179 research outputs found

    Fast Euclidean morphological operators using local distance transformation by propagation

    Get PDF
    We propose a new method to compute the morphological dilation of a binary image with a circular structuring element of any given size, on a discrete lattice. The algorithm is equivalent to applying a threshold on an exact Euclidean distance map, but computations are restricted to a minimum number of pixels. The complexity of this dilation algorithm is compared to the complexity of the commonly used approximation of circular structuring elements and found to have a similar cost, while providing better results

    Information Extraction and Modeling from Remote Sensing Images: Application to the Enhancement of Digital Elevation Models

    Get PDF
    To deal with high complexity data such as remote sensing images presenting metric resolution over large areas, an innovative, fast and robust image processing system is presented. The modeling of increasing level of information is used to extract, represent and link image features to semantic content. The potential of the proposed techniques is demonstrated with an application to enhance and regularize digital elevation models based on information collected from RS images

    Correspondence of three-dimensional objects

    Get PDF
    First many thanks go to Prof. Hans du Buf, for his supervision based on his experience, for providing a stimulating and cheerful research environment in his laboratory, for letting me participate in the projects that produced results for papers, thus made me more aware of the state of the art in Computer Vision, especially in the area of 3D recognition. Also for his encouraging support and his way to always nd time for discussions, and last but not the least for the cooking recipes... Many thanks go also to my laboratory fellows, to Jo~ao Rodrigues, who invited me to participate in FCT and QREN projects, Jaime Carvalho Martins and Miguel Farrajota, for discussing scienti c and technical problems, but also almost all problems in the world. To all persons, that worked in, or visited the Vision Laboratory, especially those with whom I have worked with, almost on a daily basis. A special thanks to the Instituto Superior de Engenharia at UAlg and my colleagues at the Department of Electrical Engineering, for allowing me to suspend lectures in order to be present at conferences. To my family, my wife and my kids

    Algorithms for Imaging Atmospheric Cherenkov Telescopes

    Get PDF
    Imaging Atmospheric Cherenkov Telescopes (IACTs) are complex instruments for ground-based -ray astronomy and require sophisticated software for the handling of the measured data. In part one of this work, a modular and efficient software framework is presented that allows to run the complete chain from reading the raw data from the telescopes, over calibration, background reduction and reconstruction, to the sky maps. Several new methods and fast algorithms have been developed and are presented. Furthermore, it was found that the currently used file formats in IACT experiments are not optimal in terms of flexibility and I/O speed. Therefore, in part two a new file format was developed, which allows to store the camera and subsystem data in all its complexity. It offers fast lossy and lossless compression optimized for the high data rates of IACT experiments. Since many other scientific experiments also struggle with enormous data rates, the compression algorithm was further optimized and generalized, and is now able to efficiently compress the data of other experiments as well. Finally, for those who prefer to store their data as ASCII text, a fast I/O scheme is presented, including the necessary compression and conversion routines. Although the second part of this thesis is very technical, it might still be interesting for scientists designing an experiment with high data rates

    Pattern Recognition

    Get PDF
    A wealth of advanced pattern recognition algorithms are emerging from the interdiscipline between technologies of effective visual features and the human-brain cognition process. Effective visual features are made possible through the rapid developments in appropriate sensor equipments, novel filter designs, and viable information processing architectures. While the understanding of human-brain cognition process broadens the way in which the computer can perform pattern recognition tasks. The present book is intended to collect representative researches around the globe focusing on low-level vision, filter design, features and image descriptors, data mining and analysis, and biologically inspired algorithms. The 27 chapters coved in this book disclose recent advances and new ideas in promoting the techniques, technology and applications of pattern recognition

    Physically-based simulation of ice formation

    Get PDF
    The geometric and optical complexity of ice has been a constant source of wonder and inspiration for scientists and artists. It is a defining seasonal characteristic, so modeling it convincingly is a crucial component of any synthetic winter scene. Like wind and fire, it is also considered elemental, so it has found considerable use as a dramatic tool in visual effects. However, its complex appearance makes it difficult for an artist to model by hand, so physically-based simulation methods are necessary. In this dissertation, I present several methods for visually simulating ice formation. A general description of ice formation has been known for over a hundred years and is referred to as the Stefan Problem. There is no known general solution to the Stefan Problem, but several numerical methods have successfully simulated many of its features. I will focus on three such methods in this dissertation: phase field methods, diffusion limited aggregation, and level set methods. Many different variants of the Stefan problem exist, and each presents unique challenges. Phase field methods excel at simulating the Stefan problem with surface tension anisotropy. Surface tension gives snowflakes their characteristic six arms, so phase field methods provide a way of simulating medium scale detail such as frost and snowflakes. However, phase field methods track the ice as an implicit surface, so it tends to smear away small-scale detail. In order to restore this detail, I present a hybrid method that combines phase fields with diffusion limited aggregation (DLA). DLA is a fractal growth algorithm that simulates the quasi-steady state, zero surface tension Stefan problem, and does not suffer from smearing problems. I demonstrate that combining these two algorithms can produce visual features that neither method could capture alone. Finally, I present a method of simulating icicle formation. Icicle formation corresponds to the thin-film, quasi-steady state Stefan problem, and neither phase fields nor DLA are directly applicable. I instead use level set methods, an alternate implicit front tracking strategy. I derive the necessary velocity equations for level set simulation, and also propose an efficient method of simulating ripple formation across the surface of the icicles

    One DAG to Rule Them All

    Get PDF
    In this paper, we present novel strategies for optimizing the performance of many binary image processing algorithms. These strategies are collected in an open-source framework, GRAPHGEN, that is able to automatically generate optimized C++ source code implementing the desired optimizations. Simply starting from a set of rules, the algorithms introduced with the GRAPHGEN framework can generate decision trees with minimum average path-length, possibly considering image pattern frequencies, apply state prediction and code compression by the use of Directed Rooted Acyclic Graphs (DRAGs). Moreover, the proposed algorithmic solutions allow to combine different optimization techniques and significantly improve performance. Our proposal is showcased on three classical and widely employed algorithms (namely Connected Components Labeling, Thinning, and Contour Tracing). When compared to existing approaches —in 2D and 3D—, implementations using the generated optimal DRAGs perform significantly better than previous state-of-the-art algorithms, both on CPU and GPU

    Visual inspection : image sampling, algorithms and architectures

    Get PDF
    The thesis concerns the hexagonal sampling of images, the processing of industrially derived images, and the design of a novel processor element that can be assembled into pipelines to effect fast, economic and reliable processing. A hexagonally sampled two dimensional image can require 13.4% fewer sampling points than a square sampled equivalent. The grid symmetry results in simpler processing operators that compute more efficiently than square grid operators. Computation savings approaching 44% arc demonstrated. New hexagonal operators arc reported including a Gaussian smoothing filter, a binary thinner, and an edge detector with comparable accuracy to that of the Sobel detector. The design of hexagonal arrays of sensors is considered. Operators requiring small local areas of support are shown to be sufficient for processing controlled lighting and industrial images. Case studies show that small features in hexagonally processed images maintain their shape better, and that processes can tolerate a lower signal to noise ratio, than that for equivalent square processed images. The modelling of small defects in surfaces has been studied in depth. The flexible programmable processor element can perform the low level local operators required for industrial image processing on both square and hexagonal grids. The element has been specified and simulated by a high level computer program. A fast communication channel allows for dynamic reprogramming by a control computer, and the video rate element can be assembled into various pipeline architectures, that may eventually be adaptively controlled
    • …
    corecore