
the histogram of gradient descriptor, HOG has been widely utilized to capture
edges or local shape information [86]. LBP is invariant to monotonic gray-level
changes and is highly discriminative, which makes it suitable for demanding
image analysis tasks such as object detection. In this work, HOG and LBP
are combined as the feature set to describe faces for discomfort detection. In
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detail, for the HOG calculation, the input face is divided into 20×15 equal non-
overlapping regions. For each region, the HOG is computed (see Figure 2.6).
The final HOG vector features are formed by concatenation of HOG vectors of
regions. The length of the HOG feature vector is 5,625 elements. For LBP, each
face image is divided into blocks of 100×75 pixels to which the uniform LBP
operator [101] is applied, and LBP histograms are extracted and concatenated
into a single, spatially enhanced feature histogram (see Figure 2.7). The length
of the LBP feature vector is 1,475 elements.

Figure 2.3: – Polygons outlining facial landmarks. The polygons are defined by landmarks for
eye- and mouth-area calculation, where a yellow polygon outlines left eye, purple
for right eye, blue for outer lip contour, and orange for inner lip contour.
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(a)

(b)

Figure 2.4: – Scatter plots of geometric feature values of eye and mouth. Comfort (blue-circled
dot) and discomfort (orange plus sign) cases for all infant face images in our dataset.
(a) Plot of feature values of left and right eye area. (b) Presentation of the values of
the inner and outer lip-contour area.
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C. Classification

The large size of HOG/LBP feature vector limits the number of training sam-
ples and increases the computation cost in classification. Feature selection is
one of the important and frequently used techniques in data preprocessing for
data mining [15]. The selection reduces the number of features and removes
irrelevant, redundant data and even noisy components. In our work, feature
selection is used to reduce the dimensionality of the input feature space and
thus enable the subsequent use of classification algorithms. The AUC crite-
rion is chosen to identify relevant significant features, which means features
selected by optimizing the AUC.

Finally, we adopt an SVM [16] [38] with a radial basis function (RBF) as
the kernel, to recognize facial expressions using the selected features. We em-
ploy the SVM implementation in Matlab (Mathworks, Natick, MA, USA) for
the binary classification. Leave-one-subject-out cross-validation is used for the
experiments. The ROC is plotted to evaluate the performance with the value

Figure 2.5: – Example of a comfort (left) and a discomfort (right) case from an infant, which
shows the face appearance difference between comfort and discomfort status.
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(a) (b)

(c) (d)

Figure 2.6: – Examples of HOG (8 orientations) processing. Subfigures (a) and (c) are examples
of comfort and discomfort face images, respectively. Subfigures (b) and (d) are the
corresponding HOG of Subfigures (a) and (c).
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of the AUC. The labeling error rate is also measured and reported as an ad-
ditional metric. Moreover, the quality of the classification is measured from a
confusion matrix, which records correctly and incorrectly recognized faces for
each class.

2.3.3 Phase 2: Subject-dependent discomfort detection

Phase 2 is proposed to incorporate infant-dependent features in addition to
the independent features of Phase 1. In clinical practice, comfort moments of
infants occur more often than discomfort, which means they are easier to cap-
ture. As a result, we obtain annotated comfort moments of infants and use the
faces as predefined parameterized templates for expression comparison. These
expressions are then compared with the input frame in terms of similarity.

To define the origin of the landmarks, all facial landmarks are further trans-
lated in such a way that Landmark 28 (the topmost point outlining nose) be-
comes the origin of each landmark point-set. We calculate the Euclidean dis-
tance between the coordinates of eye brow-, eye-, nose-, mouth-related facial
landmarks of every template image and the corresponding coordinates of the
input face image.

For each infant, we use 50 templates. The template images are randomly

Figure 2.7: – Processing of the infant image patches for LBP calculation. The infant face image
(500×375 pixels) is divided into 5×5 sub-regions from which LBP histograms are
extracted and concatenated into a single, spatially enhanced feature histogram.
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selected from the comfort face images of each infant to serve as an input for
creating a reference set (see Figure 2.8 for the reference set and each input im-
age). These landmark point-set includes in total 51 points of eye brow-, eye-,
nose-, mouth-related facial landmarks, which are further used for similarity
calculation. The template is now defined as the set of two-dimensional coordi-
nates of the 51 facial landmarks of the face image. The Euclidean distance is
then computed between the coordinates of the 51 facial landmarks of the input
image and each template of the 50 face images. We pick the mean, median,
maximum, minimum, 30th percentile and 80th percentile of the 50 obtained
values of the Euclidean distance as a set of numerical features. The algorithm
block diagram of the complete system is depicted in Figure 2.9. As can be ob-
served from the large metablocks, the division into Phase 1 (drawn at the top)
and Phase 2 (at the bottom) can be readily noticed. Each phase contains a fea-
ture extraction block, where Phase 1 concentrates on the facial features, while
Phase 2 adds the distance calculation for template matching and determines
statistical parameters of the distance. These parameters will serve as input to
the SVM classification (depicted at the right).

Figure 2.8: – Visualization of the template matching. The top row shows example frames
from the 50 templates representing comfort of the same infant in Phase 2: subject-
dependent discomfort detection. The bottom image is an illustration of the input
training/testing image.
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Figure 2.9: – Block diagram of the proposed algorithm for the classification of infant comfort/dis-
comfort.
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2.4 Experimental results

2.4.1 Materials.

The study was conducted with videos recorded at the Maxima Medical Center
in Veldhoven, The Netherlands, by a handheld high-definition camera (Sanyo
Xacti VPC-FH1BK). For all infants in the database, written consent was ob-
tained from at least one of the parents. Twenty-two infants were recorded in
total. Twenty infant faces were captured when they were experiencing stressful
moments, including treatment moments and special occasions, like the clinical
treatment of a heel prick, placing an intravenous (IV) line, venipuncture, vac-
cination or post-operative pain, and discomfort moments of a diaper change,
feeling hungry or crying for attention. For 10 out of the 20 infants, the relaxed
comfort state of resting or sleeping was also recorded. There were 2 infants
only having their relaxed moments recorded. Thus, the image frames contain
1-2 emotions per subject. The number of infants regarding the recorded status
of comfort/discomfort is summarized in Table 2.1. The duration of the video
segments varies from less than one minute to several minutes.

Infant status Number of videos

Comfort only 2
Discomfort only 10
Exhibiting both 10

Table 2.1: – Dataset summarization.

The age of the 22 recorded infants ranged from 2 days to 13 months old.
Three of the infants were born premature, and under 37 weeks at the time of
recording. Example of video frames for all the infants in the dataset are shown
in Figure 2.10. The frames of the 3 premature infants are outlined by yellow
dotted rectangles. The resolution of each video frame is 1920×1080 pixels,
while the frame rate is 30 fps. The videos were recorded under uncontrolled,
regular hospital lighting conditions. The labels of comfort/discomfort for each
frame were annotated according to the consensus of two clinical experts.

We have extracted video segments of which infants are in supine position.
Finally, a total of 16,378 frames are obtained, on which facial landmarks are
detected. From all of the frames, 6,075 present comfort, and the rest 10,303 are
discomfort frames.
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Figure 2.10: – Examples of frames in the database. Comfort frames are highlighted with a
green box, and discomfort frames are indicated in a red box. Top 4 rows show
the 10 infants with both comfort and discomfort moments recorded, where the 1st

and 3rd rows are the discomfort frames, and the 2nd and 4th rows are the comfort
frames. The 5th and 6th rows are the 10 infants with only discomfort moments
recorded. The two pictures at the bottom show the infants with only comfort mo-
ments. The three premature infants are outlined by yellow-dotted rectangles.
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2.4.2 Results for Phase 1

The subject-independent method (Phase 1) is evaluated by using the 22-infant
dataset. Leave-one-out cross-validation is performed for testing evaluation.
Table 2.2 summarizes the results of the AUCs and labeling error rates for each
feature type and for the combination of all features. When all features are

Feature AUC Labeling
category error rate

Geometric features 0.85 0.22
HOG 0.69 0.29
LBP 0.71 0.28
All features 0.87 0.15

Table 2.2: – Performances of various feature categories in terms of classification error rates and
AUCs.

combined, the average of the labeling error rates for all infants is 0.15. The
confusion matrix based on the selected 40 best features is shown in Figure 2.11.

Figure 2.11: – Confusion matrix when all features are combined. The numbers below the per-
centages are the number of frames. Among all the comfort frames, 73.0% are
correctly detected. Among all the discomfort frames, 83.1% are correctly detected.
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The accuracy values for the three premature infants are 0.97, 0.61, and 0.79.
Figure 2.12 shows examples of misclassified faces. Figure 2.12 (a) depicts a

false negative case, where the image is a discomfort frame. However, our sys-
tem treats it as comfort because of the opened eyes and mildly opened mouth
in the face. Figure 2.12 (b) portrays a false positive example. In this case, our
system classifies this frame as discomfort, since the mouth size is large and the
eye size is small. However, the infant is actually yawning at this moment and
feeling comfortable.

(a) (b)

Figure 2.12: – Examples of misclassified frames. (a) False negative frame, and (b) false positive
frame.

2.4.3 Results for Phase 2

The performance of the Phase-2 subject-dependent method is evaluated by
conducting experiments on the 10-baby dataset, of which both comfort and
discomfort moments are present. For this dataset, the workflow of Phase 1 is
first executed and then Phase 2 afterwards, to obtain the infant comfort/dis-
comfort classification. The experiment for Phase 1 (without subject-dependent
methods) is based on the selected features with the best AUC. After the feature
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selection in Phase 1, we combine the selected features of Phase 1 with template
matching features, to evaluate the efficacy of Phase 2. Fig 2.13 shows the ROCs
for Phase 1 (without template matching features) and Phase 2 (with template
matching features), where the AUC increases from 0.89 to 0.97. Fig 2.14 plots
the accuracy values per infant when separately applying subject-independent
features, template matching, and the combined features. The overall accuracy
of Phase 1 for the 10-infant dataset is 0.79, and for Phase 2 it is 0.95, which
forms a significant increase of accuracy of approximately 20%.

The highest AUC is achieved when combining Phase-2 subject-dependent
features with selected subject-independent features of Phase 1. This proves that
the features are sufficiently complementary and that combining them is useful.
With our proposed landmark-based template matching, the AUC is increased
to 0.97, resulting in an overall accuracy of 0.95. The detection accuracies for
comfort and discomfort frames are 73.0% and 83.1%, respectively. The average
accuracy of the 3 premature infants in the dataset is 0.79, which highlights
that our system is also interesting for serving as premature infant discomfort
detection.

2.5 Discussion

Overall results: Automated classification on videos of infants helps to de-
tect their discomfort. The proposed system combines two phases of subject-
independent and subject-dependent methods, using geometric and appear-
ance features and template matching features, respectively. The obtained AUC
of 0.97 is considered promising for clinical practice, but the practical imple-
mentation aspects such as head-pose variations, occlusions by physicians and
nurses, require some further discussion.

Decision-support system: The high detection accuracy of the proposed system
indicates that the computer system has potential to be used as an alert system
for notifying doctors and/or nurses about the status of the infants. However,
the alert system serves as an advise, since the medical staff can still make a
final assessment after a quick inspection of the system result.

Suitable for real-time application: For the entire dataset of 22 infants, we have
extracted 7,104 features per frame. After feature selection, the AUC ranges
from 0.84 to 0.87. After empirical experiments, it was found that the best fea-
ture count is 40 features, which should be extracted from each frame, in order
to obtain the high AUC values as previously indicated. This amount of features
leads to a feasible vector when using e.g., one number for each feature, which
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is suitable for a practical real-time video-based application, given the current
status of computing platforms.

Template acquisition: For the 10-baby dataset with both comfort and discom-
fort moments, we have shown the benefits of subject-dependent features, using
landmark-based template matching. Since the reference landmarks are infant-
specific and extracted from a normalized comfort status, the extracted features
are very effective for discriminating the infant status. However, the disadvan-
tage of using this type of features is that we need an additional initialization
step that records the comfort status of each infant in real practice. Such an
initialization recording clearly hampers usage in clinical practice.

Labeling error rate: The proposed system can reach a labeling error rate of
only 0.05. In the case that a discomfort expression is misclassified as a com-

Figure 2.13: – ROC curves for classification with and without template matching features,
where the AUC is 0.97 for the method with template matching, and 0.89 with-
out template matching.
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Figure 2.14: – Obtained accuracies for each infant when applying subject-independent features,
template matching features, and the combination of both. The average accuracy
values of all the 10 infants and feature categories are 0.79 for subject-independent
features (Phase 1), 0.74 using template matching features, and 0.95 when combin-
ing all features (Phase 2).



2.6 Conclusions 39

fort expression by the automated system, there is often no face feature that is
linked to the status. For example, the face itself may be also not in a suitable
position. The proposed system makes decisions only at frame level. However,
it should be noted that annotation is done by medical experts looking over a
time interval to the infant, so that they annotate with the context information
extracted from the temporal domain. This context information is not exploited
in our proposed system. Additionally, there are border cases in the infant be-
havior. For example, when an infant is yawning (or aiming to) with opened
mouth, our system may classify a comfort expression as a discomfort status by
mistake. Such cases need further evaluation/study.

Sensitivity and specificity: The proposed automated system is selective. The
area under the ROC curve is very high (0.97). From the ROC curve, it can be
observed that we can keep the sensitivity of detecting discomfort status of our
computer system to be almost 100%, while the specificity is 80%. It means that
our system can identify about 80% comfort frames without missing any dis-
comfort frames. The fraction of remaining frames is so small that the health-
care professionals can decide on the status of these remaining frames. How-
ever, this requires interaction of the staff members with the machine learning
system. This option is still under investigation to evaluate its feasibility.

Video source: For the occurrence of face occlusion or head turning, it is not
feasible to detect the face and therefore analyze the face expression when using
our system. It should be noticed that the used recordings could be made un-
der nearly ideal conditions, since we were allowed to capture the infant faces
in many ways. However, in practical clinical conditions, e.g., during treat-
ments, this may not be possible without interrupts, because interventions of
the nurses and doctors cause occlusions and therefore interrupt in the comfort
status tracking. This phenomenon leads to drops in the detection. In the fu-
ture, we would like to add features based on body motion analysis to make our
system robust, especially against facial occlusions.

2.6 Conclusions

In this chapter, we have proposed a video-based automated system that can
differentiate discomfort of infants from comfort status by analyzing hand-
crafted facial features. The system aims at alerting pain and discomfort, with
the aim to improve the long-term developmental outcomes of infants. The ex-
perimental results are promising, so that it has potential for clinical usage.

Our contribution to this field is in three ways. First, this is one of the first au-
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tomated systems for facial expression recognition for infants subject to hospital
care. Second, we propose to normalize the faces for effective feature compu-
tation. Third, we incorporate landmark-based template matching, involving
Euclidean distance to boost our system performance. This point discriminates
the specific infant properties by landmark-based template matching (subject-
dependent phase).

The method has been evaluated using a dataset consisting of videos from 22
infants. Both Phase 1 (subject-independent) and Phase 2 (subject-dependent)
feature extraction procedures have been evaluated for the sake of investigating
the effectiveness of subject-independent/dependent features. Experimental re-
sults show an AUC of 0.87 for the subject-independent Phase 1, and 0.97 for the
subject-dependent Phase 2.

One limitation of our study is the small size of the dataset. Collecting videos
from infants at the pediatrics department in the hospital is rather restricted
because of the ethical and legal issues. In the meantime, not many infants
within our target group are available for recording. Moreover, some of the
captured recordings are not usable due to interruptions from nurses or parents,
face occlusion, etc. These aspects effectively limit the dataset even further. This
explains why more data is involved for the studies in the upcoming chapters.

Another limitation of this work is that features used are computed from a
static frame. The temporal dynamics of facial expressions are not taken into
account. In future work, we will analyze facial expression changes over time
and also consider dynamic features based on body motion analysis. Further-
more, we may add features extracted from vital signs, such as heart rate and
respiration rate, and evaluate those in combination with our visual features
for improved robustness and reliability. To further improve the accuracy of
our system, we will explore different settings (parameters) of HOG and LBP
features in the future. Regarding geometric features, it is possible to further
exploit the rich information from landmarks, such as the distance between the
eye and eyebrow, or the distance between upper and lower lips, etc.

The aforementioned limitations in data is a recurring theme for further re-
search as well. Because of the success of deep learning, this thesis will address
this development as well. Deep learning methods have shown superior perfor-
mance recently in many computer vision applications. The continuous increase
of computation power enables experimentation with deeper architectures of
networks, resulting in broader perception of deep learning. In the next chapter,
we will investigate deep learning-based methods for our problem, albeit with
limited data availability, so that we start with retraining/refining concepts.



Chapter 3
2D CNN-based facial
expression analysis

3.1 Introduction

The previous chapter has discussed the systematic design for the automated
detection of infant discomfort based on conventional handcrafted features fol-
lowed by an SVM classifier. As described and explored in Chapter 2, facial
expression appears to be one of the behavior indicators of discomfort or pain.
As shown in Figure 3.1, the PFP is an intuitive and universal facial expres-
sion associated with pain [126]. Automated detection of discomfort (or pain)
in videos by analyzing the facial expression of infants, is a potential solution
for continuous monitoring. At the end of Chapter 2, future work on the deep
learning direction is suggested. For this reason, this chapter concentrates on
exploiting the performance of deep learning-based methods for the same task
of discomfort detection based on facial expression analysis.

Convolutional neural networks (CNNs) were introduced by Lecun et
al. [76]. Each layer in the network can react to different levels of data and when
the layers are stacked together, a new representation is created. Recently, deep
learning has achieved the state-of-the-art recognition accuracy and has outper-
formed the results of existing conventional methods for many computer vision
systems. CNNs have been successfully applied to various computer vision
problems such as image classification, object detection, pattern recognition,
etc. CNNs have also been increasingly leveraged to learn discriminative rep-
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resentations for automated facial expression recognition, which showed good
results.

In this chapter, we propose an automated discomfort detection method for
infants by analyzing their facial expressions with deep CNN algorithms. In
more detail, the following challenges and requirements of such a discomfort
detection system should be addressed.

• Performance comparable with conventional methods: It should be investi-
gated whether it is possible to apply a data-driven approach, which po-
tentially could outperform conventional handcrafted features combined
with SVM-based methods.

• Small dataset learning: It is difficult to collect facial expression video data
of infants due to privacy limitations and ethical issues. We have managed
to collect a dataset of 55 videos from 24 infants. However, to train a deep
CNN algorithm, a large dataset is required for a good generalization abil-
ity of the network. In contrast, a small dataset easily leads to overfitting.
The proposed system should handle this problem of a small dataset for
learning.

• Robustness under variable imaging conditions: The system should be robust
under different face poses and environmental parameters (e.g., various
lighting conditions). A validation test using different face sizes and/or
different face rotation angles should be carried out.

