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Abstract
Diagnosing pain in neonates is difficult but critical. Although approximately thirty manual pain instruments
have been developed for neonatal pain diagnosis, most are complex, multifactorial, and geared toward
research. The goals of this work are twofold: 1) to develop a new video dataset for automatic neonatal pain
detection called iCOPEvid (infant Classification Of Pain Expressions videos), and 2) to present a classification
system that sets a challenging comparison performance on this dataset. The iCOPEvid dataset contains 234
videos of 49 neonates experiencing a set of noxious stimuli, a period of rest, and an acute pain stimulus. From
these videos 20 s segments are extracted and grouped into two classes: pain (49) and nopain (185), with the
nopain video segments handpicked to produce a highly challenging dataset. An ensemble of twelve global and
local descriptors with a Bag-of-Features approach is utilized to improve the performance of some new
descriptors based on Gaussian of Local Descriptors (GOLD). The basic classifier used in the ensembles is the
Support Vector Machine, and decisions are combined by sum rule. These results are compared with standard
methods, some deep learning approaches, and 185 human assessments. Our bestmachine learningmethods are
shown to outperform the human judges.

Keywords Bag-of-features, Texture descriptors, Machine learning, Support vector machine, Neonatal pain

detection, Computer vision

Paper type Original Article

1. Introduction
Erroneous beliefs about the nociceptive physiology of neonates has greatly hindered research
into neonatal pain. Formanyyears, it was assumed that pain pathwayswere not fully developed
in neonates [1]. Not only did this assumption inhibit research in this area until themid-1980s, but
it also justified inhumane surgeries performed on neonates without full anesthesia or
postoperative pain interventions [2]. Not until studies revealed that nociceptive systems are fully
developed in neonates did the scientific community take neonatal pain seriously [2]. Today it is
widely recognized that infants experience acute physiologic, behavioral, metabolic, cortical, and
hormonal responses to pain. Given that pain inhibitory pathways are not fully developed in
infants, neonatesmay even experience greater levels of pain thando older children and adults [3].

More recent studies show that if left untreated, pain in neonates can have long-term effects
on neurologic and behavioral development [4–8], especially in preterm infants [9–11].
Repeated unexpected acute pain experiences have been associated with slower weight gain
[12], alterations in cerebral white matter and subcortical gray matter [13], and changes in the
brainmechanisms involved in blood and oxygen supply [14,15]. These changes in the brain of
neonates can result in learning and developmental disabilities as well as in lower IQ (for a
review of the literature, see [16]). For all these reasons, it is critical that pain in neonates be
detected and treated as early as possible.

Diagnosing pain in neonates is difficult, however. The clinical definition of pain assumes
that the person experiencing pain has the ability to describe the location, duration, quality,
and intensity of his or her pain experiences. Unable to speak, neonates must rely exclusively
on the proxy judgments of others [17]. As a result, assessing pain in neonates is highly
subjective and often results inmisdiagnosis with the unwanted consequences of unnecessary
interventions and failures to treat. Moreover, there is no universal method of evaluation [18]
or consensus on the best proxy modalities (physiologic, behavioral, metabolic, or cortical) for
assessing infant pain [19]. Recent research even suggests a discordance among, as well as
within, specific modalities [20,21].

Most current pain instruments for neonatal pain assessment make use of two modalities:
physiological indicators of pain (such as changes in heart and respiratory rates, blood
pressure, vagal tone, and palmer sweating) [22] and behavioral indicators (such as body
movement, crying, and facial expressions) [23]. The most popular validated scales are NIPS
(Neonatal Infant Pain Scale) [24], PIPP (Premature Infant Pain Profile) [25], specifically,
PIPP-R (Revised) [26], and DAN (Douleur Aigu€e du Nouveau-n�e) [27]. Use of such scales is not
without controversy, however [18]. Although approximately thirty neonatal pain
instruments have been developed, most are complex, multifactorial, and geared towards
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research, with few having validated clinical utility. Complaints concern the complexity of the
instruments (involving somanymeasurements that pain scores are delayed) and the inability
of most instruments to provide a reliable indication of pain over time, which is clinically
important, for example, for assessing chronic and repeated acute pain and the effectiveness
and necessity of additional treatment. Studies have also shown problems with observer bias
based on professional attitudes towards the instruments, desensitization due to overexposure
to neonatal pain in the clinic, context, culture, gender, and perceived attractiveness of the
neonate [28–31]. One way of overcoming the complexity of pain diagnosis and of reducing
delays in treatment is to develop machine systems capable of automatically detecting pain in
neonates. Not only would such systems help counter observer bias, but they would also offer
the advantage of providing close monitoring of neonates over extended periods of time.

Research in automatic pain recognition began to take off about a decade ago with the
research of 1) Brahnam et al. [32–36], who explored classifier systems to detect the facial
expressions of pain in 204 static images of neonates experiencing stressful stimuli, 2) Barajas-
Montiel and Reyes-Gar�ıa [37], who explored classifying cry states in 1623 samples, and 3) Pal
et al. [38], who combined facial features with cry features from 100 samples to recognize
different emotional states, including pain. In the last ten years, research in automatic pain
detection has continued to focus on these two behavioral indicators of neonatal pain: facial
expressions [32–36,39–46] and infant cries [38,47]. Little research to date has made use of the
various physiological measures to detect pain [37,48–50], and none that we are aware of have
involved neonates. The general consensus in the literature is that physiological measures
alone are highly unreliable primarily because responses vary greatly among individual
infants, but it is also difficult to distinguish physiological changes associated with pain from
those associated with other distressful emotions, such as fear and anxiety [51] (for a recent
review of the literature on physiological indices of acute pain in neonates, see [52]).

