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Abstract— Automatic continuous time, continuous value as-
sessment of a patient’s pain from face video is highly sought
after by the medical profession. Despite the recent advances in
deep learning that attain impressive results in many domains,
pain estimation risks not being able to benefit from this due
to the difficulty in obtaining data sets of considerable size.
In this work we propose a combination of hand-crafted and
deep-learned features that makes the most of deep learning
techniques in small sample settings. Encoding shape, appear-
ance, and dynamics, our method significantly outperforms the
current state of the art, attaining a RMSE error of less than
1 point on a 16-level pain scale, whilst simultaneously scoring
a 67.3% Pearson correlation coefficient between our predicted
pain level time series and the ground truth.

I. INTRODUCTION

Ever since the designation of pain as the fifth vital sign
in medical diagnosis, pain assessment has been an issue
of utmost importance in clinical practice [22]. The current
standard for clinical pain assessment in conscious adults is
via self-report. A number of scales have been developed
to assist with the measurement of pain using this standard
e.g. the Numerical Rating Scale (NRS) [28] and the Visual
Analogue Scale (VAS) [17]. Although self-report tools have
been extensively researched, validated and used in clinical
settings they are still limited.

These tools are not applicable to patients who do not
have the ability to articulate or describe their pain; e.g.
young infants, the mentally impaired and individuals whose
verbal ability is inhibited by a critical medical condition or
device [14]. Other challenges associated with self reports
include differences in patient and clinicians’ definition or
quantification of pain, patients attempting to mask pain or
report more pain than is actually experienced, or disparities
in measurement properties across scales. Studies by Williams
et al. on NRS have also shown that patients tend to avoid
choosing values in the upper range when the scale uses large
numbers based on the impression that higher values imply
unmanageable pain [28]. They also discovered that some
patients re-label the scale point to something they can better
relate with before assigning a score. For example, ‘worst
imaginable pain’ becomes ‘worst pain I have ever felt’.

In cases where self-report is not applicable, pain assess-
ment is done by proxy i.e. pain intensity is estimated by
an observer based on the behavioural and physiological
changes in the patient [1]. While useful, the approach has its
limitations some of which include bias due to subjectivity,

contextual factors, desensitization of proxy due to prolonged
exposure to pain, training/experience etc [17], [15]. This
has led to the development of automatic pain assessment
based on audio-visual recordings of expressive behaviour
using state-of-the art machine learning and digital signal
processing methods. This automatic analysis of expressive
behaviour altered by medical condition was recently coined
as “Behaviomedics” [24].

A plethora of research has been documented on automatic
pain recognition based on a variety of data sources e.g
facial expression, audio and body postures. Research efforts
started at distinguishing between pain and no pain [1], [4]
in data samples and gradually extended to continuous pain
estimation [30], [10], [15]; which is a more valuable outcome
for clinical diagnosis.

Despite current achievements, there are still open chal-
lenges with automatic pain recognition. Like most recogni-
tion systems, the performance of pain recognition models is
largely dependent on the quantity and quality of data used
in training. Human expression data is limited in supply to
begin with but pain data is particularly difficult to obtain.
Where available, there is the additional complication of a
sparse representation for higher pain levels. This imbalance
reduces the ability of recognition models to predict high
pain intensity levels. For example, this imbalance is clearly
evident in the popularly used UNBC McMaster pain database
[15] which contains 87.21% of ‘no pain’ frames and only
17.29% of ‘pain’ frames. There is a clear need for novel
methods that can achieve good pain estimation results from
the limited data available.

Deep learning has successfully been applied to various
computer vision problems. However, deep-learned nets re-
quire massive amounts of data to attain good performance.
This has hindered its application to automatic pain recogni-
tion. Even though deep-learned features can not currently
work by itself for pain recognition because of this, we
hypothesise that their ability to learn features on similar do-
mains has value even when small sample sizes are available
for training. We will show that such learned features contain
valuable information that is complementary to handcrafted
features. In this work, we explore deep learning for continu-
ous pain intensity estimation in the face of limited data. We
show that combining features deep-learned to detect facial
muscle actions with handcrafted features yields significant
improvement in automatic pain recognition compared to
using only the former. To the best of our knowledge our978-1-5090-4023-0/17/$31.00 c©2017 IEEE



work is the first to use deep-learned features for continuous
pain estimation.