This chapter aims to develop an automated CNN-based system to classify the
infant comfort/discomfort status, despite the use of a small dataset. This chal-
lenge is addressed by pre-learning on a large generic dataset, after which tun-
ing of the network is performed with the small specific dataset. The robustness
aspect is then addressed during the validation.

The chapter is divided as follows. In Section 3.2, related work on pain/dis-
comfort detection and CNN-based classification is described. Section 3.3 elab-
orates the proposed method, and Section 3.4 explains the experimental results.
Finally, Section 3.5 discusses the results and Section 3.6 draws conclusions.

3.2 Related work

3.2.1 Conventional facial expression recognition

The amount of studies on automated pain or discomfort detection for infants
in videos is quite limited [134] [37] [146] [176]. Sikka et al. [134] proposed a
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Facial Action Coding System (FACS) and associated methods to describe the
facial expressions of children with pain. Fotiadou et al. [37] presented a dis-
comfort detection system utilizing the active appearance model (AAM) and a
Support Vector Machines (SVM) classifier. The system achieved an AUC of
0.98 by evaluating in 15 videos from 8 infants. However, for each baby, var-
ious landmarks need to be placed manually for initializing the AAM mesh.
Sun et al. [146] designed appearance and geometric features to describe infant
faces for discomfort detection, and achieved an AUC of 0.87. However, this
system was based on conventional techniques with handcrafted features and
an SVM classifier.

In the past, significant attention was paid to facial expression recognition
of adults [129] [122]. Kotsia and Pitas [73] proposed two methods for facial
expression recognition: (1) estimating geometrical displacement of certain se-
lected Candide grid nodes, which was followed by a multi-class SVM system,
and (2) an approach based on Facial Action Units (FAUs). The recognition ac-
curacy of 99.7% and 95.1% was achieved when using the multi-class SVM and
FAU-based method, respectively. Shan et al. [131] presented a comprehensive
empirical study of facial expression recognition, based on Local Binary Pat-
terns (LBPs) and illustrated that LBP features perform stably and robustly over
a useful range of low-resolution facial images.

Different machine learning methods, such as Adaboost [128], have been fur-

Figure 3.1: – Primal face of pain (PFP).
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ther exploited for facial expression classification. Neshov and Manolova [97]
used a supervised descent method and scale-invariant feature transform,
which yielded a high recognition rate (more than 95.7%). A hierarchical un-
supervised feature learning approach was employed by Kharghanian et al. [66]
to extract the features detecting pain from facial images, based on a convolu-
tional deep belief network. The AUC of the Receiver Operating Characteristic
(ROC) was near 95%.

Lucey et al. [89] showed that the AAM-based system can overcome the fa-
cial deformation and head motion and yields significant improvements in both
the FAU and pain detection. Ashraf et al. [7] explored various face representa-
tions derived from AAMs for detecting pain from faces, and demonstrated that
decoupling a face into separate non-rigid shape and appearance components
offered a significant performance improvement.

Hammal et al. [46] applied a set of Log-Normal filters, consisting of 7 fre-
quencies and 15 orientations to extract 9,216 features for pain estimation and
the statistical analysis – using the F1 metric (the harmonic mean of the precision
and recall)– for each level of pain intensity, ranging from 91% to 96%. Little-
wort et al. [82] proposed an automated facial expression recognition system
to differentiate real pain from fake pain. A 20-channel output of facial action
detectors from the FACS was passed to a classification stage to determine the
labels. An accuracy of 88% was obtained for the subject-independent discrim-
ination of real versus fake pain. Hazelhoff et al. [49] developed a prototype of
an automated video surveillance system by analyzing facial expressions. The
method first localized eye, eyebrow and mouth regions, which was followed
by employing a hierarchical classifier to discriminate between different behav-
ioral states of sleep, awake and cry. With this system, an accuracy of 95% was
achieved. A similar method [47] was applied on a dataset of Neonatal Inten-
sive Care Unit (NICU), which resulted in an accuracy of 88%. Zhao et al. [188]
proposed a novel Set-to-Set (S2S) distance measure, to calculate the similarity
between two sets with the aim to improve the recognition accuracy for faces
with real-world challenges, as compared to traditional feature-average pool-
ing and score-average pooling. However, this method still depends on the
effectiveness of the extracted features. Ding et al. [30] proposed a deep con-
fidence network (DECODE) for robust training. The method adopted an ef-
fective evaluation module based on a probabilistic confidence measure. This
module assigned small training weights to suspicious samples, to suppress the
influence of noisy data. The weighted training data was also used to update
the weights after each iteration. Evaluation of this method was carried out on
several datasets, where the effectiveness of DECODE was demonstrated.
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3.2.2 CNN-based methods

Recently, CNN has become a powerful tool for automated two- and three-
dimensional image classification. Raghuvanshi et al. [120] classified images of
human faces into discrete emotion categories using CNNs and experimented
with different architectures and methods, such as fractional max-pooling and
fine-tuning, ultimately achieving an accuracy of 48% in a seven-group classifi-
cation task. Lopes [85] proposed a simple solution for facial expression recog-
nition that uses a combination of a CNN and a specific image pre-processing
step for extracting only expression-specific features from a face image. The pro-
posed method achieved competitive results when compared with other facial
expression recognition methods.

Wang et al. [168] proposed a network that fine-tuned a state-of-the-art CNN
face verification network, using a regularized regression loss and additional
data with expression labels, which achieved state-of-the-art performance.
Shin et al. [53] used transfer learning to address the problem of CNN training
on limited labeled medical data and domain knowledge. They learned a
codebook from 15 million images from ImageNet in an unsupervised learning
fashion, which encodes the fundamental features of those images without
expert knowledge. A weighting vector for each image in their experiment
was obtained from the codebook and was supplied into SVM classifiers for
supervised learning. They concluded that it is promising to use transfer
representation learning for analyzing medical data. Christodoulidis et al. [23]
employed pre-trained networks on six public texture datasets and further
fine-tuned the network architecture on lung-tissue data. The resulting con-
versational features were fused with the original knowledge, which was
fed back to the network in compressed form. Their results showed that the
proposed method improved the performance by 2 % in terms of accuracy,
compared to the same network without using transfer learning. In [157],
Tajbakhsh et al. conducted experiments for addressing the research question
whether pre-trained deep CNNs with sufficient fine-tuning eliminate the
need for training a deep CNN from scratch. The authors concluded that
deeply fine-tuned CNNs are useful for analyzing medical images and they
performed as well as fully trained CNNs. Given the limited training data,
the fine-tuned CNNs even outperformed the fully trained networks. The
experience gained from one subject can be transferred to other subjects. For
CNNs, the parameters trained on one dataset can be reused by a new dataset.
Usually, transfer learning is used for training a base network and then its first
n layers are copied to the first n layers of a new network. The remaining layers
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of the new network are then initialized randomly and trained according to
the new task [178]. Elements of this approach have been adopted in modified
form into our method described below.

Summarizing the related work in the context of this chapter, we concentrate
on CNN-based methods using pre-trained networks. In order to address the
problem of limited available data for learning, we utilize transfer learning by
implementing several training steps based on various sources of image data.

3.3 Methods for CNNs using fine-tuning

The proposed method encompasses both a special training procedure and the
fine-tuning of the CNN, which are discussed subsequently. The entire work-
flow for training the CNN is depicted in Figure 3.2. More specifically, we adopt
a pre-trained model, which is followed by training the networks, using a pub-
lic face-image dataset [89] with labeled facial expressions for pain assessment
(first fine-tuning). The networks are then further fine-tuned with our dataset
of infants (second fine-tuning). The method description is divided into three
subsections, i.e. pre-processing, CNN model, and transfer learning.

3.3.1 Pre-processing

To be able to classify facial expressions, we first need to locate the face area
within video images. The face Region of Interest (ROI) is generated based on
the workflow of face detection and normalization. The selected ROI is passed
on to the next step as input for the discomfort/comfort classification. Given
an input video frame, 68 facial landmarks are first localized using the Dlib face
landmark detector [67], which is an implementation of a detection method by

Figure 3.2: – Workflow of the proposed discomfort detection method using CNNs with fine-
tuning steps.
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Kazemi et al. [64]. The 68 landmarks include points on the face such as the
corners of the eyes, mouth, along with the eyebrows, and the boundary of the
face. Once the 68 landmarks are identified, the middle point between two inner
eye-corner points is used as a reference point to rotate the image. The image
is then rotated to the position where the line connecting the two eye-corner
points is horizontal. Thus, this step minimizes the in-plane rotation variance
of the face. We select Landmark 1 as the leftmost point, Landmark 17 as the
rightmost, and Landmark 9 as the bottom-most points to define the left, right,
and bottom boundaries of the face ROI. For the top boundary, we choose the
horizontal line that has a vertical distance from the inner eye-corner center
that is identical to the distance to Landmark 9 (thereby making this eye-corner
center point of the middle of the face region). A margin of 20 pixels is added to
all boundaries to cover the whole face and avoid any loss of facial information.
Finally, all face images are cropped and then resized to 224×224 pixels using
bilinear interpolation, in order to adapt to the required input image size for
CNNs. Figure 3.3 exemplifies an original face image with a corresponding
normalized face ROI and the detected 68 facial landmarks.

3.3.2 CNN model

Inspired by the performance of CNN models [51, 56, 74, 137], this section con-
centrates on exploring the use of a CNN model as a solution for the posed prob-
lem converting the landmark description into a facial detection. The CNN usu-
ally contains several pairs of convolutional layers and a max-pooling layer for
non-linear downsampling, followed by fully connected layers. Compared to
the conventional facial expression systems based on handcrafted features [146],
a CNN model has the advantage of self-learning. The parameters in a CNN
are automatically learned from the data and researchers do not need to design
complicated features as input.

In this work, the adopted base model is DenseNet [55], which is a network
architecture where each layer is directly connected to every other layer in a
feedforward fashion within each dense block. For each layer, the feature maps
of all preceding layers are treated as separate inputs, whereas its own feature
maps are passed on as inputs to all subsequent layers. DenseNet has the advan-
tage of alleviating the vanishing-gradient problem [55], strengthening feature
propagation, and reducing the number of parameters. In the referred work,
this connectivity pattern yields state-of-the-art classification performance on
CIFAR10/100 (with or without data augmentation) and SVHN [55]. On the
large-scale ILSVRC 2012 (ImageNet) dataset, DenseNet achieves a similar per-
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(a) (b) (c)

(d)

Figure 3.3: – Example of face ROI detection and normalization. (a) Sample original face image,
(b) the original face image with identified 68 facial landmarks, (c) in-plane head
rotation corrected, and (d) the final normalized face ROI with the corresponding
68 landmarks, of which Landmarks 1, 9 and 17 are highlighted.
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formance as ResNet, while using less than half of the number of parameters
and roughly half of the number of floating-point operations (Flops). Figure 3.4
shows the CNN architecture of the proposed work. The number 121 corre-
sponds to the number of layers with trainable weights (excluded batch nor-
malization layer), i.e. convolutional layers and fully connected layers. The
additional 5 layers include the initial 7×7 convolutional layer, 3 transitional
layers, and a fully connected layer. Between network blocks, the processing
steps are convolution and pooling, which consist of a batch normalization layer
and an 1×1 convolutional layer followed by a 2×2 average pooling layer. The
Dense block is identical to the one introduced in [55], except for the last output
layer, which is modified according to the binary discomfort/comfort classifica-
tion task because the number of classes is different. This specific CNN model
is chosen because of its computation efficiency and to achieve the goal of a
real-time, or semi-real-time application. Compared to other existing networks,
such as ResNets [50] and Inception networks [156], DenseNet concatenates fea-
ture maps learned by different layers, which increases variation in the input of
subsequent layers and improves efficiency. Therefore, the simpler structure
with only 4 dense blocks is sufficiently efficient for the learning procedure (see
Figure 3.4 for the network structure).

Figure 3.4: – Structure of the DenseNet 121 network used in the proposed system.

3.3.3 Transfer learning

In the proposed work, a significant challenge is that a very limited number of
infant videos are available. This is a common problem in the medical field, due
to privacy issues and the boundaries on expenses for medical equipment. One
effective solution is to use transfer learning [105] [158], to address the prob-
lem of limited availability of labeled data. For the purpose of transfer learning,
we can preserve all pre-trained layers prior to the last output layer and con-
nect these layers to a final layer for the considered classification problem. To
train the networks for the new dataset, we desire that the parameters from the



50 2D CNN-based facial expression analysis

(a) (b) (c)

(d) (e) (f)

Figure 3.5: – Facial expressions of six pain levels from a woman in the Shoulder-Pain dataset.
For subfigures (a) through (f), the pain-intensity score increases from 0 to 5.

fully connected layers of the network are updated or optimized. The alter-
native choice is to fine-tune more layers, or even the whole set of pre-trained
network layers. It is also possible to keep the first convolutional layer fixed,
since this layer is often used for edge extraction [127], which is common for
generic image processing problems. Therefore, as discussed earlier, since not
all parameters are re-trained or trained from scratch, transfer learning is ben-
eficial to problems with a small labeled dataset. In this work, to fully exploit
the learning power of CNNs, we start with a pre-trained network, but we have
chosen to fine-tune all parameters of the pre-trained DenseNet model. First, we
obtain a DenseNet model trained on ImageNet data [55] as the pre-trained net-
work. The first fine-tuning is based on a public dataset, which is followed by a
second-tuning step based on our own data of infants. The ImageNet dataset is
also first resampled to 256×256 pixels using bilinear interpolation and then the
patch of 224×224 in the center is cropped.

First fine-tuning step Considering the limited number of samples in our
dataset, instead of directly fine-tuning the DenseNet model using our own
data, we first fine-tune the DenseNet model on a public dataset, called the
Shoulder-Pain dataset [89]. This dataset contains 200 videos of 25 sub-
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jects (48,398 frames in total) and is widely used for benchmarking the pain-
intensity estimation. For each frame, discrete pain intensities (0-15) according
to Prkachin and Solomon [113] are provided by the database creators. Similar
to previous work [168] [192] [123] [195], we quantify the original pain inten-
sities within the range of [0; 15] to be in the range of [0; 5] for the purpose of
data balancing. The pain intensities are discretized into 6 pain levels as fol-
lows: 0 (none), 1 (mild), 2 (discomforting), 3 (distressing), 4-5 (intense), and
6-15 (excruciating). The data balancing is performed in order to avoid over-
fitting of the test methods on the majority classes. Figure 3.5 shows 6 levels
of the facial expression (status) from a woman in the Shoulder-Pain dataset. In
the pre-trained DenseNet 121 model, we replace the original 1000 output nodes
by 6 output nodes to represent the 6 classes. The data are randomly split into
a training dataset (70 %) and validation dataset (30 %). The validation dataset
is used to select the best classifier, where the loss function achieves the mini-
mum. To obtain the final label or class of each sample, we assign the label to
the corresponding node in the last layer that gives the highest likelihood value.
For training, the number of epochs (m) is limited to 50. Furthermore, in order
to augment the number of training samples, images are randomly flipped hor-
izontally, rotated within −10 degrees to +10 degrees, and translated within a
distance of 20 pixels. Finally, we use the Adam algorithm [68] to optimize our
loss function.

Second fine-tuning step After the first fine-tuning step, a reasonably trained
model for facial expression recognition is obtained. In this step, continuing
with the previous model, we replace the 6 output nodes with 2 nodes, in order
to match the classes to our problem statement, i.e. automated detection of
discomfort and comfort. The parameters for the networks, training, and data
augmentation are the same as with the first fine-tuning step (see Fig. 3.6 for the
data examples, and Fig. 3.7 shows the corresponding pre-processed images).

To obtain an unbiased evaluation of the classification performance, a
twofold cross-validation is employed. Specifically, the input dataset is ran-
domly divided into two equal parts at patient level, where one part is left out
for testing, and the other part is split again for training (70 %) and validation
(30 %), to avoid bias. All the parameters are updated during validation. The
classifier with the lowest loss based on the validation set is chosen as the best
classifier and is used for testing. Such a procedure is repeated two times with
a different dataset part used for testing. We have pooled and evaluated the
results from both parts to obtain various measurements on performance.
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3.4 Experimental results

This section contains a description of the following experiments. First, we eval-
uate the model using our infant data directly without any pre-training in terms
of accuracy and confusion matrix. Second, the first fine-tuning step is illumi-
nated using the Shoulder-pain dataset by testing on the 6-class pain-intensity
levels. The accuracy and error metrics are provided. Third, the final results af-
ter the second fine-tuning step are presented in the form of accuracy, confusion
matrix and ROC curves.

3.4.1 Captured video materials

The study was conducted with videos recorded at the Máxima Medical Center
(MMC) in Veldhoven, The Netherlands, by a handheld high-definition camera
(Xacti VPC-FH1BK). For all infants in the database, written consent was ob-
tained from at least one of the parents. Data from 24 infants were collected
in total. The faces were recorded when they were experiencing stressful mo-
ments including clinical treatment of heel prick, placing an intravenous (IV)
line, venipuncture, vaccination, post-operative pain, and discomfort moments
of the diaper change, feeling hungry or crying for attention. For 10 out of the
24 infants, the relaxed comfort state of resting or sleeping was also recorded.
For 4 infants, only their comfort moments were recorded. Thus, the image
frames contain 1 to 2 emotions per subject. The number of infants regarding
the recorded status of comfort/discomfort is summarized in Table 3.1. The du-
ration of the video segments varies from less than one minute to several min-
utes. The age of the 24 recorded infants ranges from 2 days up to 13 months

Infant status No. of videos Infant status No. of frames

Comfort only 4 Comfort 6,534
Discomfort only 10 Discomfort 10,303
Exhibiting both 10 Total 16,837

Table 3.1: – Dataset summarization.

old. Three of the infants were born premature, and under 37 weeks at the time
of recording. Examples of video frames in the dataset are shown in Figure 3.6.
The resolution of each video frame is 1920×1080 pixels, and the frame rate is
30 frames per second (fps). The videos were recorded under uncontrolled light-
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Figure 3.6: – Examples of frames in the database of this study. Comfort frames are highlighted
by green boxes, while discomfort cases are indicated by red. The top four rows show
the ten infants having both comfort and discomfort moments recorded. The 2nd and
4th rows are the comfort frames. The 1st and 3rd rows are for discomfort frames.
The ten infants with only discomfort moments recorded are shown in the 5th and 6th

rows. The four pictures in the bottom row are the infants with only comfort moments
recorded. Three premature infants are outlined using yellow dotted rectangles.
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Figure 3.7: – Pre-processed (pre-network) infant images of the frames from the previous figure
and shown in the order corresponding to Figure 3.6. Comfort frames are highlighted
by green boxes, while discomfort cases are indicated by red. Three premature infants
are outlined using yellow dotted rectangles.
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ing conditions and can be characterized by hospital office lighting. The labels
of comfort/discomfort for each frame are annotated according to the consensus
of 2 clinical experts. We have extracted video segments where the infants are in
supine position. Finally, a total of 16,837 frames are obtained, on which facial
landmarks are detected. From all of the frames, 6,534 present comfort, and the
remaining 10,303 are discomfort frames. There are more discomfort samples
in our dataset than comfort samples, since data collection in the hospital has
focused on recording the discomfort moments of the infants.