In this paper we focus on the automatic detection of pain in videos of neonates. Most
research to date uses the iCOPE (infant ClassificationOf Pain Expressions) benchmark dataset
[33–35], which contains 204 photographs of 26 neonates experiencing different noxious
stimuli, rest, and an acute pain stimulus. This database was developed to detect pain
experiences but was expanded by Gholami et al. [40,41] to classify pain intensity as well. The
iCOPE dataset has been used to evaluate state-of-the-art single classifiers, such as Support
Vector Machines (SVM) [33,34], Relevance Vector Machines [40,41], neural networks [32,34],
ensembles fusing different texture descriptors, such as the Local Binary Pattern (LBP) and its
variants [36,39], and handcrafted features combined with deep features [46]. Research using
this dataset is limited in value, however, since the dataset fails to capture the dynamic patterns
of facial expressions, whichmost likely provide important information for discriminating pain.

Recently, a couple of researchers have worked on motion-based pain detection. Zamzami
et al. [42], for example, used optical flow, a well-known method of motion estimation, to
calculate optical strain magnitudes in the facial tissues of ten infants video recorded during
an acute procedure. SVM and K-nearest-neighbors (KNN) classifiers were used to classify
segmented expressions into pain and nopain categories with 96% accuracy. In Sikka et al.
[53], a method based on FACS (Facial Action Coding System) was used to estimate pain levels
in the facial expressions of 50 youth experiencing both acute and chronic pain. An SVM
produced an AUC of 0.84 for acute pain detection and 0.94 for chronic pain detection. Amajor
drawback in these studies involves the datasets: the infant dataset contains a small number of
samples of a small group of infants and the contrasting stimuli to pain may not have been
sufficiently challenging; moreover, the larger child dataset contains no videos of neonates.

The main contributions of this study are two-fold. Our first goal was to develop a
challenging database of neonatal pain video, which we call iCOPEvid, that would be made
available to other researchers. This dataset contains video of 49 neonates experiencing a set
of noxious stimuli, periods of rest, and an acute pain stimulus. Raw video images were
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segmented into 20 s of pain (49) and nopain (185), with the nopain video segments handpicked
to produce a highly challenging dataset (we selected video segments that resemble pain
expressions but are not stimulated by a pain stimulus). Our second goal was to develop a
system for classifying the iCOPEvid segments into the two categories of pain and nopain and
compare it with other state-of-the-art classifier systems, with the aim of producing a
challenging classification rate for future comparisons.

The general outline of the classification approach proposed in this paper is as follows:

� The neonate’s face is detected using Discriminative Response Map Fitting (DRMF),
proposed in [54], which is based on a discriminative regression approach for the
Constrained Local Models (CLMs) framework;

� The image is enhanced using [55], which is based on both an intra-layer optimization
and inter-layer aggregation;

� Descriptors are used to represent each frame: the whole image is divided into four
equal regions and from each region and the whole image a set of features is extracted
and trained using an SVM;

� SVMs trained on these descriptors are fused;

� The scores of different frames of each video are then combined for classifying the
video segments.

For improving the texture descriptors based on Bag-of-Features (BoF), we build an ensemble
of codebooks for the well-known Bag-of-Words (BoW) method [56]. These codebooks are
obtained using various strategies: different sizes for the patch, different PCA (Principle
Component Analysis) projections [57] for reducing the size of the extracted feature vectors,
and different patch shapes. As a result, a variety of global texton vocabularies are created.
For each vocabulary, a different SVM is trained.

Each PCA projection retains different training subsets for building different projection
matrices. This technique provides a method for building an ensemble of classifiers by
varying the projection matrix. In addition, we proposed some variants of the Gaussian of
Local Descriptors (GOLD) [58] for extracting features from an image, which is an
improvement of BoW [56]. Our idea is to consider the covariance matrix obtained using
the standard GOLD approach as an image that can be represented using standard texture
descriptors. Different local descriptors, codebook generation methods, and subwindow
configurations are combined to form an ensemble for detecting neonatal pain.

The remainder of this document is organized as follows. In Section 2 we provide a detailed
description and justification of the study design, including details on how the raw data were
collected, processed, selected, and organized. In Section 3we describe twelve powerful texture
descriptors. GOLD is described in Section 4, and BoF in Section 5. Our ensemble approach
is presented in Section 6, and results comparing these approaches as well as several
Convolutional Neural Network (CNN) approaches are presented in Section 7. In Section 8, we
present 185 human assessments on the same dataset and describe this study in detail. Results
in Sections 7 and 8 show that our best ensemble, which combines the best feature set with the
GOLD approach, outperforms all other methods, including those of the human judges. We
conclude in Section 9 with suggestions for future research. The iCOPEvid dataset is freely
available and can be obtained by emailing the first author. All MATLAB source code used in
our experiments is included in the dataset.

2. iCOPEvid pain video dataset
The objective of the iCOPEvid dataset was to obtain a representative yet highly challenging
set of video sequences of neonatal facial expressions for evaluating automatic neonatal pain
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detection systems. In the medical literature, a number of noxious stimuli are typically
compared in studies on neonatal pain: a pain-inducing stimulus (pinprick or puncture of a
lancet) and various noxious stimuli, such as friction on the external lateral surface of the heel
[59,60] and disturbances such as exposure to bright light [31] and diaper change [61]. These
noxious stimuli are also compared with facial expressions in a resting state.

Following the designs of these studies, the first still image iCOPE database [32,34,35,62]
collected a series of facial photographs of 26 infants (13 boys and 13 girls) responding to four
stimuli: 1) the puncture of a heel lance, 2) friction on the external lateral surface of the heel,
3) transport from one crib to another, and 4) an air stimulus to provoke an eye squeeze (a facial
characteristic of neonatal expressions of pain). After each stimulus, the infants were given a
period of rest and photographs were collected during this period. Infants could be crying,
awake, or asleep during the resting period. In addition, all infants were swaddled to obtain
unobstructed images of each infant’s face.