Secondly, good facial expression analysis uses a combi-
nation of shape based and appearance features. In this work,
We encode shape and appearance information in both the
hand-crafted and deep-learned features. We achieve this in
our deep-learned features by learning features not only from
the original images but also from binary image masks defined
by a set of facial point locations. Thus our deep-learned
features are learned from a combination of original image
pixels (appearance) and the binary masks (face shape).

Furthermore, learning facial expression from static fea-
tures is not sufficient. Encoding dynamic information of
facial actions significantly improves the recognition perfor-
mance. In this study, we encode dynamic information in the
deep-learned features by ensuring that features are learned
from a sequence of input images defined as a specified time
window centered on the current frame being analysed.

Lastly, we adopt person-specific adaptive post processing
techniques and show how they can be applied to boost the
base performance of pain estimation models. We evaluate our
method on the UNBC McMaster database and compare with
previous studies based on handcrafted features. Our results
show a significant improvement over the state of the art, and
show that for a small sample size, combinations of hand-
crafted and learned features obtain highest performance.

The remainder of the paper is structured as follows: section
2 presents a review of previous work in automatic pain and
AU detection in general. Section 3 describes our proposed
methodology of fusing deep-learned features with hand-
crafted features continuous pain estimation. In section 4,
we describe the pain database used in this work and show
the experimental results in comparison to current studies. In
section 5, we discuss the limitations of the PSPI metric in the
light of clinical pain indicators and possible ways of incorpo-
rating other indicators to achieve a more representative pain
score. We also discuss the limitations of current performance
measures used in pain recognition.

II. RELATED WORK

Automatic pain recognition has attracted significant attention
especially with its potential application to clinical diagnosis.
Attempts have been made to detect/estimate pain from facial
actions, head/body movement and sound analysis. Regarding
pain detection from facial actions, face images have been
classified into pain or no pain categories using a variety
of classifier algorithms and face representation models. Re-
cently, emphasis has shifted from binary pain classification
to pain intensity estimation due to it’s potential application
clinical pain assessment. In this section, we discuss current
studies on pain estimation with respect to the data sources
used, pain metric employed and the machine learning tech-
niques applied.

A. PSPI based Pain Estimation

The face is one important medium for conveying emotions.
Pain as an emotion can almost entirely be judged from facial

expression changes. Pain recognition based on facial actions
predominantly utilises the Facial Action Coding System
(FACS) developed by Ekman and Friesen [6]. FACS consists
of 32 action units (AU) which are related to the movement of
certain facial muscles. Specifically, 9 of these are associated
with the upper face, 18 correspond to the lower face while
the remaining 5 cannot be classified as either lower or upper
face AUs. Pain can be described in terms of the action
units activated when the pain is felt. Based on this, Prkachin
and Solomon [19] proposed the Prkachin and Solomon pain
intensity (PSPI) metric which measures pain as a linear
combination of the intensities of facial action units associated
with pain. (See Eq. (1)). PSPI scores are assigned to images
on a frame by frame bases using the metric in Eq (1).
Based on this metric, a couple of studies have attempted pain
recognition both at a sequence level and at a frame level.

PSPI = AU4 +max(AU6;AU7)+

max(AU9;AU10) +AU43 (1)

In terms of binary pain classification, Ashraf et al. [1]
predicted pain in patients with shoulder injuries using a
combination of shape and Active Appearance Models (AAM)
both at frame and sequence levels. Lucey et al. [14] extended
this further by using non-rigid normalized 3D-AAMs to
tackle the problem of spontaneous head movements associ-
ated with pain. Head movements were represented by pitch,
yaw and roll computed from 3D parameters derived from
the AAM. Similar to [1] they found that fusing the shape
and appearance features yielded significant performance im-
provement.Taking this further, researchers have attempted to
distinguish between real and posed pain [2], [13].