3.4.2 Results without any pre-training

To show the effectiveness of pre-training with transfer learning, we have first
performed the experiments by directly using our data to train a DenseNet clas-
sifier from scratch. The data augmentation procedure for the training data
is the same as for training from scratch, the first and the second fine-tuning
step. Results without any pre-training are directly trained from the model from
scratch without using any ImageNet data. A weighted loss function is used ac-
cording to the size of each class in the training data, in order to account for the
nature of data imbalance. Given training samples from the entire 24 infants,
a twofold cross-validation is employed for evaluation. The twofold cross-
validation is the same as the one described in Section 3.3.3 "Transfer learning"
for the second fine-tuning step. Figure 3.8 shows the normalized confusion
matrix, based on the cross-validation without any pre-training. The obtained
accuracy of all validated images is 52.4 % and the accuracy values for the two
classes of comfort and discomfort are 87 % and 30 %, respectively. Since the
main focus in our application is to detect discomfort moments of infants in
time, the low detection rate for discomfort moments is not acceptable.

3.4.3 Results from the first fine-tuning step

For the first fine-tuning step, the Shoulder-Pain dataset is used. The Shoulder-
Pain dataset has been randomly split into a training dataset (70 %) and vali-
dation dataset (30 %). The classification accuracies are calculated based on the
performance on the validation dataset, which shows that the overall accuracy
is 85 % and the accuracy values for the six classes of facial expressions are 86 %,
81 %, 79 %, 78 %, 86 %, and 98 %, respectively. We have compared the perfor-
mance of our model with existing methods [191] [194] on the Shoulder-Pain
dataset, by calculating the Mean Absolute Error (MAE) as deviation from the
ground-truth labels, Mean Squared Error (MSE) and the Pearson Correlation
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Figure 3.8: – Normalized confusion matrix of the model without any pre-training.

Coefficient (PCC) for the 6-level pain-intensity classification (See Table 3.2).
Comparing to the two existing methods, the proposed method performs best
by achieving the lowest MAE of 0.451 and highest PCC of 0.643.

Method MAE MSE PCC

Proposed
transfer-learning model 0.451 0.950 0.643

Ordinal information
based regression [191] 1.025 N/A 0.600

Recurrent convolutional
neural network regression [194] 0.810 N/A 0.601

Table 3.2: – Performance comparison on Shoulder-Pain dataset.

3.4.4 Results from the second fine-tuning step

Figure 3.9 shows the normalized confusion matrix of the method when ap-
plying only the second fine-tuning step (omitting the first fine-tuning) on our
infant data, based on cross-validation. The accuracy of all validation im-
ages is 81 % and the accuracy of the two classes of infant status are 92 %
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Figure 3.9: – Normalized confusion matrix of the method, with DenseNet pre-trained on Ima-
geNet data and using the second fine-tuning step on our data (i.e., without the first
fine-tuning step).

Figure 3.10: – Normalized confusion matrix of the proposed method with two fine-tuning steps
on our infant data.
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and 74 %. For comparison, Figure 3.10 portrays the normalized confusion ma-
trix of the method including the two fine-tuning steps on our data based on
cross-validation. It can be readily observed that the results are significantly im-
proved by applying both refining steps. The accuracy of all validation images
is 91 % and the accuracy of the two classes of infant status are 90 % and 92 %,
respectively. The average accuracy of the three premature infants in the dataset
is 85 %, which shows that our system is also interesting to be considered for
premature infant discomfort detection.

We have also computed the ROC curve on our infant data without and
with the first fine-tuning step (see Figure 3.12). The area under the ROC curve
(AUC) increases from 0.93 to 0.96. From the ROC curve, it can be observed
that 78 % of the normal status can be safely eliminated by our system, while
the sensitivity is preserved at a very high level. Figure 3.11 shows examples

(a) (b)

Figure 3.11: – Facial examples of discomfort expressions being misclassified. (a) Discomfort
status is misclassified as comfort. (b) Comfort case is misclassified as discomfort.

of misclassified cases. Figure 3.11 (a) indicates a discomfort case that is mis-
classified as a normal case by the automated system. In this case, there is no
significant image feature that is linked to the status. The face itself is also not
captured in the frontal view. However, it should be noted that the images are
annotated within a video of a time period, where the annotator has temporal
information about the infant status. Figure 3.11 (b) indicates a comfort case that
is misclassified as discomfort status by our automated system. In this case, the
pacifier in front of the face probably confuses the proposed network. Table 3.3
summarizes different performances including the classification accuracy and
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Training method
ACC

on AC
ACC

on CC
ACC
on DC AUC 95% CI of AUC

Without any
pre-training 52% 87% 30% 0.767 0.759-0.774

Without the
1st fine-tuning 81% 92% 74% 0.934 0.930-0.939

With all
steps included 91% 90% 92% 0.960 0.958-0.962

Handcrafted features
+ SVM [146] 79% 73% 83% 0.874 0.869-0.879

Table 3.3: – Measured classification performance. The classification accuracy (ACC) of all cases
(AC), classification accuracy of comfort cases (CC), classification accuracy of discom-
fort cases (DC) and the AUCs with corresponding 95 % confidence intervals (CIs) of
different training schemes/methods are summarized.

AUCs of training from scratch, training without our strategic first fine-tuning
step, and training with all steps included. The table also shows the result from
a conventional approach [146], which is based on handcrafted features com-
bining geometric features and appearance features with an SVM classifier. For
the AUC values, the bootstrapping (resampling) approach [31] (1000 bootstrap
samples) was used to calculate the 95 % confidence intervals (CIs).

Figure 3.12 depicts different ROC curves without any pre-training, with-
out the first fine-tuning step and with all the pre-training and fine-tuning steps
included. The AUC values are 0.77, 0.93 and 0.96, respectively. Figure 3.13
shows the loss on the validation data of the three training schemes. The pro-
posed method quickly reduces the loss during training. It can also be noticed
that the losses from all three settings are not decreasing after the first 30 epochs,
which means that 50 epochs are sufficient for training in this case.

Deep learning CNNs are typically referred to as a black box for classifica-
tion, while it is difficult to track which features are important for a specific
classification task. To understand where deep learning concentrates upon, the
Class Activation Map (CAM) [193] can be computed by a weighted sum of
the feature maps of the last convolutional layer. CAM can be used to indicate
whether the deep learning networks focus on a critical facial area or help in un-
derstanding which regions in the face are relevant to the discomfort detection
problem. It can be observed that the highlighted regions in activation maps
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Original test set
Zoom factor

from 0.8 to 1.2
Rotation from

-45 degrees to +45
Contrast from

0.8 to 1.2

AUC 0.96 0.96 0.95
ACC 0.91 0.90 0.91

Table 3.4: – Performance of the proposed proposed method on different imaging factors.

are quite often the mouth and eye areas of the face, as shown in Figure 3.14.

We have investigated the performance when randomly zooming in and out
from 0.8 up to 1.2, rotating the face from -45 to +45 degrees and changing the
contrast from 0.8 to 1.2. The results are shown in Table 3.4, which demonstrate
that our system is robust to different video conditions.

Figure 3.12: – ROC curves of the proposed method without any pre-training, without the first
fine-tuning step, and training with all steps included.
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3.4.5 Video segment classification

We have also included an experiment for segment-based video analysis (5 sec-
onds per segment, i.e. 150 frames) and classification by fusing temporal in-
formation. Then, we have computed the mean, maximum and minimum of
likelihoods of all frames and obtained the following AUC values: 0.984 (95 %
CI: 0.967-0.993), 0.980 (95 % CI: 0.958-0.992) and 0.966 (95 % CI: 0.939-0.982),
respectively.

3.5 Discussion

The proposed method has been applied for infant-independent discomfort de-
tection on our infant dataset. Compared to the existing method using hand-
crafted features [146], the AUC of the proposed method also increases 10 % on
the same dataset.

Benefit of pre-training: The advantages of using an intermediate strategic

Figure 3.13: – Loss on the validation data during training epochs without any pre-training,
without the first fine-tuning step and training with all steps included.
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step of sequential fine-tuning compared to directly fine-tuning on the pre-
trained model have been elucidated. To explain the improvement, our hy-
pothesis is that the size of the applied infant dataset is rather small, which
is not suitable for fine-tuning a very large set of parameters of the complete
networks at the beginning. For this reason, we first pre-train with a relatively
large and similar dataset, in order to pre-learn the networks. In our case, the
Shoulder-Pain dataset [89] is quite appropriate, since it is a labeled facial ex-
pression dataset of videos from adults. Although the accuracy in the comfort
class drops after the first fine-tuning step, the overall accuracy and the accuracy
in the discomfort class increase substantially. In this application, it is more im-

(a) (b)

(c) (d)

Figure 3.14: – Examples of discomfort (top row) and comfort (bottom row) faces superimposed
by the activation maps. The map highlights the discriminative regions.
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portant to aim at a sensitive system with the purpose to detect more discomfort
frames, at the cost of a limited increase in false positive rate. This approach is
further elaborated in the next discussion point. The pre-training followed by
the fine-tuning steps are the main cause of the high performance of the moni-
toring system, which makes the overall solution less dependent on the applied
type of network.

Sensitivity and clinical application: The proposed automated system is very
selective. The area under the ROC curve is rather high (0.96). From the ROC
curve, it can be observed that it is possible to keep the sensitivity of detect-

(a) (b)

(c) (d)

Figure 3.15: – Examples of false alarms. (a) Failure case from the traditional method, (b) the
same result with superimposed corresponding landmarks. (c) Failure case from the
proposed deep learning method and (d) original with its superimposed heatmap.
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ing discomfort status of our vision analysis system to be close to unity, while
the specificity is 0.78. This means that our system can identify 78 % comfort
frames without virtually missing any discomfort frames. For the remaining
frames, the clinical system can make decisions on the basis of additional mea-
surements, e.g., comfort scales and manual assessment by nurses. In clinical
practice, healthcare professionals expect a discomfort detection system that
is sensitive to discomfort moments, while producing false alarms as little as
possible. However, the required AUC for such a clinical application is not
explicitly known from existing literature when exploiting an automated de-
tection system for this task. In current clinical practice, most hospitals use
manual assessment by health professionals. However, one possible solution
would be that an observer study is conducted in the future to compare the
performance of our system with that of experienced medical staff for further
validation. Then, the AUC and accuracy by the proposed automated analysis
system should compare favorably to medical staff on the average, while it is
also interesting on the requirement of availability of staff.

Comparison with handcrafted features: In our previous work [146], extracting
geometric features based on facial landmarks are investigated for discomfort
detection. When infants start suffering from discomfort, they tend to squeeze
their eyes and stretch their mouths. In order to extract relevant features, the
areas of eyes and mouth are calculated by counting the number of pixels in-
side the polygons surrounded by the landmarks of the eyes and lips. The geo-
metric features achieved an AUC of 0.85 and an accuracy value of 0.78, which
is considerably lower than the metrics obtained with the deep learning-based
method. This finding is clearly in favor with the proposed approach using
CNN-based deep learning.

Failure cases: Both the conventional [146] and the deep learning method
are making mistakes occasionally. Figure 3.15 shows a typical example where
the conventional method fails and another example where the deep learning
method misclassifies comfort as discomfort. The main weakness of conven-
tional features is that it is based on landmark detection with limited contextual
information. Consequently, misplacement of landmarks will affect the accu-
racy of classification. For the deep learning-based method, the robustness relies
on the availability of sufficient data, but it learns the complete facial model of
the discomfort status. This makes the approach of CNN-based learning suited
for the upcoming future, where more data will gradually become available.

Activation maps: We have also computed activation maps for the CNNs,
which enables to visualize the focused region in a given image, thereby high-
lighting the discriminative object parts detected by the CNN. In the studied
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cases, eyes and mouth are quite often highlighted, which confirm regions, for
which handcrafted features have been extracted in previous studies. This ef-
fectively means that the CNN is learning the correct and informative features,
which are also used in the clinical pain scoring.

Execution time: The proposed deep learning model has been implemented
using the Keras framework. Regarding computation time, the average execu-
tion time per frame is 0.013 seconds (i.e. 76 fps) using a GTX-980 GPU in the
computing system. This execution speed is sufficient for a real-time application
and the applied GPU is a standard version only, which makes the application
readily feasible in practice.

3.6 Conclusions

We have developed an automated visual diagnosis system for the classifica-
tion of discomfort and comfort status of infants in videos. This system applies
a deep learning model, based on several stages of pre-trained DenseNet. Us-
ing the strategic fine-tuning steps, the proposed model in combination with
twofold cross-validation, obtained an overall accuracy of 91 % on a dataset of
6,534 comfort and 10,303 discomfort video frames from 24 infants. The ob-
tained detection accuracy for comfort and discomfort frames are 90 % and 92 %,
respectively. By fusing individual frame results, the AUC is further improved
from 0.96 to 0.98. This indicates that the visual diagnosis system can be poten-
tially used as an alert system to notify the physicians and nurses on the comfort
status of the infants. The medical experts can then combine the decision of the
system together with their own assessments. Furthermore, it has been shown
that the performance of the deep learning model is improved when using the
proposed strategic fine-tuning steps, involving pre-training with generic peo-
ple pictures and dataset balancing, combined with twofold cross-validation.
Using all refinements, the AUC is then substantially increased from 0.77 to an
impressive value of 0.96. Although only the DenseNet has been applied and
investigated in this work, the use of other state-of-the-art networks is expected
to deliver similar consistent results, again confirming the benefits of the pro-
posed fine-tuning steps.

With video capturing, the sound is typically also recorded. Another
direction is to capture and analyze the associated sound information for the
discomfort detection, since it is easy to distinguish an infant that is feeling
discomfort, when the detection system discovers that the infant is crying.
To make deep learning applicable, we have extracted 16,837 frames from



66 2D CNN-based facial expression analysis

24 infants. To further enhance the performance in the future, it is important to
recruit more infants for creating a larger database.

When looking to future developments for research, it is logical to consider
video-based processing for discomfort detection. The proposed deep learning
system is measuring in static video pictures rather than video signals, so that
the temporal features such as face/body movement are not yet considered in
the algorithm. Additionally, in clinical practice, infant faces are not always vis-
ible, which especially holds for preterm infants. The faces of preterm infants in
the Neonatal Intensive Care Unit (NICU) are often occluded by nasal cannulas,
oxygen masks, or feeding tubes. Therefore, only relying on facial information
analysis is not sufficient.

The next chapter will discuss the use of temporal information, which can
help in better understanding of the videos by analyzing the motion informa-
tion contained in the infant movements. It is expected that when infants are
in discomfort, the motion pattern will be more expressive than in the comfort
status.



Chapter 4
Temporal information:
Motion-based discomfort
analysis

4.1 Introduction

The previous two chapters have investigated machine learning-based meth-
ods for detecting discomfort moments of infants by understanding their facial
expressions at video-frame level. The systems have been evaluated using in-
fants from a large range of ages in the field of pediatrics. However, the faces
of infants are not always well visible, especially for premature infants in the
Neonatal Intensive Care Units (NICUs). The faces of preterm infants in the
NICU are often occluded by nasal cannulas, oxygen masks, or feeding tubes.
Therefore, discomfort detection fully relying on a facial expression recognition
method is not practical. A motion-based method could potentially assist to
solve the situations that faces are not well presented, which is also an influenc-
ing limitation of the work performed in Chapters 2 and 3. In this chapter, we
have constrained the investigation target group to be only preterm infants.

When considering a motion-based discomfort detection system for preterm
infants, several important issues should be addressed.

• Motion estimation: Body movement is an important indicator for comfort
or discomfort when clinical experts visually assess the infant status. It
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needs to be investigated whether the temporal information in the video
sequences can be extracted by machine learning methods.

• Leverage of motion signal: First, motion signals of infants should be ex-
tracted from video sequences. The proposed method should extract fea-
tures that characterize behavior, which are derived from motion signals.
The calculated motion-related features can be further leveraged for in-
fant discomfort detection. The key question is that how that should be
implemented, given the fact that those features will be already extracted
by machine learning methods.

• Influence of preterm infants: The faces of NICU infants are always occluded
by feeding tubes and/or breathing masks. The proposed method should
address this specific group, of which the motion behavior will be different
from older infants. The typical pain stimulus caused by a heel prick will
be employed as a reference for discomfort status.

Taking into account the requirements and aspects mentioned above, this chap-
ter develops an automated discomfort detection system, which distinguishes
discomfort status by analyzing motion patterns. The motion information is
first estimated from the videos, which is followed by extracting statistical and
spectral features from the motion signals as input for the comfort/discomfort
classification.

This chapter is setup as follows. In Section 4.2, the clinical background and
related work on pain and discomfort detection is described. Section 4.3 elab-
orates on the proposed method, while Section 4.4 explains the experimental
results, followed by some discussions and conclusions in Section 4.5.

4.2 Related work

4.2.1 Clinical background

Preterm birth is defined as the case when infants are born before 37 completed
weeks of gestation. Global prevalence estimation of preterm birth is 9.6 %, in-
fluencing approximately 12.9 million infants in 2005 worldwide [10]. Based
on statistics for 184 countries, the global average preterm birth rate in 2010
was 11.1 %, giving a worldwide total of 14.9 million infants [14]. Pain/discom-
fort in infants has received considerable attention from researchers. Early pain
experiences of preterm infants have long-term effects on their development,
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which include alterations in sensory processing and delay in neurological de-
velopment. Cumulative pain-related discomfort can lead to long-term perse-
verance of central nervous system changes and similarly, long-term changes in
responsiveness of the neuroendocrine and similar responsiveness issues of the
immune systems to stress at maturity [103, 108]. In adults, self-reporting is re-
garded as the gold standard of pain assessment measurement among patients,
since it provides the most reliable indication of pain [93]. However, preterm
neonates are not capable of interpreting pain or discomfort in a manner com-
parable to that of adults. For these reasons, monitoring is required in order
to detect pain/discomfort immediately when infants start suffering, which al-
lows caregivers to perform appropriate treatments.

Several pain/comfort scales have been developed to assist healthcare pro-
fessionals in assessing the pain or discomfort levels of an infant [5, 98]. Each
scale is scored by healthcare professionals after observing infants for a few
minutes. However, infants are only assessed a few times a day (“spot measure-
ment”) without continuous monitoring, which may leave many discomfort
moments unnoticed. In this regard, an automated discomfort/pain-assessment
method is needed. The objective of this chapter is to develop an automated
video-based discomfort detection system for infants, where motion informa-
tion is integrated into the decision making.