The goal of the iCOPEvid database was to obtain raw video of infants as they naturally
appear in a hospital neonatal nursery, where some infants are swaddled and some are not and
where flailing fists and legs often occlude facial expressions. The stimuli introduced in this
study are also those commonly experienced by neonates in the nursery and include a state
mandatory blood test requiring puncture of a heel lance (pain stimulus), friction on the
external lateral surface of the heel administered by a cotton swab dabbed in alcohol in
preparation of the heel lance, and recordings during and after two additional movement
stimuli: transport from one crib to another and occasional physical disturbances. In addition,
raw video was collected from neonates left undisturbed for a period of time (at rest) between
stimuli administration. As with the iCOPE study design, videos were collected during the
resting periods, and infants could be crying, awake, or asleep during these breaks between
stimuli.

2.1 Subjects
This study complied with the protocols and ethical directives for research involving human
subjects at Mercy Hospital in Springfield Missouri, USA. Informed consent was obtained
from a parent, usually the mother in consultation with the father. Parents were recruited in
the neonatal unit ofMercyHospital shortly after delivery. Onlymothers who had experienced
uncomplicated deliveries were approached. Video images were collected from 49 neonates (26
boys and 23 girls) ranging in age from 34 to 70 h. Forty-one infants were Caucasian, one
African American, one Korean, two Hispanic, and four interracial. Five males had been
circumcised the day before and one male 43 h before the videos were taken. The last feeding
time before video sessions ranged from 20 min to approximately 4 h. All infants were in good
health.

2.2 Apparatus
All High Definition (HD) video was captured using a Sony HDR-XR520V HDD Camcorder
following a white balance under ambient lighting conditions in a room separated from other
newborns. The resolution of the video sequences, recorded asMP4 files, is 19203 1080with a
frame rate of 29.97 FPS.

2.3 Procedure
The facial expressions of the neonates were captured in one session. All stimuli were
administered by an attending nurse. A total of 16 neonates were swaddled and 33 were
allowed to move freely during and following stimulus administrations so that the infants
were often obstructing their faces with their hands and feet or by twisting their bodies.
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Following the requirements of standard medical procedures, videos of four stimuli and
three resting periods were taken in the following sequence:

(1) Movement 1 Stimulus: Transport from one crib to another (Rest/Cry): After being
transported from one crib to another, 1 m of video was taken. The state of the neonate
was noted as either crying or resting.

(2) Resting 1: The infant was allowed to rest undisturbed for 1 m and video was taken of
the infant; the infant’s state during this period varied.

(3) Movement 2 Stimulus: The second movement stimulus was applied by periodically
physically disturbing the neonate for 1 m. Video was taken during the disturbance
and for 1 m following the application of the stimulus.

(4) Resting 2: The infant was allowed to rest undisturbed for 1 m and video was taken of
the infant; the infant’s state during this period varied.

(5) Friction Stimulus: The neonate received vigorous friction on the external lateral
surface of the heel with cottonwool soaked in 70%alcohol for one full minute, and 1m
of video was taken as soon as the stimulus was applied.

(6) Resting 3: The infant was allowed to rest undisturbed for 1 m and video was taken of
the infant; the infant’s state during this period varied.

(7) Pain Stimulus: The external lateral surface of the heel was punctured for blood
collection, and at least 1 m of video was taken, starting immediately after the
introduction of the lancet and while the skin of the heel was squeezed for blood
samples.

2.4 Image classes
A total of 234 video segments were extracted from the raw video footage and appropriately
labeled for the iCOPEvid dataset. The first 20 s of video immediately following
administration of the four noxious stimuli were extracted to form the pain/nopain
categories, along with one to four 20 s resting segments that presented, where possible,
facial expressions that varied and that ideally shared characteristics similar to pain
expressions (e.g. yawning and crying). As illustrated in Figure 1, the resting segments were
hand-selected by two of the investigators to provide difficult expressions to classify. The pain
category contains 49 video segments (one for each infant) and the nopain category contains
185 video segments (several from each infant).

3. Evaluated texture descriptors
In this section, we describe twelve of the texture descriptors tested in this paper. Most are
LBP-based [63] approaches, which depend on an analysis of patterns within local pixel
neighborhoods; descriptors extracted from these neighborhoods are then aggregated to form
a global representation for the whole image or for larger regions of an image [64]. The LBP
variants outlined here include Local Ternary Patterns (LTP) [65], Local Phase Quantization
(LPQ) [66], Binarized Statistical Image Features (BSIF) [67], Local Binary Pattern Histogram
Fourier (LHF) [68], Rotation Invariant Co-occurrence among adjacent LBPs (RICLBP) [69],
Extended Local Binary Patterns (ELBP) [70], and Local Configuration Pattern (LCP) [71].

In addition to LBP-based descriptors, we tested Histogram of Oriented Gradients (HOG)
[72], Heterogeneous Auto-Similarities of Characteristics (HASC) [73], Morphological Features
(MORPHO) [74], GIST [75], and the SIFT-like descriptor Laplacian Features (LF) [76].

Because the descriptors presented in this section have been extensively described in the
literature and are familiar to most researchers in image/video classification, we only very
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briefly describe them in Table 1, where we also provide the parameter settings used for each
descriptor. The two descriptors based onBag-of-Words (BoW), Gaussian of Local Descriptors
(GOLD) [58], and Bag-of-Features (BOF) [77], which our approach is based on, are extensively
discussed in sections 4 and 6, respectively. We compare our approach with CNN-Based
descriptors at the end of the experimental section. Thus, in this study, we compare and
evaluate the main types of texture descriptors as outlined in Liu et al.’s [64] recent review of
the literature on texture descriptors.