With the increased incorporation of automation in medical
practice, pain recognition evolved from mere binary classifi-
cation to continuous pain estimation. Lucey, et al.[15] used
facial expressions and 3D head pose changes to estimate
pain on a sequence level. Kaltwang, et al. [10] proposed
a three-step approach for frame based pain estimation. In
the first step, shape based and appearance based features
are extracted from the face image. Next, separate Relevance
Vector regressors are trained for each features type. The
output of the RVRs are combined and used to train a second
level RVR. In contrast to AAM, feature fusion and multi-
layer classifiers, Zafar and Khan [30] used geometric features
extracted from 22 facial points and a single step K-NN
classifier. A limitation of their approach is that it requires
a prior annotation of the neutral face for each subject.
Following the appreciable performance achieved with using
non-rigid AAMs features [1], [14] to combat the problem
of head movements associated with pain, Rathe and Ganotra
[21] proposed the use of thin plate spline (TPS) to model
facial action changes. TPS was used to achieve extraction of
non-rigid facial features independent of their rigid or affine
counterparts. A distance learning metric (DML) approach
was used to map TPS deformation features to a higher
discriminative space such that features from the same pain in-
tensity level are grouped close to each other while those from



other pain levels are separated as far as possible. Neshov
and Manolova used supervised descent method (SDM) in
combination with SIFT feature extraction for both binary
and continuous pain detection. All of the aforementioned
frame-based pain studies have focused on static features
only. Good facial expression analysis requires a combination
of static and dynamic features. Recently, Kaltwang et al.
[11] combined dynamic features with part based feature
extraction for continuous pain estimation. Here, the face is
divided into a grid of S x S patches. Local Binary Pattern
(LBP) features are extracted from image patches in a time-
windowed manner. The time-scaled features from the patches
are used to learn a doubly sparse RVM for pain estimation.

Deep learning has been applied to various computer vision
problems but has received less attention in pain recognition.
Although it has been used in [5] to classify infant cries into
pain, hunger and sleep, deep learning is yet to be applied to
continuous pain estimation from facial expression changes.
This is mostly due to the limited pain data available for learn-
ing such data intensive neural nets. In this work, we explore
convolutional neural networks (CNN) for continuous pain
estimation in the face of limited data. We embed dynamic
information in our deep-learned features by ensuring that
features learned for a reference frame includes information
from both preceding and subsequent frames using a defined
time window. This is in contrast to Kaltwang et al. [11] where
only information from preceding frames are considered.

B. Non-PSPI based Pain Estimation

Though action unit based pain recognition has witnessed
significant advancements, there are still challenges that have
inhibited its practical use in clinical settings. Some of these
include poor recognition rates due to out of plane head
movements, illumination changes, inaccessible faces in the
case of newborns in ICUs and the general aversion to
being observed by cameras. To mitigate these problems,
a number of studies have explored pain recognition from
other pain indicators such as audible sounds or crying, body
movement and physiological signals. Contextual variables
has also received attention in emotion recognition[7] based
on the idea that the same facial expression can have different
connotations depending on the current scenario. However,
not much has been done in this area due to the difficulty
involved with capturing and measuring such data.

Sound or cry analysis is mostly common in newborns as it
is the predominant form of expression at that age. Acoustic
characteristics have been analysed to discriminate between
normal and pain induced crying in newborns [9]. Compared
to pain analysis from audio-visual signals, physiological
signals have received less attention. They have been used
for valence and arousal detection of other emotions (e.g. joy,
sadness, anger and pleasure) but only a few have applied
it to pain detection [26], [23], [27]. The use of bio-signals
is still far from practical use because it is still difficult to
map physiological patterns to specific emotions. Nonetheless,
physiological signals are reputed to be robust to intentional
emotion suppression since they are directly controlled by the

nervous system and again, information can be collected in
real time using bio-sensors [25]. Physiological signals com-
monly used include galvanic skin response (GSR), photo-
plethysmogram (PPG), electrocardiogram (ECG), respiration
changes and skin conductivity.

Attempts have also been made to combine visual features
with physiological signals in [27]. Their findings show that
using combined data sources yields better performance than
individual sources. However, rather than pain intensity esti-
mation, only a pair wise pain classification was achieved for
the four pain levels contained in the Bio-vid pain database.

III. METHODOLOGY

In this work we combine hand-crafted features with deep-
learned features for pain intensity estimation. First, we
extract the hand-crafted features based on the 66 facial
landmarks. Then we extract deep-learned features from AU
recognition CNNs. Lastly, we learn a regression model on
the individual and combined features.