4.2.2 Technical developments

In the past several years, there has been an increasing interest in human
stress/pain assessment [45]. Various approaches have been developed to as-
sess pain, based on physiological indicators, for instance vital signs such as
heart rate (HR), heart-rate variability (HRV), respiratory rate (RR), oxygen
saturation (SpO2), body temperature, and blood pressure. These signs can
be measured and used to assess the physical functioning level of a person.
Acharya et al. [2] detected cardiac abnormalities by classifying cardiac rhythms
using an artificial neural network and fuzzy relationships, which achieved
an accuracy level of 80-85 %. However, vital signs such as HR and RR are
currently measured by electrocardiograms (ECG) and photoplethysmography
(PPG), which require contact with the patient’s skin. Attaching the sensors to
infant skin adds an extra burden to infants compared to a contactless method,
for instance, using remote video monitoring.

Besides the physiology-based approaches, there is another category of
methods that assess pain/discomfort, which is based on behavior analysis.
Existing behavioral-based approaches to evaluate infant pain can be based
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on facial expression and crying sound [182] [36]. The crying of infants is a
common sign of discomfort, hunger, or pain. For classifying crying sound,
Mima et al. [94] presented a method that analyzes baby cries in spectrography,
and classifies them as cries due to pain, sleeping, hunger, etc. The obtained
overall accuracy of the proposed method was 85 %.

Significant attention was paid to facial expressions in adults.
Shan et al. [131] empirically evaluated facial representation based on sta-
tistical local features, local binary patterns (LBPs) for person-independent
facial expression recognition, and illustrated that LBP features are effective
and efficient for facial expression recognition. Kotsia et al. [73] achieved a
recognition accuracy of 99.7 % for facial expression recognition, using the pro-
posed multi-class SVMs and obtained 95.1 % for facial expression recognition,
based on a set of chosen Facial Action Units (FAUs).

At present, very few studies reported pain assessment for premature in-
fants based on body movements. Cattani et al. characterize clonic seizures
and apneas by the presence or absence of periodic movements of parts of the
body [18]. However, the method is intensity-based (in the paper called lumi-
nance) and thus is affected by the lighting condition.

The existing literature does not show research work on normal behavior of
infants in relation to comfort and pain. The work of Cattani et al. investigates
abnormal behavior using body movement analysis, whereas Kotsia et al.
look to the facial expression without considering the constraints of the NICU
settings. The facial expression of premature infants in the NICU is typically
occluded by breathing masks/feeding tubes, so that the assessment should
not be fully based on a facial expression method for discomfort monitoring. A
good alternative is video-based body motion analysis.

The following work proposes a video-based automated system for detect-
ing discomfort moments of premature newborns in the NICUs by analyzing
motion information. Because this information is derived from the behavior of
preterm infants, specific attention has to be given to the accuracy of the motion
analysis.

4.3 Methods for motion-based analysis

To detect the body motion of the infants, we employ optical flow to estimate
pixel-based motion vectors between frames, which is followed by feature ex-
traction for discomfort/comfort classification. The choice for optical flow is
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motivated by its capability to capture the motion of individual body parts more
accurately [33]. This is required because preterm infants have a less developed
muscle system compared to older infants and adults.

4.3.1 Study design and population

The study was conducted with videos recorded at the Máxima Medical Cen-
ter in Veldhoven, the Netherlands, by a fixed-position high-definition camera
(uEye UI-222x) filming the infant’s face and upper body. Figure 4.1 illustrates
the video acquisition system. Since the experimental procedure (heel lance)
is part of regular neonatal care, the ethical committee of the Máxima Medi-
cal Center provided a waiver [N17.178] for this study. For all infants, written
consent was obtained from the parents.

The heel lance procedure is a well-known pain stimulus and is part of reg-
ular care for collecting blood samples to monitor glucose, bilirubin, etc. In this
work, it serves as a recurring stimulus to study the infant’s response to pain.
The video recording started approximately 10 minutes prior to the heel lance
procedure. When the heel lance procedure was finished, the video recording
continued for an observation time to return to baseline (10 minutes). We define
the baseline as a period when there is no observable discomfort motion pat-
tern/facial expression. The start and end time of the heel lance procedure was
simultaneously noted by a research assistant.

Figure 4.1: – Video acquisition system and setup in a NICU. The camera is outlined by a green
circle.
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Discomfort and comfort video segments were annotated by a researcher
according to the timeline relative to the heel prick intervention. Discomfort
video segments were labeled from the start point of the heel prick to several
minutes after the heel prick was done, based on the researcher’s observation.
“Comfort" video segments were labeled from the baseline prior to the prick
and from the moment onwards when the infant returned to baseline after the
heel prick. Each video segment contains only one state (comfort or discom-
fort). All the moments that show interruption or occlusion from caregivers in
the videos are excluded. The video segments lasting less than 10 seconds are
removed from consideration. Data of eleven infants with an average gesta-
tional age of 31 weeks are collected for the experiments. This results in totally
99 discomfort (2,738 seconds in total) and 84 comfort (3,429 seconds in total)
video segments for 17 heel prick events. The duration of each video segment
varies from less than one minute to several minutes with an overall median
length of 21.2 seconds (interquartile range [IQR] 12.8 - 39 seconds).

4.3.2 Motion estimation

Pixel-based motion vectors are first calculated for each video frame,
with respect to the previous frame, using the optical flow proposed by
Farnebäck et al. [33]. The Farnebäck method models the neighborhoods of each
pixel by quadratic polynomials to calculate the optical flow, where the involved
optimization of the algorithm is performed at a neighborhood level rather than
pixel level. In our study, we compute a motion matrix M of size N ×L, where
N is the number of pixels in a video frame and L is the total length of a video
segment in frames. The optical flow provides motion derivatives for each row
of the matrix that represents the velocity magnitude of a pixel’s trajectory.

We accumulate the magnitude values of all motion vectors for each frame.
Hence, all the summed magnitude values comprise a one-dimensional (1D)
velocity-estimating signal V (size 1×L) for each video segment. The motion
acceleration rate A (size 1×L) is further estimated by taking the first derivative
of the velocity-estimating signal V. Figure 4.2(a) and Figure 4.2(b) show exam-
ples of the motion acceleration rate, extracted from a comfort and a discomfort
video segment, respectively.

4.3.3 Feature extraction

For each video segment, features are extracted from the 1D signal vector of the
motion acceleration rate A, capturing the motion of all pixels in the image.
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We calculate two groups of features, which have a statistical and spectral
content, and are shown in Table 4.1. In total, 18 features are computed: mean,
median, root mean square (see Eq. (4.1)), a group of 3 features from the
autocorrelation function, and a group of 12 spectral peak features, which are
discussed below. The first statistical parameters are a regular choice, while the
autocorrelation is used to identify the major changes in the signal caused by
different comfort/discomfort status of infants. The spectral peak features are
for analyzing the frequency-domain patterns.

A. Mean, median of the motion acceleration rate A, root mean square
This involves the computation of the mean and median values of the motion
acceleration rate vector A, by averaging all elements of the vector or computing
the median of all elements.

The root mean square (RMS) of the motion acceleration rate elements from

(a)

(b)

Figure 4.2: – Examples of extracted motion acceleration rate of (a) comfort, and (b) discomfort
moments, where different motion patterns are visible in terms of movement intensity
and periodicity.
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A is utilized as an input to a classifier for infant status recognition. The RMS
value is calculated according to:

RMS =
√√√√ 1

L

L∑
i=1

xi
2, (4.1)

where xi is an individual acceleration instance and L denotes the total number
of frames of the video segment.

B. Autocorrelation features
The autocorrelation characterizes different types of motion signals by in-
dicating motion intensity and periodicity. The autocorrelation of motion
acceleration rate A is then calculated, which is formulated as

ρ̂k =

L∑
t=k+1

(At −Aavg) · (At−k −Aavg)

L∑
t=1

(At −Aavg)2

, (4.2)

where At−k is the motion acceleration rate shifted over k frames, and Aavg is the
average of the motion acceleration rate. The numerator of Eq. (4.2) is essentially
the covariance between the original acceleration rate and the k-frame shifted
data. The denominator is the sum of the squared deviations of the original
acceleration rate.

The peak height of the autocorrelation function at zero-th lag (k=0) (overall
energy) is employed as an individual descriptive feature. The other two
features are the height and location at the first peak of the autocorrelation,
respectively, which identify the dominant cyclic variation in motion.

C. Spectral peak features
We further estimate the power spectral density of the motion acceleration rate
A using Welch’s method [48] with a rectangular window, having the length
equal to the total number of frames for each video segment. From the derived
spectrum, positions and power levels of the highest 6 peaks are taken as
12 spectral peak features.
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Feature category Indication CMVAL DMVAL

Mean Motion intensity 0.015 -0.275
Median Motion intensity -0.091 0.296
RMS Motion intensity 17.1 237

Autocorr. -
height at 0th lag Motion intensity 2.16 ·105 2.45 ·107

Autocorr. -
1st peak location Motion periodicity 0.2 0.2

Autocorr. -
1st peak height Motion intensity 1.20 ·104 3.34 ·105

Spectrum -
positions of
highest 6 peaks

Motion frequency

3.63
4.67
5.41
6.14
6.86
7.59

1.88
3.07
3.93
5.16
6.22
7.28

Spectrum -
power levels of
highest 6 peaks

Motion level
at

each frequency

115
150
150
121
119
129

2.21 ·104

2.30 ·104

2.54 ·104

2.68 ·104

2.66 ·104

2.26 ·104

Table 4.1: – Feature categories with their corresponding indication and median values for all
comfort (CMVAL) and discomfort cases (DMVAL).

4.3.4 Classification

Finally, we have adopted a support vector machine (SVM) classifier on video
segments to recognize infant status of comfort or discomfort, using the 18 ex-
tracted features. A linear kernel is employed, since a sigmoid-based SVM does
not offer higher performance in our experiments and only increases the com-
plexity and execution time. We have used the SVM implementation of Matlab
(Mathworks, Natick, MA, USA) for the two-class classification. Leave-one-
infant-out cross-validation is used for the experiments. The receiver operating
characteristic (ROC) is plotted to evaluate the performance with the value of
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the area under the curve (AUC). The classification accuracy is also measured
and reported as an evaluation metric.

4.4 Experimental results

Using the recorded infant dataset, leave-one-infant-out cross-validation is per-
formed for evaluating the proposed method. The classification accuracy is
summarized in Table 4.2, and the ROC curves are plotted in Fig. 4.3. From

Feature category Accuracy rate AUC

Mean 0.50 0.72
Median 0.39 0.53

Root Mean Square (RMS) 0.81 0.91
Autocorrelation 0.68 0.84
Spectrum 0.75 0.91
Combined 0.86 0.94

Table 4.2: – Performance measures for classification, including classification accuracies and
AUCs of different features.

the light-blue curve based on all features, it can be observed that the system
can detect 85 % of discomfort video segments at the cost of only 10 % of false
alarms. When all features are combined, the average accuracy for all infants
is 0.86 (see Table 4.2). When applying each category of features individually,
the RMS feature achieves the best accuracy and AUC. The AUC is significantly
improved when combining all features, compared to the case that all are used
except the RMS feature (p = 0.006 using bootstrapping). Although the median
shows a low performance as a standalone feature, we have empirically found
that it still contributes to the overall performance when combined with other
features.

4.5 Discussion and conclusions

Performance: We have extracted only 18 features from each video segment. In
our Matlab implementation, the computation time is approximately 0.4 sec-
onds per frame on a regular computer with one E5-1650 CPU (3.60 GHz), which
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Figure 4.3: – ROC curves for classification of comfort/discomfort, using each individual cate-
gory of features and when combining all features together.

can be further optimized by implementing the code in C++ for a real-time ap-
plication. In future, a further feature selection may be attractive to come to
a good performance trade-off. The comparison with previously developed
methods is considered as part of future work. An important published sys-
tem from [184] is based on the same topic, but has employed different features
and lacks the detailed motion analysis that we have proposed. Since we have
added this motion analysis, we clearly outperform the results of this work from
literature [184].

Cases with occlusions and critical illness: The experiments have shown that in-
cluding autocorrelation and spectral features yields an enhanced performance
in detecting comfort and discomfort status of infants. However, in clinical prac-
tice, video interruptions may occur by care-handling the infant and, thereby
lead to occlusion of the infant’s face and/or body. Moreover, for critically
ill infants, no visual response to pain stimulus can be observed. For such
cases and further work, we may have to add features extracted from the moni-
tored vital signs, such as heart rate, respiration rate, and blood oxygen satura-
tion [165] [135] [25].

Sensitivity-specificity trade-off: For technically optimizing system perfor-
mance, further lowering the amount of false positives would be valuable,
thereby improving the specificity of the system. However, in real clinical
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practice, a majority of these false positives are segments with irregular move-
ments during comfort moments (e.g. stretching an arm). With limited effort
of human assistance (e.g. visual check), these false positives may be easily
corrected. This implies that the nursing personnel has some understanding of
the system usage.

As a conclusion, for the purpose of anticipating on pain and discomfort
in premature infants, we have proposed an automated video-based system
that can differentiate discomfort of infants from comfort status by analyzing
motion patterns. The recognition process starts with the acquisition of the
motion signals, which are subsequently estimated by optical flow. For each
video segment, a vector of 18 features is extracted from the motion signals,
containing characteristics of both the time and frequency domain, describing
the motion trajectories. These feature vectors are then jointly classified by an
SVM. An AUC of 0.94 is achieved, which is promising for clinical practice. The
highest AUC is obtained when combining all proposed features, which proves
that the features are contributing and complementary. The proposed system
shows that motion-related features can differentiate discomfort status from
comfort. Because of incorporating autocorrelation and spectral features that
can capture and describe periodic motion patterns, our system can recognize
discomfort body motion and regular periodic movements (e.g. respiration).
With the high sensitivity of 85 %, the trade-off of the system is only 10 %
detecting false positives.

The next chapter will further explore the 1D motion signals using a deep
learning approach, which aims to better analyze the motion information. Con-
ventional feature extraction is typically outperformed by deep learning ap-
proaches for visual analysis. This motivates that further experiments with deep
learning for this purpose is a logical follow-up step.



Chapter 5
Applying deep learning on 2D
representations embedding
time-frequency information

5.1 Introduction

The previous chapter has started assessing the infant comfort status by analyz-
ing the movement patterns of their bodies from videos. The proposed system
first extracts the motion signal using optical flow algorithms and then com-
bines the designed handcrafted features using an SVM classifier for prediction.
However, the feature extraction step may lose informative descriptions of the
signals, and features are sensitive to parameter-tuning of the SVM. Inspired
by the recent success of deep learning, a data-driven approach is desired, in
which the machine learning system replaces partly the feature extraction and
the comfort classification.

However, developing a deep-learning system for characterizing motion sig-
nals has to address the following challenges.

• Motion representation: Most mainstream deep learning CNNs are based
on 2D image inputs. Therefore, one possible solution could be to convert
the 1D motion signal to 2D representations as inputs for the CNNs.

• Effective learning: Generally, CNNs require a large amount of data for
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training. However, in this study, because of the limited amount of infants,
dealing with small data remains challenging.

• Optimizing the inputs and networks: As mentioned previously, when the
size of the dataset is small, having an informative/descriptive input rep-
resentation available is especially important for training CNNs.

• Selection of representative input features: Among different 2D feature repre-
sentations, it is important to investigate the performance of each individ-
ual feature and select the most effective ones for comfort classification.

Taking into account the above-mentioned challenges and concerns, we aim
to reuse an already existing concept to convert audio signals into spectral rep-
resentations for descriptive analysis. In our case, we would convert then the
1D motion signals to a number of feature representations, which are then ex-
plored for further analysis. The detailed processing will be further explained
later in this chapter.

As a subsequent step, we employ state-of-the-art CNNs on 2D representa-
tions, in which the motion information is embedded. The CNNs with/without
pre-training are investigated and the models further transfer the learning on
our dataset, since pre-training and transfer learning are effective techniques
for small-dataset learning. We have conducted and elaborated experiments to
select the best combination between representations and CNNs.

The purpose of this chapter is essentially an extension of the previous chap-
ter in the sense that the motion signal is described in an alternative way and
incorporated in a learning network. This explains why we omit the related
work section and provide only some background on the conceptual changes.

The remainder of this chapter is organized as follows. First, Section 5.2.2
and Section 5.2.3 revisit the methodology of motion extraction and introduce
the conversion of each motion-signal segment into an image representation.
Second, in Section 5.2.4, state-of-the-art deep learning networks are exploited
for the image classification task, followed by analyzing the effectiveness of the
combination of representations and networks in Section 5.3. Section 5.4 dis-
cusses the advantages and disadvantages of this approach. Finally, this chapter
is concluded in Section 5.5.
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5.2 Methods for 2D representations of motion and
classification

5.2.1 Study design

In our work, Heel Prick (HP) is a well-known recurring pain event, which
was used as a stimulus to study the infant response to pain. The study was
conducted at the Máxima Medical Center in Veldhoven, the Netherlands. As
the experimental procedure (HP) is part of regular neonatal care, the ethical
committee of the Máxima Medical Center provided a waiver [N17.178] for this
study. For all infants, written consent was obtained from the parents for the
experiments. A camera (uEye UI-222x, IDS imaging, Germany) was used to
record the infant face and upper body in a fixed position.

Videos segments were manually annotated for comfort/discomfort by a
medical doctor along the HP procedure. The comfort/discomfort video seg-
ments were labeled by visual observation, according to the timeline relative to
the HP intervention. Comfort video segments were annotated from the base-
line prior to the prick and the time period when each infant returned to base-
line status after the HP. Discomfort video segments were annotated from the
starting point of the heel prick to several minutes after the heel prick was fin-
ished. Each video segment is associated with only one infant state (comfort or
discomfort).

Eleven infants with an average gestational age of 31 weeks (range 27+1 day–
38+5 days weeks) were recorded. In total, we obtained 99 discomfort (2,738 sec-
onds) and 84 comfort (3,429 seconds) video segments from 17 HP events.

5.2.2 Motion estimation

First, we employ an optical flow algorithm to estimate pixel-based motion
vectors between adjacent video frames, to extract body motion of the in-
fants for each video segment. The utilized optical flow method proposed by
Farnebäck et al. [33] enables capturing the motion from individual body parts.
Dense optical flow is estimated by modeling the neighborhoods of each pixel
using quadratic polynomials, and the optimization is done at pixel-cluster level
rather than individual pixel level. We accumulate the magnitude values of all
motion vectors for each video frame. Hence, all the summed magnitude values
comprise a One-Dimensional (1D) signal vector of motion velocity magnitudes
for each video segment, containing multiple frames. A segment typically lasts
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about 10 seconds. We further estimate the motion acceleration rate by taking
the first derivative of the velocity magnitude signal. The motion acceleration
rate serves as a key descriptor for further analysis.

5.2.3 Image representation

Following motion estimation, each 1D signal (motion acceleration rate) is
clipped to 10-sec. long segments for further processing. One important step
for the classification task is to identify the primary information, character-
ized by the discomfort motion pattern, while discarding other details that
carry background noise, random movements, etc. The shape of the 1D sig-
nal manifests itself in the envelope of the short-time power spectrum [164].
For this reason, we concentrate on extracting features from the envelope shape
to represent motion signals indicating the type of behavior. Three methods
of feature extraction are investigated and compared for data representation,
namely: Log Mel-spectrogram (LMSpec), Mel-Frequency Cepstral Coefficients
(MFCCs), and Spectral Subband Centroid Frequency (SSCF). These methods
have been found to be effective in extracting and combining the frequency and
magnitude information from the power spectrum [12, 39, 119, 124].