4. Gaussian of Local descriptors (GOLD)
In this paper we not only test the original Gaussian of Local Descriptors (GOLD) features [58]
in our ensembles, but we also treat the covariance matrix C generated in the process (see
Section 4.4 below) as an image from which we extract standard texture descriptors. GOLD
[58] improves the BoW [77] approach, which is designed to handle viewpoint, illumination,
occlusions, and inter-class variability. A bag of words is a sparse histogram over a
vocabulary in a group of documents. In computer vision, a bag of visualwords of features is a
histogram over a vocabulary of local image features. The BoW descriptor extracts local
features to generate a codebook that is then used to encode local features into codes that form
a global image representation. The codebook generation step is based on vector quantization,
typically through k-means clustering. Once BoW features are extracted, they are sent to a
classifier for testing and training.

Basing the final step in BoW on vector quantization is not ideal because it binds the
dataset characteristics too tightly to the feature representation, which creates a hidden
dependency that is reflected in many specializations of BoW [79,80]. This has led researchers
to investigate building codebooks that aremore independent [79,80]. Oneway to avoid hidden
dependencies between training set characteristics and the feature representation is simply to
eliminate the quantization step. In [81] this is accomplished bymodeling each set of vectors by
a probability density function (pdf) that is compared with a kernel defined over the pdfs.
Choosing a pdf with zero-mean Gaussian distribution, as proposed by [81], is equivalent to
using average pooling, which is what was done in amethod proposed by [82]. This insight led

Figure 1.
Illustration of the

challenge the
iCOPEvid dataset

presents for
distinguishing pain
(top) from resting

(bottom). These still
images were taken

from video sequences
of six different
neonates (not

swaddled).
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to the method proposed in [58], where a reference pdf that is a multivariate Gaussian
distribution with mean and full variance is employed to obtain the new vector representation
of GOLD, which uses the dot product to approximate a distance between distributions. GOLD

Acronym Brief Description of Descriptor and Parameter Settings Source

LTP Local Ternary Patterns is a three-value variant of LBP that addresses LBP’s high
sensitivity to noise in the near-uniform regions of LBP [78]). We used two (radius,
neighboring points) configurations: (1, 8) and (2, 16). We tested both LTP with uniform
bins (LTP-u) and LTP with rotation invariant uniform bins (LTP-r). Source code is
available at: http://www.ee.oulu.fi/mvg/page/lbp_matlab

[65]

LPQ Local Phase Quantization is blur robust variant of LBP. Different LPQ descriptors were
evaluated in our experiments. Twowere selected for our final system, both extracted by
varying the radius parameter RðR ¼ 3 and R ¼ 5Þ and each descriptor was used to
train a separate SVM classifier. Source code for LPQ is available at http://www.ee.oulu.
fi/mvg/download/lpq/)

[66]

GIST Calculates the energy of a bank of Gabor-like filters, which are evaluated at eight
orientations and four different scales. The square output of each filter is averaged on a
4 3 4 grid. GIST is evaluated at eight orientations and four scales

[75]

HOG Histogram of Oriented Gradients calculates intensity gradients pixel to pixel. It then
selects a corresponding histogram bin for each pixel based on the gradient direction. In
our experimentswe used a 23 2 version of HOG extracted on a regular grid at steps of 8
pixels. To form a more powerful descriptor, HOG features are stacked together
considering sets of 2 3 2 neighbors

[72]

LF Laplacian Features are a SIFT-like descriptor extracted using windows of different
sizes (8 3 8 and 16 3 16). The multifractal spectrum (MFS) extracts the power-law
behavior of the local feature distributions over the scale. Application of a multi-scale
representation of the multi-fractal spectra, under a wavelet tight frame system,
improves its robustness to changes in scale

[76]

BSIF Binarized Statistical Image Features assigns an n-bit label to each pixel in an image
using a set of n linear filters. Using Independent ComponentAnalysis, the set of filters is
estimated by maximizing the statistical independence of the filter responses of a set of
patches from natural images

[67]

LHF Local Binary Pattern HistogramFourier is based on uniform Local Binary Patterns and
is rotation invariant. The discrete Fourier transform is used to extract features that are
invariant to rotation starting from the histogram rows of the uniform patterns

[68]

RICLBP Rotation Invariant Co-occurrence among adjacent LBPs is an LBP variant that
considers the spatial relations (the co-occurrence) among LBP patterns. RIC-LBP is
rotation invariant for angles that aremultiples of 458.We computed RIC-LBPwith three
different configurations (LBP radius, displacement amongLBPs): ð1; 2Þ, ð2; 4Þand ð4; 8Þ

[69]

ELBP Extended Local Binary Patterns is a variant of LBP that considers both intensity-based
and difference-based descriptors. Intensity-based descriptors exploit the central pixel
intensity or the intensities in the neighborhood. Difference-based descriptors consider
the pixel that exploits the radial distance. ELBP contains 848 features. In this paper, we
considered two neighborhoods (radius, pixels): ð1; 8Þ and ð2; 16Þ

[70]

LCP Local Configuration Pattern extracts two different levels of information: (1) local
structural information (using LBP) and (2) microscopic configuration (MiC)
information. MiC estimates the optimal weights to linearly reconstruct the central pixel
intensity. This calculation exploits the intensities of the neighboring pixels and
minimizes the reconstruction error. Rotation Invariance is achieved via the Fourier
transform

[71]

MORPHO Strandmark Morphological Features is a set of measures extracted from a segmented
version of the image, including the aspect ratio, number of objects, area, perimeter,
eccentricity, and other measures

[74]

HASC Heterogeneous Auto-Similarities of Characteristics is simultaneously able to encode
linear and nonlinear relations

[73]

Table 1.
Summary of the basic
texture descriptors
evaluated in this study.
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has recently been shown to obtain state-of-the-art performance on many publicly available
datasets [58].