A. Deep Learned Feature Extraction

Considerable advancements have been reported on using
deep learning in AU detection. Based on the PSPI metric,
facial expressions of pain can be represented combinations
of AUs. Consequently, it follows that features learned for AU
detection should also be useful for pain estimation. In this
work, we adopt the AU detection CNN architecture proposed
by Jaiswal and Valstar [8]. The CNNs are pretrained for AU
detection with images from the BP4D database which has a
significant sample representation for the AUs relevant to pain
expression. Two CNNs are trained to detect AUs associated
with the eye region and mouth region of the face respectively.
The CNN architecture and training process is the same as [8].

First, we extract the face from the image using the facial
landmarks supplied with the database. Then the extracted
face is aligned to a mean shape based on a Procrustes
transform of the facial points of the eye and mouth corners.
These facial points are used because they are not affected by
facial expression changes. We then compute a binary image
mask for the face image by defining two rectangular regions;
one around the the eye and the other around the mouth using
selected facial points. Next, the selected facial points are
linked in a predefined order to form a polygon. Then we
generate a binary mask by setting all the points that fall
within the polygons to 1 and all that fall without to 0. We
denote the image region as I and the corresponding binary
mask as B (See Fig. 1).

To include temporal information in the learning process,
the feature representation for an image at time t includes
information from both preceding and subsequent frames. For
an image I at time t, we retrieve a sequence of images
[It-2, ...It, ...It+2]. Next, we extract a sequence of difference
images F such that:

F =

{
Ij , for j = t

Ij − It, for j 6= t.
(2)



Fig. 1. Process flow of our proposed methodology

Similarly, for the corresponding binary mask at time t, we
retrieve a sequence of masks [Bt-2, ..., Bt, ...Bt+2] and extract
a sequence of binary masks M such that;

M =

{
Bj , for j = t

Bj − It, for j 6= t.
(3)

Thereby we embed dynamic information by taking the
difference between the current image and (i) the next two
consecutive frames (ii) the preceding two frames using a
temporal window of T = 5. The combined sequence of
F and M are used as input to the CNN. The network is
trained with a logarithmic loss function. Finally we use the
pre-trained AU detection CNNs for feature extraction on the
McMaster database images. The McMaster input sequences
are first normalized by subtracting it from the average image
of the pre-trained net. Then we retrieve the output of the
last fully connected convolution layer (3072D) as our deep
learned features. Lastly, the features from the two CNNS (i.e.
eye and mouth region CNNs) are combined to give a 6144D
feature set.

B. Appearance and Shape based Feature Extraction

Appearance and shape-based features have been successfully
applied to automatic pain recognition particularly when used
in combination. This is because they both capture unique
facial characteristics which complement each other. Appear-
ance features represent subtle facial deformations caused by
pain such as wrinkles and changes in the nasolabial furrow.
Geometric features represent the shape and location of facial
components such as the eyes, mouth, eye brow etc which are
also affected by expressions of pain.

To extract the hand-crafted features, the face image is first
pre-processed as described in section III-A. For the geometric
features, a number of metrics were extracted from the 49
facial points corresponding to the eyes, nose and mouth to
generate a 218D feature.

The metrics computed for each frame are as follows:
1) The difference between the registered facial points and

the mean shape computed from the database (98D)
2) Euclidean distances between consecutive facial points

of the eyes and eyebrow (20D)

TABLE I
SVM VS RVM MODEL SPARSITY COMPARISON FOR 16605 TRAINING

SAMPLES

Features GF HOG CNN HOG GF all
No. of Support vectors 8184 13309 9255 11882 11,589
No. of Relevance vec-
tors

409 439 501 11 17

3) Euclidean distances between consecutive facial points
of the mouth (17D)

4) The distance between each of the facial points and the
median of the stable points (49D). Stable points here
refers to the landmarks corresponding to the nose and
eye corners.

5) Magnitude of the angle between three consecutive
points on the eye and eye brow (18D)

6) Magnitude of the angle between three consecutive
points on the mouth (16D)

Similarly, HOG features are extracted based on the facial
point locations. We extract a patch of 24x24 pixels around
each facial point. The patch is further divided into 2x2
window of cells. Next, 9 bins of oriented gradients are
extracted from each cell thus generating a 2376D feature
vector for the 66 facial points. We experimented with a
number of patch sizes but the 24x24 pixel size gave the best
results for our input image size.