MFCCs are features widely used to represent characteristics of signals in
voice recognition. [84] We first execute overlapping sliding windows over the
input signal segment, and then compute the Fourier transform over each win-
dow. A Mel-filterbank is further applied, and the energies within each filter
are accumulated. The Mel-spectrogram is therefore obtained as a graphic im-
age describing the energy content as a function of Mel scales (output of filters)
versus time windows. We take the logarithm (log) of the filterbank energies
and employ the derived Log Mel-spectrogram as our first type of image repre-
sentation (see Fig. 5.1 (b) and Fig. 5.2 (b)).

Following the Log Mel-spectrogram calculation, a Discrete Cosine Trans-
form (DCT) is applied on the log-filterbank energies, resulting in 12 MFCC
values (DCT coefficients) per sliding window. The total energy per sliding
window is also included as a feature. As a result, 13 MFCC feature values are
obtained in total, where the last one is the total energy (sum of the initial 12
MFCC values). Concatenating these features leads to a time-frequency repre-
sentation that can be visualized as a heat map, which is our second feature-
image representation, namely MFCCs. In total, each heat map consists of time
windows represented on the horizontal axis, and 13 MFCC filterbanks repre-
sented on the vertical axis (see Fig. 5.1 (c) and Fig. 5.2 (c)).

Furthermore, we compute the SSCF from the 1D signal segments. The
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SSCF represents the centroid frequency in each subband, whereas in MFCC
features, the power spectrum in a given subband is distributed and the de-
tailed frequency information is not readily available. Therefore, we consider
that the SSCF provides supplementary information to MFCCs (see Fig. 5.1 (d)
and Fig. 5.2 (d)).

5.2.4 Classification of the 2D representations

The results of processing the image representation allow each 10-second in-
stance of the motion signal data to be processed as an image, so that energy
values over time can be visualized as a heat map.

The derived heat maps are further classified using deep convolutional neu-
ral networks. A ResNet (see Fig. 5.3) is used as our classification model.
He et al. [50] proposed ResNet, which is a network architecture where the lay-
ers are explicitly reformulated as learning residual functions with reference
to the layer inputs, instead of learning unreferenced functions. It was shown
that ResNet is easier to optimize, and can gain accuracy from considerably in-
creased depth in the network on the ILSVRC 2015 classification task. To allevi-
ate the limitation of small dataset size in this study, we employ transfer learn-
ing using the pre-trained models. We have employed a ResNet with 18 residual
blocks, pre-trained with the ImageNet dataset. Each residual block consists of
a section where the input is both processed and bypassed and compared at
the end to measure the residual, which is kept identical to the original ResNet
publication.

5.2.5 Evaluation

The proposed method is evaluated by performing leave-one-infant-out cross-
validation to obtain an unbiased label for each video segment. The training
set is further split into a real training set (70 %) and a validation set (30 %) on
patient level. The validation set is used to refine the model from each training
epoch. We perform training with the number of epochs equal to 25, a batch
size of 16, and employ the Adam optimizer [70] without dropout.

The Receiver Operating Characteristic (ROC) is plotted to evaluate the per-
formance with the value of the Area Under the ROC Curve (AUC). The clas-
sification accuracy and confusion matrix are also computed and reported as
evaluation metrics.
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(a) (b)

(c) (d)

Figure 5.1: – Example of a discomfort motion segment. (a) Extracted 1D motion signal, which
is analyzed further with a sliding window (window size = 500 ms and step size =
100 ms). Feature images for the 10-sec. motion segment are shown in (b) the Log
Mel-spectrogram, (c) image of the MFCCs and (d) SSCF visualization. The last
three subfigures all use the same window processing.
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(a) (b)

(c) (d)

Figure 5.2: – Example of a comfort motion segment. (a) Extracted 1D motion signal, which
is analyzed further with a sliding window (window size = 500 ms and step size =
100 ms). Feature images for the 10-sec. motion segment are shown in (b) the Log
Mel-spectrogram, (c) image of the MFCCs and (d) SSCF visualization. The last
three subfigures all use the same window processing.
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Figure 5.3: – General architecture of the ResNet. The open part of the residual block chain refers
to extra 16 residual blocks.

5.3 Experimental results

We have conducted experiments with different frameworks of applying
ResNet: 1) only fine-tuning the Fully Connected Layers (FCL) of a pre-trained
ResNet, 2) fine-tuning all layers of a pre-trained ResNet, and 3) directly training
ResNet using our dataset. Combining all features together, the performance
of applying different frameworks for the binary classification is shown in Ta-
ble 5.1. The results from our previous work [141], as also described in Chapter 4
using handcrafted features on the same dataset, are added in the table for ref-
erence. Fig. 5.4 shows the normalized confusion matrix for only fine-tuning
the fully connected layers. Fig. 5.5 represents the corresponding ROC with
the AUC of 0.985. The ROC curve indicates that approximately 90 % comfort
video segments can be correctly determined by our automated system without
missing any discomfort moments.

The AUC values for applying each type of image representation individu-
ally are 0.978 for the LMSpec, 0.961 for MFCCs and 0.677 for SSCF.

Training scheme Accuracy AUC

Fine-tuning only FCL 94.2% 0.985
Fine-tuning all layers 93.3% 0.978
Training from scratch 80.8% 0.878
Handcrafted features [141] 86.0% 0.940

Table 5.1: – Performance of different training schemes in terms of classification accuracy and
AUCs.
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5.4 Discussions

Omission of information: In this study, although a deep learning system is pro-
posed, it is still not an end-to-end system for learning the essential information,
since we still need to extract motion information from videos and then also
have to convert motion signals to 2D representations. More importantly, the
extraction of motion certainly lacks additional spatial/contextual information
related to diagnosis as this signal only encodes the motion magnitude, whereas
the facial expressions and the positions of infant bodies are completely omitted
for analysis.

Length of video segments: Another limitation of this study is that we only
take video clips of a specific time-window for the analysis, while the optimal
duration of the time window is not explored. When choosing such a window
duration, a trade-off between computation complexity and information suffi-
ciency should be incorporated.

Figure 5.4: – Normalized confusion matrix of comfort and discomfort classification with only
fine-tuning the fully connected layers of ResNet.
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5.5 Conclusions

In this chapter, we have proposed an automated video-based system using
deep learning that can differentiate the discomfort status of infants from com-
fort status by analyzing motion patterns. When infants experience discomfort
moments, the system draws the attention of caregivers to the infants. The pro-
cessing chain includes three steps: 1) 1D signal extraction using optical flow, 2)
converting the 1D signal to a feature-image representation, and 3) deep learn-
ing classification of the feature images.

Analyzing image representation of motion signals facilitates to use richer
frequency-related information in addition to the motion-related time series.
This approach has resulted in the following contributions: 1) an algorithm
is defined for extracting motion and then converting each segment to time-
frequency image representations, 2) a deep learning scheme by Convolutional
Neural Networks (CNNs) is employed to classify the feature images, and 3) an
automated video-based system is realized for detecting discomfort moments
in preterm newborns hospitalized in NICUs.

For each video segment, three image representations characterizing motion

Figure 5.5: – ROC curve of binary classification of comfort and discomfort with only fine-
tuning the fully connected layers of a pre-trained ResNet.
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trajectories are extracted from the motion signals in the time and frequency
domain. An AUC of 0.985 is achieved, which is promising for use in clinical
practice. The highest AUC is obtained when combining all three image repre-
sentations, namely the LMSpec, MFCCs, and SSCF, by transfer learning from
a pre-trained ResNet, which proves that the different image representations
are all contributing and complementary to each other. Although the use of
motion-based features is promising, we have also discussed that the system
can be improved by adding contextual features from the face and body.

In the future, more infant data will be collected and used for evaluating our
system. An end-to-end system will be investigated as a feasibility study. Since
3D CNNs have emerged as a possibility, they could provide opportunities for
video analysis without overhead on information conversion. In the next chap-
ter, the usage of 3D CNNs for the comfort classification task will be explored
to further determine the infant status of comfort or discomfort.





Chapter 6
Attention-based 3D CNN
approach

6.1 Introduction

The previous chapters have analyzed static facial images in order to detect in-
fant discomfort status, and also investigated infant face/body motion informa-
tion. Chapter 2 has employed the handcrafted features combined with an SVM
to analyze the infant facial expressions at an individual frame level. Chapter 3
has continued the task of frame-based facial expression classification by lever-
aging deep learning-based methods and several steps of fine-tuning strate-
gies. Chapter 4 has started to explore the temporal information from the in-
fant videos and has investigated the embedded motion signals by using optical
flow to extract the motion magnitudes. Handcrafted features are designed for
the 1D motion-related signal to classify the infant status of comfort/discom-
fort by an SVM. Chapter 5 has further strengthened the work of Chapter 4 by
presenting the motion-related features using 2D spectral feature images. The
2D representations are finally classified by using deep networks.

In this chapter, we are going to fully leverage from video information by
simultaneously incorporating both contextual facial expression and motion in-
formation. In order to exploit both the spatial contextual information (e.g. ap-
pearance) and the temporal information (e.g. motion) in a single optimization
framework for discomfort/comfort classification, we are going to explore a 3D-
CNN method that can include both spatial and temporal features in one net-
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work. This means that the new network with the learned CNN features will
jointly exploit spatio-temporal features and thus multiple signal dimensions
simultaneously.

We aim to propose a 3D CNN for capturing temporal and spatial changes
in infant facial appearance and body and limb positions, which addresses the
following challenges.

• Attention on motion regions: Body movement is an important indicator
for comfort or discomfort when clinical experts visually assess the in-
fant status. The studies in Chapters 4 and 5 have also demonstrated that
different motion patterns are visible for comfort and discomfort status.
For example, facial expression changes incur motion patterns, while pain
can also cause significant motion in the body and limbs. Therefore, the
proposed network should pay attention to various regions and types of
motion where significant motion occurs.

• Processing time-window selection: An optimal length of a time window
for processing the video stream has to be investigated. For each video
sequence, a temporal sliding window with a fixed length is used as an
input clip for the classification network. The optimal length of the slid-
ing window needs to be chosen carefully according to the classification
performance and computation complexity.

• Process spatial and temporal information simultaneously: Combining facial
expression and motion information together is expected to achieve better
performance than considering each component individually. As a data-
driven approach, the proposed network should be able to simultaneously
learn contextual information from both infant face, body and limbs, and
also the network architecture should be capable of handling multiple di-
mensions of the input.

Taking into account the requirements and aspects mentioned above, this chap-
ter develops a novel 3D-CNN architecture. This is followed by investigating
different inputs to the network to understand the importance of temporal in-
formation (motion) to discomfort classification, and the involvement of addi-
tional contextual features from the spatial domain. More specifically, the net-
work has to adapt and learn from multiple inputs, such as 3-channel RGB,
2-channel motion, and 5-channel combination of RGB and motion. For com-
parison with state-of-the-art systems, a thorough benchmark is performed be-
tween 2D CNN and 3D CNN, also between different channel inputs. It is the
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objective to eventually arrive at an overall best solution that uses five channels
of input for the 3D CNN with a short time duration, namely “multi-channel
attention 3D CNN”. The CNN training and validation are performed on a real
clinical dataset with various infants, which is intended for the study of infant
discomfort/comfort.

The remainder of this chapter is as follows. Section 6.2 discusses the exist-
ing related work on both conventional and state-of-the-art deep learning-based
methods. Section 6.3 elaborates on the proposed methods, while Section 6.4 de-
scribes the experimental setup for evaluating the methods. Section 6.5 presents
the experimental results. Finally, Section 6.6 re-discusses the proposed method
and concludes the chapter.

6.2 Related work

6.2.1 Image-based emotion classification

Studies in emotion recognition have focused on image-based and video-based
approaches [29]. Video-based approaches have shown improved recognition
performance, since they can exploit temporal features and associate those with
emotion changes [32]. For the applications of 2D image processing in infant
discomfort detection, extensive research has concentrated on facial expression
recognition. Sun et al. [147] proposed a sequential fine-tuning strategy to clas-
sify 2D images from infant videos and achieved an Area Under the Curve
(AUC) value of 0.96. By fusing individual frame results, the AUC was fur-
ther improved from 0.96 to 0.98. Meng et al. proposed Identity-Aware Con-
volutional Neural Network (IACNN) for facial expression recognition. The re-
sults showed an accuracy of 71.3 % when testing on the CK+ dataset [63] [88].
Liu et al. [83] upgraded a single CNN to an ensemble of CNNs and the best
single subnet achieved 62.4 % accuracy, while the whole model scored 65 % ac-
curacy. However, this ensemble approach may be less suitable for real-time
applications. Mollahosseini et al. [96] presented a deep neural network ar-
chitecture for automated facial expression recognition, which consists of two
convolutional layers, followed by max-pooling and four inception layers. The
inception layers increase the depth and width of the network while keeping
the computational budget constant. The work was evaluated on the CMU
MultiPIE face database [40] and achieved an accuracy of 94.7 %. Uddin et
al. [160] leveraged a depth-camera-based solution for efficient facial expres-
sion recognition, in which for each pixel in a depth image, eight local direc-
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tional strengths are obtained and ranked. Incremental to different 2D CNN
approaches, Li et al. [78] showed the benefits with data augmentation, includ-
ing face cropping and rotation. Zhao et al. [190] proposed a novel set-to-set
(S2S) distance measure to calculate the similarity between two sets, in order
to improve the recognition accuracy for faces with real-world challenges. For
the S2S distance, the kNN-average pooling is adopted for computing the simi-
larity scores. Luan et al. [87] proposed Gabor convolutional networks (GCNs),
which utilize Gabor filters as the convolutional filters, such that the robustness
of learned features against the orientation and scale changes are reinforced.
Zhang et al. [186] developed a new representation learning method, named
Structure Transfer Machine (STM), which enables the feature learning process
to converge at the representation expectation in a probabilistic way.

6.2.2 Video-based emotion analysis

In terms of further exploiting temporal information in a video, less attention
has been paid to facial expression recognition. One recent relevant work is
presented by Sun et al. [141], where the motion acceleration rate and 18 time-
domain and frequency-domain features were used to characterize motion
patterns, leading to an AUC of 0.94 on an infant dataset. Later, the same
authors employed optical flow to estimate body motion across video frames
to generate feature images, such as Log Mel-spectrogram, Mel Frequency
Cepstral Coefficients, and Spectral Subband Centroid Frequency, which were
combined by deep CNNs achieving an AUC value of 0.985. On an adult
dataset, Zhao et al. [189] investigated learning deep facial expression features
from the image and optical flow sequences using a 3D CNN, and obtained an
average emotion recognition accuracy ranging from 0.56 to 0.76. Jung et al. [62]
developed a joint network for facial expression recognition, which includes
two networks of (1) the Deep Temporal Appearance Network (DTAN) and
(2) the Deep Temporal Geometry Network (DTGN). The CNN-based DTAN is
used to extract the temporal appearance feature, while the DTGN is employed
for capturing geometric information of facial landmark movements. These
two models are further combined to increase recognition performance. The
previously discussed work on facial expression and behavioral analysis is still
exploratory from nature, and needs to be further strengthened.

Summarizing the existing work, CNNs are good at extracting the spa-
tial features in 2D for facial information analysis. However, video-based ap-
proaches for emotion recognition are still immature. The temporal-domain
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information can assist the analysis of motion components. Importantly, es-
pecially for the application of infant monitoring, motion patterns are highly
correlated to infant status. Therefore, adopting a 3D CNN seems to be a good
choice, for considering and exploring both the spatial and temporal dimen-
sions.

6.3 Methods for an end-to-end 3D CNN

For developing a suitable method, the following diagram for infant discomfort
detection is proposed (shown in Figure 6.1), which compromises the following
four steps.

(1) Pre-processing of the input infant videos to remove redundant back-
ground.
(2) Optical flow-based motion estimation is applied for estimating body move-
ment between adjacent video frames.
(3) Combination of the informative features resulting from three RGB channels and
two motion channels derived from Step (2). Therefore, in total five channels
are used as input to the classification network.
(4) Network architecture by 3D CNN is implemented for the binary classification
of comfort and discomfort, which embeds a motion-attention module (two
motion channels). The 3D CNN extracts discriminative spatio-temporal
representations of different infant status, and finally, a decision of com-
fort/discomfort is assigned to each video segment.

The details of the above four steps in the processing diagram are elaborated
in the following subsections.

Figure 6.1: – Processing architecture of the proposed discomfort detection system.
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6.3.1 Pre-processing

All video frames are first cropped to remove superfluous information in the
image margins. The original image size of the recorded frame is 720× 1280
pixels. The size is decreased to 501× 751 pixels after removing pixels along
each margin. The image is further down-sampled to 100×150 pixels by nearest-
neighbor interpolation [106], since this is the required dimension for the input
of the network.

For each down-sampled video frame, we apply Gaussian weighting to sup-
press the background content that is not relevant for analysis, for example,
image-intensity changes caused by caregivers or parents moving around in-
fants for care-handling. In our recording scenario, infants were always located
at the central area of the video frames. The Gaussian weighting mask is thereby
applied as a weighting function to highlight the central area and suppress the
image boundaries. More specifically, the 2D Gaussian mean locations are di-
rected to the center of the image, while the Gaussian standard deviations in the
horizontal and vertical directions are empirically set to 40 and 80, respectively.

The original frame rate of the recorded videos is 30 frames per second (fps).
To reduce the computation load and memory cost, each video is sub-sampled
to half of the original frame rate (i.e. 15 fps) by only keeping the odd-indexed
frames and skipping the even-indexed frames. The lower frame rate also in-
creases the pixel movement between re-sampled adjacent frames and enables
better motion analysis.

For each video sequence, we use a temporal sliding window with a fixed
length of M frames (i.e. containing a time segment of M/15 seconds) and a
sliding stride of N frames. Consequently, for each window, M frames are used
as input clip for the classification network.

6.3.2 3D CNN model

CNNs facilitate the automated and deep learning of feature expressions di-
rectly from the input data (e.g. images and videos). However, a number of
existing CNNs are only capable of handling 2D inputs due to the inherent net-
work structure. The 2D CNNs are limited to spatial information only, while the
temporal information across the video frames is not exploited. The recently
proposed 3D CNNs extract features from both the spatial and temporal do-
mains by performing a 3D convolution and 3D pooling. This approach is able
to capture both the object appearance and contextual information and the mo-
tion information in a single optimization for feature extraction, so that the gen-
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erated features resemble the spatial and temporal semantics [59]. 3D CNNs
are a generalization of 2D CNNs. As compared to 2D CNNs, challenges for
3D CNNs are the larger memory footprint and higher dimensionality. These
exacerbate the intensive computation cost for the network inference. To this
end, we propose to use a 3D CNN model that not only considers the spatio-
temporal information but also computational efficiency. We use the backbone
of the PhysNet - 3D CNN model described in [179]. The input of our network
is an image sequence, followed by several convolutional and pooling layers,
as shown in Figure 6.2. In the figure, the RGB image is used as the input to
illustrate the 3D CNN architecture. However, the color channels of the RGB
images are later in this chapter extended to a 5-channel approach for feature
extraction.