The GOLD approach is a four-step process [58]:

Step 1. Feature extraction: dense SIFT descriptors are extracted on a regular grid of the
input facial image;

Step 2. Spatial Pyramid Decomposition: the facial image is decomposed into subregions
via multilevel recursive image decomposition. Features are softly assigned to regions
based on a local weighting approach;

Step 3. Parametric probability density estimation: each region is represented as a
multivariate Gaussian distribution of the extracted local descriptors through inferring
local mean and covariance;

Step 4. Projection on the tangent Euclidean space: the covariance matrix is projected on
the tangent Euclidean space and concatenated to the mean. This produces the final region
descriptor.

Each of these steps, alongwith some variations applied in this work, are detailedmore fully in
sections 4.2–4.5 below.

4.1 Details step 1: feature extraction
In the original description of GOLD [58], feature extraction is performed by calculating SIFT
descriptors (we use the function vl_phow from the vl_feat library [68]) or their color
variations at four scales, defined by setting the width of the spatial bins to {4, 6, 8, 10} pixels
over a regular grid spaced by three pixels. Of course, features could be described using other
methods; in this work, however, we use the features proposed in the original GOLD paper.

4.2 Details step 2: spatial pyramid decomposition
Spatial pyramid decomposition is accomplished by incrementally dividing a given image into
increasingly smaller subregions, starting with level zero, where the decomposition is the
entire image, followed by level one, where the image is subdivided into four quadrants, etc.
A soft assignment of descriptors to these regions is performed that makes use of a weighting
strategy that gives a weight to each descriptor that is based on its distance from the region’s
center. Given a region R, centered in ðcx; cyÞ and with dimensions Rw 3Rh, and a local
descriptor D∈ℜ

n computed at ðdx; dyÞ, its weighting function is computed as:

wðD; RÞ ¼
�
1� dx � cx

Rw

�
$

�
1� dy � cy

Rh

�
(1)

The function wðD;RÞ belongs to the range [0,1] and is designed such that the descriptors
extracted from the center of the region have the maximum weight, while descriptors placed
on the borders between two regions are equally considered for both regions. In this work one
level of decomposition is used.

4.3 Details step 3: parametric probability density estimation
Parametric probability density estimation uses the set of weighted descriptors belonging to
each region to infer the parameters of a multivariate Gaussian distribution. If
D ¼ fD1; . . . ;DNg is the set of weighed local descriptors of a region, μ∈ℜ

n the mean
vector, and C ∈ℜ

n3 n the covariance matrix of a multivariate Gaussian distribution N
belonging to a region, then:
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NðD; μ; CÞ ¼ 1

j2μCj2 e
−0:5ðD�μÞTC−1ðD−μÞ (2)

μ ¼ 1

N

XN
i¼1

Di (3)

C ¼ 1

N � 1

XN
i¼1

ðDi � μÞðDi � μÞT (4)

In thisworkwe show that the covariancematrixC can be treated as an image so that standard
texture descriptors can be used to describe it. Each of these feature vectors is fed into an SVM
with a radial basis function kernel [83].

4.4 Details step 4: projection on the tangent Euclidean space
The parameters of μ andC provide a good representation of a region but are extremely high in
dimensionality. To obtain a descriptor that can be fed into a classifier, the covariance matrix
C is mapped into a point in the Euclidean space and concatenated to the mean μ so that the
final region descriptor is a fixed length descriptor appropriate for linear classifiers based on
the dot product.

Projection is performed in two steps: first, the covariance matrix C is projected on a
Euclidean space tangent to the Riemannianmanifold, at a specific tangencymatrix P; second,
the orthonormal coordinates of the projected vector are extracted. In [58] the best choice for P
was determined to be the identitymatrix I since the neighborhood relation between the points
in the new space remain unchanged wherever the projection point P is located. Therefore, the
projection formula of the covariance matrix C into a vector point c simply applies the vector
operator to the standard matrix logarithm thus:

c ¼ νecðlogðI 12CI 12ÞÞ (5)

where log is the matrix logarithm operator and vec is the vector operator on the tangent space
at identity, which for a symmetric matrix C is defined as νecðMÞ ¼ ½m1;1;

ffiffiffi
2

p
m1;2;ffiffiffi

2
p

m1;3; :::;m2;2;
ffiffiffi
2

p
m2;3; . . . ;mn;n�.

The final GOLD descriptor is size ðn2 þ 3nÞ=2. This feature vector is fed into an SVMwith
a histogram kernel.

5. Bag-of-Features (BOF)
BOF [77], inspired by BoW [77], learns a visual vocabulary from extracted features and
represents images by the frequencies of the extracted visual words. BOF feature extraction is
basically a four-step process.

Step 1. Data organization and partitioning: the purpose of this step is to setup image
category sets by first organizing a given image dataset into categories, and second by
partitioning the dataset into training and testing sets.

Step 2. Feature extraction: in this step features (such as SIFT) are extracted from
representative images in each category. There are many ways to extract features: sample
features along a grid structure as with GOLD above, or extract features using interest
point detectors or salient regions.
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Step 3. Dictionary/vocabulary building: in this step a vocabulary of visual words is
constructed using k-means clustering on the features extracted in Step 2 from the training
set. The resulting k clusters are mutually exclusive, compact, and separated by similar
characteristics. Each cluster center becomes a visual word, and the collection of centers
(centroids) becomes the dictionary or codebook of visual words.