C. Pain Intensity Estimation

In order to learn a regression model to estimate pain intensity,
we use a Relevance Vector Regressor (RVR). RVRs have
previously been used for pain intensity estimation and have
been shown to perform well [10], [11]. Furthermore, in
comparison to SVMs which have also been widely used in
facial expression analysis, RVMs use sparser models and as
such train much faster [3]. RVMs are also less prone to
over-fitting compared to SVMs [29]. Indeed in our case,
the number of support vectors was reduced by an average
factor of 0.028 in the corresponding RVM. Table I shows a
comparison of RVM and SVM with respect to the number of
selected support/relevance vectors across all feature types.



First, we learn an RVR each on the geometric, HOG and
CNN features. The ground truth for the RVR training are
the PSPI scores corresponding to the input frame. Previous
studies [10], [16] have shown that significant performance
improvement can be obtained by combining features from
different sources. Hence, following [10]’s technique, we
combine the output of the single feature RVRs and use this
to learn a second-level RVR. If we denote the output of the
single RVR as r, the input to the second level RVR R is
the feature set [r1, ...rn] where n is the number of single
feature RVRs to be combined. The bias parameter for the
RVM is determined by an inner-loop subject-independent
cross-validation on the training data. RVR performance is
evaluated using a leave-one-subject out cross validation. That
is, at each point all the frames from one subject are used for
testing while frames from all the other subjects are used for
training. This is repeated until all the subjects are used for
testing. To reduce the imbalance in the training set, we under-
sampled the no-pain signal frames using a ratio of 1:2 for
the highest occurring non-zero pain frames and the no-pain
signal frames, respectively. No modifications were made to
the test set.

D. Post-processing of Results

After obtaining the initial predictions from the RVMs, we
experimented with a number of post processing methods to
see the impact on the RVR performance. Here, we tried three
different techniques. Firstly, since the RVR was capable of
predicting values less than and above the minimum and max
pain levels(i.e. 0 and 16), we set all negative prediction
values to zero and predictions above the max pain level
to 16. We call this technique ‘thresholding’. In the second
method, we computed the modal prediction for each subject
and then subtracted this value from the RVM predictions for
the subjects. This is denoted as ‘re-basing’. Rebasing can be
applied in a practical situation as it does not depend on any
ground truth. This can be done by taking the mode over a
defined time window of frames and subtracting this value
from all the predictions within the time window. Finally, we
also applied thresholding on the re-based results.

IV. EXPERIMENTAL EVALUATION

A. Database description

To evaluate our proposed method, we used the publicly ac-
cessible UNBC-McMaster shoulder pain expression archive
database. It consists of 200 video sequences of facial expres-
sion of 25 subjects undergoing different range of motion tests
i.e. abduction, external and internal rotation of the arm. An
active and passive approach was used in the data collection.
In active mode, Subjects were asked to move the affected
arms themselves to a bearable limit while the physiotherapist
did the movements in the passive mode. Each video sequence
consists of approximately 60 to 700 frames resulting in a
total of 48,398 frames. 82.71% of frames have a pain score
of zero (0) indicating high imbalance in the positive versus
negative frame contribution. Fig. 2 shows the distribution of
frames with pain level > 0.

All frames in the video sequences are FACS-coded for the
pain related action units i.e. AU4, AU6, AU7, AU9, AU10,
AU12, AU20, AU25, AU26, AU27 and AU43. Each action
unit is coded on intensity of A-E or 0-5 except for AU43
(closed eyes) which has only two states: present or absent.
Using the PSPI metric, a pain score is assigned based on the
intensity of the AUs present.

The computed PSPI score is used as the ground truth in
our RVR experiments. In addition, the database provides 66
facial points for each frame based on an active appearance
model. The facial points provided are used in this study for
HOG and geometric feature extraction.

B. Experiments and Results

To support comparison with previous work, we used the
Pearson correlation (CORR) and root mean square error
(RMSE) to evaluate performance. Even though MSE is used
in previous studies, we use the RMSE because it is on
the same scale as the predictions and therefore easier to
interpret. Performance is computed by first concatenating the
predictions on all the subjects frames. RMSE is computed as
the difference between the RVM predictions and the ground
truth while CORR is the Pearson correlation between the
concatenated predictions and the ground truth.

We also compared the effect of the prediction process-
ing methods described in Section III-D in relation to the
unprocessed predictions. Table II shows a comparison of
the the effect of the post-processing techniques on the RVR
performance for both the individual and combined features.