The first convolutional layer contains a number of kernels with a size of
1×5×5 pixels, which only convolves the input data for the spatial information
in a single frame. The following six convolutional layers with the kernel size
of 3×3×3 convolve both temporal and spatial dimensions. It has been shown
that a deep net with small filter sizes like 3×3 outperforms a shallow net with
larger filters [136], i.e. small receptive fields of 3×3 convolution kernels with
deeper architectures yield better results. The previous consideration motivates
our choice for the small size of the convolutional filter 3×3×3.

The last convolutional layer is used for channel compression, and then
space is compressed by max-pooling. Max-pooling is generally favored for
classification tasks, since it leads to faster convergence and better generaliza-
tion, while it also retains the most significant and translation-invariant infor-
mation from the convolutional layers. Finally, average-pooling is used for com-
pressing temporal information because the weight of each image in the time
series is the same. It finally leads to a single confidence value that determines
the label of comfort or discomfort.

After the second convolutional layer, the size of each frame is halved, and
the number of channels is increased from 3 (RGB) to 64 (number of kernels).
For each input video segment, the total number of frames is M and each frame
includes three channels (RGB). For each frame, the pixel value in feature maps
is the sum of squares from all the channels at the corresponding pixel location.
Therefore, each video segment generates a group of feature maps.

The obtained outputs of the feature maps from the second convolutional
layer reveal the motion information, which is from multiple adjacent frames in
the original input. Figure 6.3 exemplifies the feature maps, which demonstrate
that the network can highlight the motion area of the infants, especially the eye-
/mouth/nasolabial furrow regions for characterizing their facial expression.
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(a) (b)

Figure 6.3: – Visualization of the proposed 3D CNN model. Examples of feature maps for (a)
comfortable and (b) discomfortable cases. Time increases within one row from left
to right with a sampling interval of 0.2 s. The first row is the original sequence
diagram, and the second shows the feature maps when training only on RGB. The
third row is for only using optical flow as input for learning, and the bottom row
shows the case when combining the five channels (RGB and optical flow). The
horizontal axis is down-sampled in time to show larger differences among frames.
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Finally, we disclose some details about network functions and optimiza-
tion. For learning, the Adam optimizer [69] is employed. Binary Cross-Entropy
(BCE) with Logits Loss (BCEWLL) is used as the loss function. BCE is a cross-
entropy suitable for binary classification, which is a special case of multi-class
classification softmax_cross_entropy.

6.3.3 Multi-channel attention model

Motion estimation using optical flow
To estimate the motion of infants, we employ optical flow for calculating the
motion vectors at the pixel level. Pixel-based motion vectors are calculated
for each video frame between two consecutive frames, using the dense optical
flow technique of Farnebäck et al. [33]. This technique uses quadratic poly-
nomials to estimate the motion between two consecutive frames. Polynomial
expansion is employed to approximate pixel intensities in the neighborhoods
of the frames. A pyramid decomposition is used to handle large pixel motions,
including distances larger than the neighborhood size. The tracking of motion
begins at the lowest resolution level and continues until convergence, therefore
effectively operating from coarse to fine level.

Between two consecutive video frames, the optical flow provides motion
derivatives. In our study, we compute two motion matrices, which are the ve-
locity magnitudes along the horizontal and vertical directions. These matrices
are computed at the pixel level at input resolution. Visual examples are pre-
sented in the second and third rows of Figure 6.4 (a) and (b), respectively.

5-Channel attention model
The 3D CNN network needs to focus on the image areas where motion may oc-
cur. Therefore, we adopt an attention-based model to guide the network. The
dense optical flow highlights the motion areas of infant bodies. After optical
flow calculation, we supply the two motion matrices with the horizontal and
vertical magnitudes as additional channels to the network input.

Figure 6.3 shows the feature maps when using different training inputs,
which are 3-channel RGB, 2-channel optical flow, and 5-channel combined in-
put. It is clear that the optical flow channels highlight the movement from the
videos. By leveraging the information from the optical flow channels, the at-
tention from the neural networks concentrates on the facial area in the images.
The performance of the fused 5-channel mechanism is further investigated as
a benchmark.
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(a) (b)

Figure 6.4: – Examples of optical flow images obtained by Farnebäck’s method for two infants
with a sampling interval of 0.2 s, using a selection of one out of three frames. This
is performed for enlarging the visual differences, as shown in (a) and (b). For each
baby, the top row shows the original RGB frames, and the second and third rows are
optical flow matrices for horizontal and vertical directions.
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6.4 Experimental Setup

6.4.1 Clinical dataset

The captured videos for the conducted study were recorded at the Máxima
Medical Center (MMC) in Veldhoven, The Netherlands, with a handheld high-
definition camera (Xacti VPC-FH1BK). For each infant in the database, writ-
ten consent was obtained from the parents. Videos of 24 infants were recor-
ded. The infants’ faces were filmed when experiencing various stress/pain
moments, including clinical treatments of heel prick, placing an intravenous
(IV) line, venipuncture, vaccination, post-operative pain, and the discomfort
moments caused by a diaper change, feeling hungry or crying for attention.
For 10 out of 24 infants, the relaxed comfort moments of resting or sleeping
were also recorded. In conclusion, for these 10 infants both comfort and dis-
comfort status were presented. For 4 infants only, the comfort moments were
captured, while for the remaining 10 infants, only discomfort moments were
recorded. Therefore, the video segments contain 1 to 2 types of emotion sta-
tus per subject. The duration of each video varies from less than one minute
to several minutes. The age of the 24 recorded infants ranges between 2 days
and 13 months old. Three infants were born prematurely, and were aged under
37 weeks at the time of recording.

The resolution of the recorded video frames is 1920×1080 pixels, and the
original frame rate is 30 fps. The videos were recorded under uncontrolled
lighting conditions, where typically general office lighting conditions were ap-
plied. The label of comfort/discomfort for each frame is manually annotated,
based on the consensus of two clinical experts. A total of 55 video segments
from 24 infants were selected, where 19 segments present comfort, and the re-
maining 36 are discomfort cases. There are more discomfort samples in our
dataset than comfort samples, since data collection performed by the clinicians
in the hospital has focused on the discomfort moments of the infants.

6.4.2 Evaluation metrics

The classification was evaluated by measuring the classification accuracy and
confusion matrices. The Receiver Operating Characteristic (ROC) curves are
also plotted for visualizing the performance with the corresponding Area Un-
der the ROC Curve (AUC) values.
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Figure 6.5: – AUCs for using different clip lengths and training schemes.

6.4.3 Learning protocol

A. Learning schemes
We have exploited different training schemes for investigating the networks,
which are listed below.
• 3-Channel RGB: Training is directly performed on the 3-channel RGB images
of our infant dataset, as described in Section 6.3.2.
• 2-Channel motion: Training is based on only 2-channel motion-derivative im-
ages estimated by dense optical flow.
• 5-Channel RGB and motion: The hybrid 5-channel input based on spatio-
temporal features has been already described in Section 6.3.3.

For training, we empirically set the number of epochs (m) to 800.

B. Window-size tuning
We have also investigated the effect of the temporal sliding-window length on
the performance of the 3D CNN model, in terms of classification AUC, accu-
racy, and execution time. The window length is tuned from one frame (i.e. the
2D case) to 15 frames (1 s), 30 frames (2 s), ..., 90 frames (6 s). The experiments
have been carried out on a GeForce RTX-2080 GPU and an Xeon E5-2680 V2
CPU.
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Figure 6.6: – Accuracy for using different clip lengths and training schemes.

6.5 Results

A. Evaluation metrics
• Learning scheme 3-channel RGB: Figure 6.7 shows the normalized confusion
matrix when the training is directly performed on 3-channel RGB images. The
obtained overall labeling accuracy is 0.96. The detection accuracy of comfort
and discomfort is 0.94 and 0.98, respectively. Figure 6.8 represents the corre-
sponding ROC with the AUC value of 0.98.
•Learning scheme 2-channel motion: The measured AUC is 0.73 when training
the model only on the 2-channel optical flow images.
•Learning scheme 5-channel RGB and motion: The model achieves the highest
AUC of 0.99 when training on the input of five channels (See Figure 6.10). The
normalized confusion matrix of fine-tuning using 5 channels is shown in Fig-
ure 6.9. The overall accuracy delivers robust and consistent information on
reaching the best value of 0.98.
B. Window-size tuning
The results mentioned above are all based on the window length of 15 frames
(1 s) and a step size (stride) of 5 frames (around 333 ms). We further explore
the influence of changing the window size. Figure 6.5 presents the AUCs for
three learning schemes with different window lengths. Figure 6.6 shows the
accuracy values during the window-size tuning procedure.



6.5 Results 105

Figure 6.7: – Normalized confusion matrix when directly training on
3-channel RGB images.

C. Execution time
Depending on tuning the duration of video clips (window size), the obtained
corresponding execution times for testing each video clip are summarized in
Table 6.1.

Training method 2D (s) 1s (s) 2s (s) 3s (s) 4s (s) 5s (s) 6s (s)

3-channel RGB 0.064 0.074 0.086 0.097 0.108 0.111 0.128
2-channel motion 0.035 0.073 0.081 0.091 0.099 0.104 0.111
5-ch. RGB+motion 0.064 0.078 0.097 0.109 0.127 0.139 0.159

Table 6.1: – Execution times of the three training methods for using different lengths of video
clips (window size expressed in seconds).
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Figure 6.8: – ROC of the proposed method when directly training on
3-channel RGB images.

6.6 Discussion and Conclusions

6.6.1 Discussion

Execution time: The best performance is achieved when the sliding-window
length is set to 2 seconds (30 frames) and the step size is set to one-third of a
second (5 frames). This means that (1) the latency between the start of the sys-
tem and the first measurement can be as short as 2 seconds, and (2) the mon-
itored infant status can be refreshed every one-third of a second incremented
with the required execution time for making a decision on the present clip.
The testing execution times shown in Table 6.1 indicate the required process-
ing time for unseen video clips, which is about 0.1 seconds. The experiments
are carried out on a GeForce RTX-2080 GPU and an Xeon E5-2680 V2 CPU.
The obtained execution times indicate that the infant discomfort detection can
be implemented as a real-time clinical application. Compared to 2-channel or
3-channel schemes, the 5-channel scheme requires some extra computing time
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(about 0.01 – 0.03 seconds), but this additional time is negligible due to the
parallel structure of the proposed solution.

Motion-based attention: When comparing the performance of different train-
ing schemes, the AUC and overall accuracy are the highest when applying the
learning scheme of 5-channel RGB and motion, which confirms the effective-
ness of the 5-channel attention-based network. The two extra channels of opti-
cal flow images provide the regions/boundaries with strong motion informa-
tion, which serve as a beacon that gears the network to focus on the movement.
The motion patterns of infants are clinically important for assessing comfort or
discomfort. From the feature maps in Figure 6.3, the statement is confirmed
that by incorporating the information from the optical flow channels, the at-
tention from the neural networks is dominantly focused on the facial area of
the infant and its related motion patterns. However, this discussion could be
broadened when the body of the infant would be recorded also. It is known
that when infants start from discomfort, their bodies also present different mo-
tion patterns compared to comfort moments. Further studies will be verified
in the future by collecting more video samples capturing both face and body
parts.

Window size tuning: When the sliding-window length is set to one frame,
this training/testing procedure becomes 2D processing. Evidently, its perfor-
mance is significantly reduced, as compared to the 3D processing. For all three
training schemes, the AUC and accuracy values improve along with the in-
creasing window size, which appear to be saturating after 2 seconds. This
saturation may be caused by the limited valid information from the samples,
or constraints by the available training sample size, which should be further
investigated by collecting more infant data in the future. The reason for the
saturated performance could also be that the discomfort information (facial
expression or body motion) involves mostly spontaneous/abrupt changes that
typically happen in a very short time interval, i.e. high-frequency temporal
information to be captured in a short time window. A long time window may
include and highlight low-frequency information (or slow changes like motion
drift or handheld camera motion), which are less relevant for comfort/discom-
fort classification.

Complexity of 3D CNN: Regarding the complexity of the proposed 3D CNN,
the total number of the parameters is 514,657, yielding a compact computa-
tional model. The execution time for making a decision on an unseen clip is
0.097 seconds using the sliding window of 2 seconds, which results in the best
AUC of 0.99. As a conclusion, the complexity of the 3D CNN is lower than
expected, while it offers a very high performance.
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Figure 6.9: – Normalized confusion matrix for 5-channel training.

6.6.2 Conclusions

This chapter has proposed a video monitoring system that provides continuous
and contactless assessment of discomfort for infants. The system is validated
by real clinical infant data from a hospital with expert annotations. In this
study, we have investigated the benefit of using optical flow measurement to
draw the attention of 3D CNNs. The system aims to alert caregivers/clinicians
immediately when infants start suffering from discomfort. The proposed sys-
tem can monitor infant status continuously by classifying the video frames into
either comfort or discomfort, which fills the gaps of the current intermittent
manual observation and the human efforts. Moreover, the proposed method
also has the potential to be implemented as an infant-care tool for family use
on a longer term or remote monitoring critical infants on a professional ba-
sis. The system alarm is triggered by the detection of discomfort status, which
will notify clinical staff for timely and appropriate treatment. Thus, the system
serves to prevent fatal events and eventually improves the early development
of infants. Summarizing, this chapter has contributed as follows. To the best of
our knowledge, this is the first contribution with a 5-channel spatial-temporal
input of the infant behavior to the learning model for discomfort detection.
Second, the design of the novel 3D CNN network has a fast processing speed
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Figure 6.10: – ROC curve of 5-channel training.

and high performance, thereby showing that the system suits clinical practice.
The system can achieve continuous reliable operation for clinicians.

The proposed system forms a neat end-to-end video processing solution
without requiring the conventional front-end steps of face detection and track-
ing. In general practice, the partial/full-face occlusion is likely to happen, espe-
cially during infant physical care. Our method is better suited to handle these
challenging moments, as compared to conventional face detection/tracking-
based methods.

In the future, the proposed model can be improved to identify discom-
fort grades by changing the two-class output to multiple classes, or even a
regression layer to predict the significance of discomfort. Future work may
also include extending the 5-channel input to higher dimensions by fusing
information from different sensor modalities, such as the depth information
from a 3D sensor (e.g., time-of-flight camera). In addition to the fusion of
color-intensity signals and motion signals, it can be beneficial to consider
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fusing the contextual information and physiological information for joint clas-
sification, since physiological variables (e.g., heart rate, heart-rate variability,
respiration rate) can be also measured from the videos.

Up to this point, the research work has deeply investigated the computer-
aided diagnosis to detect infant discomfort moments. The next chapter at-
tempts to further exploit the information inside captured videos and develop a
broader status report on the well-being of the infant. This approach is based on
expanding the quantitative analysis using videos for extracting information on
the respiration of the infant. Again, the research aims at a contactless solution
for vital sign measurement of the infant as an add-on to comfort/discomfort
detection.



Chapter 7
Quantitative measurement -
Respiration monitoring for
premature neonates in NICU

7.1 Introduction

The previous chapters have focused on the characteristic analysis of infant fa-
cial expression and/or motion patterns for classifying infant comfort and dis-
comfort status. This chapter is aiming at further investigating the feasibility
of using videos for quantitative physiological signal extraction, which is an ex-
tension to the direct video-based comfort/discomfort classification. It is known
that specific parameters from a person can be remotely measured from video
signals.

Vital signs and the related parameters, such as heart rate, blood pressure,
respiratory rate, and body temperature, are physical parameters that can be
measured and used to assess physiological state and functioning of a person.
Monitoring of vital parameters is a crucial topic in neonatal daily care. Pre-
mature infants have an immature respiratory control that predisposes them to
apnea/periodic breathing, haemoglobin oxygen desaturation, and bradycar-
dia [22, 125]. Apnea is defined as the status of cessation of respiratory airflow,
whereas periodic breathing is characterized by groups of respiratory move-
ments, which are interrupted by small intervals of apnea [109]. Continuous
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monitoring of respiration for premature infants is critical to detect abnormali-
ties in breathing and help in developing early treatments to prevent significant
hypoxia and central depression from apnea. A long-term continuous monitor-
ing approach of respiration may be used to also assess the sleep stage, which
can vary with different clinical conditions [111, 112]. The condition of respira-
tion and its measurement is a key research topic for this chapter.

The existing technical methods for monitoring respiration include nasal
thermocouples, spirometers, transthoracic inductance, respiratory-effort belt
transducer, piezoelectric transducer, optical sensor (pulse oximetry), strain
gauge, impedance plethysmography, and electrocardiogram (ECG). Currently,
the respiration of premature infants in a neonatal intensive care unit (NICU)
is monitored by bedside monitors. ECG is considered as the standard refer-
ence measurement for respiration, since ECG can provide stable and robust
monitoring for a NICU. However, the pressure of the contact sensor may also
change the local skin perfusion, which can yield not a true measurement as
compared to the non-contact sensor. The electrodes may exert pressure to the
skin, yielding to tissue compression and vascular insufficiency. As a conse-
quence, applying the ECG electrodes on infant skin for a long time increases
the risk of trauma and infections. Removing the adhesives from the immature
skin, as part of regular care, can damage the immature skin of preterm infants,
as well as cause stress and pain [3, 90]. This technique is impractical for home
care, since the sensors have to be placed by skilled caregivers, and wearing the
sensors also causes inconvenience for everyday life [8, 92].

A contactless respiration monitoring system is a good alternative to im-
prove infant comfort and safety and when combined with video observation,
it also has the potential for monitoring at home. Few works to date have in-
vestigated video-based contactless methods for monitoring respiration. This
chapter aims to develop and evaluate a contactless respiration measurement
method based on video monitoring, which addresses the following challenges.

• Movement estimation: The respiration calculation is based on movement
estimation. The respiratory motion of infants can be subtle and small
in amplitude, which can complicate a video-based measurement. Both
conventional and state-of-the-art methods should be investigated and ex-
plored for extracting movement signals. Specifically, the performance
of deep learning-based methods need to be compared with optical flow
techniques for motion measurement.

• Movement separation: Since the movement signal from the videos con-
tains not only respiration but also other types of movements. These types
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of movement can interfere with the measurement of respiration and act
as a noisy component. From the respiratory motion, the respiration rate
should be computed and should be only based on respiration-related
movement. Therefore, different components of estimated motion signals
need to be well analyzed and separated.

• Respiration signal conversion: Generic signal processing algorithms need
to be employed for processing the respiration signal and enabling reli-
able detection of the dominant features of the respiration. For example,
the peaks of the derived respiration signal need to be detected, so that
the respiration rate can be obtained accordingly. The applied signal pro-
cessing algorithms rely on hyper-parameter tuning, such as the length of
the sliding window. Therefore, such parameters should be optimized for
performance.