Step 4. Vector quantization: in this step an image can be quantified and abstractly
represented using the dictionary by applying the following processes:

i. Extract features from the given image as in Step 2;

ii. For each feature, compute (using some distance measure) its nearest neighbor in the
dictionary produced in Step 3;

iii. Take the set of nearest neighbor labels and build a histogram of size k.The histogram
length corresponds to the number of visual words, and the bins are incremented
based on the proximity of the descriptor to a particular cluster center. The histogram
is the BOF descriptor.

In this work a simple BOF approach is used for codebook assignation: each descriptor is
assigned to one codebook according to the minimum distance criterion, and a dense sample
keypoint extraction is performed. SVM is used as the classifier. Since several feature
descriptors are tested, several SVMs are trained, with classifier results combined using the
sum rule (where the final score is the sum of the scores of a pool of classifiers that belong to an
ensemble). Before fusion, the scores of each classifier are normalized to mean 0 and standard
deviation 1.

To improve performance, an ensemble of codebooks is built using the following strategies:

� A different set of visual words is created for each class of the dataset, where for each
NIMG image (images are clustered in groups, and the number of images, NIMG, in
each group is 50 due to computational issues) visual words are built by clustering a
local descriptor with k-means (the number k randomly selected between 10 and 40); for
each descriptor the final vocabulary (codebook) is obtained by concatenating the
visual words over all classes (this is done because k-means is an unstable clustering
approach);

� A set of 50,000 patches are randomly extracted from the training set (considering the
different classes), and these patches are then used to construct a PCA matrix (one
projection matrix for each descriptor). This step is done three times: the first two times
by retaining 99.9%of the variance and the third time by retaining 98%of the variance;
a different codebook is created from each of thesematrices and used to train a separate
SVM;

� Each image is divided into overlapping patches with the size specified as a percentage
(ps) of the original image taken at fixed steps st ¼ minðps3 l; ps3 hÞ=2, where l3 h is
the size of the original image. We tested different values of ps. In our final version, we
set ps ¼ 12% and ps ¼ 8%;

� Different shapes of the extracted patches are used, both square and circular.

6. Proposed ensemble approach
In our proposed approach, a different SVM is trained for each descriptor. We used two
different kernels in our experiments: 1) a histogram for BOF and the original GOLD
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algorithm, and 2) the radial basis function for all the other descriptors (including the image
variants of GOLD).

In this section, we explain the five steps involved in our best performing approach. In
outline form, they are the following:

� STEP 1: FACE DETECTION. For face detection we use Discriminative Response
Map Fitting (DRMF), proposed in [54], which is a discriminative regression-based
approach for the Constrained Local Models (CLMs) framework. The advantage of the
DRMF is that it can be represented by a small set of parameters that can be efficiently
used for reconstructing unseen response maps. The training procedure for the DRMF
method can be broken down into two steps. In the first step, a dictionary is trained for
the response map approximation so that it can be used for extracting the relevant
features for learning the fitting of the update model. The second step involves
iteratively learning the fitting update model, which is achieved by amodified boosting
procedure.

� STEP 2: ENHANCEMENT. This step enhances the contrast of each image using the
method proposed in [55], which is based on both an intra-layer optimization and inter-
layer aggregation. A 2-D histogram hðk; kþ 1Þis extracted by counting pairs of
adjacent pixels with gray-levels k and kþ 1 using a tree-like layered structure.
At each layer, a constrained optimization problem is formulated for enhancement and
solved to obtain a difference vector. The difference vectors at all layers are then
aggregated into a single unified difference vector.

� STEP 3: DESCRIPTORS. The whole image is divided into four equal regions; and,
from each region, a set of features is extracted; moreover, a set of features is extracted
from the whole image. From each set of features, a different SVM is trained, then the
five SVMs are combined by sum rule.

� STEP 4: GOLDDESCRIPTORS.The descriptors described in Section 4 are extracted.

� STEP 5: FUSION. Fusion by weighted sum rule of the SVMs trained in steps 3–5.
Notice that before each fusion the scores of each classifier are normalized to mean
0 and standard deviation 1.

7. Experimental results
We use the Area Under the receiver operating characteristic Curve (AUC) [84], which is a plot
of the sensitivity vs. false positives (1� specificity), as the performance indicator for all tests
(including the evaluation of pain videos by human subjects in Section 8), where AUC is
expressed as a percentage of the area of the unit square (i.e., as a value in the [0,100] range).

The testing protocol adopted was a 10-fold cross-validation (since we have 49 neonates,
each fold contains the video of five neonates with one-fold containing four). All the frames of a
given video segment belonged either to the training set or to the testing set.

The first experiment, reported in Tables 2 and 3, was aimed at comparing the descriptors
listed in Section 3. We report the performance using two different testing protocols:

� Images: the AUC is calculated considering each frame as a different still image;

� Video: the AUC is calculated considering each video as a single pattern, where the score
of each video is the average of the scores of the frames that belong to that video.

In Table 2 the method named FUSg is the fusion by sum rule among RICLBP, LCP, BSIF,
MORPHO, andLPQ.We tested all the texture descriptorsmentioned in Section 3, but in order
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to avoid a huge table cluttered with unnecessary details regarding those descriptors that
performed poorly, we have reported only the highest performing approaches here.

The cells of the row labeled Image contain two values: the first is the AUC where features
are extracted from the whole image only (labeled WholeIm), and the second is the AUC
considering features extracted from the four subwindows (as detailed in Section 6 and labeled
SubIm). Clearly, the best performance is obtained when considering the subwindows; for this
reason, in the row labeledVideo, only the performance obtained considering the subwindows
is reported.