From Table II, it can be seen that processing the pre-
dictions results in significant performance improvement
compared to the unprocessed predictions. ‘Rebasing’ im-
pacts more on the correlation performance compared to the
‘Thresholding’ method in most cases. A possible explanation
for this is that the neutral face (i.e. no pain face) constitutes
a greater proportion of the videos. Thus, in cases where a
non zero positive value is mostly predicted for the neutral
face, subtracting this value from the frame predictions fine-
tunes the neutral-face predictions towards the ground truth.
This has a similar impact on the ’pain face’ predictions,
as subtracting the modal prediction (neutral face) leaves

Fig. 2. Percentage Distribution of non-zero pain levels in the McMaster
database



TABLE II
COMPARISON OF RESULT POST PROCESSING METHODS

Measure RMSE CORR
Features GF HOG CNN HOG GF all GF HOG CNN HOG GF all
Original 1.3679 1.2412 1.3733 1.3700 1.3003 0.4729 0.5130 0.508 0.5961 0.6323
Rebased 1.2807 1.1344 1.2541 1.0821 1.0261 0.4915 0.5621 0.4907 0.6300 0.6542
Thresholding 1.2048 1.1278 1.1713 1.0596 1.1141 0.5092 0.5479 0.5184 0.5860 0.6184
Rebased thresholding 1.147 1.0667 1.1605 1.0248 0.9926 0.5475 0.609 0.5356 0.6479 0.6728

us with only the effect of the pain expression. On the
other hand, ‘Thresholding’ achieves lower RMSE scores
compared to ‘Rebasing’. This is because thresholding maps
extreme predictions to the appropriate pain scale limits
which further reduces the magnitude of the prediction error.
Combining these two methods will yield better improve-
ments for both performance measures. As expected, the
‘rebased thresholding’ methods consistently outperforms all
the others with a significant margin.

Using the best result processing method, we compare the
RVM performance on the different features in Fig.3. Among
the single features, HOG performs better than all the others
followed by the geometric features. The CNN features have
the lowest performance. This could be explained by the
fact that the CNN features have been fine-tuned to suit the
original problem i.e. AU detection whereas the appearance
and shaped based features are more generic in nature. This
also shows that deep learned features do not work well with
small data. Nonetheless, the CNN features perform similar
to the geometric features especially in terms of CORR.
Similar to previous observations [10], [14], the appearance-
based features perform significantly better than the shape-
based features. A possible reason for this is that appearance
features effectively capture facial deformation caused by pain
intensity. On the other hand, facial pain expression is often
accompanied by out-of plane head movement which nega-
tively impacts shape registration using Procrustes alignment.

It can also be seen that the combined features perform

Fig. 3. Comparison of RVM performance on the different features

TABLE III
COMPARISON OF OUR METHOD WITH THE STATE-OF-THE-ART

RMSE CORR
Kaltwang et al. [10] 1.18 0.59
Neshov and Manolava[18] 1.13 0.59
Kaltwang et al. [11] 1.69 0.66
Our method 0.99 0.67

much better than the single features with HOG+GF+CNN
(designated as ’all’) performing better than hand-crafted
feature combination. This shows that though CNN features
do not work well on their own, they provide valuable
information which complements the handcrafted features.
Furthermore, the CNN features are learned directly from
the image pixels with less loss of information whereas the
handcrafted features are learned on high level representations
of the original face image and are prone to oversimplification.
This added advantage could have contributed to the improved
performance when all features are combined. Fig. 4 shows
the confusion matrix of the RVM predictions on our best
feature combination. This was computed by rounding up the
predicted intensities (PI) to the nearest whole number. It can
be seen that for most PI < 9, over 60% of the predictions
fall within ±2 of the target values however the accuracy
drops for the higher pain levels except for PI = 13 where
72% of predictions are within a ±1 error. The relatively high
error on the higher pain levels can be attributed to their low
representation in the RVM training data.

Finally, in Table III we compared our proposed method
with the state of the art. Our method outperforms the others
in both MSE and CORR. Specifically, in comparison to
Neshov and Manolava [18] we achieved a 14% relative
increase in both performance measures. In comparison to
[11] we achieved a 2% increase in CORR and a massive 70%
reduction in RMSE. All the other methods apart from [11]
used only static features whereas our method incorporates
dynamic information to the learning process. This could
explain the comparable CORR obtained by [11] even though
their RMSE measure is much worse.