Taking into account the requirements and aspects mentioned above, this chap-
ter develops an approach for non-contact respiration monitoring, where the
proposed method is validated on clinical data acquired in a NICU. Two flow-
estimation methods are employed to estimate pixel-based motion vectors be-
tween adjacent video frames, namely the conventional optical flow method [9]
and Deep Flow [171]. The spatial statistics of each derived flow matrix is fur-
ther analyzed, by applying robust principal component analysis (PCA) [107] to
describe respiration information.

The remainder of this chapter is as follows. Section 7.2 discusses the exist-
ing related work. Section 7.3 elaborates on the proposed methods. Section 7.4
presents the experimental results with discussions. Finally, Section 7.5 con-
cludes the chapter.

7.2 Related work

A. Work on adults for measuring physiological parameters

In the applications of adults, Deng et al. [27] presented a design and imple-
mentation of a novel sleep monitoring system that simultaneously analyzed
respiration, head posture, and body posture for adults. For respiration, the re-
gion of breathing movement was automatically determined and estimated the
intensity, yielding a waveform indicating respiratory rhythms with an accu-
racy of 96 % in recognizing abnormal breathing. However, the accuracy of
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the respiration rate was not provided. Chazal et al. [26] applied a contact-
less biomotion sensor of Doppler radar for respiration monitoring. Respira-
tory frequency and magnitude were used for the classification of determining
sleep/wake states, which achieved an accuracy of 69 % for the wake and 88 %
for sleep state. Gupta et al. [44] estimated heart rate (HR) accurately, using face
videos acquired from a low-cost camera for adults. The face video consisting of
frontal, profile, or multiple faces, was divided into multiple overlapping frag-
ments to determine HR estimates. The HR estimates were fused using quality-
based fusion, which aimed to minimize illumination and face deformations.
Prathosh et al. [110] proposed a general framework for estimating a periodic
signal, which was applied to derive a computationally inexpensive method for
estimating respiratory patterns using two-dimensional cameras, which did not
critically depend on the region of interest. Specifically, the patterns were esti-
mated by imaging changes in the reflected light caused by respiration-induced
motion. Estimation of the pattern was cast as a blind deconvolution problem
and was solved through a method comprising subspace projection and statis-
tical aggregation.

B. Physiological measurements for infants

In terms of the applications for infants, Werth et al. reviewed the unob-
trusive measurements for indicating sleep state in preterm infants [172].
Abbas et al. [1] attempted to detect respiration rate of neonates on a real-time
basis using infrared thermography. They analyzed the anterior naris (nostrils)
temperature profile associated with the inspiration and expiration phases.
However, the region of interest (ROI) was assumed to be fixed after initializa-
tion. Moreover, the method is not practical for NICU infants, since the faces
of premature infants in a NICU are often occluded by feeding tubes and/or
breathing masks. In practice, the temperature inside an incubator is continu-
ously monitored and adjusted by caregivers in order to help infants maintain
their body temperature in a normal range. However, the controlled envi-
ronmental temperature might affect the accuracy of the thermography-based
respiration monitoring method. Koolen et al. [72] extracted the respiration
rate from video data included in polysomnography. They used Eulerian
video magnification (EVM) to amplify the respiration movements, which was
followed by optical flow to estimate the respiration motion and therefore,
obtained a respiration signal. Independent component analysis and principal
component analysis were applied to improve signal quality. Finally, the results
showed a detection accuracy of 94.1 % for sleeping-stage patients. Antognoli et
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al. [6] applied a digital webcam (WeC) and an EVM algorithm to measure HR
and respiration rate (RR). The accumulated RGB values of a manually selected
ROI were calculated as a single signal, from which the power spectral density
was further estimated and used for peak extraction. The evaluation based on
data of seven patients yielded a root mean-squared error (RMSE) of 12.2 for
the HR and 7.6 for the RR. However, the limitation of a pulse-based respiration
extraction is that it extracts the respiratory modulation in blood volume
changes, which is both subject-dependent (different respiratory efforts) and
measurement-location dependent. The modulation effect varies in different
body parts. Moreover, the peak selection from spectrograms was based on
common knowledge of normal HR and RR frequency ranges, which is not
suitable for infants under clinical conditions of different diseases.

Summarizing the existing work, various sensing techniques including
biomotion sensing of Doppler radar, video camera and infrared thermography
are leveraged. Automated solutions on remote sensing of respiration or other
contactless physiological measures have been developed for adults and infants.
In our study, the target population are premature infants in a NICU. We select
a video camera instead of other sensors because of its large availability and
economical usage, and it is contactless. Therefore, we aim to apply motion ex-
traction and movement decomposition to estimate the respiration signal. Then,
this respiration-movement analysis can be combined with overall video obser-
vation, so that the video camera serves two purposes simultaneously.

7.3 Methods for respiration estimation
7.3.1 Material

The study was conducted with videos recorded at the Máxima Medical Cen-
ter in Veldhoven, The Netherlands, by a fixed-position high-definition camera
(Camera model IDS uEye monochrome) filming the infant’s entire body in the
direction of the foot to the head. Figure 7.1 shows an example of a captured
video frame. We decided on the recording position of the camera by consider-
ing two aspects: (1) the camera position should cause little or no interruption
to daily routine care, and (2) the position should offer a good viewpoint for ob-
serving vertical movement of the infant chest, where the movement is assumed
to be with maximum respiratory motion energy in the vertical direction.

For all infant recordings, written consent was obtained from the parents.
The resolution of each video frame was 736 × 480 pixels, while the frame rate
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was 8 fps. The videos were recorded under uncontrolled, regular hospital light-
ing conditions. Parallel with the video capturing, standard chest impedance
(ChI) signals were recorded simultaneously as reference standards.

The dataset contains five infants with an average gestational age of 29.6 ±
2.8 weeks (range 27+0–33+6 weeks), an average postnatal age of 1.2 ± 0.6 weeks
(range 0+4–2+1 weeks), and an average weight of 1,555 ± 682.4 g (range 755–
2,410 g).

Figure 7.1: – Example of an acquired video frame from the direction of the foot to the infant head
to support vertical motion measurement.

7.3.2 Motion-based calculation of respiration

From the captured videos, the motion-based respiration is measured at differ-
ent points in the image to come to a reliable measurement. The different points
enable us to create a feature vector of motion values, which will give important
information for the machine learning system. For every video frame, the fea-
ture values are jointly combined into a matrix, which will be referred to as the
motion matrix. The flowchart of the proposed system is shown in Figure 7.2,
where motion-matrix estimation is an essential step in the pipeline. We esti-
mate the pattern of apparent motion resulting from the respiration of infants in
videos. The apparent motion 1 visible in the videos is not only the real motion
from the respiration because humans have various types of motion and the

1The apparent motion is the motion visible in the video frames, which can be different from the
real motion of the infant chest.
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camera is only covering these from a single point of view. Therefore, we con-
sider the measured motion only as an estimate of the real respiratory motion.
The motion-matrix estimation can be defined as the distribution of apparent
velocities of movement in successive images.

Figure 7.2: – Flowchart of the proposed video-based respiration monitoring system.

Two flow estimation methods are employed to estimate pixel motion vec-
tors between adjacent video frames. First, the conventional optical flow
method [9] is utilized and evaluated. However, the optical flow is more sen-
sitive to high gradient texture, whereas in our case the infant chest is either
bare or covered by a blanket. Thus, in both cases, the chest area, which mostly
indicates the respiratory motion, lacks gradient texture. Deep Flow [171] is
sensitive to the entire part of moving objects paying less attention to texture
information. Therefore, improved performance is expected by using a flow
estimation method based on deep learning.

For both methods, the derived motion vectors contain respiration informa-
tion, induced by the motion of the abdominal wall and chest wall. We have
only considered the vertical motion vector, since the respiration-related motion
is mainly in the vertical direction in the captured videos. For infants under one
year of age, it is recommended by the American Academy of Pediatrics (AAP)
that they should be placed to sleep on their backs every time being laid down
to sleep. This lowers the risk of the sudden infant death syndrome (SIDS).

The details of both methods are now briefly discussed.

Conventional Optical Flow

The optical flow computation is specified by:

∂I
∂x

Vx + ∂I
∂y

Vy + ∂I
∂t

= 0, (7.1)
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where I is the intensity matrix of a frame in a video, which is locally differ-
entiated, and Vx are Vy are the actual optical flow parameters describing the
motion velocity. We have deployed the classic dense optical flow algorithm
proposed by Barron et al. [9], where second-order differential equations based
on the Hessian matrix are used to constrain two-dimensional (2D) velocity. The
Barron method creates flow fields with 100% density. However, the conven-
tional optical flow method is limited at estimating motion in poorly textured
areas, which lack gradient variation.

Deep Flow

The above conventional optical flow approach only computes image matching
at a single scale. However, for complicated situations with complex motions,
the conventional approach may not be able to effectively capture the interac-
tion or dependency relationships. Brox and Malik [17] proposed to add the
addition of a descriptor matching term in the variational approach, which al-
lows better handling of large displacements. The matching provides guidance
in using correspondences from sparse descriptor matching.

In our study, we have applied the method from Weinzaepfel et al. [171].
A descriptor matching algorithm was incorporated and implemented in a
CNN, which is based on deep convolutions with six layers, interleaving con-
volutions and max-pooling. In the proposed framework, dense sampling is ap-
plied to efficiently retrieve quasi-dense correspondences, while incorporating
a smoothing effect on the descriptors matches. Figure 7.3 shows the framework
for Deep Flow estimation.

The local maxima in the response maps correspond to good matches of cor-
responding local image patches. To obtain dense correspondences between
any matched patches (i.e. at local maxima), it suffices to recover the path of re-
sponse values that generated this maximum. In contrast to most algorithms for
optical flow, the Deep Flow method works in a bottom-up fashion. The algo-
rithm starts at a fine level, and then moves up to coarser levels (larger patches),
which are constructed as an aggregation of responses of smaller patches.

7.3.3 Respiratory description

The results of flow calculation are captured in the rows of the derived motion
matrix M (of size N×W , where N denotes the number of pixels in a video frame
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and W is the total number of frames in a video2), which contain the motion
derivatives that represent the velocity magnitudes of the pixel trajectories in
the vertical direction.

The spatial statistics of the flow matrix were further analyzed by apply-
ing robust PCA [107]. PCA includes the Eigenvalue decomposition of a data
covariance matrix or singular value decomposition of a data matrix. The de-
composition task projects the original data onto an orthogonal subspace, where
each direction is mutually decorrelated and the most informative data informa-
tion becomes available in the first several principal components. In our study,
instead of considering the originally obtained matrix, the first Eigenvalue of
the covariance matrix of flows is analyzed, since the first Eigenvalue domi-
nantly represents the major motion component. Besides, it is beneficial to re-
duce residual motion noise that has lower energy than the respiratory motion
in each video.

Figure 7.3: – Diagram of the workflow and CNN-based processing steps in Deep Flow.

The motion matrix M is masked by sub-spatiotemporal regions, mi , where
each mi is a local mask that stores W consecutive squared blocks from all im-
ages in a video. For each region mi , we can generate the Eigenvectors that

2In practice, the length of the video can be partitioned into segments or a sliding window can
be used to limit the memory complexity.
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satisfy the following general condition, specified by

mi ·Di =λ ·Di s.t . Det(mi −λi · I) = 0, (7.2)

where Det(·) denotes the matrix determinant, I represents the identity matrix,
and Di and λi are Eigenvectors and Eigenvalues, respectively.

Since it is difficult to a-priori choose between the two methods, we have
evaluated both of them.

7.3.4 Evaluation of optical flow and Deep Flow

In this study, we have employed a sliding window of 120 s with a step size of
a unity second to estimate the respiration rate. The respiration rate is calcu-
lated by first averaging the time intervals between breathing peaks, followed
by converting those numbers to a frequency value, expressed in the unit of
breaths per minute (bpm).

It is well known that the respiration signal can be estimated from the chest
impedance (ChI) signals. To evaluate the performance of respiration estimation
using our video-based algorithms, we have computed the cross-correlation co-
efficients and the RMSE as measures to compare the respiration rates of the
reference breathing signal from the ChI and the extracted respiration signals.
The cross-correlation coefficient calculation is initially based on a zero-mean
process. Thus, this calculation is only for comparing the respiration rate vari-
ance of our estimation and the reference standard. In addition, correlation plots
and Bland–Altman plots [13, 71] are also created.

7.4 Experimental results and Discussion

Figure 7.4 shows a visual comparison of the reference breathing signal from
the ChI and two extracted respiration signals by the proposed optical flow- and
Deep Flow-based methods. The three re-scaled 1D signals from the ChI, optical
flow- and Deep Flow-based motion estimations are depicted in Figure 7.5.

Table 7.1 summarizes the estimation of the respiration rate using two dif-
ferent optical flow methods. Table 7.2 shows the root mean-squared errors
(RMSE) and cross-correlation (CC) coefficients of the reference breathing sig-
nal from the ChI, compared to our optical flow- and Deep Flow-based results.
The results obtained from Deep Flow are more accurate than those of the con-
ventional optical flow approach. The average of all cross-correlation coeffi-
cients is computed over time for all videos, while the overall average is 0.74
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Figure 7.4: – Monitored respiration from the ChI, and corresponding extracted respiration sig-
nals from a segment, based on optical flow and Deep Flow.

and the overall average RMSE is 4.55, using the proposed deep learning-based
method. Despite the limited number of measurements, these preliminary re-
sults provide a promising result for further investigation of the neonatal video-
based respiration monitoring method. The low value of the overall RMSE for
our deep learning-based method (4.55) shows the feasibility to apply our auto-
mated respiration for clinical use.

Patient Duration Mean ± std

ID (h:m:s) Reference (ChI) Optical Flow Deep Flow

1 00:50:13 51.12±6.00 47.13±4.96 48.67±4.69
2 00:22:00 55.41±6.73 51.18±7.35 53.23±7.07
3 00:26:54 48.78±3.58 44.12±2.91 46.75±2.80
4 00:09:22 52.36±5.25 48.75±3.17 50.05±3.72
5 00:06:15 61.61±3.80 51.56±4.29 55.58±3.28

Table 7.1: – Measurement of the respiration rate for all the videos. Duration of each video,
and measured mean and standard deviations of reference and our optical flow-based
and Deep Flow-based methods.
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(a)

(b)

Figure 7.5: – Data patterns for chest impedance and video-based respiration observation: (a)
re-scaled 1D signals; and (b) zoom in of each interval indicated in (a).
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Patient ID RMSE CC Coefficients

Optical Flow Deep Flow Optical Flow Deep Flow

1 5.09 4.32 0.85 0.82
2 4.94 3.10 0.94 0.95
3 3.86 3.51 0.73 0.75
4 5.75 5.11 0.47 0.52
5 10.85 6.71 0.49 0.66

Average 6.10 4.55 0.70 0.74

Table 7.2: – Root mean-squared errors (RMSE) and cross-correlation (CC) coefficients of the
reference breathing signal from the ChI compared to our optical flow-based and Deep
Flow-based results.

Discussion on systematic errors: From both the correlation and Bland–Altman
analyses in Figure 7.6(a) and (b), the Deep Flow-based method produces a
lower error than the optical flow-based method, especially when breathing
rates are less than 50 bpm. The absolute values of the overall mean errors re-
duce from 4.8 to 2.7 bpm in the optical flow and Deep Flow cases, respectively.
Except for Patient 5, the obtained error in the respiration rate is limited to 5 %
or less. The Deep Flow-based method gives a consistently lower error (RMSE)
than the optical flow-based method.

We have observed that a systematic residual error occurs, which results
from our automated processing pipeline. The proposed automated method
consistently underestimates the respiration rate. This phenomenon occurs be-
cause our motion filter fails to remove motion caused by interruptions in the
video. For example, nurse care-handling of the infants can give occlusions to
the visibility of the infant respiratory motion, which results in lack of motion
cycles being measured by the camera, leading to a lower respiration frequency.
Considering a possible reduction of the systematic residual errors, future work
would involve filtering methods, which are typically unsupervised predefined
filters. To replace such unsupervised filters for extracting the noise from respi-
ration signals, it seems attractive to investigate a supervised approach.

Future direction on optimizing accuracy: We have compared the effect of two
different flow estimation methods on the final respiration calculation. The re-
sults show that the Deep Flow approach is both sensitive to homogeneous re-
gions and the boundary area, whereas the conventional approach is more sen-
sitive to the boundary area. This advantage of the Deep Flow-based method
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(a) Optical flow

(b) Deep Flow

Figure 7.6: – Correlation and Bland–Altman plots comparing respiration rate measurements
derived from: (a) the chest impedance (ChI) and optical flow-based method; and
(b) the ChI and Deep Flow-based method. The correlation plots contain the linear
regression equation, correlation coefficient (r 2), sum of squared error (SSE), and
number of points. The Bland–Altman plots contain the reproducibility coefficient
(RPC = 1.96×σ), and also show the coefficient of variation (CV = the standard
deviation (σ) as a percentage of the mean), limits of agreement (LOA = ±1.96×σ),
and the bias offset of the measures.
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improves the whole processing pipeline by increasing both the accuracy and
robustness.

We consider that the accuracy of the proposed algorithm for extracting a
respiration signal may be affected by the captured image resolution and image
sensor noise. If the resolution is rather low, the movement information from
different regions can be blended within one pixel, which is not ideal for ac-
curate motion extraction. If the image sensor noise is too high such that the
sensor noise components in pixel values dominate the pixel changes induced
by respiratory motion, the respiration measurement will be polluted and inac-
curate. The quantitative analysis regarding this perspective is a complicated
matter and is seen as future work.

Future directions on disease-related analysis: At present, the research work is
carried out as a feasibility study. The focus of this study is the installation,
adaptation, and validation of camera-based monitoring technology in the
NICU setting. The performance on preterm infants related to specific diseases
has not been investigated. In the future, we will further validate the proposed
algorithm on infants having different health situations. One ongoing study
that is performed at the same hospital is the relation between discomfort and
gastroesophageal reflux disease (GERD) [77].

Required adaptations for clinical deployment: Our recordings were taken from
real clinical practice without interfering with the clinical workflow. Our algo-
rithm works when the respiratory motion can be observed by the camera, even
as subtle movement, i.e., infants can be either naked or covered by a blanket (as
long as the infant body has contact with the blanket such that the movement
information from the thorax-abdomen can still be derived).

Our algorithm relies on the intensity of video frames for motion extraction
(no color or chrominance information is used). Therefore, for the nighttime
condition, it is possible to measure the respiration signal by using the same
proposed software algorithms from our study and just altering to an infrared
camera with an infrared lighting source. During low-light conditions, the per-
formance of our system may be affected by the noise generated within the
camera sensor.