Due to the high computation time of BOF, it was tested using only four features. In Table 3
we compare several BOF variants for demonstrating the value of combining different
codebooks:

� Whole: these are features extracted from the whole image, and both the values of ps
and only one PCA projection (98% of the variance) are used for building the
codebooks. Since only square patches are considered, the number of codebooks is two.

� Itera: these are features extracted as described with Whole, but all three PCA
projections described in Section 5 are used for building the codebooks. Since only
square patches are considered, the number of codebooks is six.

� Circular: these are features extracted as described with Itera, but both square and
circular patches are used. To reduce computation time, when the circular patches are
extracted, only one PCA projection (98% of the variance) is used for building the
codebooks. Since both ps values are used, the number of codebooks is eight.

� Sub: these are features extracted as described with Circular, but the codebooks are
built from the four subwindows as well as from the full image; thus, the number of
codebooks is forty-five.

� Sub_easy: these are features extracted as described withWhole, but the codebooks are
built from the four subwindows as well as from the full image; thus, the number of
codebooks is ten.

Descriptors
Protocol Type LPQ RICLBP LCP BSIF ELBP HASC MORPHO FUSg

Image WholeIm
SubIm

58.6
62.8

56.9
63.0

56.3
58.2

59.0
62.9

51.9
53.9

56.6
61.0

55.8
62.1

62.5
67.4

Video SubIm 68.9 76.1 72.4 70.5 65.8 64.2 70.1 74.9

Descriptors
Protocol BOF Type HF LBP LPQ HOG FUSbof

Image Whole 58.9 57.9 62.0 61.9 65.6
Itera 61.9 61.3 65.1 65.0 68.6
Circular 62.9 62.4 66.1 65.6 69.3
Sub 68.9 67.7 71.2 71.0 73.5
Sub_easy 66.7 65.6 69.3 68.5 70.1

Video Sub 73.8 74.1 75.8 75.0 76.4

Table 2.
Performance (AUC) of

texture descriptors.

Table 3.
Performance (AUC) of
the BOF approaches.
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Clearly BOF outperforms the global approaches, as does combining different codebooks. The
fusion among all four descriptors, labeled FUSbof, which is based on different features, also
improves performance.

In the last row we report the performance obtained by Sub using the Video testing
protocol. Obviously, combing the four different descriptors by sum rule, i.e. FUSbof, improves
performance.

In Table 4 we report the performance of GOLD and its variants. TB is the performance
obtained by SVM trained using the texture descriptors extracted from the covariance matrix
(see Section 4.4). TB_SUM is the sum rule among the different TBs. The fusions
a 3 A þ b 3 B are the weighted sum rule between A, with weight a, and B, with weight
b. In the last row of Table 3, we combine the approaches based on GOLD and the approaches
based on TB.

Although the improvement is not impressive, it is clear that the idea of extracting texture
features from the covariance matrix works (see [85]) and that further tests should be
performed for optimizing the results.

The novel ensemble proposed here is given by the sum rule fusion among FUSg, FUSbof
and (23 GOLDþ TB_SUM) to obtain an AUC (video classification rate) of 0.80. Note: before
fusion, the scores of each method are normalized to mean 0 and standard deviation 1.

In an attempt to improve our best ensemble method, we used a powerful feature selection
approach, Maximum Relevance Minimum Redundancy [86], to select a subset of all the
features extracted by each texture descriptor. Table 5 reports the performance of 2 3
GOLD þ TB_SUM by varying the percentage of retained features and shows that feature
selection did not significantly improve the performance; however, it did reduce the number of
features that could be used to obtain a competitive performance.

In addition to the above methods, in Table 6 we show our results using the following
transfer learning approaches using both the Image and Video protocols:

� VGGface_e; based on [87], which combines LBP and HOG features with deep learning-
based features extracted from two pretrained CNNs (VGG face [88] andMBPCNN [89]);

Image Video

GOLD 69.1 78.4
TB LPQ 63.9 72.7

RICLBP 66.1 75.1
HOG 65.9 74.1
HASC 66.1 74.3
BSIF1 67.5 76.3
SUM 67.6 75.5

3 3 GOLD þ TB_SUM 69.8 78.9
2 3 GOLD þ TB_SUM 70.0 79.0
1 Five different BSIF are trained and then combined by sum rule, we use 5 filters of different sizes: 3, 5, 7, 9, 11.

25% 50% 75% 100%

65.1 68.2 70.7 70.0

Table 4.
Performance of GOLD
and fusion with other
descriptors.

Table 5.
Performance as a
function of percentage
of retained descriptors
using Maximum
Relevance Minimum
Redundancy [86] on the
image protocol.
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this approach was used in [32] to assess neonatal pain using the iCOPE still image
dataset. We combine LBP and HOG features with VGGface_e to test them on the
iCOPEvid dataset;

� Dense: Densely Connected Convolutional Network (Densenet) [90] trained on the
ImageNet [91] database and tuned on our training set;

� ResNet: This net is the same as ResNet-34 [92] except that it has fewer layers and 50%
fewer filters per layer. ResNet has obtained the state-of-the-art classification
performance on the LFW face benchmark [93] and was trained from scratch on 3
million faces.We used ResNet as a feature extractor for feeding into an SVM. Resnet is
available at https://github.com/davisking/dlib-models.

Adding the CNN to our best performing ensemble (the fusion by sum rule among FUSg,
FUSbof and 23 GOLDþ TB_SUM) did not significantly improve results. Our GOLD-based
ensemble, therefore, should provide researchers with a challenging performance rate for
future comparisons.