V. LIMITATION OF CURRENT PRACTICES

A group of publications has recently addressed the problem
of automatic pain estimation from face videos. Here we
discuss some of the common problems that we feel need to
be addressed as a community in order to make meaningful
progress.



Fig. 4. Confusion matrix of the RVM on the fused handcrafted and deep
learned features

A. Prkachin’s pain metric

The Prkachin’s pain metric has been widely used for auto-
matic pain recognition studies. While it is useful as an eval-
uation tool, it ignores some important behavioural indicators
of pain. For example, it does not consider head, body move-
ments and pain related sounds which have been identified
as important indicators of pain especially in newborns [20],
[12], [14]. Automatic pain recognition requires a more robust
pain metric that captures all of the audio-visual expressions
of pain in order for it to be applicable to clinical settings.
Considering that face based automatic recognition systems
are still adversely affected by out of plane head movements,
the actual pain suffered by a patient can be under-judged
using only a face-based metric. A multi-indicator pain metric
will be more appropriate for cases where the face is occluded.
Contextual pain indicators can also be captured in the metric
by adding more weights to certain indicators depending on
the context of use. For example since newborns are more
prone to express their pain via crying, the weight for audio
indicators will be increased for such scenarios. A similar
idea of using weights to capture contextual factors has been
demonstrated in [7] but in this case it was the classifier that
was biased to the context not the pain metric. A metric that
meets the above specifications will be of more use to clinical
pain assessment.

B. Evaluation Metrics

In studies on continuous pain estimation from facial features,
performance evaluation has mostly been based on the (root)
mean square error ((R)MSE) and the Pearson correlation
coefficient (CORR). The MSE error effectively captures the
difference between the model predictions and the ground
truth, whereas the CORR measures how well the prediction
follows the ground truth trend, irrespective of a potential
absolute bias.

Both measures clearly have their own merit, but it is
clear that a low RMSE isn’t particularly valuable without
a high CORR, and vice-versa. For example, due to the class
imbalance it is fairly trivial to attain a very low RMSE by
predicting all frames to have a pain level of 0. A limitation
of the CORR measure is also evident in the performance in

Fig. 5. Limitation of PCOR as a performance measure (Subject based
RMSE vs CORR on HOG features.)

Fig. 6. Subject based RMSE vs CORR on HOG+GF+CNN features
showing a more logical gradient.

[11] who report a very high MSE compared to other previous
studies but attain a high correlation. Based on this limitation,
it is necessary to find a better performance measure that is
robust to data imbalance.

More generally, we have found that there isn’t necessarily
a sensible correlation between good CORR and good RMSE.
Fig. 5 shows a plot of RMSE vs CORR for the RVR
prediction on HOG features. It can be observed that it is
possible to attain very high CORR yet still attain high RMSE
even though a high CORR should logically imply a low
RMSE. This is possible in cases where the RVM is unable
to predict high pain levels well. For example, if the RVM
predicts half the magnitude of the high pain levels, we get a
nice correlation but a high error margin. This is particularly
possible with the McMaster database which suffers from
sparse data representation for high pain values. Again, we
observe a positive gradient on the line of best fit whereas an
ideal plot of RMSE against CORR should have a negative
gradient.

Interestingly, when the same graph is plotted for the
RVR prediction on the combination of handcrafted and deep
learned features (see Fig. 6), we observe a more logical
negative gradient for the line of best fit. This implies that



the feature combination somewhat combats the problem
of data imbalance as the graph now tends towards the
expected gradient. Possibly this means that a tipping point
has been reached in terms of performance, but this should
be confirmed empirically.

VI. CONCLUSIONS AND FUTURE WORKS

We have introduced a method that combines deep-learned
features with hand-crafted features for continuous pain es-
timation. We encode shape and appearance information in
our deep-learned features by generating a binary image
mask based on the facial landmarks. Dynamic information is
embedded to the deep-learned features using a defined time
window. We show that our proposed method of combining
handcrafted features with deep-learned features yields sig-
nificant improvement over the former and outperforms the
state of the art. Our system being a face based approach is
still limited in the sense that it requires near frontal faces to
work well. In our future work, we will look at pain estimation
from a combination of pain indicators in addition to facial
expressions.
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