Extension possibilities with video observation: The major advantage of us-
ing a video-based method to monitor respiration is its contact-free operation.
Both ChI and polysomnography need electrodes attached to the patient’s skin,
which increase the risk of pain and skin irritation. Therefore, our method can
contribute to the comfort level and convenience of the infant. A further bene-
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fit of using a camera is that it enables more measurements than contact-based
bio-sensors, including physiological signals (e.g. breathing rate, heart rate, and
blood oxygen saturation) [162, 170] and contexture signals (e.g. body motion,
activities, and facial expressions) [141, 145, 148, 174]. These possibilities will
enrich the functionality of a health monitoring system. Our system can be con-
structed with a generic webcam and an embedded computing platform, which
forms a cost-effective solution. In principle, one camera can monitor multiple
subjects/infants simultaneously, as long as they are captured by the camera
view, while each contact-based bio-sensor can only monitor one single subject
or infant.

7.5 Conclusions

This study has presented an automated processing workflow to estimate respi-
ration signals from videos of premature infants in NICUs. The motion estima-
tion methods of both optical flow and Deep Flow are employed for extracting
respiration movement. The Deep Flow approach recruits CNNs for finding
the replacement between target images and reference images. The proposed
automated extracted respiration signals are compared to the signals being ex-
tracted from the regular chest impedance (ChI) measurement. The preliminary
results are promising for further investigation of the video-based respiration
monitoring method and for applying our automated respiration extraction for
infants in NICUs. In most of the cases, the measured RMSE is below 5 %. Ex-
periments have shown that the deep learning-based method outperforms the
optical flow-based method both in accuracy (low RMSE) and robustness. Fu-
ture work can investigate the possibility of directly applying a deep learning
framework to estimate respiration rate. For example, an LSTM-based system
can effectively incorporate temporal information for a regression task and is
expected to further enhance the obtained results.



Chapter 8
Conclusions

8.1 Conclusions of the individual chapters

The objective of this thesis is to develop an automated video-based discomfort
detection system for infants. The system aims to alert clinical staff immedi-
ately when infants start suffering from discomfort and express themselves
accordingly.

Chapter 2 has introduced a facial expression-based method for automated
detection of infant discomfort. The infant facial expression is analyzed at the
image level for each static video frame. First, a specific pre-processing of face
detection and normalization is proposed. Second, a two-phase classification
workflow is employed, where Phase 1 is subject-independent, and Phase 2 is
subject-dependent. Phase 1 derives geometric and appearance features, while
Phase 2 incorporates facial landmark-based template matching. Finally, an
SVM classifier is applied to video frames to recognize facial expressions of
comfort or discomfort. The method is evaluated using videos from 22 infants.
Experimental results show an AUC of 0.87 for the subject-independent phase
(Phase 1), and 0.97 for the subject-dependent phase (Phase 2).

Chapter 3 has exploited deep CNN algorithms to address the problem
of discomfort detection for infants by the learned analysis of their facial
expressions. A dataset of 55 videos about facial expressions, recorded from
24 infants, is used in our study. Given the limited available data for training,
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we have employed a pre-trained CNN model, which is followed by fine-
tuning the networks using a public dataset with labeled facial expressions
(the Shoulder-Pain dataset). The CNNs are further refined with our data of
infants. After using twofold cross-validation, we achieve an AUC value of
0.96, which is substantially higher than the results without any pre-training
steps (AUC=0.77). The proposed method also achieves better results than
Chapter 2, which is based on handcrafted features. By fusing individual frame
results over the video sequence, the AUC is further improved from 0.96 to 0.98.

Chapter 4 has investigated a video-based method for automated detection
of infant discomfort, based on analyzing facial and body motion. Infant
motion trajectories are calculated from frame-to-frame using optical flow. The
motion acceleration rate is further derived from the motion magnitudes, which
is followed by extracting 18 time-domain and frequency-domain features to
identify different motion patterns. An SVM classifier is finally employed to
discriminate infant status of comfort or discomfort. The method is evaluated
using 183 video segments of 11 infants from 17 heel prick events. Experimental
results show an AUC of 0.94 for discomfort detection and an average accuracy
of 0.86 when combining all proposed features.

Chapter 5 has introduced a system that first employs the optical flow
to estimate infant body motion trajectories across video frames. Following
the movement estimation, Log Mel-spectrogram, Mel Frequency Cepstral
Coefficients (MFCCs), and Spectral Subband Centroid Frequency (SSCF)
features are extracted from the motion signal. This allows a presentation of
1D motion signals by 2D time-frequency representations of the distribution
of signal energy. Finally, deep CNNs are applied to the 2D images for the
binary comfort/discomfort classification. The performance of the model is
assessed using leave-one-infant-out cross-validation. The proposed algorithm
is evaluated on a dataset containing 183 video segments recorded from 11
infants during 17 heel prick events, which is a pain stimulus associated
with a routine care procedure. Experimental results have shown an area
under the receiver operating characteristic curve of 0.985 and an accuracy of
94.2 %, thereby offering a promising possibility to deploy the proposed system
in clinical practice. The spectrum representation has improved the AUC of
about 4 percent points comparing to the SVM-based classification in Chapter 4.

Chapter 6 has presented a novel and efficient discomfort detection sys-
tem based on 3D CNN, which achieves an end-to-end solution without the
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conventional face detection and tracking steps. The scheme and the approach
of this study is leveraging the video characteristics of spatial contextual
and temporal (motion) information. The architectures of both 2D and 3D
networks are investigated for the task of infant discomfort detection. The 3D
CNNs enable to capture both the body motion and the facial expression from
infants. The performance of the system is assessed using videos recorded
from 24 hospitalized infants by visualizing ROC curves and measuring the
AUC values. Additional performance metrics (labeling accuracy) are also
calculated. Experimental results show that the proposed system achieves an
AUC of 0.99, while the overall labeling accuracy is also 0.99, which confirms
the robustness by using a 3D CNN for infant discomfort monitoring, simul-
taneously capturing both motion and facial expressions. The results in this
chapter offer the highest performance comparing to previous chapters, which
is explained by the joint learning of spatial and temporal features of the infant
behavior.

Chapter 7 has investigated an automated video-based workflow to estimate
respiration rates for premature infants in NICUs. Two flow estimation methods
are employed to estimate motion between video frames, namely the conven-
tional optical flow-based and deep learning-based flow calculation methods,
which are then compared in performance. The respiratory signal is finally ex-
tracted via decomposition of the motion matrix. The proposed methods are
evaluated by comparing the proposed automated extracted respiration signals
to that of the extracted chest-impedance signal on videos of five premature
infants. The overall average cross-correlation coefficients are 0.70 for the opti-
cal flow-based method and 0.74 for the Deep Flow-based method. The average
root mean-squared errors are 6.10 bpm and 4.55 bpm for the optical flow-based
and the Deep Flow-based methods, respectively. The experimental results are
interesting for further investigation and clinical application of the video-based
respiration monitoring method for infants in NICUs. The contribution of this
chapter is to benefit further from video-based monitoring by investigating the
feasibility of contactless respiration measurement, and further add value to the
measurement to the health-state monitoring of infants.

8.2 Discussion on the research questions

In this section, the performance of the proposed methods and systems is dis-
cussed with respect to the posed research questions in Chapter 1.
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RQ1: Facial features for frame-level discomfort detection

• RQ1.a: Which facial features are relevant and discriminating for charac-
terizing the facial expression for the infant comfort/discomfort detection
task?

In Chapter 2, this question is addressed. Regarding handcrafted features,
we have investigated two categories of features, geometric and appear-
ance features, to describe the facial expressions. For geometric features,
the areas of left eye, right eye, outer lip contour, and inner lip contour
are calculated. For the appearance features, Histogram of Oriented Gra-
dients (HOG) and Local Binary Patterns (LBPs) are used to describe the
facial texture. From all geometric and appearance features, the most dis-
criminative features are the geometric features that combine the sizes of
four facial regions, namely left eye, right eye, outer lip contour, and in-
ner lip contour. The combination of these geometric features achieves
the best AUC of 0.85. However, in contrast, LBP is less effective (AUC =
0.71) than the combination of these geometric features. The resulted fea-
tures are a logical finding because they are important in the description
of comfort and discomfort analysis, as used in clinical pain scales.

• RQ1.b: How can we normalize the facial features across different infants,
since infants have different levels of facial expressions?

Across Chapter 2, we have adopted two solutions to normalize the facial
information to control the variations among different infants. The first
solution is to normalize the face ROI. In Chapter 2, 68 facial landmarks
are first detected using the Dlib face landmark detector. Based on the
detected 68 landmarks as a reference, the rotation and size variance of
faces across infants are corrected. This correction involves the usage of a
part of the feature points previously discussed to rotate, scale, and crop
the original face image for normalization. The second solution is based
on the application of subject-dependent features. For each individual in-
fant, the annotated comfort moments are obtained, of which the faces are
predefined as parameterized templates to compare the similarity with an
unseen input frame. Compared to the results without template matching
features, the AUC of template matching features increases from 0.89 to
0.97. The overall accuracy of results without template matching for the
10-infant dataset is 0.79, and 0.95 for combining the template matching,
which amounts to a significant accuracy increase of 20 %. Because of the
individual template matching for each infant, the last solution is more
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powerful and suited to customize the facial expression levels of different
infants.

RQ2: Deep learning-based frame-level discomfort detection

• RQ2.a: Can deep learning be used for this infant comfort/discomfort
classification task? If so, in what way?

This question has been investigated as a possibility in Chapter 3, where
first the face ROI is extracted from each video frame, and then deep learn-
ing is applied on the face ROIs. The deep learning approach is compared
with the handcrafted feature-based method, which shows that the results
of deep learning-based methods substantially increase the performance
(AUC increases from 0.87 to 0.96). The results strongly indicate that deep
learning methods can replace the conventional handcrafted features for
infant monitoring applications in state-of-the-art settings.

• RQ2.b: Can deep learning be applied on a small dataset or are special
actions required to facilitate this?

In Chapter 3, it has been discussed that a small dataset is not suitable
for fine-tuning a large set of parameters of the entire network at the ini-
tial stages of the deep learning framework. The AUC without any pre-
training only achieves the value of 0.77. Therefore, a DenseNet model
is first pre-trained on ImageNet data (AUC increased to 0.93), followed
by a first fine-tuning step of training the model with a relatively large
and similar dataset to tune the networks. In our case and for that pur-
pose, the Shoulder-Pain dataset is used, which includes the labeled facial
expressions recorded from adults. The second fine-tuning step is lever-
aging our own data of infants. The results show that with that extra fine-
tuning step on the adult dataset, the AUC is further improved from 0.93
to 0.96. However, the performance of joint training with the adult and
infant dataset combined has not been investigated, which is considered
as future work. The nodes of the output layer can be adjusted to support
both populations correspondingly.

• RQ2.c: Is deep learning sufficiently robust to environmental settings and
changes?

In Chapter 3, various changes to the environment and settings have been
explored. The performed is evaluated by 1) randomly zooming in and
out the face images from 0.8 up to 1.2, 2) randomly rotating the face from
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-45 to +45 degrees, and 3) randomly changing the contrast from 0.8 to
1.2. The obtained experimental results have shown similar and consis-
tent performance, which clearly demonstrates that the proposed system
is robust to different and varying video conditions. This is explained by
applying the data augmentation in the training to mimic such situations.

RQ3: Incorporating temporal information - motion analysis

• RQ3.a: Can we leverage the motion information for infant discomfort
detection?

In Chapters 4, 5, and 6, the motion information is converted from video
segments to different representations such as 1D signal, 2D feature maps,
or directly using the original video segments as inputs for further com-
fort classification. The work in these chapters proves the effective use of
motion information in various ways for infant discomfort detection. The
performance of the individual approaches is addressed below.

• RQ3.b: Can we employ optical flow and handcrafted features for the ex-
tracted motion signal to capture the temporal information?

The results of Chapter 4 have shown that it is feasible to employ optical
flow for capturing the infant motion information. The handcrafted fea-
tures of 18 time/frequency-domain features are further calculated, which
include the mean, median, root mean square, autocorrelation, and spec-
trum features. The highest performance (AUC = 0.94) is achieved when
combining all these features together with an SVM classifier.

• RQ3.c: In what way can deep learning facilitate the classification of a 1D
motion signal?

To apply deep learning on the extracted 1D motion signal while avoid-
ing handcrafted features, multiple options are available. The first option
is to apply 1D convolutional neural networks. The second is to apply
Long Short-Term Memory (LSTM) as part of the learning framework, but
this is not yet explored in this thesis because of the initial high comput-
ing cost. However, the most sophisticated deep learning development
is for 2D images. Therefore, as an alternative, in Chapter 5, the 1D sig-
nal is converted into 2D representations, after which ResNet is applied
for classification. This leads to a high AUC value of 0.985, which clearly
outperforms the previous 1D classification system based on handcrafted
features.
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• RQ3.d: Can we use CNNs to jointly process both spatial and temporal
information?

A number of existing CNNs are only capable of handling 2D inputs due
to the inherent network structure. The 2D CNNs are limited to the spa-
tial information, while the temporal information across the video frames
is not exploited. In Chapter 6, 3D CNNs are proposed to extract features
from both the spatial and temporal domains by performing 3D convo-
lution and 3D pooling. This approach is able to capture both the object
appearance/contextual information and motion information in a single
optimization framework, such that the generated features assemble the
spatial and temporal semantics. A thorough benchmark is performed be-
tween a 2D CNN and a 3D CNN, where the best result of 2D CNN yields
the AUC of 0.91, while the 3D CNN obtains the AUC of 0.99. Therefore,
it can be concluded that 3D CNNs can exploit both spatial and tempo-
ral information jointly to provide an improved prediction. It should be
indicated though that there is a clear complexity trade-off to be made be-
tween the two networks. The execution time performance of 3D CNN is
comparable with the 2D CNN implementation, but the hardware of the
experiments has provided sufficient computation power in both cases, so
that the execution time indication has limited value. Furthermore, the
3D CNN requires about 500k parameters, which is not indicating a very
high complexity. To make the real trade-off, this aspect should be further
studied in details, but we estimate that the 3D CNN seems to be feasible
with respect to computing complexity.

• RQ3.e: How can an additional motion channel give guidance to CNNs to
focus on areas related to discomfort?

In Chapter 6, the benefit of using optical flow measurement to draw the
attention of 3D CNNs has been investigated. The followed approach is
completely data-driven when video segments are used to train a CNN
model. Usually, for data-driven approaches, a large amount of training
data is required for optimal results. In Chapter 6, the training of CNNs
is additionally guided by the motion information encoded by optical
flow in combination with the normal video channels. This combination
yields an extra AUC gain of up to 3 percent in terms of classification
performance.
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RQ4: Quantitative physiological signal measurement

• RQ4.a: How can we quantitatively extract physiological signals through
videos?

In Chapter 7, this question is addressed by investigating two approaches,
namely the conventional optical flow-based and deep learning-based
flow estimation methods. The motion estimation methods are employed
to estimate pixel motion vectors between adjacent video frames. The spa-
tial statistics of the flow matrix are further analyzed by applying robust
principal component analysis (PCA). The first Eigenvalue of the covari-
ance matrix of flows represents the major motion component. The exper-
imental results show that the deep learning-based method clearly out-
performs the optical flow-based method in accuracy and robustness.

• RQ4.b: Are the results calculated from videos reliable by comparing them
with the current standard methods (chest impedance)?

Chest impedance (ChI) is the current standard for cardio-respiratory
monitoring in preterm infants. The proposed video-based algorithms
in Chapter 7 are evaluated by comparing the proposed automated ex-
tracted respiration signals to that extracted from chest impedance. The
cross-correlation coefficients and the RMSE are computed as measures
to compare the respiration rates. Five videos of premature infants were
recorded for evaluation, and ChI signals were also recorded simultane-
ously as reference standards. The experimental results show that the
overall average cross-correlation coefficients are 0.70 for the optical flow-
based method and 0.74 for the Deep Flow-based method. The average
root mean-squared errors are 6.10 bpm and 4.55 bpm for the optical flow-
based and the Deep Flow-based methods, respectively. Considering that
newborn babies usually breathe between 40 and 60 bpm, the results of
the proposed methods show the feasibility of applying the video-based
contactless respiration monitoring.

8.3 Outlook on AI for infant monitoring

Machine learning and computer vision have strengthened many aspects of hu-
man visual perception to identify clinically meaningful patterns, e.g., in the
medical imaging field. CNNs have been widely used for a variety of tasks
from medical image processing, computer-aided diagnosis, and prediction of
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clinical data, etc. Novel and efficient artificial intelligence and machine learn-
ing algorithms are rapidly emerging. For further work of the infant monitoring
application, novel techniques, such as Long Short-Term Memory (LSTM) and
the newly designed Transformer model can be investigated for better leverag-
ing the temporal information embedded in videos.

LSTM [52] computes raw time-series data. For future investigation, the
input can be selected as 1D signal segments of motion information derived
from optical flow. It is also possible to utilize multi-dimensional input, which
requires an initial step of extracting frame feature vectors using pre-trained
CNNs. More recently, the Transformer model has been introduced [163], which
is based on self-attention. Self-attention allows for more direct information
flow across the whole signal sequence, and thus more direct gradient flow.
Furthermore, this concept facilitates faster training, since most operations can
be calculated in parallel for the standard cross-entropy loss. The Transformer
model has become a very successful model in various applications, which pro-
motes the interest of a benchmark of our infant monitoring tasks.

On the other hand, to improve the effectiveness of artificial intelligence
models for an optimal discomfort assessment, future work could involve incor-
porating more information or signals such as audio signals and corresponding
physiological measurements of vital signs, and other contextual factors (e.g.
gender, gestational age, presence of parents) of infants into the same networks.
Moreover, another reason for considering combining physiological measures
is that it has been noticed that extreme premature/sick infants are limited to
behaviorally express discomfort/pain. Therefore, it is important to consider
both behavior and physiological indicators for monitoring.

One limitation of the current work is that the discomfort/pain moments
have been mostly recorded during acute painful procedures. It has been found
that infant behavioral and physiological responses to chronic pain can be dif-
ferent from acute pain. Therefore, monitoring and analyzing different types of
pain is essential for an efficient and reliable assessment. Furthermore, to de-
scribe the infant status more precisely, the discomfort level can be specified by
providing grades from the system.

From the clinical perspective, a fully contactless infant monitoring system
is highly desirable to avoid the wires and connectors in physiological moni-
toring and improve the comfort quality of infants in bed accordingly. Thus,
video-based physiological measurements can be further investigated, such as
video-based heart rate estimation. The current research only focuses on iden-
tifying infant discomfort moments. The proposed algorithms can also be de-
rived for predicting/detecting specific diseases (e.g. sepsis). Besides, it has
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been widely accepted that excessive false and nuisance alarms are a real clin-
ical and economical problem. Future work of the system can be integrated
with the proposed artificial intelligence models and combined with the cur-
rent NICU monitoring system to successfully assist in alarm management, es-
pecially to reduce false alarms and provide continuous monitoring in a safe,
attractive way.
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