8. Human judgments
To compare our system with human evaluations, judgments were collected from college
students enrolled in upper-level courses at a large Midwestern university. A total of 185
students (56.8% female) participated in the study to completion. The average participant was
24.8 years of age (SD 5 7.3), with 82.7% single and never married. While only 12.4% were
parents, most participants (71.9%) indicated some history caring for infants (age: 0–1) of their
own, of family members (including siblings), or of friends. The average length of time caring
for infants was 3.3 years (SD 5 4.2). None of the participants had received formal neonatal
pain assessment training. However, previous studies have indicated that clinician judgments
of pain from facial expressions are as reliable as judgments from those who are not
clinicians [94].

Ratings were collected online through a website developed specifically for this study.
Participants were presented with all 234 videos in the iCOPEvid dataset. All videos were 20 s
in length and did not include sound. Each video was randomly presented to participants, and
theywere asked to use their best judgment to rate the level of pain experienced by the neonate
in each video. Participants were unaware of the actual pain or nopain condition experienced
by the neonate. Participants indicated pain levels with a slide control anchored by
“Absolutely No Pain” and “Extreme Pain.” Responses were converted to a numeric value
ranging from 0 to 100. Due to the large amount of time required to complete the survey,
participants were allowed to exit the website and resume later at the point where they had left
off. A total of 39,865 pain assessments were collected in this manner.

The AUC of human subjects, with a 95% confidence interval, is lower 5 0.665/
upper 5 0.677, a performance that is significantly lower than our best ensemble. Human
subjects found it most difficult to discern pain versus nopain in the presence of the friction

Image Video

Transfer learning approaches VGGface_e 66.7 74.3
Dense 65.1 73.0
ResNet 58.52 66.2

FUSg þ FUSbof þ 2 3 GOLD þ TB_SUM þ VGGface_e 70.3 79.8
FUSg þ FUSbof þ 2 3 GOLD þ TB_SUM þ Dense 70.2 78.5

Table 6.
Performance using

transfer learning with
three pretrained CNNs

and fusion with our
best performing

method.
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stimulus. Statistical analysis using a Z-score of subject performance across individual stimuli
confirm these differences. A Z-score indicates significant differences between two AUC
values calculated from independent samples [95]. The critical ratio Z is defined as:

Z ¼ jAUC1 � AUC2jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SE2

AUC1 þ SE2
AUC2

q (6)

where SEAUC1 refers to the standard error for AUC1 and SEAUC2 refers to the standard error
for AUC2. The value of Z is compared to a critical value CVZ at the preferred level of
significance referenced in tables of the normal distribution. A value of Z greater than CVZ is
considered evidence that the AUCs are statistically different. Alternatively, onemay interpret
the p-value for the statistic. If the p-value is less than the desired level of significance
(e.g., p < .05) then one may reasonably assume that the two AUCs are different.

Human subject AUCs for each stimuli measured individually against pain are: rest (0.699),
movement (0.693), and friction (0.600). We find that the AUC for friction stimuli is statistically
different from theAUCs for rest (Z5 15.54, p < .001) andmovement (Z5 13.44, p < .001). This
supports the poor results of the human subjects in their assessment of the friction stimulus.
Removing the friction videos from the sample set significantly improves the overall AUC
rating of human subjects from 0.671 to 0.697 (Z5 4.64, p < .001). An improvement is obtained
as well as in the AUC rating of our best ensemble, which went from 0.800 to 0.815 (the CNN-
based method increased from 66.7 to 67.5 in the Image set and from 74.3 to 75.5 in the Video
set). A possible explanation for these differences is that some neonates in our study
experienced pain when receiving the friction stimulus.

In Figures 2 and 3, we show some images that proved very difficult to classify, not only by
machine but also by the human judgers.

Figure 2.
Difficult pain frames;
human rating of this
subject (not just these
images) 8.1% correct;
best machine rating for
this subject 13.8%
correct.

Figure 3.
Difficult nopain
frames; human rating
of this subject (not just
these images) 35.2%
correct; best machine
rating for this subject
43.1% correct.
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9. Conclusion
The aim of this work was 1) to develop a challenging video dataset for the detection of pain in
videos of neonates, and 2) to develop a powerful classification system that would provide a
challenging performance rate for future comparisons. For the video dataset, we collected 234
videos of 49 neonates experiencing a set of noxious stimuli, a period of rest, and an acute pain
stimulus, and divided the videos into two classes: pain and nopain.We purposefully extracted
a set of challenging videos for the nopain class.

We experimentally developed our classification system by comparing a number of SVMs
trained on twelve different state-of-the-art texture descriptors, along with an ensemble of
local approaches based on Bag-of-Features (BOF) and descriptors based onGaussian of Local
Descriptors (GOLD). A set of features were extracted from the covariancematrix generated in
the GOLD process with the assumption that the different features extracted from different
image patches are taken from a multivariate Gaussian distribution. An ensemble of global
descriptors and BOFwas then used to improve the performance of the new descriptors based
on GOLD.

For improving the performance with respect to some standard approaches (which we also
report), we proposed a set of features that could be extracted from the covariance matrix used
in GOLD. To improve the texture descriptors based on BOF, we built an ensemble of
codebooks for BoW using different strategies. The results of our best ensemble proved
superior not only to the standard approaches but also to some deep learning approaches. Our
best ensemble was also shown to outperform 185 human judges.

Although adding CNN to our best ensemble failed to improve results, additional studies
using CNN are needed. In the future, we plan on exploring more CNN-based approaches. For
example, to overcome the problem of a small dataset, we want to collect different datasets of
infant faces and train them using a CNN network; we will then explore fine-tuning our
neonatal pain dataset using that network.

Similarly, although the improvement using the covariance matrix was not impressive, it is
clear that the idea of extracting texture features from the covariance matrix works (see [85])
and that further tests should be performed for optimizing results. Finally, we plan on
extracting features from the entire set of images to see if this will enhance performance.
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